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Abstract
The operation of inventory systems plays an important role in the success of manufacturing companies, making it a highly
relevant domain for optimization. In particular, the domain lends itself to being approached via Deep Reinforcement
Learning (DRL) models due to it requiring sequential reorder decisions based on uncertainty to minimize cost. In this
paper, we evaluate state-of-the-art optimization approaches to determine whether Deep Reinforcement Learning can be
applied to the multi-echelon inventory optimization (MEIO) framework in a practically feasible manner to generate fully
dynamic reorder policies. We investigate how it performs in comparison to an optimized static reorder policy, how robust it
is when it comes to structural changes in the environment, and whether the use of DRL is safe in terms of risk in real-world
applications. Our results show promising performance for DRL with potential for improvement in terms of minimizing
risky behavior.

Introduction

The operation of inventory systems is a major cost driver
for manufacturing companies around the world [1]. As such,
their optimization is one of the key objectives for operations
departments and impacts both operational cost and revenue
[2].

From an optimization perspective, the optimization chal-
lenge can be understood as the task of finding an optimal
policy of when to order which amount of stock in a ware-
house to keep the cost of holding inventory as low as pos-
sible while making sure that incoming demand can be sat-
isfied [3]. Inventory optimization is non-trivial because it
needs to handle intricate dependencies between many cost
components such as the cost of inventory keeping, reorder-
ing, and logistics as well as uncertainties inherent to the
operational environment such as demand and lead time, i.e.,
the latency between orders and incoming shipments [4].

The literature distinguishes between two perspectives
on this challenge. First, Single-Echelon Inventory Opti-
mization (SEIO) [5] assumes independence between ware-
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houses. By considering its demand requirements, every
warehouse determines the ideal time and quantity for re-
stocking without taking dependencies and interactions with
other warehouses or distribution centers into consideration.
Second, Multi-Echelon Inventory Optimization (MEIO) [6]
assumes a holistic perspective in which the ideal policies
are determined jointly by explicitly taking into consider-
ation interrelationships between warehouses. According
to [6], holistic optimization prevents inventory systems
from making egoistic decisions at the cost of neighboring
inventory systems, thus preventing solutions that may be
optimal from a local perspective but not globally. However,
this comes at the cost of complexity. SEIO is computa-
tionally less complex and does not require access to data
from neighboring inventory systems. In sum, MEIO is the
theoretically more general approach that offers the most po-
tential for reaching optimality if computational challenges
can be overcome.

The result of inventory optimization is a policy that de-
fines the decision-making process for reordering. This pro-
cess can be expressed as a parameterized policy [7] such
as an RQ policy that consists of a tuple (r, Q) where r de-
notes the reorder point, i.e., a threshold level of Inventory
on Hand (IOH) at which to order Q amount of stock. It is
important to note that parameterized policies usually con-
sider the values of r and Q as being static, which implies
that they do not change naturally based on developments in
the supply chain. As a result, the adoption of static param-
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eterized policies neglects the risk of challenging situations
that require ad-hoc coping strategies [8]. For example, lo-
gistics challenges and environmental effects can manifest in
terms of limitations of manufacturing capacity (e.g., caused
by scarcity of raw materials), extended distribution times,
or a transitory increase in demand, possibly causing unex-
pected demand spikes to travel up the supply chain network,
which is known as the Forrester effect [9] and therefore an
unwanted drop in cost efficiency. One possibility to circum-
vent this issue is by relying on dynamic policies, which
aim at incorporating a fundamental understanding of the
dynamics of the real-world supply chain [8]. As a result,
dynamic policies can adapt to the current inventory sys-
tem’s situation based on expectations about the future and
therefore determine the best course of action for reacting
to various circumstances. However, these advantages come
at the cost of higher computational complexity and lacking
interpretability.

The differences between parameterized and dynamic
policies are illustrated in Fig. 1. The regular operation
causes IOH to decrease over time to satisfy incoming
demand. In parameterized policies, when crossing the
threshold level of the static reorder point r, a reorder of
volume Q is triggered (blue arrows). This behavior is main-
tained over time. In contrast, the dynamic policy relies on
dynamic reorder points computed from the current IOH
and expectations about the future (orange arrows).

Solving the inventory management challenge is compu-
tationally challenging because the large number of influ-
ential and partially stochastic factors such as demand and
lead-time result in a high dimensional state space and make
solutions analytically intractable [3]. In consequence, most
proposed methods assume small-scale or highly simplified
supply chains that have little relevance for real word appli-

Fig. 1 The difference between
a static and a dynamic reorder
policy. (The top and bottom
plots show the inventory on hand
[top] and reorder quantities Q
[bottom] on the y-axes over time
in days on the x-axes. While
the static reorder policy remains
the same for any situation,
the dynamic policy has the
flexibility to adapt the strategy
according to the supply chain’s
global state)

cations [10]. It is largely unknown how well they perform
when scaled to environments that mimic the complexities
of the real world. Furthermore, optimization approaches in
the field of inventory management are often evaluated in
terms of their mean performance, which does not reflect
the highly relevant perspectives for real-world applicabil-
ity such as risk assessment by considering the worst-case
performance.

In this article, the applicability and scalability character-
istics of different state-of-the-art approaches for MEIO are
evaluated. In particular, we focus on comparing dynamic
parameterized policies obtained via Deep Reinforcement
Learning (DRL) [11] to static parameterized policies ob-
tained via traditional statistical optimization. Thus, our re-
sults help to shed light on the real-world applicability of
state-of-the-art MEIO approaches, which, to date, have of-
ten remained elusive due to the prevailing focus on small-
scale theoretically motivated experimental domains instead
of business-relevant use cases in methodological research.

The following text is structured as follows. Section 2
provides a general introduction to the related work regard-
ing supply chain optimization. In Section 3 we introduce
our evaluative method along with details about the environ-
ments and models we apply. The results of the analysis are
presented and interpreted in Section 4. Finally, in Section 5
we provide a general conclusion for our work and discuss
its implications in terms of real-world applicability.
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Background

MEIO as a Markov decision process

Mathematically, MEIOs can be expressed as Markov De-
cision Processes (MDP), i.e., a four-tuple ‹S,A,T,R› [12].
S denotes the state space, i.e., the set of situations s 2 S the
supply chain can be in. A is the set of actions used to control
the state. In the MEIO domain, an action a 2 A is defined on
a per-warehouse level and denotes the reorder decision, i.e.,
whether to reorder and how much to reorder. By applying
action a in state s, a transition to a new state s’ is performed
based on the transition probability T(s,a,s’). Finally, after
transitioning between states, the reward signal R(s,a,s’) is
a metric for assessing the quality of an action.

Intuitively, the MDP for the MEIO problem can be in-
terpreted as follows: The state describes the current situa-
tion in the warehouses via information such as current IOH
levels, reordered but not yet delivered open order quanti-
ties, and backlogged quantities for unserved demand. The
state is influenced by controllable and uncontrollable pro-
cesses. Controllable processes such as the reorder decisions
allow the warehouses to make reorders and increase the
IOH level. Uncontrollable processes such as customer de-
mand, the lead time, and specific warehouse properties such
as the maximum inventory capacity are defined as part of
the environment’s dynamics. The lead time resembles the
time to transport inventory from one warehouse to another
warehouse. Finally, the reward structure assesses the holis-
tic operational cost of the inventory system network.

Policies for MEIOMDPs

The goal of MEIO is to find a strategy that provides an
action for any given state such that the application of the
policy actions leads to minimal expected cost. This strategy
is commonly termed the optimal policy for the MDP [12].

Formally, a policy π is a function π : S!A that maps
from a state s 2 S to an action a 2 A. Applied to the
domain of MEIO, this implies that a policy function takes
the current state of the supply chain into consideration in
order to make a decision about whether and how much to
reorder. In doing so, the policy has a direct effect on future
states, because IOH levels will either replenish or continue
to be reduced by incoming demand.

The computational challenge of MEIO is to develop effi-
cient techniques capable of finding optimal policies. Due to
the inherent stochasticity as well as the large state spaces,
finding optimal analytical solutions is impossible for most
practical MEIO MDPs [3]. To reduce the complexity, meth-
ods for finding simplified representations of state and ac-
tion spaces have been proposed [11]. As an example for
a simplified action space, the (r, Q) policy, also denoted as

reorder-point lot-size policy [13], is a simple parameterized
reorder policy that is based on a reorder point r and reorder
quantity Q. When IOH levels fall below the reorder point r
a new order of quantity Q is triggered. On the one hand,
this trivial policy reduces the MEIO problem to the task of
finding two static and optimal parameters for each ware-
house. On the other hand, it also simplifies the observation
space, as it only takes current IOH levels into consideration
for making reorder decisions.

While static parameterized reorder policies are very in-
tuitive and easy to interpret, their weakness lies in their
static behavior even when situational behavior would be re-
quired. One example scenario is a distribution warehouse
with a low IOH level that supplies two retail warehouses.
A static policy would insist on order quantity Q in both
retail warehouses. The first order would use up all inven-
tory in the distribution warehouse thus causing the second
order to not be fulfilled at all. A dynamic approach could
reduce the first order to ensure the demand of both retail
warehouses being fulfilled and stock-out being avoided.

Some recent research efforts proposed dynamic reorder
policies providing the agent with various degrees of free-
dom and enabling it to base its decisions conditioned on the
global state of the supply chain network. Some of them fix
the reorder time but provide flexibility towards the reorder
quantity [11], others provide the agent with a restricted
number of reorder quantity options to select from [11], and
even others force the agent to reorder on a daily basis [8].
Full flexibility is provided when the agent has the freedom
to make unrestricted decisions regarding order time and
quantity. Research efforts in this area are rare and require
special models and optimization techniques, some of which
will be discussed in the following sections.

Stochastic optimization

The most trivial option to find the optimal reorder parame-
ters is to interpret the stochastic problem as a deterministic
problem using averaged demand and lead times, thus ig-
noring the stochastic characteristics of the problem. This
approach results in a trivial objective function but neglects
the variability of the stochastic processes which may cause
damage in the event of unlikely but not impossible irreg-
ularities like unexpected, very high demand, or long lead
times.

Another option is to apply stochastic optimization ap-
proaches such as the simulation-based optimization frame-
work proposed in [14]. The control variable is resembled
by a set of reorder points and quantities for each inventory
system in the supply chain. The target variable consists of
the expected total cost to be minimized and the expected
fill rates to be respected. The total cost consists of holding
and reordering costs, whereas the fill rate denotes the ratio
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of immediately fulfilled demand compared to the amount of
backordered supplies due to stock-out. In the first step, the
expected total cost and the expected fill rates are estimated
for the actual control variable and some closely surrounding
control variables with a Monte Carlo simulation. In order
to do this, the respective control variable is applied to an
episode consisting of 365 time steps resembling 1 year of
operation.

The simulation considers all influential factors such as
stochastic demand, stochastic lead time, and warehouse ca-
pacities. Subsequently, a linear model of the objective func-
tion is formed by linear regression, modeling the influence
of the control variable on the target variables. Next, the
control variables are optimized based on a cutting-plane al-
gorithm applied to the linearized objective function. The
goal of this cutting-plain algorithm is to minimize the ob-
jective function by respecting the constraints in terms of
fill rates. Statistical hypothesis tests are applied to verify,
whether new reorder parameters hold the predefined service
level constraints and provide an improvement in terms of
cost compared to the parameters from the previous itera-
tion. This procedure is continued until termination condi-
tions such as improvement hypothesis tests fail, or Karush-
Kuhn-Tucker conditions are fulfilled.

The simulation-based approach incorporates a funda-
mental understanding and handling of the variability in the
domain and results in optimal but static (r, Q) values for
each inventory system considered. Further information can
be found in [14].

Deep reinforcement learning

In order to enable dynamic reorder policies, a model is re-
quired that is capable of interpreting a high-dimensional
state vector and mapping it on the corresponding opti-
mal control vector resembling the reorder decisions [15].
Furthermore, a learning technique must be applied, that
can assess the characteristics of the MDP introduced in
the subsections “MEIO as a Markov Decision Process” and
“Policies for MEIO MDPs”. DRL is a suitable candidate
for this application as it combines both capabilities. Firstly,
it leverages deep neural networks as function approxima-
tors, which are known for their high representative capacity
and the capability of assessing patterns and n-order depen-
dencies of unstructured input data [15]. Secondly, DRL is
a trial-and-error learning technique that learns optimal poli-
cies by exploring MDP environments.

A wide range of DRL algorithms have been introduced
recently, of which we use a selection of state-of-the-art ap-
proaches in this article. Commonly, DRL algorithms are
categorized into on-policy and off-policy approaches. On-
policy approaches learn from experience directly gener-
ated from the applied policy, whereas off-policy approaches

learn from experience generated from a different policy
(e.g., to improve exploration) [16].

Synchronous Advantage Actor Critic (A2C) [17] is an
on-policy approach consisting of one global model and sev-
eral worker models collecting independent experiences and
synchronously sending gradients to the global model after
a fixed number of interactions with their corresponding lo-
cal environment. The fact that the experience of local work-
ers is independent through separate environments elimi-
nates the need for storing experience for later resampling in
a replay buffer. Proximal Policy Optimization (PPO) [18] is
another on-policy approach that addresses the brittleness of
the objective function by constraining the potential update
steps. Deep Deterministic Policy Gradient (DDPG) [19] is
a deterministic off-policy approach that learns a determin-
istic policy aiming to increase sample efficiency by storing
past experiences in a replay buffer and reusing them for
learning purposes. Twin Delayed DDPG (TD3) [20] is an
advancement of DDPG and addresses the performance brit-
tleness with regard to the hyperparameters of DDPG.

Recent efforts also applied DRL to MEIO. Harsha et al.
[7] propose a novel DRL approach named PARL and ap-
ply it to a stochastic demand and deterministic lead time
inventory system network of different scales and compare
the resulting policy with the policies found by various state-
of-the-art DRL and non-DRL approaches. Gijsbrechts et al.
[11] apply DRL to a MEIO challenge and thus partly en-
abled situational control. Whereas the order intervals are
periodic and thus still fixed, the order quantities are condi-
tioned on the global state of the supply chain.

Other semi-dynamic DRL-based reorder policies have
been examined. Sultana et al. [10] apply a hierarchical
multi-agent reinforcement learning approach to a multi-
node and multi-product supply chain network in which the
agents have the choice between multiple reorder quantity
options. Perez et al. [8] provide the agent with even more
flexibility and allow any reorder quantity in any time step.
A DRL approach learns a deterministic policy condition-
ing on the global supply chain state and controlling the
reorder quantities for each inventory system instance in the
network. While this setup theoretically provides the DRL
agent with the most flexibility, the evaluation results sug-
gest that the policy learned is forced to apply reorders on
a daily basis and is thus not feasible for business scenar-
ios in which daily reorders are not optimal with respect to
transportation cost.
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Method

Objective

The core objective of this work is to investigate the general
applicability of two different policy types on the problem
of MEIO in a real-world setting: A static parameterized re-
order policy optimized via the simulation-based framework
introduced above in the section “Stochastic Optimization”
and fully dynamic reorder policies learned by DRL agents.
As general applicability has many facets to it, we focus
on a variety of performance metrics: (1) The performance
implied by the mean yearly cost over several years of sim-
ulation; (2) the algorithm robustness evaluating variation of
performance across multiple optimization runs; (3) the al-
gorithm adaptability investigating whether algorithms still
perform well when there are structural changes to the envi-
ronment; (4) the algorithm scalability characteristic quanti-
fying the ability to scale up to large warehouse networks;
and (5) the algorithm risk characteristic measuring the worst
performance over a large number of simulated years.

Environment

The supply chain schemes considered in this work consist
of three distinct types of nodes: factory nodes, distribution
warehouses, and retail warehouses. Factory nodes supply
the distribution warehouses, which, in turn, supply the retail
warehouses. The exchange of inventory is always directed
from the upper hierarchical level to the lower hierarchi-
cal level with no horizontal exchange, e.g., from one retail
warehouse to another retail warehouse.

Fig. 2 The supply chain scheme structure. (The root node F1 is a sin-
gle factory node supplying M distribution warehouses D1, D2, ...,
DM. Each distribution warehouse supplies N retail warehouses D1R1,
D1R2, ..., D1RN to DMR1, DMR2, ..., DMRN)

To simplify terminology and provide a structured an-
alytical approach, we restrict ourselves to regular (M, N)
schemes, where M denotes the number of distribution ware-
houses and N denotes the number of retail warehouses con-
nected to each distribution warehouse (see Fig. 2). This
implies that each (M, N) scheme consists of a total of M·
N+ 1 nodes. In our analysis, we include five supply chain
schemes: (1, 2), (1, 5), (1, 11), (2, 2), and (4, 2). This set
of schemes provides suitable coverage of the supply chain
space to gain insight into the effects of scale on algorithm
performance.

In our evaluation, training and validation episodes both
consist of 365 discrete time steps reflecting 1 day of oper-
ations, each. Thus, training and validation episodes stretch
over 1 year of simulation, each. The key metric used to
assess performance is the total annual cost resulting from
the daily interaction between the environment and the pol-
icy. The transfer of goods between the supply chain nodes
is modeled based on statistical assumptions. Customer de-
mand follows a normal distribution as in [11, 21, 22], and
affects the retail warehouses. To satisfy demand, retail ware-
houses need to periodically replenish their inventory by
ordering their corresponding upstream distribution ware-
house. The time between reordering and replenishment is
denoted as lead time and follows a stochastic distribution as
in [22]. If the number of supplies requested from the distri-
bution level exceeds the amount of available inventory, the
order quantity is reduced to the amount of available stock.
To prevent this, distribution warehouses need to renew their
inventory from factory nodes, which, in turn, are assumed
to have unlimited stock allowing them to serve orders from
distribution warehouses at any time.

Cost structure

The total cost ctotal of inventory management operations is
defined based on four distinct subtypes of cost for each
inventory system i: Holding inventory without using it for
sales causes storage costs and ties up capital that cannot be
used for other investments. This is referred to as holding
cost ci,h. One option to keep holding costs down is to reduce
the duration between reorders. However, reordering causes
reorder cost ci,r. In the event of late reordering or stock-out
in the upstream inventory system, stock-outs on the retail
inventory level can occur, potentially resulting in lost sales
and reputational damage for the company. These costs are
referred to as shortage cost ci,s. Reordering too much, on
the other hand, leads to an IOH level exceeding inventory
system capacities and with this to overload cost ci,o, requir-
ing further processing steps up to and including disposal.
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To quantify holding, reorder, shortage, and overload costs,
the cost follows the following structure:

ci;h .t/ = vi;hmax.0; iohi .t// (1)

ci;r .t/ =

�
0; if nothing reordered

max
�
cmrc; vi;r � qi .t/

�
; otherwise

(2)

ci;s .t/ = vi;s � ni;ls (3)

ci;o .t/ = vi;o � max.iohi .t/ − capi ; 0/ (4)

ctotal .t/ =
X
i

ci;r .t/ + ci;h .t/ + ci;s .t/ + ci;o .t/ (5)

Holding cost is either zero in the event of a stock-out or
correlates with the IOH level. Inverse to this is the short-
age cost, which is either zero if there is sufficient stock
or increases as soon as lost sales occur due to stock-out.
ni,ls is the number of lost sales and depends on the cus-
tomer’s waiting time, whereby it is assumed that the higher
the waiting time, the greater the likelihood that a customer
will withdraw from the purchase. If the IOH level exceeds
the demand, sales are performed immediately with a wait-

Table 1 Environment parameterization used in the experiments

Variable Unit Value

Factory

Inventory on hand (IOH) Pcs 1
Capacity (capi) Pcs 1
Overall cost USD 0

Distribution Warehouses

Capacity (capi) Pcs 1,000,000

Lead time distribution – Normally distributed

Lead time exp Days 2

Lead time std Days 1

Min. reorder cost (cmrc) USD 1000

Reorder cost coefficient (vi,r) USD 0

Shortage cost coefficient (vi,s) USD 0

Holding cost coefficient (vi,h) USD 8.50

Overload cost coefficient (vi,o) USD 120

Retail warehouses

Capacity (capi) Pcs 100,000

Demand distribution – Normally distributed

Daily demand exp Days 3300

Daily demand var Days 100

Lead time distribution – Normally distributed

Lead time exp Days 2

Lead time std Days 1

Min. reorder cost (cmrc) USD 5000

Reorder cost coefficient (vi,r) USD 0.5

Shortage cost coefficient (vi,s) USD 10

Holding cost coefficient (vi,h) USD 0.1

Overload cost coefficient (vi,o) USD 0.1

Max. backlog duration Days 7

exp mean of the normal distribution, std standard deviation of the nor-
mal distribution, var variance of the normal distribution

ing time of 0 days. The probability increases linearly, with
0 and 5 days leading to 0 and 100% probability of a lost
sale, respectively. Reorder cost occurs only in the event
of a reorder and depends on the reorder quantity, whereby
the reorder cost has a lower bound of cmrc to discourage
little reorder quantities. Overload cost depends on the quan-
tity exceeding the capacity of the inventory system. Each
cost type is connected to a parameter v embodying differ-
ent meanings: vi,h denotes the holding cost and refers to the
capital tie-up and storage cost per day and per item hold. vi,r

denotes reorder cost per item reordered. vi,o denotes over-
load cost per item disposed. vi,s denotes shortage cost per
sales lost.

A summary of the parameters defining the statistical dis-
tributions of the environment and cost functions can be
found in Table 1.

Action and state space

The design of the action and the observation space depends
on the policy type. In the example of a static reorder policy,
the action space is constrained to the static reorder points
and quantities for each inventory system in the network.
The action does not condition on the situation of the ware-
house and remains constant for the full period. In contrast,
the dynamic reorder policies learned by the DRL agents are
conditioned on the situation within the inventory systems.
States are mathematically formalized as vectors including
the current IOH, the number of reordered supplies of the
oldest open order, the number of days since the oldest open
order was triggered, and the number of reordered supplies
of all open orders for all inventory systems in the multi-
echelon network. Every day, the state is mapped to an ac-
tion consisting of a dynamic reorder point and quantity for
all warehouses. Because of this, the action is dynamically
changing with changes in the environment’s state, and the
corresponding policy is thus considered dynamic.

Models and evaluation setting

We apply SimBased, A2C, PPO, DDPG, and TD3 to the
respective environments. For the DRL approaches we rely
on the implementations from Stable Baselines3 [23]. These
are outlined in the section “Deep Reinforcement Learning”.

To guarantee that each of the approaches work in its best
condition, we apply extensive hyperparameter tuning using
Optuna [24] to the approaches on the (1, 2) scheme.

To perform the validation, we consider the average yearly
cost of 200 independent years of simulation in a repeated
random sampling setup to measure the model performance
during training. Ultimately, we evaluate the metrics of in-
terest on the simulation results.
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Evaluation criteria

Applicability and scalability are broad terms and are made
up of many different properties. To generate a comprehen-
sive understanding, several analyses are performed.

Training performance and robustness

After hyperparameter tuning, the resulting optimally param-
eterized approaches are applied to the same environment
five times. The resulting performances are the foundation
for determining each algorithm’s general performance and
robustness.

Fig. 3 Overview of algorithm
performance during train-
ing. (Cost is averaged across
200 years of simulation for eval-
uation. Error bars denote the
95% confidence interval)

Table 2 Performance and robustness analysis. Performance is defined on the interval from 1 to 5 while 1 represents the algorithm with the best
overall run per scheme. Robustness is defined as the mean rank for each run. Smaller values are better. Best values are highlighted in italics

(1, 2) (1, 5) (1, 11) (2, 2) (4, 2) Small All

Performance

A2C 3 4 3 1 3 3.5 2.8

DDPG 5 5 4 4 4 5.0 5.2

PPO 2 1 2 3 2 1.5 2.0

TD3 1 3 1 2 1 2.0 1.6

Sim-based 4 2 5 5 5 3.0 4.2

Robustness

A2C 17.4 17.4 16.2 4.6 8.8 17.4 12.16

DDPG 17.0 20.0 14.8 17.8 18.0 18.5 17.52

PPO 6.6 10.0 8.0 8.0 9.8 8.3 8.48

TD3 6.0 6.6 3.0 11.6 5.4 7.3 5.52

Sim-based 18.0 11.0 23.0 23.0 23.0 14.5 19.60

A2C Synchronous Advantage Actor Critic, DDPG Deep Deterministic Policy Gradient, PPO Proximal Policy Optimization, TD3 Twin Delayed
DDPG

Algorithm Performance is measured by ranking algo-
rithms based on their best evaluation result during training.
Robustness further considers not just the best performance
but all performances per scheme. In total, we apply the
five algorithms stated above to five schemes resulting in
25 training runs per scheme. To tackle robustness, these
25 performances are rank ordered and used to compute an
average rank per algorithm that represents robustness in
comparison to the competing algorithms.

Best model performance

As part of training, we store the overall best-performing
model based on evaluation scores for each algorithm-
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scheme pair. To analyze model performances, these model
instances are applied to 1000 years of simulation from
which cost data are extracted. The mean and maximum
yearly costs serve as estimates for the average and worst-
case performances.

Policy behaviors

We analyze the behavioral structures of the results to iden-
tify differences between regular and irregular situations the
policies encounter during simulation. Taking the 1000 years
of simulation from the model performance analysis above,
we extract the top 50 years based on minimum total cost.
In this subset of data, we identify whether substantial cost
occurs at the level of distribution or retail warehouses. In-
specting the best years of simulation provides additional
information about how regularly or robustly the models re-
spond to suitable situations. On the other hand, the worst
years of simulation will shed light on how well the policies
can cope with irregular situations such as those featuring
low starting IOH.

Scheme difficulty

Lastly, scheme difficulty is analyzed to investigate to what
extent the scheme architecture and size impact the resulting
cost.

Fig. 4 Illustration of the yearly
cost for the best model found by
each algorithm for each scheme.
(The number of simulated years
is 1000, whereas the error bars
denote the 95 certainty interval.)
A2C Synchronous Advantage
Actor Critic, PPO Proximal Pol-
icy Optimization, DDPG Deep
Deterministic Policy Gradient,
TD3 Twin Delayed DDPG

Results

Performance and robustness of optimization
algorithms

The yearly cost per scheme and run per optimization ap-
proach is visualized in Fig. 3. In this analysis, the main fo-
cus is identifying the best model per algorithm and scheme
combination and interpreting its best validation result as al-
gorithm performance. Furthermore, taking all runs and their
corresponding best yearly average performances into ac-
count provides insight into the algorithm robustness. Table 2
emphasizes these metrics for each algorithm and scheme
combination. To give a better overview of the impact of
scheme size on results, we also provide summaries of the
results for small schemes, which include the (1, 2) and the
(1, 5) scheme, as well as a total for all schemes.

Comparing the dynamic and static policies, the results
clearly show that the flexibility introduced by the DRL
agents has a positive impact on both performance (mean
scores of 2.9 vs. 4.2) and robustness (mean scores of 10.195
vs. 18.60). With the exception of the (1, 5) scheme where
Sim-based manages to outperform the on-policy DRL algo-
rithms A2C (by 2 for performance and 6.4 for robustness)
and DDPG (by 3 for performance and 9 for robustness), it
performs worst in all other scenarios.

Within the class of on-policy algorithms, the difference
between A2C and PPO is only marginal. This can be ex-
plained by the fact, that both approaches are similar and
with certain hyperparameter settings even identical [25].

Clear differences can be found in the class of off-policy
DRL algorithms, where TD3 performs well with regard to
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Table 3 Overview of the mean and worst model performance per algorithm and scheme combination. Best results (average-case and worst-case)
are highlighted in italics

Type (1, 2) (1, 5) (1, 11) (2, 2) (4, 2)

A2C

Average 3.6E+ 03 5.8E+ 03 1.6E+ 04 7.1E+ 03 2.1E+ 04

Worst 7.9E+ 03 3.4E+ 04 1.8E+ 04 3.0E+ 04 5.5E+ 04

DDPG

Average 4.5E+ 03 7.4E+ 03 2.3E+ 04 1.4E+ 04 3.4E+ 04

Worst 1.9E+ 04 1.8E+ 04 2.6E+ 04 5.9E+ 04 3.7E+ 04

PPO

Average 3.1E+ 03 4.3E+ 03 1.4E+ 04 7.8E+ 03 2.0E+ 04

Worst 8.4E+ 03 3.7E+ 04 1.6E+ 04 3.2E+ 04 4.4E+ 04

TD3

Average 3.3E+ 03 4.8E+ 03 7.2E+ 03 7.5E+ 03 1.8E+ 04

Worst 7.1E+ 03 9.4E+ 03 1.5E+ 04 1.8E+ 05 2.4E+ 04

Sim-based

Average 4.0E+ 03 4.5E+ 03 7.5E+ 05 1.7E+ 06 2.7E+ 06

Worst 7.2E+ 03 6.4E+ 03 7.9E+ 05 1.9E+ 06 3.0E+ 06

A2C Synchronous Advantage Actor Critic, DDPG Deep Deterministic Policy Gradient, PPO Proximal Policy Optimization, TD3 Twin Delayed
DDPG

performance and robustness, while DDPG performs poorly.
The difference could be due to the fact that TD3 is an
evolution of DDPG adding improvements to counteract the
problem of hyperparameter brittleness. Structural changes
to the environment, such as changing the network scheme,
are adjustments that TD3 can handle much better even with-
out reconfiguring its hyperparameters.

Putting the results from off- and on-policy algorithms to-
gether, it is difficult to identify a clear winner. In the context
of performance, TD3 and PPO, the best off- and on-policy
approaches, respectively, perform similarly (1.6 vs. 2.0).

Fig. 5 The normalized cost
for each scheme and algo-
rithm combination. A2C Syn-
chronous Advantage Actor
Critic, DDPG Deep Determinis-
tic Policy Gradient, PPO Prox-
imal Policy Optimization,
TD3 Twin Delayed DDPG

Yearly Distribution WH Cost per Retail WH Served (mean)

However, when focusing on robustness, TD3 appears to
slightly outperform PPO (5.52 vs. 7.48). This suggests that
the statistical properties of supply chain optimization might
benefit from the off-policy approach that tries to circum-
vent issues of time-correlated update samples via random
batching from an extensive episodic memory.

Best model fitness

From a real-world applicability perspective, the question
regarding mean and worst-case cost is highly relevant. To
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Fig. 6 Normalized mean yearly
distribution warehouse cost per
retail warehouse served for each
algorithm and scheme combina-
tion. A2C Synchronous Advan-
tage Actor Critic, PPO Prox-
imal Policy Optimization,
DDPG Deep Deterministic Pol-
icy Gradient, TD3 Twin Delayed
DDPG

measure the cost expectation and the reliability of an op-
timization approach the best model resulting from the per-
formance and robustness evaluation (see the Section “Per-
formance and Robustness of Optimization Algorithms”) is
taken for each algorithm and scheme combination and is ap-
plied to 1000 years of simulation. Consequently, the mean
yearly cost and the worst yearly cost are considered and
displayed in Fig. 4 and in Table 3.

The results corroborate the conclusion drawn from the al-
gorithm performance and robustness analysis above. Again,
the dynamic DRL-based policies outperform the static pol-
icy of Sim-based. The exception to this is the (1, 5) scheme
in which Sim-based achieves the optimal worst-case model
performance (also note that Sim-based ranks second for the
[1, 2] scheme). This suggests that for small-scale environ-
ments, Sim-based might provide a practically useful trade-
off between performance and safety in terms of the policy
not behaving surprisingly bad.

The on-policy (A2C and PPO), as well as the off-policy
approaches (TD3 and DDPG), show results that mirror the
results observed in the algorithm performance and robust-
ness analysis above. In the case of on-policy algorithms,
both algorithms perform similarly well, thus emphasizing
the relationship between both algorithms. For off-policy al-
gorithms, TD3 performs better both in terms of average-
and worst-case model performance, again highlighting the
benefits of its extension over DDPG. In sum, however, the
results again favor off-policy over on-policy approaches.

Policy analysis

The focus is now directed to the question of how the policy
strategies deviate and what causes the performance differ-
ences. Figure 5 shows the trade-off between expenses on
the distribution warehouse level and retail warehouse level.
Each point represents the trade-off for 1 year of simulation,
whereas the color and point shape denotes the algorithm
and scheme.

The points are all clustered closely together, which sug-
gests that the algorithms are developing a consistently per-
forming strategy. It is notable that DDPG occupies the most
space. Together with the finding that DDPG usually also
has the worst performance, this suggests that consistent
strategies correlate with low cost. Furthermore, it is strik-
ing that the best model results for each scheme are located
closely together (within the dashed box) except for the (4,
2) scheme (within the dashed circle). This highlights that
the increased branching from a large number of distribu-
tion warehouses causes a particularly impactful increase in
complexity.

Scheme difficulty

The previous section highlighted policy differences in
terms of warehouse efficiency and cost allocation trade-
offs, which raises questions about their causes. One poten-
tial explanation is that the difference is caused by the higher
complexity of the network architecture that does not allow
for lower-cost solutions. Alternatively, the policy could
diverge from the optimal solution because of increased
complexity from an optimization perspective. Thus, we
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analyze the scheme difficulty via the mean yearly distribu-
tion warehouse cost per retail warehouse served next. This
metric of interest is compared across all schemes and the
following observations can be made:

Firstly, the variability of mean cost is higher for small
schemes compared to large schemes. As the observation and
action space dimension and hence the optimization com-
plexity is lower for small schemes, the variability of the
cost suggests that warehouses react more flexibly in special
situations and allocate cost to the warehouse level depend-
ing on the requirements of a specific situation. With the
variability decreasing for large schemes, this suggests that
situational decision-making collapses into a static policy for
more complex schemes.

Secondly, the operational cost for distribution ware-
houses is lowest for the (1, 5) scheme followed by the (1,
11). With the (1, 2) scheme being the simplest scheme
related to observation and action space dimension and the
(1, 5) scheme outperforming the (1, 2) scheme in terms of
distribution warehouse efficiency, there is evidence that the
scheme architecture has an impact on the cost efficiency.

Conclusions

In this paper, the applicability of algorithms learning a dy-
namic reorder policy and an algorithm finding a static pol-
icy was evaluated and compared. The results show that
the dynamic reorder policies outperform the static reorder
policy from an algorithm performance and robustness per-
spective. Furthermore, having optimized the hyperparam-
eters for each approach for the (1, 2) scheme, the DRL-
based algorithms even outperform the Sim-based algorithm
on larger schemes, which implies higher scheme flexibility
and robustness in terms of structural environment changes.
From a model analysis perspective, the results showed that
the Sim-based approach works decently (Fig. 6) in two out
of five schemes. In those where it was successful, the worst
yearly performance shows the best or close-to-best perfor-
mance, implying that static reorder policies are suboptimal
with regard to average-case performance but offer high se-
curity guarantees due to their explainable and simple nature.
This is underlined by TD3, which is the overall best algo-
rithm in terms of performance and robustness but shows
a poor worst-case performance on the (2, 2) scheme. These
results highlight the need to add an extra layer of security
when applying DRL to real-world systems. For example,
one could introduce a static emergency RQ policy into dy-
namic DRL policies to provide basic safety guarantees.

The investigation of the potential of DRL for industry ap-
plications is still in its early phases. To provide convincing
arguments for the promises of performance and flexibility
made by DRL, it has to be further analyzed how close

these approaches can approximate optimality in compari-
son to traditional optimization approaches. Similarly, the
limitations with regards to explainability and interpretabil-
ity due to the reliance on deep neural network models need
to be overcome to better understand when DRL models
need to be extended with carefully hand-crafted guardrails
preventing worst-case scenarios from happening.

In summary, this work identifies the high potential for
real-world application of DRL-based reorder policies. How-
ever, some limitations with regard to the reliability in terms
of worst performance and the need for additional security
layers in conjunction with real-world applications are un-
covered, which underline the need for further research ef-
forts in this domain.
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