Skip to main content
Log in

Evaluation of halogen chain-end functionality in 2-bromo-2-methylpropanoate esters of poly(oxyalkylene) polymers by MALDI-TOF spectroscopy

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Esters of 2-bromo-2-methylpropanoate of poly(oxyalkylene) polymers such as poly(ethylene glycol) or α-methyl poly(ethylene glycol) were prepared in high yields and characterized by spectroscopic and chromatographic methods (NMR, FT-IR, mass spectroscopy and SEC). The halogen chain-end group in the poly(oxyalkylene) bromine-terminated esters was characterized by MALDI-TOF MS. The effect of the solvents (methanol or tetrahydrofuran) and the cationic agents such as silver trifluoroacetate (AgTFA), silver trifluoromethanesulfonate (AgTFS) and sodium trifluoroacetate (NaTFA) on the mass spectra was studied. Analysis of the mass spectra demonstrated that the analyte was transformed to unsaturated (elimination), alkoxy or hydroxyl end-groups (substitution) molecules when silver cationic agents were used; these results were also supported by 1H NMR study. When sodium salt was used as a cationic agent, well-defined bromine-terminated macromolecules were successfully determined through MALDI-TOF MS. Well-characterized esters of 2-bromo-2-methylpropanoate of poly(oxyalkylene) polymers could be used as ATRP macroinitiators for the synthesis of a variety of polymeric architectures of interest as drug delivery bioconjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Crecelius AC, Becer CR, Knop K, Schubert US (2010) Block length determination of the block copolymer mPEG-b-PS using MALDI-TOF MS/MS. J Polym Sci Part A Polym Chem 48:4375–4384

    Article  CAS  Google Scholar 

  2. Karolewicz B (2016) A review of polymers as multifunctional excipients in drug dosage form technology. Saudi Pharm J 24:525–536

    Article  Google Scholar 

  3. Fliervoet LAL, Naja M, Hembury M, Vermonden T (2017) Heterofunctional poly(ethylene glycol) (PEG) macroinitiator enabling controlled synthesis of ABC triblock copolymers. Macromolecules 50:8390–8397

    Article  CAS  Google Scholar 

  4. Krieg A, Pietsch C, Baumgaertel A, Hager MD, Remzi C, Schubert US (2010) Dual hydrophilic polymers based on (meth)acrylic acid and poly(ethylene glycol)—synthesis and water uptake behavior. Polym Chem 1:1669–1676

    Article  CAS  Google Scholar 

  5. Ahmadkhani L, Abbasian M, Akbarzadeh A (2017) Synthesis of sharply thermo and PH responsive PMA-b-PNIPAM-b-PEGB-PNIPAM-b-PMA by RAFT radical polymerization and its schizophrenic micellization in aqueous solutions. Des Monomers Polym 20:406–418

    Article  CAS  Google Scholar 

  6. Han Y, Liu S, Mao H, Tian L, Ning W (2016) Synthesis of novel temperature—and pH-sensitive ABA triblock copolymers P(DEAEMA-co-MEO2MA-co-OEGMA)-b-PEG-b-P(DEAEMA-co-MEO2MA-co-OEGMA): micellization sol-gel transitions, and sustained BSA release. Polymers 8:367

    Article  Google Scholar 

  7. Cao H, Chen C, Xie D, Chen X, Wang P, Wang Y, Song H, Wang W (2018) A hyperbranched amphiphilic acetal polymer for pH-sensitive drug delivery. Polym Chem 9:169–177

    Article  CAS  Google Scholar 

  8. Storms-Miller WK, Pugh C (2015) Prop-2-yn-1-yl 2-Bromo-2-methylpropanoate: identification and suppression of side reactions of a commonly used terminal alkyne-functional ATRP initiator. Macromolecules 48:3803–3810

    Article  CAS  Google Scholar 

  9. Krys P, Matyjaszewski K (2017) Kinetics of atom transfer radical polymerization. Eur Polym J 89:482–523

    Article  CAS  Google Scholar 

  10. Wang Y, Matyjaszewski K (2020) Catalytic halogen exchange in miniemulsion ARGET ATRP: a pathway to well-controlled block copolymers. Macromol Rapid Commun. https://doi.org/10.1002/marc.202000264

    Article  PubMed  Google Scholar 

  11. Charles L (2014) MALDI of synthetic polymers with labile end-groups. Mass Spectrom Rev 33:523–543

    Article  CAS  Google Scholar 

  12. Li Y, Hoskins JN, Sreerama SG, Grayson MA, Grayson SM (2010) The identification of synthetic homopolymer end groups and verification of their transformations using MALDI-TOF mass spectrometry. J Mass Spectrom 45:587–611

    CAS  PubMed  Google Scholar 

  13. Zhang B, Zhang H, Myers BK, Elupula R, Jayawickramarajah J, Grayson SM (2014) Determination of polyethylene glycol end group functionalities by combination of selective reactions and characterization by matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta 816:28–40

    Article  CAS  Google Scholar 

  14. Myers BBK, Zhang B, Lapucha JE, Grayson SM (2014) The characterization of dendronized poly(ethylene glycol)s and poly(ethylene glycol) multi-arm stars using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Anal Chim Acta 808:175–189

    Article  CAS  Google Scholar 

  15. Pasch WSH (2003) MALDI-TOF mass spectrometry of synthetic polymers. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  16. Zenobi R, Knochenmuss R (1999) Ion formation in MALDI mass spectrometry. Mass Spectrom Rev 17:337–366

    Article  Google Scholar 

  17. Karas M, Kru R (2003) Ion formation in MALDI: the cluster ionization mechanism. Chem Rev 103:427–439

    Article  CAS  Google Scholar 

  18. Li Y, Hoskins JN, Sreerama SG, Grayson SM (2010) MALDI-TOF mass spectral characterization of polymers containing an azide group: evidence of metastable ions. Macromolecules 43(14):6225–6228

    Article  CAS  Google Scholar 

  19. Soeriyadi AH, Whittaker MR, Boyer C, Davis TP (2013) Soft ionization mass spectroscopy: insights into the polymerization mechanism. J Polym Sci Part A Polym Chem 51:1475–1505

    Article  CAS  Google Scholar 

  20. Payne ME, Grayson SM (2018) Characterization of synthetic polymers via matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. J Vis Exp 136:1–15

    Google Scholar 

  21. De Winter J, Deshayes G, Boon F, Coulembier O, Dubois P, Gerbaux P (2011) MALDI-ToF analysis of polythiophene: use of trans-2-[3-(4-t-butyl-phenyl)-2-methyl-2-propenylidene] malononitrile-DCTB-as matrix. J Mass Spectrom 46:237–246

    Article  Google Scholar 

  22. Lallana E, Ferreri T, Carroccio SC, Puga AM, Tirelli N (2012) End-group rearrangements in poly(propylene sulfide) matrix assisted laser desorption/ionization time-of-flight analysis. Experimental evidence and possible mechanisms. Rapid Commun Mass Spectrom 26:2158–2164

    Article  CAS  Google Scholar 

  23. Borman CD, Jackson AT, Bunn A, Cutter AL, Irvine DJ (2000) Evidence for the low thermal stability of poly(methyl methacrylate) polymer produced by atom transfer radical polymerisation. Polymer 41:6015–6020

    Article  CAS  Google Scholar 

  24. Coessens V, Matyjaszewski K (1999) End group transformation of polymers prepared by ATRP, substitution to azides. J Macromol Sci Pure Appl Chem 36:667–669

    Article  Google Scholar 

  25. Keul H, Neumann A, Reining B, Höcker H (2000) Synthesis of telechelic and block copolymers via "living" radical polymerization. Macromol Symp 161:63–72

    Article  CAS  Google Scholar 

  26. Couthouis J, Keul H, Möller M (2015) MALDI-TOF analysis of halogen telechelic poly(methyl methacrylate)s and poly(methyl acrylate)s prepared by atom transfer radical polymerization (ATRP) or single electron transfer-living radical polymerization (SET-LRP). Macromol Chem Phys 216:1791–1800

    Article  CAS  Google Scholar 

  27. Tintaru A, Chendo C, Phan TNT, Rollet M, Giordano L (2013) End-group cleavage in MALDI of ATRP-made polystyrene: a silver-catalyzed reaction during sample preparation. Anal Chem 85:5454–5462

    Article  CAS  Google Scholar 

  28. Kim K, Hasneen A, Paik HJ, Chang T (2013) MALDI-TOF MS characterization of polystyrene synthesized by ATRP. Polymer 54:6133–6139

    Article  CAS  Google Scholar 

  29. Le Grognec E, Gabriel S, Uni V, Bourgogne D, Gabriel BV, Chimie D, Cpe-cnrs L, Boule V (2001) Radical polymerization of styrene controlled by half-sandwich Mo(III)/Mo(IV) Couples: all basic mechanisms are possible. J Am Chem Soc 123:9513–9524

    Article  Google Scholar 

  30. Ladavière C, Lacroix-Desmazes P, Delolme F (2009) First systematic MALDI/ESI mass spectrometry comparison to characterize polystyrene synthesized by different controlled radical polymerizations. Macromolecules 42:70–84

    Article  Google Scholar 

  31. Altintas O, Josse T, Abbasi M, De Winter J, Trouillet V, Gerbaux P, Wilhelm M, Barner-Kowollik C (2015) ATRP-based polymers with modular ligation points under thermal and thermomechanical stress. Polym Chem 6:2854–2868

    Article  CAS  Google Scholar 

  32. Guven O (1986) Size exclusion chromatography of poly(ethylene glycol). Br Polym J 18:391–393

    Article  CAS  Google Scholar 

  33. Knochenmuss R, Karbach V, Wiesli U, Breuker K, Zenobi R (1998) The matrix suppression effect in matrix-assisted laser desorption/ionization: application to negative ions and further characteristics. Rapid Commun Mass Spectrom 12:529–534

    Article  CAS  Google Scholar 

  34. Matyjaszewski K, Jo SM, Paik HJ, Shipp DA (1999) An investigation into the CuX/2,2′-bipyridine (X = Br or Cl) mediated atom transfer radical polymerization of acrylonitrile. Macromolecules 32:6431–6438

    Article  CAS  Google Scholar 

  35. Kemptner J, Marchetti-Deschmann M, Siekmann J, Turecek PL, Peter H, Allmaier G (2010) GEMMA and MALDI-TOF MS of reactive PEGs for pharmaceutical applications. J Pharm Biomed Anal 52:432–437

    Article  CAS  Google Scholar 

  36. Kooijman PC, Kok S, Honing M (2017) Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: effect of sample preparation on MALDI-MS of synthetic polymers rationale. Rapid Commun Mass Spectrom 31:1–31

    Article  Google Scholar 

  37. Barner-Kowollik C, Gruendling T, Falkenhagen J, Robert T, Michael AR (2012) Mass spectrometry in polymer chemistry. Wiley, Weinheim

    Google Scholar 

  38. Lin HY, Dyakov YA, Lee YT, Ni CK (2020) Temperature dependence of desorbed ions and neutrals and ionization mechanism of matrix-assisted laser desorption/ionization. J Am Soc Mass Spectrom. https://doi.org/10.1021/jasms.0c00101

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Council of Science and Technology (CONACyT) for the support provided through the Project Number 256727 and the Laboratorio Nacional de Materiales Grafénicos (LNMG) of Centro de Investigación en Química Aplicada (CIQA) for the support with the instrumentation of MALDI-TOF. The authors also thank Dr. Geraldina Rodriguez for her valuable support during MALDI-TOF measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Ernesto Elizalde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 578 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velázquez, A., Grande, D. & Elizalde, L.E. Evaluation of halogen chain-end functionality in 2-bromo-2-methylpropanoate esters of poly(oxyalkylene) polymers by MALDI-TOF spectroscopy. Polym. Bull. 78, 5641–5665 (2021). https://doi.org/10.1007/s00289-020-03391-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03391-1

Keywords

Navigation