Skip to main content
Log in

Silver nanoparticles-embedded poly(1-naphthylamine) nanospheres for low-cost non-enzymatic electrochemical H2O2 sensor

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this work, a novel nanocomposite containing silver nanoparticles (AgNPs) embedded poly(1-naphthylamine) nanospheres (Ag/PNA) was prepared by in situ chemical reduction of silver nitrate. The structure, composition, and morphology of the prepared Ag/PNA nanocomposites were established by Fourier transform infrared spectrometry, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the PNA and Ag/PNA-modified carbon paste electrodes were analyzed using cyclic voltammetry (cyclic voltammogram) and electrochemical impedance spectroscopy. It is observed that the electrochemical and charge transfer characteristics of PNA have significantly enhanced upon the incorporation of AgNPs. The prepared Ag/PNA nanocomposite has shown impressive electrocatalytic and electrochemical sensing performance toward H2O2. Remarkably, the present Ag/PNA-based enzymeless voltammetric H2O2 sensor showed a wide detection range in the concentration range of 1–3000 μM with a lower detection limit of 0.972 μM. The study revealed that Ag/PNA-modified carbon paste electrodes are an ideal platform for the fabrication of low-cost non-enzymatic H2O2 sensor with high sensitivity, good reproducibility, better selectivity, and stability.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18:319–326

    CAS  Google Scholar 

  2. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870

    CAS  PubMed  Google Scholar 

  3. Francis S, Joseph S, Koshy EP, Mathew B (2017) Synthesis and characterization of multifunctional gold and silver nanoparticles using leaf extract of: naregamia alata and their applications in the catalysis and control of mastitis. New J Chem 41:14288–14298

    CAS  Google Scholar 

  4. Suchomel P, Kvitek L, Prucek R et al (2018) Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci Rep 8:1–11

    CAS  Google Scholar 

  5. Choudhary M, Brink R, Nandi D et al (2017) Gold nanoparticle within the polymer chain, a multi-functional composite material, for the electrochemical detection of dopamine and the hydrogen atom-mediated reduction of Rhodamine-B, a mechanistic approach. J Mater Sci 52:770–781

    CAS  Google Scholar 

  6. Sagitha P, Sarada K, Muraleedharan K (2016) One-pot synthesis of poly vinyl alcohol (PVA) supported silver nanoparticles and its efficiency in catalytic reduction of methylene blue. Trans Nonferrous Met Soc China 26:2693–2700

    CAS  Google Scholar 

  7. Chamoli P, Das MK, Kar KK (2017) Green synthesis of silver-graphene nanocomposite-based transparent conducting film. Phys E Low-Dimens Syst Nanostruct 90:76–84

    CAS  Google Scholar 

  8. Horiguchi Y, Kanda T, Torigoe K et al (2014) Preparation of gold/silver/titania trilayered nanorods and their photocatalytic activities. Langmuir 30:922–928

    CAS  PubMed  Google Scholar 

  9. Stejskal J (2013) Conducting polymer-silver composites. Chem Pap 67:814–848

    CAS  Google Scholar 

  10. Spain E, Keyes TE, Forster RJ (2013) Polypyrrole-gold nanoparticle composites for highly sensitive DNA detection. Electrochim Acta 109:102–109

    CAS  Google Scholar 

  11. Upadhyay J, Kumar A, Gogoi B, Buragohain AK (2015) Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in situ reduction process. Mater Sci Eng, C 54:8–13

    CAS  Google Scholar 

  12. Kim J, Ju H, Inamdar AI et al (2014) Synthesis and enhanced electrochemical supercapacitor properties of Ag–MnO2-polyaniline nanocomposite electrodes. Energy 70:473–477

    CAS  Google Scholar 

  13. Park E, seok Kwon O, joo Park S et al (2012) One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J Mater Chem 22:1521–1526

    CAS  Google Scholar 

  14. Yuan C, Xu Y, Zhong L et al (2013) Heterogeneous silver-polyaniline nanocomposites with tunable morphology and controllable catalytic properties. Nanotechnology 24:185602–185612

    PubMed  Google Scholar 

  15. Reda SM, Al-Ghannam SM (2012) Synthesis and electrical properties of polyaniline composite with silver nanoparticles. Adv Mater Phys Chem 02:75–81

    CAS  Google Scholar 

  16. Dan LI, Huang J, Kaner RB (2009) Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Acc Chem Res 42:135–145

    Google Scholar 

  17. Ma B, Wang M, Tian D et al (2015) Micro/nano-structured polyaniline/silver catalyzed borohydride reduction of 4-nitrophenol. RSC Adv 5:41639–41645

    CAS  Google Scholar 

  18. Bober P, Stejskal J, Trchová M, Prokeš J (2014) In-situ prepared polyaniline-silver composites: single- and two-step strategies. Electrochim Acta 122:259–266

    CAS  Google Scholar 

  19. Blinova NV, Stejskal J, Trchová M et al (2009) The oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer (Guildf) 50:50–56

    CAS  Google Scholar 

  20. Bober P, Stejskal J, Trchová M, Prokeš J (2011) Polyaniline-silver composites prepared by the oxidation of aniline with mixed oxidants, silver nitrate and ammonium peroxydisulfate: the control of silver content. Polymer (Guildf) 52:5947–5952

    CAS  Google Scholar 

  21. Stejskal J, Trchová M, Brožová L, Prokeš J (2009) Reduction of silver nitrate by polyaniline nanotubes to produce silver-polyaniline composites. Chem Pap 63:77–83

    CAS  Google Scholar 

  22. Nesher G, Aylien M, Sandaki G et al (2009) Polyaniline entrapped in silver: structural properties and electrical conductivity. Adv Funct Mater 19:1293–1298

    CAS  Google Scholar 

  23. Massoumi B, Fathalipour S, Massoudi A et al (2013) Ag/polyaniline nanocomposites: synthesize, characterization, and application to the detection of dopamine and tyrosine. J Appl Polym Sci 130:2780–2789

    CAS  Google Scholar 

  24. Bober P, Stejskal J, Trchová M et al (2010) Oxidation of aniline with silver nitrate accelerated by p-phenylenediamine: a new route to conducting composites. Macromolecules 43:10406–10413

    CAS  Google Scholar 

  25. Tang L, Duan F, Chen M (2017) Green synthesis of silver nanoparticles embedded in polyaniline nanofibers via vitamin C for supercapacitor applications. J Mater Sci: Mater Electron 28:7769–7777

    CAS  Google Scholar 

  26. Chen S, Yuan R, Chai Y, Hu F (2013) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15–32

    CAS  Google Scholar 

  27. Ansari AA, Sumana G, Khan R, Malhotra BD (2009) Polyaniline-cerium oxide nanocomposite for hydrogen peroxide sensor. J Nanosci Nanotechnol 9:4679–4685

    CAS  PubMed  Google Scholar 

  28. Barman K, Jasimuddin S (2016) Non-enzymatic electrochemical sensing of glucose and hydrogen peroxide using a bis(acetylacetonato)oxovanadium(iv) complex modified gold electrode. RSC Adv 6:20800–20806

    CAS  Google Scholar 

  29. Tian K, Prestgard M, Tiwari A (2014) A review of recent advances in nonenzymatic glucose sensors. Mater Sci Eng, C 41:100–118

    CAS  Google Scholar 

  30. Hatchett DW, Josowicz M (2008) Composites of intrinsically conducting polymers as sensing nanomaterials. Chem Rev 108:746–769

    CAS  PubMed  Google Scholar 

  31. Malhotra B, Dhand C, Lakshminarayanan R et al (2015) Polyaniline-based biosensors. Nanobiosensors Dis Diagnosis 4:25

    Google Scholar 

  32. Kabomo TM, Scurrell MS (2016) The effects of ring substituents in aniline on the reactivity of PANI with hydrogen tetrachloroaurate and the dispersion of gold nanoparticles. Polym Adv Technol 27:759–764

    CAS  Google Scholar 

  33. Refat MS, Adam AM (2014) Research and reviews. J Mater Sci 2:90–93

    Google Scholar 

  34. Jadoun S, Verma A, Ashraf SM, Riaz U (2017) A short review on the synthesis, characterization, and application studies of poly(1-naphthylamine): a seldom explored polyaniline derivative. Colloid Polym Sci 295:1443–1453

    CAS  Google Scholar 

  35. Riaz U, Ashraf SM, Aleem S et al (2016) Microwave-assisted green synthesis of some nanoconjugated copolymers: characterisation and fluorescence quenching studies with bovine serum albumin. New J Chem 40:4643–4653

    CAS  Google Scholar 

  36. Liu Y (2013) Poly(1-naphthylamine)-nickel modified glassy carbon electrode for electrocatalytic oxidation of formaldehyde in alkaline medium. Int J Electrochem Sci 8:4776–4784

    CAS  Google Scholar 

  37. Huang SS, Lin HG, Yu RQ (1992) Electrocatalysis of a chemically modified poly(1-naphthylamine) film electrode. Anal Chim Acta 262:331–337

    CAS  Google Scholar 

  38. Syafiuddin A, Salmiati Salim MR et al (2017) A review of silver nanoparticles: research trends, global consumption, synthesis, properties, and future challenges. J Chin Chem Soc 64:732–756

    CAS  Google Scholar 

  39. Kumar THV, Sundramoorthy AK (2018) Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode. J Electrochem Soc 165:B3006–B3016

    CAS  Google Scholar 

  40. Anderson K, Poulter B, Dudgeon J et al (2017) A highly sensitive nonenzymatic glucose biosensor based on the regulatory effect of glucose on electrochemical behaviors of colloidal silver nanoparticles on MoS2. Sensors 17:1807

    Google Scholar 

  41. Lorestani F, Shahnavaz Z, Nia PM et al (2015) One-step preparation of silver-polyaniline nanotube composite for non-enzymatic hydrogen peroxide detection. Appl Surf Sci 347:816–823

    CAS  Google Scholar 

  42. Huang SS, Li J, Lin HG, Yu RQ (1995) Electropolymerization of 1-naphthylamine and the structure of the polymer film. Microchim Acta 117:145–152

    CAS  Google Scholar 

  43. Riaz U, Ahmad S, Ashraf SM (2008) Effect of dopant on the nanostructured morphology of poly (1-naphthylamine) synthesized by template free method. Nanoscale Res Lett 3:45–48

    CAS  Google Scholar 

  44. Ding J, Zhang K, Wei G, Su Z (2015) Fabrication of polypyrrole nanoplates decorated with silver and gold nanoparticles for sensor applications. RSC Adv 5:69745–69752

    CAS  Google Scholar 

  45. Prabhakar PK, Raj S, Anuradha PR et al (2011) Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids Surf B Biointerfaces 86:146–153

    CAS  PubMed  Google Scholar 

  46. Tamboli MS, Kulkarni MV, Patil RH et al (2012) Nanowires of silver-polyaniline nanocomposite synthesized via in situ polymerization and its novel functionality as an antibacterial agent. Colloids Surf B Biointerfaces 92:35–41

    CAS  PubMed  Google Scholar 

  47. Riaz U, Ahmad S, Ashraf SM (2008) Pseudo template synthesis of poly (1-naphthylamine): effect of environment on nanostructured morphology. J Nanoparticle Res 10:1209–1214

    CAS  Google Scholar 

  48. Ciric-Marjanovic G, Marjanović B, Stamenković V et al (2002) Structure and stereochemistry of electrochemically synthesized poly-(1-naphthylamine) from neutral acetonitrile solution. J Serbian Chem Soc 67:867–877

    CAS  Google Scholar 

  49. Na Z, Wang X, Yin D, Wang L (2017) Tin dioxide as a high-performance catalyst towards Ce(vi)/Ce(iii) redox reactions for redox flow battery applications. J Mater Chem A 5:5036–5043

    CAS  Google Scholar 

  50. Sherino B, Mohamad S, Abdul Halim SN, Abdul Manan NS (2018) Electrochemical detection of hydrogen peroxide on a new microporous Ni-metal organic framework material-carbon paste electrode. Sens Actuators, B Chem 254:1148–1156

    CAS  Google Scholar 

  51. Abbasi A (2018) Hydrogen peroxide biosensor based on carbon paste modified electrode with hemoglobin and copper(II) oxide nanoparticles. Int J Electrochem Sci 13:3986–3996

    CAS  Google Scholar 

  52. Habibi B, Azhar FF, Fakkar J, Rezvani Z (2017) Ni–Al/layered double hydroxide/Ag nanoparticle composite modified carbon-paste electrode as a renewable electrode and novel electrochemical sensor for hydrogen peroxide. Anal Methods 9:1956–1964

    CAS  Google Scholar 

  53. Mahanthappa M, Kottam N, Yellappa S (2018) Electrocatalytic performance of a zinc sulphide nanoparticles-modified carbon paste electrode for the simultaneous determination of acetaminophen, guanine and adenine. Anal Methods 10:1362–1371

    CAS  Google Scholar 

  54. Nia PM, Meng WP, Alias Y (2015) Hydrogen peroxide sensor: uniformly decorated silver nanoparticles on polypyrrole for wide detection range. Appl Surf Sci 357:1565–1572

    CAS  Google Scholar 

  55. Shamkhalichenar H, Choi J (2017) An inkjet-printed non-enzymatic hydrogen peroxide sensor on paper. J Electrochem Soc 164:B3101–B3106

    CAS  Google Scholar 

  56. Wang P, Xiao J, Guo M et al (2014) Voltammetric determination of 4-nitrophenol at graphite nanoflakes modified glassy carbon electrode. J Electrochem Soc 162:H72–H78

    Google Scholar 

  57. Kazici HC, Salman F, Caglar A et al (2018) Synthesis, characterization, and voltammetric hydrogen peroxide sensing on novel monometallic (Ag, Co/MWCNT) and bimetallic (AgCo/MWCNT) alloy nanoparticles. Fullerenes Nanotub Carbon Nanostruct 26:145–151

    CAS  Google Scholar 

  58. Li Y, Zhang Y, Zhong Y, Li S (2015) Enzyme-free hydrogen peroxide sensor based on Au@Ag@C core-double shell nanocomposites. Appl Surf Sci 347:428–434

    CAS  Google Scholar 

  59. Habibi B, Azhar FF, Fakkar J, Rezvani Z, Aguirre MJ, Ruiz-león D et al (2017) Ni-Al/layered double hydroxide/Ag nanoparticles composite modified carbon-2 paste electrode as a renewable electrode and novel electrochemical sensor for 3 hydrogen peroxide. Anal Methods 42:3986–3996

    Google Scholar 

  60. Karthik R, Vinoth Kumar J, Chen SM et al (2018) Simple sonochemical synthesis of novel grass-like vanadium disulfide: a viable non-enzymatic electrochemical sensor for the detection of hydrogen peroxide. Ultrason Sonochem 48:473–481

    CAS  PubMed  Google Scholar 

  61. Achari DS, Santhosh C, Deivasegamani R et al (2017) A non-enzymatic sensor for hydrogen peroxide based on the use of α-Fe2O3 nanoparticles deposited on the surface of NiO nanosheets. Microchim Acta 184:3223–3229

    Google Scholar 

  62. Ma P, Zhu H, Wei J, Zhang M (2015) Facile fabrication of Au nanoparticles immobilized on polyaniline nanofibers: high sensitive nonenzymatic hydrogen peroxide sensor. Nanosci Nanotechnol Lett 7:1–7

    CAS  Google Scholar 

  63. Yang Z, Zheng X, Zheng J (2016) Non-enzymatic sensor based on a glassy carbon electrode modified with Ag nanoparticles/polyaniline/halloysite nanotube nanocomposites for hydrogen peroxide sensing. RSC Adv 6:58329–58335

    CAS  Google Scholar 

  64. Chang G, Luo Y, Lu W et al (2012) Ag nanoparticles decorated polyaniline nanofibers: synthesis, characterization, and applications toward catalytic reduction of 4-nitrophenol and electrochemical detection of H2O2 and glucose. Catal Sci Technol 2:800–806

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the financial assistance to Femina K.S. granted by University Grants Commission (under Faculty Development Program: Grant No. FIP/12th Plan/KLMG 009 TF 12 dated 20/04/2017), Government of India. The authors thank SAIF STIC, CUSAT, and Kerala, India, for characterization facilities. We acknowledge the SARD scheme of Kerala State Council for Science, Technology, and Environment for the grant received (Grant No. 002/SARD/2015/KSCSTE) by Dr.Alex Joseph, Newman College, Thodupuzha, Kerala, India. The authors thank Dr. Neena George, Assistant professor, Maharajas College, Kochi, India, for her valuable support during the manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Vazhathara Thomas.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest to publish the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidu, F.K., Joseph, A., Varghese, E.V. et al. Silver nanoparticles-embedded poly(1-naphthylamine) nanospheres for low-cost non-enzymatic electrochemical H2O2 sensor. Polym. Bull. 77, 5825–5846 (2020). https://doi.org/10.1007/s00289-019-03053-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03053-x

Keywords

Navigation