Skip to main content
Log in

Properties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Polyaniline/graphene oxide (PANI/GO) composites at different wt% of GO were prepared via solution method. PANI was mixed with the GO synthesized from the improved Hummer’s method. The formation of GO was confirmed via Raman and C/O ratio. Based on the FT-IR, XRD and SEM results, it confirmed the presence of both PANI and GO characteristics at 10.9°, 25.8° and 27.8° and interactions between PANI and GO particles in PANI/GO composites at different GO loading. SEM micrographs showed a folding and wrinkled surface of GO due to the defect upon oxidation process. This means that the weak ππ interactions or the agglomeration of GO have caused PANI unable to attach on the large conjugated basal planes of GO sheets. The defective domains made GO as an insulator as it contained distortions and oxygen-containing functional groups and their local decoration. Low-conductivity domain had conquered most of the GO region which later reduced the pathway of the current flow; therefore, conductivity is affected. The wrinkled structure also resulted in the low conductivity as it weakens the interfacial interaction between PANI and GO and thus disrupted the electron movement in the composites. Due to this, the electrical conductivity reached up to 1.83 × 10−10 S/cm as the GO loading increased to 50 wt%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Crowley K, Smyth MR, Killard AJ, Morrin A (2013) Printing polyaniline for sensor applications. Chem Pap 67:771–780

    Article  CAS  Google Scholar 

  2. Wang H, Lin J, Shen ZX (2016) Polyaniline (PANi) based electrode materials for energy storage and conversion. J Sci Adv Mater Devices 1:225–255

    Article  Google Scholar 

  3. Dharupaneedi SP, Anjanapura RV, Han JM, Aminabhavi TM (2014) Functionalized graphene sheets embedded in chitosan nanocomposite membranes for ethanol and isopropanol dehydration via pervaporation. Ind Eng Chem Res 53:14474–14484

    Article  CAS  Google Scholar 

  4. Suhas DP, Raghu AV, Jeong HM, Aminabhavi TM (2013) Graphene-loaded sodium alginate nanocomposite membranes with enhanced isopropanol dehydration performance via a pervaporation technique. RSC Adv 3:17120–17130

    Article  CAS  Google Scholar 

  5. Suhas DP, Aminabhavi TM, Jeong HM, Raghu AV (2015) Hydrogen peroxide treated graphene as an effective nanosheet filler for separation application. RSC Adv 5:100984–100995

    Article  CAS  Google Scholar 

  6. Reddy KR, Sin BC, Yoo CH et al (2009) Coating of multiwalled carbon nanotubes with polymer nanospheres through microemulsion polymerization. J Colloid Interface Sci 340:160–165

    Article  CAS  PubMed  Google Scholar 

  7. Jinlong L, Meng Y, Suzuki K, Miura H (2017) Fabrication of 3D graphene foam for a highly conducting electrode. Mater Lett 196:369–372

    Article  CAS  Google Scholar 

  8. Reddy KR, Sin BC, Ryu KS et al (2009) In situ self-organization of carbon black–polyaniline composites from nanospheres to nanorods: synthesis, morphology, structure and electrical conductivity. Synth Metals 159:1934–1939

    Article  CAS  Google Scholar 

  9. Dhawan SK, Kumar D, Ram MK et al (1997) Application of conducting polyaniline as sensor material for ammonia. Sens Actuators B Chem 40:99–103

    Article  CAS  Google Scholar 

  10. Song E, Choi J-W (2013) Conducting polyaniline nanowire and its applications in chemiresistive sensing. Nanomaterials 3:498–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Reddy KR, Park W, Sin BC et al (2009) Synthesis of electrically conductive and superparamagnetic monodispersed iron oxide-conjugated polymer composite nanoparticles by in situ chemical oxidative polymerization. J Colloid Interface Sci 335:34–39

    Article  CAS  PubMed  Google Scholar 

  12. Reddy KR, Lee K-P, Gopalan AI, Showkat AM (2007) Synthesis and properties of magnetite/poly (aniline-co-8-amino-2-naphthalenesulfonic acid) (SPAN) nanocomposites. Polym Adv Technol 18:38–43

    Article  CAS  Google Scholar 

  13. Reddy KR, Lee K-P, Gopalan AI, Kang H-D (2007) Organosilane modified magnetite nanoparticles/poly(aniline-co-o/m-aminobenzenesulfonic acid) composites: synthesis and characterization. React Funct Polym 67:943–954

    Article  CAS  Google Scholar 

  14. Reddy KR, Lee K-P, Gopalan AI (2007) Self-assembly directed synthesis of poly (ortho-toluidine)-metal (gold and palladium) composite nanospheres. J Nanosci Nanotechnol 7:3117–3125

    Article  CAS  PubMed  Google Scholar 

  15. Gopinath J, Canjeevaram Balasubramanyam RK, Santosh V et al (2019) Novel anisotropic ordered polymeric materials based on metallopolymer precursors as dye sensitized solar cells. Chem Eng J 358:1166–1175

    Article  CAS  Google Scholar 

  16. Reddy KR, Sin BC, Ryu KS et al (2009) Conducting polymer functionalized multi-walled carbon nanotubes with noble metal nanoparticles: synthesis, morphological characteristics and electrical properties. Synth Metals 159:595–603

    Article  CAS  Google Scholar 

  17. Zhang Y-P, Lee S-H, Reddy KR et al (2007) Synthesis and characterization of core-shell SiO2 nanoparticles/poly(3-aminophenylboronic acid) composites. J Appl Polym Sci 104:2743–2750

    Article  CAS  Google Scholar 

  18. Reddy KR, Lee K-P, Gopalan AI (2007) Novel electrically conductive and ferromagnetic composites of poly(aniline-co-aminonaphthalenesulfonic acid) with iron oxide nanoparticles: synthesis and characterization. J Appl Polym Sci 106:1181–1191

    Article  CAS  Google Scholar 

  19. Reddy KR, Lee K-P, Lee Y, Gopalan AI (2008) Facile synthesis of conducting polymer–metal hybrid nanocomposite by in situ chemical oxidative polymerization with negatively charged metal nanoparticles. Mater Lett 62:1815–1818

    Article  CAS  Google Scholar 

  20. Reddy KR, Lee KP, Gopalan AI (2008) Self-assembly approach for the synthesis of electro-magnetic functionalized Fe3O4/polyaniline nanocomposites: effect of dopant on the properties. Colloids Surf A 320:49–56

    Article  CAS  Google Scholar 

  21. Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanocables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. J Polym Sci Part A Polym Chem 48:1477–1484

    Article  CAS  Google Scholar 

  22. Dakshayini BS, Reddy KR, Mishra A et al (2019) Role of conducting polymer and metal oxide-based hybrids for applications in ampereometric sensors and biosensors. Microchem J 147:7–24

    Article  CAS  Google Scholar 

  23. Wei H, Zhu J, Wu S et al (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer 54:1820–1831

    Article  CAS  Google Scholar 

  24. Li J, Zeng X, Ren T, Van der Heide E (2014) The preparation of graphene oxide and its derivatives and their application in bio-tribological systems. Lubricants 2:137–161

    Article  Google Scholar 

  25. Moon Y-E, Yun J, Kim H-I (2013) Synergetic improvement in electromagnetic interference shielding characteristics of polyaniline-coated graphite oxide/γ-Fe2O3/BaTiO3 nanocomposites. J Ind Eng Chem 19:493–497

    Article  CAS  Google Scholar 

  26. Zheng J, Ma X, He X et al (2012) Praparation, characterizations, and its potential applications of PANi/graphene oxide nanocomposite. Procedia Eng 27:1478–1487

    Article  CAS  Google Scholar 

  27. Nguyen VH, Tang L, Shim J-J (2013) Electrochemical property of graphene oxide/polyaniline composite prepared by in situ interfacial polymerization. Colloid Polym Sci 291:2237–2243

    Article  CAS  Google Scholar 

  28. Bao Y, Song J, Mao Y et al (2011) Graphene oxide-templated polyaniline microsheets toward simultaneous electrochemical determination of AA/DA/UA. Electroanalysis 23:878–884

    Article  CAS  Google Scholar 

  29. Jiang X, Lou S, Chen D et al (2015) Fabrication of polyaniline/graphene oxide composite for graphite felt electrode modification and its performance in the bioelectrochemical system. J Electroanal Chem 744:95–100

    Article  CAS  Google Scholar 

  30. Zhao Y, Tang G-S, Yu Z-Z, Qi J-S (2012) The effect of graphite oxide on the thermoelectric properties of polyaniline. Carbon 50:3064–3073

    Article  CAS  Google Scholar 

  31. Zhu J, Chen M, Qu H et al (2012) Interfacial polymerized polyaniline/graphite oxide nanocomposites toward electrochemical energy storage. Polymer 53:5953–5964

    Article  CAS  Google Scholar 

  32. Lin S-J, Sun H-J, Peng T-J, Jiang L-H (2014) Synthesis of high-performance polyaniline/graphene oxide nanocomposites. High Perform Polym 26:790–797

    Article  CAS  Google Scholar 

  33. Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  PubMed  Google Scholar 

  34. Yan J, Wei T, Shao B et al (2010) Preparation of a graphene nanosheet/polyaniline composite with high specific capacitance. Carbon 48:487–493

    Article  CAS  Google Scholar 

  35. Yu L, Zhang Y, Tong W et al (2012) Hierarchical composites of conductivity controllable polyaniline layers on the exfoliated graphite for dielectric application. Compos A Appl Sci Manuf 43:2039–2045

    Article  CAS  Google Scholar 

  36. Díez-Betriu X, Mompeán FJ, Munuera C et al (2014) Graphene-oxide stacking and defects in few-layer films: impact of thermal and chemical reduction. Carbon 80:40–49

    Article  CAS  Google Scholar 

  37. Low FW, Lai CW, Hamid SBA (2015) Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceram Int 41:5798–5806

    Article  CAS  Google Scholar 

  38. Botas C, Álvarez P, Blanco P et al (2013) Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods. Carbon 65:156–164

    Article  CAS  Google Scholar 

  39. Khalid M, Tumelero MA, Brandt I et al (2013) Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids. Indian J Mater Sci 2013:1–7

    Article  Google Scholar 

  40. Bai H, Sheng K, Zhang P et al (2011) Graphene oxide/conducting polymer composite hydrogels. J Mater Chem 21:18653–18658

    Article  CAS  Google Scholar 

  41. Cote LJ, Kim J, Tung VC et al (2010) Graphene oxide as surfactant sheets. Pure Appl Chem 83:95–110

    Article  CAS  Google Scholar 

  42. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  CAS  PubMed  Google Scholar 

  43. Mahendran R, Sridharan D, Santhakumar K, Gnanasekaran G (2016) Green route fabrication of graphene oxide reinforced polymer composites with enhanced mechanical properties. J Nanosci 2016:1–8

    Article  CAS  Google Scholar 

  44. Lin G, Xie B-H, Hu J et al (2015) Aligned graphene oxide nanofillers: an approach to prepare highly thermally conductive and electrically insulative transparent polymer composites. J Nanomater 2015:1–6

    Google Scholar 

  45. Abdelsayed V, Moussa S, Hassan HM et al (2010) Photothermal deoxygenation of graphite oxide with laser excitation in solution and graphene-aided increase in water temperature. J Phys Chem Lett 1:2804–2809

    Article  CAS  Google Scholar 

  46. Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  47. Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347

    Article  CAS  Google Scholar 

  48. Song J, Wang X, Chang C-T (2014) Preparation and characterization of graphene oxide. J Nanomater 2014:1–6

    Google Scholar 

  49. Suhas DP, Jeong HM, Aminabhavi TM, Raghu AV (2014) Preparation and characterization of novel polyurethanes containing 4,4′-{oxy-1,4-diphenyl bis(nitromethylidine)}diphenol schiff base diol. Polym Eng Sci 54:24–32

    Article  CAS  Google Scholar 

  50. Raghu AV, Gadaginamath GS, Priya M et al (2008) Synthesis and characterization of novel polyurethanes based on N1, N4-bis[(4-hydroxyphenyl)methylene]succinohydrazide hard segment. J Appl Polym Sci 110:2315–2320

    Article  CAS  Google Scholar 

  51. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis[methylylidenenitrilo]}diphenol. Polym Bull 60:609–616

    Article  CAS  Google Scholar 

  52. Cançado LG, Jorio A, Ferreira EM et al (2011) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Nano Lett 11:3190–3196

    Article  PubMed  CAS  Google Scholar 

  53. Tu Y, Ichii T, Utsunomiya T, Sugimura H (2015) Vacuum-ultraviolet photoreduction of graphene oxide: electrical conductivity of entirely reduced single sheets and reduced micro line patterns. Appl Phys Lett 106:133105

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support for this work from the Fundamental Research Grant Scheme (FRGS 9003-00438) under the Ministry of Education Malaysia (MOE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Jin Tan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutalib, T.N.A.B.T.A., Tan, S.J., Foo, K.L. et al. Properties of polyaniline/graphene oxide (PANI/GO) composites: effect of GO loading. Polym. Bull. 78, 4835–4847 (2021). https://doi.org/10.1007/s00289-020-03334-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03334-w

Keywords

Navigation