
HAUPTBEITRAG

https://doi.org/10.1007/s00287-023-01549-5
Informatik Spektrum (2023) 46:220–229

Practices and challenges of threat modelling in agile environments

Paul Theurich1 · JosephaWitt2 · Sebastian Richter3

Accepted: 24 August 2023 / Published online: 27 September 2023
© The Author(s) 2023

Abstract
Facing the increasing annual cybersecurity costs, threat modelling (TM) is a method to consider security as early as
possible in the software development life cycle (SDLC). Thereby, TM helps to identify and address security-related
design flaws in information systems. As the original TM approach is based on sequential development, it is not aligned
with today’s predominantly agile environments. This results in several challenges. However, TM’s implementation in
an agile development approach lacks the recommendations on how to tackle these challenges. Therefore, we assess the
state-of-the-art of TM challenges and practices in agile environments by conducting a literature review covering 220
papers. Thereby, we identify nine categories of challenges and six categories of practices. We propose a valuable artefact
for practitioners by mapping challenges and practices to the agile SDLC and by creating a matrix highlighting how the
practices address the challenges of TM in an agile environment.

Introduction

Many examples in the recent past highlight the increasing
importance of information technology (IT) security. The
cybersecurity spending worldwide has more than doubled
from 2017 to 2022 with annual costs of 71.1 billion US
dollars [37], whilst the average cost of a data breach in the
US increased in a linear manner from 2014 to 2022 to 9.44
million US dollars [36]. “Insecure Design” being in the
fourth place of the latest OWASP Top 10 report [26] under-
lines the risk originating from security-related design flaws
of information systems. As it is beneficial to consider se-
curity as early as possible in the software development life
cycle (SDLC), threat modelling (TM) is an important start-
ing point to identify architectural flaws [44]. TM aims to

Paul Theurich
paul.theurich@mercedes-benz.com

� Josepha Witt
josepha.witt@uni-hohenheim.de

Sebastian Richter
sebastian.richter@dhbw-stuttgart.de

1 Mercedes-Benz Mobility AG, Stuttgart, Germany

2 Department of Intelligent Information Systems, University of
Hohenheim, Stuttgart, Germany

3 Information Systems, Baden-Wuerttemberg Cooperative State
University (DHBW) Stuttgart, Stuttgart, Germany

identify, describe, and categorise threats [27] and considers
potential attackers and their capabilities [8]. Although the
importance of TM is well understood in research [8, 10, 15,
27], the original TM approach (cf. based on sequential de-
velopment) is not aligned with today’s predominantly agile
environments [12]. Whilst the challenges to use TM in agile
environments have been discussed (e.g. [13]), TM’s imple-
mentation in an agile development approach lacks the rec-
ommendations, how to tackle these challenges [10]. There-
fore, we assess the state-of-the-art of threat modelling chal-
lenges and practices in agile environments. By mapping
both to the agile SDLC, we develop a framework which
helps practitioners to implement TM in an agile environ-
ment.

Methodological approach

To address the research goal, a systematic literature review
[47] was conducted and the relevant literature was thor-
oughly analysed with methods from qualitative research, i.e.
coding. We provide the state-of-the-art of TM challenges
and TM practices in agile environments from different re-
search perspectives (e.g. information systems, informatics)
and outlets (i.e. journals, conference proceedings, and book
chapters). Therefore, the literature review covers: a) various
search databases (ACM, AISeL, Emerald, IEEE, Springer,
Taylor & Francis), b) a broad search with terms combining
“Threat Modelling” (cf. BE)/“Threat Modeling” (cf. AE)

K

https://doi.org/10.1007/s00287-023-01549-5
http://crossmark.crossref.org/dialog/?doi=10.1007/s00287-023-01549-5&domain=pdf


Informatik Spektrum (2023) 46:220–229 221

and “Agile”, and c) covers all hits (cf. extensive analy-
sis). The initial result set covered 220 papers. Examining
title and abstract and excluding duplicates and papers with
other languages than German or English, a set of 57 papers
remains. During the full text analysis of the papers, some
turned out to be inaccessible or not relevant, resulting in
a final set of 35 papers, which were qualitatively analysed
in three iterations.

First, the two perspectives of the research question, i.e.
challenges and practices, are used as deductive categories
(cf. [22]). Relevant text passages are assigned to them. Sec-
ond, challenges and practices are identified using an induc-
tive coding approach (i.e. open and axial coding, known
from Grounded Theory (cf. [38])). Relevant text segments
are labelled. Recurring challenges and practices are sum-
marised into categories (cf. approach comparable to open
coding). Third, these codes are categorised based on their
relationships and combined into overarching codes (cf. ap-
proach comparable to axial coding). These three iterations
create a hierarchical coding scheme, capable to order the
challenges and practices of TM in agile environments. Fi-
nally, the categories from the coding scheme are mapped to
the agile SDLC.

Threatmodelling

The purpose of TM is the identification of potential threats
incorporated by the design of the application. Such threats
harm one or more tangible (e.g. customer data) or intan-
gible (e.g. corporation image) assets. Hence, the goal is to
protect an asset from the respective threat [7]. Threats can
be identified in three steps: 1) identification of assets to
be protected; 2) analysis how assets are stored, handled,
and processed, e.g. by creating a data flow diagram (DFD);
3) definition and analysis of threats that affect assets [10].
TM includes to define the threat response which can be
classified. Threats can be accepted (cf. small likelihood of
its exploitation and/or small impact), mitigated (i.e. taking

Fig. 1 Categories of threat mod-
elling (TM) challenges along the
agile software development life
cycle

measures to reduce/eliminate the chance of exploitation), or
avoided (e.g. by altering an application’s architecture) [7].

The creation of a DFD is one of the initial steps of TM
[15, 34]. A DFD visualises the information flows between
users, components, and systems, whilst taking into account
changes of data as well as its storage [15]. Furthermore, the
transfer of information (e.g. protocol) is part of the DFD.
Trust boundaries within the DFD, such as the way from
intranet of a company to the public internet, make changes
of the trust level transparent [7].

One advantage of asset-based TM is that it can start
before the application or system is developed. The method
guides developers and creates transparency of crucial
and protect-worthy assets. This shifts security as an af-
terthought, addressed by security measures during develop-
ment, to a security-by-design approach [30]. However, its
origin in sequential development processes implies several
challenges in todays’ prevalent agile environments.

Challenges of threat modelling in agile
environments

As follows, the literature-based challenges of threat mod-
elling in an agile environment are described along the iden-
tified categories (C1–C9) and mapped to the agile SDLC
(cf. Fig. 1). Agile SDLC is a generalised process based on
the common ground of various agile development methods
(e.g. Scrum, Extreme Programming, Dynamic System De-
velopment) described in comparative studies (e.g. [2, 11]).
The first phase of agile SDLC is the vision, exploration,
and inception phase, which covers a systems’ general ob-
jectives as well as user-based requirements, the definition
of the project team and its responsibilities as well as other
resources and tools. The software is developed in several
iterations of construction and release comprising traditional
SDLC phases (i.e. plan, design, and develop, test, and de-
ploy). The life cycle ends with the maintenance phase of
the final software product. In the following, the challenges
are explained, ordered by the aforementioned phases.

K



222 Informatik Spektrum (2023) 46:220–229

Challenges affecting the vision, exploration,
and inception phase

C1. Scepticism towards IT security and TM Challenge C1
deals with scepticism towards IT security in general or
towards TM, especially in an agile environment. The latter
lies inter alia in the fact that TM has its roots in waterfall-
like development. Traditional TM frameworks like Mi-
crosoft’s Security Development Lifecycle (MS SDL) are
not fully compatible to an agile environment [12]. Whereas
traditional software security practices require extensive
planning and analysis, this is not feasible in an agile en-
vironment; requirements typically change often [21]. The
detailed picture of the target system is not anymore sought-
after at the beginning of the project. Instead it emerges
due to the iterative agile approach [6]. In the past, TM
was conducted once, before the implementation had begun.
This contradicts the agile approach of continuous evolution
and integration in countless iterations [33].

At first glance, one might argue, that TM contradicts the
agile principles as such. Principles as “Individuals and inter-
actions over processes and tools”, “Working software over
comprehensive documentation”, or “Responding to change
over following a plan” might support that argument [9].
However, that there is no need to document is a misunder-
standing. This results in developer’s loss of focus to tackle
security-related documentation (i.e. decisions, risks, and as-
sets) [42]. According to Baca and Carlsson [6], Microsoft’s
TM approach contradicts the agile manifesto as collabora-
tion and small teams shall be prioritised over writing secure
tools. Standard TM frameworks, like MS SDL (https://
www.microsoft.com/en-us/securityengineering/sdl), origi-
nating from waterfall development, scale badly in small
and flexible agile environments.

In case no issues and threats were identified during the
threat modelling session the impression might come up,
that there is no need to worry about security [13]. This
may lead to a false sense of security. Furthermore, devel-
opers show scepticism towards prescriptive methodologies
and formal routines found in traditional quality systems and
frameworks [49].

C2. Lack of purpose/priority Agile teams often run a non-
agile security development life cycle parallel to the agile
development process. This roots in the conflict of interest,
since security requirements are not a responsibility of the
development teams [28]. Without the alignment of security
and business objectives, product owners prioritise business
value over security. This leads to a conflict between security
experts, product owners, developers, and the management.
One reason for this is, that the business case for security is
not transparent [43].

Furthermore, there can be a lack of motivation to conduct
security practices, e.g. creating a DFD. Participants of DFD-
sessions could feel overwhelmed or might want to use the
time for development activities instead [13]. TM sessions
are likely being skipped altogether if the developers are not
motivated and do not see their purpose [10].

Furthermore, the responsibilities for security are often
unclear, which results in a negligence and a lack of pri-
ority [43]. Identified threats in product components, which
already passed the definition of done, are seldom prioritised
due to time concerns [13].

C3. Threat modelling is expensive As TM activities are
time-intensive, manual tasks, practitioners link TM to high
effort [43] and perceive it as a costly activity [6]. The same
applies to the definition of the software architecture [21].
Due to the frequency of changes and software delivery in
an agile SDLC, developers do not have time to invest great
effort into risk analysis and TM during the development
phase [12].

In practice, TM is often deemed not worth the effort [10].
Frameworks like MS SDL, McGraw Touchpoints and Com-
mon Criteria practices appear to be too expensive whilst
bringing insufficient value to be integrated into the agile
development process. Looking at their individual practices,
it might make sense to adopt them [24]. However, due to
the high effort in combination with cost pressure, TM is
often left out [19].

Challenges affecting single meetings in an
iteration

C4. Structure ofmeetings TM also lacks a structure to con-
duct a TM meeting efficiently within a sprint as a clear rec-
ommendation on how to start the process (e.g. looking at
DFD, following STRIDE1, ad-hoc) [13, 19]. During a TM
session, the group can get lost in details and focus. These
unfocussed and unproductive meetings and discussions are
inefficient. Allocating 1 or 2 hours in a sprint to conduct
TM is a major time investment. Not covering all the planned
topics, e.g. analyse the complete DFD in one session, might
frustrate developers [13].

C5. Participants and participation First, it is a challenge
to identify the essential participants of a TM session, es-
pecially in projects consisting of multiple product teams.

1 Microsoft’s STRIDE [32] offers a chart, which summarises a set of
threats (STRIDE stands for spoofing, tampering, repudiation, informa-
tion disclosure, denial of service, and elevation of privilege) and is
a method to brain-storm threats [44].

K

https://www.microsoft.com/en-us/securityengineering/sdl
https://www.microsoft.com/en-us/securityengineering/sdl


Informatik Spektrum (2023) 46:220–229 223

Furthermore, whether the involvement of the product owner
is beneficial for the TM process is rather unclear [13].

During the actual TM session, not all attendees might ac-
tively participate. On the one hand, attendees might lack the
overall picture, e.g. knowledge of every part of the DFD,
especially when looking at cross-product systems. On the
other hand, it can be hard to motivate the participants [13].
A collaboration-related challenge can be the TM commu-
nication channel. The combination of physical and remote
attendance (cf. video conference) can result in inefficient
sessions [13]. This is especially relevant if development
teams are geographically separated [17].

Another challenge regarding the participants is the lack
of expertise in security, security governance and software
development in an agile environment when conducting the
individual steps of TM, e.g. the risk analysis [19, 25]. De-
velopers might not have received sufficient software secu-
rity instructions or training [17]. Even a security champion
of a team (i.e. a team member who is enthusiastic about and
advocates for security [39]) might not have enough experi-
ence to guide through a TM session [10]. Therefore, often
security experts are required which lead the meeting and
provide guidance [43] as well as boost creativity to define
relevant attack scenarios [13].

C6. Documentation of decisions in threatmodelling A chal-
lenge is that working sessions and their results (e.g. the
assets identified) are not properly documented [13] as this
hinders future TM sessions. First, not having a pre-defined
design or architecture, which serves as a foundation, has
a reinforcing effect as it increases the effort to start TM
[17]. Second, the process of a TM session, i.e. the assump-
tions made, should be documented as excluded threats based
on assumptions might turn out to be relevant later [46].
Furthermore, architectural assumptions should be transpar-
ently documented and managed since they are an important
form of implicit (if not documented) architectural know-
ledge. Hence, not documented assumptions can hinder their
systematic reuse, the evolution of the system, as well as
the integration of TM in an agile environment. Looking
at systems’ attacks it appears that assumptions during the
development phase can result in design flaws [46]. Also,
DFD-related limitations regarding undocumented decisions
affecting architecture and security can lead to assumptions.
This might result in redundant information in the threat
model and therefore more effort, or undocumented assump-
tions, which might result in overlooked threats [33].

Challenges affecting the process of TM in
various iterations

C7. Resulting artefact not clear The output of a TM session
might not be concrete enough. For example, impact and
probability of threats or their mitigation are not concretely
modelled [13]. How to document the result and outcome of
a TM session is often unknown by practitioners [17]. This
challenge can stretch over multiple iterations of the agile
SDLC and it may be unclear when to finish the analysis.
Discussing every aspect of the DFD in each iteration can
take too long. Having frequent iterations, only changing
aspects can be discussed, with the risk to miss a dependency,
which changed as well [13]. The definition of done of TM
is often not defined [10].

Also, it can be challenging to find an appropriate level of
granularity in TM, e.g. when creating a DFD. If the DFD is
to abstract, it is an insufficient basis for the purpose of TM.
If the granularity is too fine, the creation takes too long and
meetings become inefficient [13].

C8.Dataflowdiagram-related challenges A challenge is the
separation of the DFD from the actual code. For example,
looking at legacy systems, an overview in form of a DFD
does not provide confidence, since it does not necessarily
reflect the actual way the system works. A link to the actual
code is missing [13].

Projects consisting of many different products, ac-
counted by several teams, are hard to visualise in a (fine-
grained) DFD. Also, inviting all parties involved to a TM
and DFD creation session can be hard to achieve. The
definition of boundaries to systems of other teams is an
additional challenge [13].

C9. Follow-up/maintainability Keeping the created docu-
mentation up to date is also a challenge. Depending on the
scale of the system, it is challenging to analyse and main-
tain the threat model through the iterations, as TM should
be performed every iteration (cf. regularly reviewed) dur-
ing the requirement and design phase [28]. Also, if the
assets or DFD are not properly documented, they are soon
deprecated. There is a lack of motivation to frequently anal-
yse the existing DFD and corresponding system changes.
If they are not updated frequently, it is hard to recall all
changes which might lead to a wrong representation of the
system. If the updates are too frequently, developers might
lose interest [13].

Furthermore, the follow-up of the threats is a challenge.
It might be necessary to describe threats in more detail to
use the documentation valuably. Also, threats might change,
or appear over time, which can make it hard to keep them
current [13].

K



224 Informatik Spektrum (2023) 46:220–229

Practices of threat modelling in agile
environments

Analysing the literature, we identified six categories of TM
practices in an agile environment (P1–P6).

P1. Promote and teach security As the integration and tack-
ling of security in the agile SDLC takes time and will slow
down the output rate of new functionalities, new metrics
for the developer’s performance are required to incentivise
them to address security. Hence, the business goals need to
be aligned with security concerns. If security concerns are
valued, security is more likely to be integrated in the agile
SDLC [13].

Apart from transparency and alignment, developers,
product owners, and other team members should be suffi-
ciently trained [28]. Besides traditional training sessions,
gamification of TM, e.g. by using Microsoft’s Elevation of
Privilege (EoP) can be used. Although EoP is discontinued
from Microsoft for the actual TM of software artefacts, it
is still used for education [41]. EoP shows positive effects
on sensitising software security and starting discussions;
developers want to improve systems’ security as well as
security know-how [41].

P2. Structuring ofmeetings TM meetings can be structured
by the way they are conducted or by determining the partic-
ipants. As follows, we briefly describe some approaches for
conducting such meetings and recommend to gather further
information from the original papers before implementa-
tion.

Weir et al. [49] suggest a lightweight threat assessment
workshop to analyse possible threat actors and outcomes.
The workshop mainly addresses shortcomings in know-how
regarding potential technical threats and the availability of
professionals in this field by providing room for the partici-
pants to brainstorm in an ideation session. Tøndel et al. [43]
propose a regular security intention recap meeting (with
TM as one activity) to discuss the current state of security
of an application (i.e. security goals and continuous self-
evaluation indicators), and to make security-related deci-
sions transparent. Thereby, it should be ensured that each
iteration results in actionable decisions which are being ad-
dressed during development. Tøndel et al. [42] introduce the
Protection Poker game, which shall be played in the plan-
ning phase of each iteration of the agile SDLC. The goal is
to rank security risks for features and to define suitable se-
curity measures, to ensure that the risk remains acceptable.
Whilst Protection Poker supports the incremental and con-
tinuous approach of security and engages the whole team
with security-related issues concretely, it is time-consum-
ing and not widely used. De [14] proposes a TM approach
based on design thinking and Scrum, which aims to provide

a practical way of tackling TM. It suggests a deep-dive into
the system and its sub-components to identify threats and
ways to mitigate them.

Besides these approaches on how to conduct TM, sev-
eral papers highlight the importance of certain participants.
Developers are required when identifying potential threats
[10, 19]. Security experts structure meetings by schedul-
ing and preparing them, creating a DFD, documenting the
identified threats and risks throughout the meeting [13, 17,
19].

P3. Structuring the process Practices that structure the pro-
cess do not refer to the structure of a single TM session,
but to the integration of TM in an agile SDLC, consisting
of numerous TM sessions in many iterations.

During the early stages of the development phase, a first
threat model can be created, which increases in granularity
and quality over time and iterations [29]. Later, TM fo-
cuses on changes between two iterations. This can result in
a prioritisation of a specific part of the system in the next
code review session or a targeted penetration test [25]. This
continuous approach accepts that new threats might appear
over time, whilst others might be mitigated [48]. To avoid
overhead and rapid increase of effort, Kus and Sohr [19]
suggest when to conduct TM in an iteration (cf. extension
of STRIDE). TM iterations are triggered after a change of:
a) the business process, b) the trust-boundaries, c) the in-
terfaces and attack surface, or d) the protect-worthy assets.

Apart from the iterative structure, attacker-centric/abuser
stories can be created in agile working sessions to identify
related attacker entry points and address them in the fol-
lowing sprints. This approach requires attacker personas,
developed during a profiling exercise or shared within the
organisation and across teams [4]. The usefulness of per-
sona creation might be limited due to time constraints and
has to be evaluated in practice [23]. The product owner
creates these stories and during the sprint, the developers
tackle them.

Another approach is to treat TM as a story itself. The re-
quired tasks can be split to allow an estimation of effort and
to add them into the backlog of the product. Templates can
save time and standardise the outcome [21]. Furthermore,
the outcomes of a TM session can be included in security-
related stories, which allows a prioritisation based on the
risk [19].

P4. Threat modelling models The literature captures differ-
ent models how to conduct TM in an agile environment.
In comparison to P2 and P3, this category introduces pre-
defined, holistic schemes of activities to follow when con-
ducting TM.

As DFD is an important part of TM, several papers sug-
gest to enhance the DFD notation. On the one hand, secu-

K



Informatik Spektrum (2023) 46:220–229 225

rity information can be documented in the DFD by adding
security properties (e.g. specifying the transferred informa-
tion regarding encryption) and security mechanisms (e.g.
key management solutions and authentication mechanisms)
[45]. This approach can reduce the amount of undocu-
mented assumptions [46]. On the other hand, the DFDMeta
Model can be enhanced regarding its notation (e.g. adding
elements such as data storage and trust boundaries), and the
extension to threat types/catalogues and integrated security
solutions [33].

The Visual, Agile, and Simple Threat (VAST) model of-
fers a scalable and automatable TM solution suitable in
an agile development setting. VAST supports the whole
SDLC [1] and consists of two models. The operational
threat model aims to provide insights to the infrastructure
by offering a DFD from attacker perspective. The appli-
cation threat model maps functionality and communication
between processes in a process flow diagram to support
developers [18].

Process for Attack Simulation and Threat Analysis
(PASTA) is a risk-centric TM approach, including the anal-
ysis of abuse cases and design flaws, as well as modelling
and simulating attacks [18].

OWASP Application Threat Modelling supports differ-
ent target groups by offering three adapted approaches: an
attack-centric approach (for security testers), a system-cen-
tric method (for developers), and an asset-centric view (for
security managers). However, this impedes to get the overall
picture and consider all risks [29].

P5. Security engineering process The security engineering
process (SEP) supports the delivery of secure software by
offering activities related to the development, maintenance,
and delivery of the product. Therefore, this category of prac-
tices refers to high-level approaches that address security in
the SDLC, adapted to agile environments [5]. Hence, the
introduced practices cover TM as one process step of many.

Microsoft’s Security Development Lifecycle (MS SDL)
offers a lightweight, tailored approach for agile environ-
ments (MS SDL/A) which addresses TM during the design
phase [20].

The Comprehensive, Lightweight Application Security
Process (CLASP) offered by OWASP includes supportive
activities for TM, e.g. detail misuse cases, perform security
analysis of system requirements and design, identify attack
surface, and apply security principles to design [31].

The meta-model MetaSEnD consists of practices estab-
lished in Secure Software Development Lifecycles (SS-
DLCs), standards, testing tools, and certifications. As in
most other models, TM and the following risk analysis are
continuous tasks of the design phase [16].

The Secure Scrum Process (cf. [21]) describes seven ac-
tivities related to risk analysis, conducted in requirement

identification and design phase, e.g. the identification of ex-
ternal dependencies and trust levels (cf. users access rights).
Furthermore, this approach introduces security-related user
stories with certain debt value based on the security benefit
of the story, or the risk it mitigates. The development team
is incentivised to regularly tackle the security stories as if
the overall security debt exceeds a pre-defined threshold,
a whole sprint shall be dedicated to the security stories in
the backlog [21].

Apart from introducing another pre-defined security
engineering approach, Sharma and Bawa [31] suggest
building an own framework for secure agile development
based on existing SEP frameworks (e.g. MS SDL, CLASP)
adapted to specific project needs.

P6. Tool support Tool automation supports the time inten-
sive TM processes.

Dataflow-based tool approaches follow frameworks such
as STRIDE, VAST, or PASTA, and analyse the DFD to iden-
tify patterns which are linked to a set of threats. Examples
include MS TM, OWASP Threat Dragon, and Waypoint.
This approach is suitable for analysing pure software appli-
cations, but provides only limited support for cyber-physi-
cal systems, merging hardware and software [40]. Kus and
Sohr [19] propose an automated way of creating DFDs by
conducting static analysis and dynamic analysis (cf. run-
time information) of the source code and the configuration
of the system. Based on this, Tuma et al. [45] explored
an automated analysis of the DFD to detect security de-
sign flaws. However, the low result precision compared to
manual TM approaches highlight the necessity of manual
TM. The notation of the DFD regarding security-related
measures and mechanisms need to be further enhanced to
enable automated tool support following a dataflow-based
approach.

In contrast, attack graph-based approaches simulate the
exploitation of vulnerabilities by forming a chain of sub-
sequent attacks to reach a specific goal. This attack graph,
traditionally manually build by security experts, can be cre-
ated automatically by tools, such as CORAS, MulVal, and
TVA. Unfortunately, these tools are not able to cover the
complete variety of all potential attacks, such as zero-day
vulnerabilities [40]. Other tools such as ADTool, Mobius,
and CyberSAGE combine dataflow-based and attack graph-
based approaches (cf. hybrid model) and are therefore suit-
able for complex systems and critical infrastructure [40].
Althar et al. [3] propose to predict threats utilising machine
learning approaches based on a growing knowledge sys-
tem. This system supports the TM process by offering an
automated prediction model for threat assessment based on
the requirements of the customer, which are translated into
Common Weakness Enumeration (CWE) categories.

K



226 Informatik Spektrum (2023) 46:220–229

Fig. 2 Mapping of threat mod-
elling (TM) challenges and
practices

Continuous Threat Analysis and Management (CTAM)
aims to make threat analysis, threat management and
progress monitoring a continuous task by automating it
in the continuous integration pipeline. CTAM achieves
this by: 1) connecting the source code to the DFD model,
2) identifying threats and their risk analysis for every push
to the repository by conducting a continuous integration
analysis, 3) gathering and summarising the results and find-
ings in the CTAM server, and 4) offering this information
to the developers. It motivates the developers to keep the
architectural abstraction model of the application up to date
[35].

Discussion

This section maps the identified practices and challenges of
TM in an agile environment by highlighting how the prac-
tices mitigate the challenges. This concludes with a map-
ping matrix, illustrated by Fig. 2. Furthermore, the impli-
cations of the mapping are discussed.

To promote security (cf. P1), the benefits of the integra-
tion of security in the agile SDLC should be made transpar-
ent to developers, product owners, and management such
that the business goals are aligned with security concerns
(cf. C2). In addition, such practices address the scepticism
and false sense of security (cf. C1). Furthermore, the know-
ledge transferred in training sessions helps to conduct pro-
ductive meetings (e.g. increasing focus and productivity; cf.
C4) and to determine the participants as well as their tasks
(cf. C5). Furthermore, training increases experience. Expe-
rienced and trained personnel is capable to develop concrete
results with an appropriate level of abstraction and can de-
cide when to stop the analysis (cf. C7).

The approaches introduced provide a certain structure for
TM meetings (cf. P2, C4) and clarify the need for and role
of certain participants (cf. C5). Especially the attendance
of developers and security experts is highlighted. Conse-
quently, the expertise of developers and security experts

can support the development of concrete result on a cer-
tain level of abstraction (cf. C7). Structured meetings (e.g.
the regular security intention recap meeting) help to bring
transparency into security-related decisions (cf. C6) and en-
sure that each iteration results in actionable decisions (cf.
C7). Furthermore, many approaches (e.g. Protection Poker)
address the lack of motivation and security awareness by
engaging the whole team and assume responsibility for the
TM in general (cf. C2).

The integration of TM in iterations (cf. P3) ensures com-
patibility with the agile manifesto and therewith alleviates
the scepticism towards TM in an agile environment (cf.
C1). Furthermore, the follow-up of threats and the consid-
eration, that threats might change or reappear over time, is
fully addressed by conducting TM in iterations and based
on defined triggers (cf. C9). By creating stories, to be tack-
led by developers in the next iteration, the lack of purpose/
priority is partially addressed, especially with regard to the
transparency of responsibilities within the process (cf. C2).
Furthermore, attack-centric stories enable guidance through
a structured process and, thereby, lead towards a more con-
crete result of TM (cf. C7).

With their holistic approach, TM models (cf. P4) ad-
dress challenges occurring along the whole agile SDLC.
Their pre-defined schemes ensure that TM is applicable
in agile environments (cf. C1), address the lack of moti-
vation, and list responsible persons (cf. C2). In addition,
their prescribed process structure addresses the documen-
tation of performed activities (cf. C6) and leads teams to-
wards a clear result (e.g. documents, threat model) from
TM sessions (C7). The iterative structure of these holis-
tic TM models ensures that the results of TM sessions are
maintained regularly (cf. C9). Furthermore, several models
suggest enhancements of the DFD notation to address the
DFD notation challenges (cf. C8).

Several SEP models exist (cf. P5) that embrace a full
picture of the software development process and show that
TM as well as IT security concerns in general can be ap-
plied in an iterative and continuous approach (cf. C1). SEP

K



Informatik Spektrum (2023) 46:220–229 227

offers models and tools which support developers to engi-
neer a secure product in an agile environment, and thereby
address the lack of responsibility; developers have a focus
regarding purpose and priority (cf. C2). Additionally, ex-
pected results of individual process steps are transparent
and it is clarified by predefined schemes and tools when
the analysis stops (cf. C7). The iterative and continuous
approach of SEP addresses the follow-up, the alteration or
reappearance of threats over time (cf. C9).

An automated tool support (cf. P6) reduces the effort
of TM and improves the cost-to-benefit ratio. Hence, it di-
rectly addresses the challenge that TM is expensive (cf.
C3). Furthermore, automated approaches achieve a repeat-
able and concrete result (cf. C7) and security-related as-
sumptions of the product are logged (cf. C6). Threats and
documentations are continuously maintained through the
iterations (e.g. iterative and automated DFD creation) (cf.
C9). Further, the automation of DFD creation mitigates the
conflict of interest of developers and their lack of motivation
to conduct time intensive security tasks (cf. C2). Finally, the
continuity of e.g. CTAM eases TM to be conducted in an
agile setting (cf. C1).

The following mapping matrix in Fig. 2 depicts the map-
ping of the challenges identified and the respective practices
by examining which practices fully address the challenges
(blue plus ‘x’), partially address them (light blue plus ‘x’),
or do not address them (blank).

Looking at the mapping matrix, it seems that each of
the challenges identified is addressed by respective prac-
tices. However, each of the practices have dependencies
with others (e.g. tool support requires training) which im-
pedes its implementation. Therefore, simply implementing
one or more of the mentioned practices will not necessar-
ily lead to a successful TM approach. Rather the specific
challenges of a team have to be identified and a custom ap-
proach to conduct TM, consisting of certain practices, has
to be defined and put into practice.

Fig. 3 Categories of threat mod-
elling (TM) challenges and prac-
tices along the agile software
development life cycle

Furthermore, due to the iterative nature of the agile
SDLC, the implementation of a TM approach cannot be
done at once. Rather a method, that is not yet described
in the literature, is required, which explains how to embed
TM as a holistic process into agile project management ap-
proaches. By doing so, interdependencies of TM practices
and agile project management activities will emerge and
raise new impediments and challenges.

Conclusion

Using a systematic literature review and classification tech-
niques, we identified nine categories of challenges and six
categories of practices considered to TM in an agile envi-
ronment. The challenges are matched with the phases of the
agile SDLC (cf. Fig. 1). The practices are discussed based
on the challenges they address (cf. Fig. 2). Many practices
address a general scepticism against IT security and TM (cf.
C1) and a lack of purpose and priority (cf. C2). But only
the practice to promote ad teach security (cf. P1) addresses
directly the vision, exploration, and inception phase. Dif-
ferent approaches to structure TM sessions (cf. P2) face
challenges in single meetings (cf. C4–C6). More holistic
approaches structure the process of TM in several itera-
tions (cf. P3–P5) on different levels, i.e. focused on TM or
the whole security engineering process. Across these levels,
TM is conducted incrementally, whilst the risk analysis is
done in the design phase. Tools can support the automation
(cf. P6) of certain steps along the whole TM process, but
also address the high effort and costs for TM directly (cf.
C3). The mapping of challenges and practices to the agile
SDLC is illustrated in Fig. 3.

The proposed artefacts (cf. matrix and mapping to the
agile SDLC) are valuable for practitioners and researchers
alike. Practitioners are therewith able to map their own
challenges with the presented categories to assess practices

K



228 Informatik Spektrum (2023) 46:220–229

which might be helpful in their case. They are able to justify
certain practices as they understand which challenges can
be addressed or prevented. Researchers can benefit from
a comprehensive review of the state-of-the-art in this field
to gain knowledge or conduct further research based on the
findings. For example, the presented matrix can be helpful
to develop and propose a comprehensive consulting method
that utilises existing practices and therewith addresses most
challenges. Furthermore, further research can address short-
comings of this paper such as to evaluate the completeness
and usefulness of the matrix as an artefact. For example, this
can be assessed by conducting a case study, e.g. by apply-
ing the matrix in an organisation that seeks help in applying
threat modelling in an agile development approach.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Alevizos L, Stavrou E (2022) Cyber threat modeling for protecting
the crown jewels in the Financial Services Sector (FSS). Inf Secur
J Glob Perspect. https://doi.org/10.1080/19393555.2022.2104766

2. Alsaqqa S, Sawalha S, Abdel-Nabi H (2020) Agile software de-
velopment: methodologies and trends. Int J Interact Mob Technol
14(11):246. https://doi.org/10.3991/ijim.v14i11.13269

3. Althar RR, Samanta D, Kaur M, Singh D, Lee H-N (2022) Au-
tomated risk management based software security vulnerabilities
management. IEEE Access 10:90597–90608. https://doi.org/10.
1109/ACCESS.2022.3185069

4. Anwar Mohammad MN, Nazir M, Mustafa K (2019) A systematic
review and analytical evaluation of security requirements engineer-
ing approaches. Arab J Sci Eng 44(11):8963–8987. https://doi.org/
10.1007/s13369-019-04067-3

5. Ayalew T, Kidane T, Carlsson B (2013) Identification and evalua-
tion of security activities in agile projects. In: Proceedings of the
18th nordic conference on secure IT systems (Nordsec) Ilulissat,
18. Oct.–21. Oct, pp 139–153 https://doi.org/10.1007/978-3-642-
41488-6_10

6. Baca D, Carlsson B (2011) Agile development with security engi-
neering activities. In: Proceeding of the 2nd workshop on Software
engineering for sensor network applications (SESENA) Waikiki,
21. May–22. May, pp 149–158 https://doi.org/10.1145/1987875.
1987900

7. Baker M (2022) Threat modelling. In: Baker M (ed) Secure web
application development. Apress, Berkeley, pp 43–58

8. Bass L, Holz R, Rimba P, Tran AB, Zhu L (2015) Securing a de-
ployment pipeline. In: Proceedings of the 3rd International Work-
shop on Release Engineering (RELENG) Florence, 19.05., pp 4–7
https://doi.org/10.1109/RELENG.2015.11

9. Beck K, Beedle M, van Bennekum A, Cockburn A, Cunning-
ham W, Fowler M, Grenning J, Highsmith J, Hunt A, Jeffries R,
Kern J, Marick B, Martin RC, Mellor S, Schwaber K, Sutherland
J, Thomas D (2001) Manifesto for agile software development.
https://agilemanifesto.org/. Accessed 9 Oct 2022

10. Bernsmed K, Jaatun MG (2019) Threat modelling and agile soft-
ware development: Identified practice in four Norwegian organisa-
tions. In: Proceedings of the International Conference on Cyber Se-
curity and Protection of Digital Services (Cyber Security) Oxford,
03. Jun.–04. Jun, pp 1–8 https://doi.org/10.1109/CyberSecPODS.
2019.8885144

11. Bhalerao S, Puntambekar D, Ingle M (2009) Generalizing agile
software development life cycle. Int J Comput Sci Eng 1(3):222–226

12. Clark S, Collis M, Blaze M, Smith JM (2014) Moving targets. Se-
curity and rapid-release in Firefox. In: Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security
(CCS) Scottsdale, 03. Nov.–07. Nov, pp 1256–1266 https://doi.org/
10.1145/2660267.2660320

13. Cruzes DS, Jaatun MG, Bernsmed K, Tøndel IA (2018) Challenges
and experiences with applying Microsoft threat modeling in ag-
ile development projects. In: Proceedings of the 25th Australasian
Software Engineering Conference (ASWEC 2018) Adelaide, 26.
Nov.–30. Nov., pp 111–120 https://doi.org/10.1109/ASWEC.2018.
00023

14. De S (2020) A novel perspective to threat modelling using design
thinking and agile principles. In: Proceedings of the 6th Interna-
tional Conference on Parallel, Distributed and Grid Computing
(PDGC) Waknaghat, 06. Nov.–08. Nov., pp 31–35 https://doi.org/
10.1109/PDGC50313.2020.9315844

15. Faily S, Iacob C (2017) Design as code: facilitating collaboration
between usability and security engineers using CAIRIS. In: Pro-
ceedings of the 25th International Requirements Engineering Con-
ference Workshops (REW) Lisbon, 04. Sept.–08. Sept, pp 76–82
https://doi.org/10.1109/REW.2017.23

16. Granata D, Rak M, Salzillo G (2022) MetaSenD: a security en-
abled development life cycle Meta-model. In: Proceedings of the
17th International Conference on Availability, Reliability and Se-
curity (ARES) Vienna, 23. Aug.–26. Aug, pp 1–10 https://doi.org/
10.1145/3538969.3544463

17. Jaatun MG (2019) Architectural Risk Analysis in Agile Devel-
opment of Cloud Software. In: Proceedings of the International
Conference on Cloud Computing Technology and Science (Cloud-
Com) Sydney, 11. Dec.–13. Dec, pp 295–300 https://doi.org/10.
1109/CloudCom.2019.00050

18. Kaur G, Habibi Lashkari Z, Habibi Lashkari A (2021) Cyberse-
curity threats in Fintech. In: Kaur G, Habibi Lashkari Z, Habibi
Lashkari A (eds) Understanding cybersecurity management in Fin-
tech (future of business and finance). Springer, Cham, pp 65–87

19. Kus M, Sohr K (2020) Praktische Erfahrungen und Ansätze für
âSecurity by Design‘ auf Basis der STRIDE-Methodik. Daten-
schutz Datensich 44(11):750–754. https://doi.org/10.1007/s11623-
020-1361-6

20. Lipner S (2010) Security development lifecycle. Datenschutz
Datensich 34(3):135–137. https://doi.org/10.1007/s11623-010-
0021-7

21. Maier P, Ma Z, Bloem R (2017) Towards a Secure SCRUM Process
for Agile Web Application Development. In: Proceedings of the
12th International Conference on Availability, Reliability and Se-
curity (ARES) Reggio Calabria, 29. Aug.–01. Sept, pp 1–8 https://
doi.org/10.1145/3098954.3103171

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/19393555.2022.2104766
https://doi.org/10.3991/ijim.v14i11.13269
https://doi.org/10.1109/ACCESS.2022.3185069
https://doi.org/10.1109/ACCESS.2022.3185069
https://doi.org/10.1007/s13369-019-04067-3
https://doi.org/10.1007/s13369-019-04067-3
https://doi.org/10.1007/978-3-642-41488-6_10
https://doi.org/10.1007/978-3-642-41488-6_10
https://doi.org/10.1145/1987875.1987900
https://doi.org/10.1145/1987875.1987900
https://doi.org/10.1109/RELENG.2015.11
https://agilemanifesto.org/
https://doi.org/10.1109/CyberSecPODS.2019.8885144
https://doi.org/10.1109/CyberSecPODS.2019.8885144
https://doi.org/10.1145/2660267.2660320
https://doi.org/10.1145/2660267.2660320
https://doi.org/10.1109/ASWEC.2018.00023
https://doi.org/10.1109/ASWEC.2018.00023
https://doi.org/10.1109/PDGC50313.2020.9315844
https://doi.org/10.1109/PDGC50313.2020.9315844
https://doi.org/10.1109/REW.2017.23
https://doi.org/10.1145/3538969.3544463
https://doi.org/10.1145/3538969.3544463
https://doi.org/10.1109/CloudCom.2019.00050
https://doi.org/10.1109/CloudCom.2019.00050
https://doi.org/10.1007/s11623-020-1361-6
https://doi.org/10.1007/s11623-020-1361-6
https://doi.org/10.1007/s11623-010-0021-7
https://doi.org/10.1007/s11623-010-0021-7
https://doi.org/10.1145/3098954.3103171
https://doi.org/10.1145/3098954.3103171


Informatik Spektrum (2023) 46:220–229 229

22. Mayring P (2014) Qualitative content analysis: theoretical founda-
tion, basic procedures and software solution. Social Science Open
Access Repository (SSOAR), Klagenfurt

23. Moeckel C (2020) Attacker-centric thinking in security. perspec-
tives from financial services practitioners. In: Proceedings of the
15th International Conference on Availability, Reliability and Se-
curity (ARES) Virtual Event, 25. Aug.–28. Aug, pp 1–10 https://
doi.org/10.1145/3407023.3407082

24. Morrison P, Smith BH, Williams L (2017) Surveying Security
Practice Adherence in Software Development. In: Proceedings of
the Hot Topics in Science of Security: Symposium and Bootcamp
(HoTSoS) Hanover, 04. Apr.–05. Apr, pp 85–94 https://doi.org/10.
1145/3055305.3055312

25. Nägele S, Watzelt J-P, Matthes F (2022) Investigating the Current
State of Security in Large-Scale Agile Development. In: Proceed-
ings of the 23rd Agile Processes in Software Engineering and Ex-
treme Programming (XP) 13. Jun.–17. Jun, pp 203–219 https://doi.
org/10.1007/978-3-031-08169-9_13

26. (2021) OWASP: A04:2021—Insecure Design. https://owasp.org/
Top10/A04_2021-Insecure_Design/. Accessed 15 July 2023

27. Rahman AAU, Williams L (2016) Software Security in DevOps:
Synthesizing Practitioners’ Perceptions and Practices. In: Proceed-
ings of the International Workshop on Continuous Software Evolu-
tion and Delivery (CSED) Austin, 14. May–15. May

28. Rindell K, Hyrynsalmi S, Leppänen V (2018) Aligning security
objectives with agile software development. In: Proceedings of the
19th International Conference on Agile Software Development:
Companion (XP) Porto, 21. May–25. May, pp 1–9 https://doi.org/
10.1145/3234152.3234187

29. Rohr M (2018) Sicherheitsuntersuchungen von Webanwendungen.
In: Rohr M (ed) Sicherheit von Webanwendungen in der Praxis.
Springer, Wiesbaden, pp 345–431

30. Shaked A, Reich Y (2021) Model-based Threat and Risk As-
sessment for Systems Design. In: Proceedings of the 7th Interna-
tional Conference on Information Systems Security and Privacy
(ICISSP) 11. Feb.–13. Feb, pp 331–338 https://doi.org/10.5220/
0010187203310338

31. Sharma A, Bawa RK (2022) Identification and integration of se-
curity activities for secure agile development. Int J Inf Tecnol
14(2):1117–1130. https://doi.org/10.1007/s41870-020-00446-4

32. Shostack A (2007) STRIDE chart. Microsoft Security. https://
www.microsoft.com/en-us/security/blog/2007/09/11/stride-chart/.
Accessed 31 Oct 2022

33. Sion L, Yskout K, van Landuyt D, Joosen W (2018) Solution-
aware data flow diagrams for security threat modeling. In: Proceed-
ings of the 33rd Annual ACM Symposium on Applied Computing
(SAC) Pau, 09. Apr.–13. Apr, pp 1425–1432 https://doi.org/10.
1145/3167132.3167285

34. Sion L, Tuma K, Scandariato R, Yskout K, Joosen W (2019)
Towards automated security design flaw detection. In: Proceed-
ings of the 34th International Conference on Automated Software
Engineering Workshops (ASEW) San Diego, 11. Nov.–15. Nov,
pp 49–56 https://doi.org/10.1109/ASEW.2019.00028

35. Sion L, van Landuyt D, Yskout K, Verreydt S, Joosen W (2021)
Automated threat analysis and management in a continuous integra-
tion pipeline. In: Proceedings of the Secure Development Confer-
ence (SecDev) 18. Oct.–20. Oct, pp 30–37 https://doi.org/10.1109/
SecDev51306.2021.00021

36. (2022) Statista: Average cost of a data breach in the United
States from 2006 to 2022. (in million U.S. dollars). https://

www.statista.com/statistics/273575/us-average-cost-incurred-by-
a-data-breach/. Accessed 15 July 2023

37. Statista (2023) Spending on cybersecurity worldwide from 2017 to
2022. (in billion U.S. dollars). https://www.statista.com/statistics/
991304/worldwide-cybersecurity-spending/. Accessed 15 July
2023

38. Strauss AL (1987) Qualitative analysis for social scientists. Cam-
bridge University Press

39. Tahaei M, Frik A, Vaniea K (2021) Privacy champions in software
teams: understanding their motivations, strategies, and challenges.
In: Proceedings of the Conference on Human Factors in Computing
Systems (CHI) Yokohama, 08. May–13. May, pp 1–15 https://doi.
org/10.1145/3411764.3445768

40. Temple WG, Wu Y, Cheh C, Li Y, Chen B, Kalbarczyk ZT,
Sanders WH, Nicol D (2023) CyberSAGE: the cyber security
argument graph evaluation tool. Empir Software Eng 28(1):1–35.
https://doi.org/10.1007/s10664-021-10056-8

41. Tøndel IA, Oyetoyan TD, Jaatun MG, Cruzes D (2018) Understand-
ing challenges to adoption of the Microsoft elevation of privilege
game. In: Proceedings of the 5th Annual Symposium and Bootcamp
on Hot Topics in the Science of Security (HoTSoS) Raleigh, 10.
Apr.–11. Apr., pp 1–10 https://doi.org/10.1145/3190619.3190633

42. Tøndel IA, Jaatun MG, Cruzes DS, Williams L (2019) Collabo-
rative security risk estimation in agile software development. ICS
27(4):508–535. https://doi.org/10.1108/ICS-12-2018-0138

43. Tøndel IA, Cruzes DS, Jaatun MG, Rindell K (2019) The Security
Intention Meeting Series as a way to increase visibility of software
security decisions in agile development projects. In: Proceedings of
the 14th International Conference on Availability, Reliability and
Security (ARES) Canterbury, 26. Aug.–29. Aug, pp 1–8 https://doi.
org/10.1145/3339252.3340337

44. Torr P (2005) Demystifying the threat-modeling process. IEEE Se-
cur Priv Mag 3(5):66–70. https://doi.org/10.1109/MSP.2005.119

45. Tuma K, Sion L, Scandariato R, Yskout K (2020) Automating
the early detection of security design flaws. In: Proceedings of
the 23rd International Conference on Model Driven Engineering
Languages and Systems (MODELS) Virtual Event, 16. Oct.–23.
Oct, pp 332–342 https://doi.org/10.1145/3365438.3410954

46. van Landuyt D, Joosen W (2020) A descriptive study of assump-
tions made in LINDDUN privacy threat elicitation. In: Proceed-
ings of the 35th Annual ACM Symposium on Applied Computing
(SAC) Brno, 30. Mar.–03. Apr, pp 1280–1287 https://doi.org/10.
1145/3341105.3375762

47. vom Brocke J, Simons A, Riemer K, Niehaves B, Plattfaut R,
Cleven A (2015) Standing on the Shoulders of Giants: Challenges
and Recommendations of Literature Search in Information Systems
Research. CAIS. https://doi.org/10.17705/1CAIS.03709

48. Waschke M (2017) What Has the Industry Done? In: Waschke M
(ed) Personal Cybersecurity. Apress, Berkeley, pp 175–192

49. Weir C, Becker I, Blair L (2021) A passion for security: interven-
ing to help software developers. In: Proceedings of the 43rd Inter-
national Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP) Madrid, 25. May–28. May, pp 21–30
https://doi.org/10.1109/ICSE-SEIP52600.2021.00011

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

K

https://doi.org/10.1145/3407023.3407082
https://doi.org/10.1145/3407023.3407082
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1145/3055305.3055312
https://doi.org/10.1007/978-3-031-08169-9_13
https://doi.org/10.1007/978-3-031-08169-9_13
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://doi.org/10.1145/3234152.3234187
https://doi.org/10.1145/3234152.3234187
https://doi.org/10.5220/0010187203310338
https://doi.org/10.5220/0010187203310338
https://doi.org/10.1007/s41870-020-00446-4
https://www.microsoft.com/en-us/security/blog/2007/09/11/stride-chart/
https://www.microsoft.com/en-us/security/blog/2007/09/11/stride-chart/
https://doi.org/10.1145/3167132.3167285
https://doi.org/10.1145/3167132.3167285
https://doi.org/10.1109/ASEW.2019.00028
https://doi.org/10.1109/SecDev51306.2021.00021
https://doi.org/10.1109/SecDev51306.2021.00021
https://www.statista.com/statistics/273575/us-average-cost-incurred-by-a-data-breach/
https://www.statista.com/statistics/273575/us-average-cost-incurred-by-a-data-breach/
https://www.statista.com/statistics/273575/us-average-cost-incurred-by-a-data-breach/
https://www.statista.com/statistics/991304/worldwide-cybersecurity-spending/
https://www.statista.com/statistics/991304/worldwide-cybersecurity-spending/
https://doi.org/10.1145/3411764.3445768
https://doi.org/10.1145/3411764.3445768
https://doi.org/10.1007/s10664-021-10056-8
https://doi.org/10.1145/3190619.3190633
https://doi.org/10.1108/ICS-12-2018-0138
https://doi.org/10.1145/3339252.3340337
https://doi.org/10.1145/3339252.3340337
https://doi.org/10.1109/MSP.2005.119
https://doi.org/10.1145/3365438.3410954
https://doi.org/10.1145/3341105.3375762
https://doi.org/10.1145/3341105.3375762
https://doi.org/10.17705/1CAIS.03709
https://doi.org/10.1109/ICSE-SEIP52600.2021.00011

	Practices and challenges of threat modelling in agile environments
	Abstract
	Introduction
	Methodological approach
	Threat modelling
	Challenges of threat modelling in agile environments
	Challenges affecting the vision, exploration, and inception phase
	Challenges affecting single meetings in an iteration
	Challenges affecting the process of TM in various iterations
	Practices of threat modelling in agile environments
	Discussion
	Conclusion
	References


