Skip to main content
Log in

Modified cylindrical collectors for improved orientation of electrospun nanofibers

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In many biomedical applications of nanofibers, such as vascular grafts, longitudinal orientation of the fibers is required in order to enable the grafts to withstand high blood pressures. This study is aimed at developing novel cylindrical collectors and orientation processes for electrospun nanowebs with better and controlled fiber orientation. Effect of the length of conductive and non-conductive collector segments was investigated, along with the effect of polymer concentration, feed rate, electrospinning voltage, distance and groove depth of the non-conductive segment on the mean fiber diameter and orientation of polyacrylonitrile nanofibers. Results of the study show that polymer concentration has major effect on the fiber diameter followed by length of the conductive segment and groove depth. Fiber orientation was mainly affected by length of the non-conductive segments of the collector and the polymer concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM (2005) Current status of prosthetic bypass grafts: a review. J Biomed Mater Res Part B Appl Biomater 74B(1):570–581

    Article  CAS  Google Scholar 

  2. Hussain T, Garg T, Goyal AK, Rath G (2014) Biomedical applications of nanofiber scaffolds in tissue engineering. J Biomater Tissue Eng 4(8):600–623

    Article  Google Scholar 

  3. Zhou M et al (2012) Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds. J Biomed Mater Res Part B Appl Biomater 100B(1):111–120

    Article  CAS  Google Scholar 

  4. Walpoth BH, Möller M (2011) Tissue engineering of vascular prostheses. Chirurg 82(4):303–310

    Article  CAS  Google Scholar 

  5. Zhou F-L, Gong R-H, Porat I (2010) Needle and needleless electrospinning for nanofibers. J Appl Polym Sci 115(5):2591–2598

    Article  CAS  Google Scholar 

  6. Bou-Gharios G, Ponticos M, Rajkumar V, Abraham D (2004) Extra-cellular matrix in vascular networks. Cell Prolif 37(3):207–220. https://doi.org/10.1111/j.1365-2184.2004.00306.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28(3):325–347

    Article  CAS  Google Scholar 

  8. Li D, Wang Y, Xia Y (2003) Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays. Nano Lett 3:1167–1171

    Article  CAS  Google Scholar 

  9. Li D, Ouyang G, McCann JT, Xia Y (2005) Collecting electrospun nanofibers with patterned electrodes. Nano Lett 5:913–916

    Article  CAS  Google Scholar 

  10. Jalili R, Morshed M, Abdolkarim S, Ravandi H (2006) Fundamental parameters affecting electrospinning of PAN nanofibers as uniaxially aligned fibers. J Appl Polym Sci 101:4350–4357

    Article  CAS  Google Scholar 

  11. Wu H, Fan J, Chu CC, Wu J (2010) Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts. J Mater Sci Mater Med 21(12):3207–3215

    Article  CAS  Google Scholar 

  12. Yuan H, Zhou Q, Zhang Y (2017) Improving fiber alignment during electrospinning. In: Afshari M (ed) Electrospun nanofibers. Elsevier Inc., Amsterdam, pp 125–147

    Chapter  Google Scholar 

  13. Pan H, Li L, Hu L, Cui X (2006) Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer (Guildf) 47(14):4901–4904

    Article  CAS  Google Scholar 

  14. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12(3):384–390

    Article  Google Scholar 

  15. Yang Y, Jia Z, Li Q, Wang L, Guan Z (2007) Improving electrospinning nanofibers alignment in a large area by using a insulating tube on the collector. In: 2007 International conference on solid dielectrics, ICSD, 2007, pp 419–422

  16. Katta P, Alessandro M, Ramsier RD, Chase GG (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4(11):2215–2218

    Article  CAS  Google Scholar 

  17. Groth T et al (2002) Interaction of human skin fibroblasts with moderate wettable polyacrylonitrile–copolymer membranes. J Biomed Mater Res 61(2):290–300

    Article  CAS  Google Scholar 

  18. Wu S et al (2018) A three-dimensional hydroxyapatite/polyacrylonitrile composite scaffold designed for bone tissue engineering. RSC Adv 8:1730–1736

    Article  CAS  Google Scholar 

  19. Ryu S et al (2014) Three-dimensional scaffolds of carbonized polyacrylonitrile for bone tissue regeneration. Angew Chemie Int Ed 53(35):9213–9217

    Article  CAS  Google Scholar 

  20. Wang T, Kumar S (2006) Electrospinning of polyacrylonitrile nanofibers. J Appl Polym Sci 102(2):1023–1029

    Article  CAS  Google Scholar 

  21. Nazir A, Khenoussi N, Schacher L, Hussain T, Adolphe D, Hekmati AH (2015) Using the Taguchi method to investigate the effect of different parameters on mean diameter and variation in PA-6 nanofibres produced by needleless electrospinning. RSC Adv 5(94):76892–76897

    Article  CAS  Google Scholar 

  22. Albetran H, Dong Y, Low IM (2015) Characterization and optimization of electrospun TiO2/PVP nanofibers using Taguchi design of experiment method. J Asian Ceram Soc 3(3):292–300

    Article  Google Scholar 

  23. Mohammad Khanlou H, Chin Ang B, Talebian S, Muhammad Afifi A, Andriyana A (2015) Electrospinning of polymethyl methacrylate nanofibers: optimization of processing parameters using the Taguchi design of experiments. Text Res J 85(4):356–368

    Article  Google Scholar 

  24. Saligheh O, Khajavi R, Yazdanshenas ME, Rashidi A (2015) Fabrication and optimization of poly(vinyl alcohol)/zirconium acetate electrospun nanofibers using Taguchi experimental design. J Macromol Sci Part B Phys 54(11):1391–1403

    Article  Google Scholar 

  25. Deitzel JM (2016) The effect of processing variables on the morphology of electrospun nanofibers and textiles nanofibers and textiles. Polymer 42(May):261–272

    Google Scholar 

  26. Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 205(17):2327–2338

    Article  CAS  Google Scholar 

  27. Ravandi SAH, Tork RB, Dabirian F, Gharehaghaji AA, Sajjadi A (2015) Characteristics of yarn and fabric made out of nanofibers. Mater Sci Appl 06(01):103–110

    Google Scholar 

  28. Sener AG, Altay AS, Altay F (2011) Effect of voltage on morphology of electrospun nanofibers. In: 7th International conference on electrical and electronics engineering, October, pp I324–I328

  29. Ghelich R, Rad MK, Youzbashi AA (2015) Study on morphology and size distribution of electrospun NiO–GDC composite nanofibers. J Eng Fibers Fabr 10(1):155892501501000

    Google Scholar 

  30. Ghelich R, Keyanpour-Rad M, Youzbashi AA, Khakpour Z (2015) Comparative study on structural properties of NiO–GDC nanocomposites fabricated via electrospinning and gel combustion processes. Mater Res Innov 19(1):44–50

    Article  CAS  Google Scholar 

  31. Wang C et al (2019) Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules 24(5):834

    Article  Google Scholar 

  32. Bazgir S, Damerchely R, Zargham S, Rashidi AS, Tavakoli A (2018) The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J Eng Fibers Fabr 7(4):155892501200700

    Google Scholar 

  33. Ramakrishna S, Fujihara K, Teo W-E, Lim T-C, Ma Z (2012) An introduction to electrospinning and nanofibers. World Scientific, Singapore

    Google Scholar 

  34. Gou Y, Liu C, Lei T, Yang F (2014) Nanofiber alignment during electrospinning: effects of collector structures and governing parameters. In: 2014 International conference on manipulation, manufacturing and measurement on the nanoscale, 3M-NANO 2014—conference proceedings, pp 62–65

  35. Arras MML, Grasl C, Bergmeister H, Schima H (2012) Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci Technol Adv Mater 13(3):035008

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahsan Nazir.

Ethics declarations

Conflict of interest

There are no conflicts to declare in this study among authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, S., Hussain, T., Nazir, A. et al. Modified cylindrical collectors for improved orientation of electrospun nanofibers. Polym. Bull. 78, 849–862 (2021). https://doi.org/10.1007/s00289-020-03144-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03144-0

Keywords

Navigation