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Abstract
We propose to establish a research direction based on Reinforcement Learning in the scope of Cross Domain Fusion. More
precisely, we combine the algorithmic approach of evolutionary rule-based Reinforcement Learning with the efficiency
and performance of Deep Reinforcement Learning, while simultaneously developing a sound mathematical foundation.
A possible scenario is traffic control in urban regions.

Introduction

The basic idea of Cross Domain Fusion (CDF) is to go be-
yond a pure combination of different data sources, knowl-
edge bases, models, and views towards leveraging the com-
bination of resources to gain a more comprehensive un-
derstanding. This is assumed to result in more accurate,
more stable, more interpretable, and more holistic models
of conditions and processes.

CDF aims at cross-cutting integration and can thus in-
clude a wide variety of sources of knowledge and stages
of the processing chain. This leads to several challenges
in terms of the interaction of models and observations, the
combination of heterogeneous data and the adaptive link-
ing of steps in the processing chain. Accordingly, the main
questions are what should be fused (raw data, pre-processed
data, interpreted data, scientific models, derived patterns,
background knowledge), how this should be done (quanti-
tative, qualitative, supervised, unsupervised, autonomous),
and where (interactive, automatic, at the sensor, in the
cloud).
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In this article, we propose to establish a research direc-
tion based on reinforcement learning (RL) in the scope of
CDF to allow for an adaptive runtime fusion and, therefore,
more appropriate modelling capabilities when interacting
with processes. This means working on processed data, in
combination with identified patterns and established scien-
tific models, to perform the fusion automatically by consid-
ering rewards as feedback signals, and to do this efficiently,
enabling an application directly at the sensor as well as in
cloud environments.

We consider traffic control in urban regions as a possible
scenario: Assume a control system combining local deci-
sions at each intersection controller with city-based global
control strategies (see [6] for a motivating example). Lo-
cally this has access to sensor information (e.g., induction
loop and camera sensors), to preprocessed data from neigh-
boured intersection controllers, and to established models
(e.g., topology and simulation models reflecting the setup of
the infrastructure). City-wide, this can be augmented with
expected traffic patterns (i.e., known regular and seasonal
demands) as well as unstructured data from the Internet
(i.e., to predict unexpected events with severe impact on
the observed and predicted traffic flow volumes).

In the remainder of this article, we initially summarise
the background of our proposal by briefly revisiting the nec-
essary basic foundation, develop a research agenda towards
interpretable and self-explaining RL technology for CDF,
and give an outlook on how this can be implemented.
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Background

Reinforcement Learning (RL) models the agent’s environ-
ment as a Markov Decision Process (MDP), which is given
as a fivetuple <S, A, P, R, γ>. In the standard case, S is
a finite set of discrete states in the environment, A contains
the finite set of the agent’s actions, P is the state transition
probability matrix, R quantifies the reward function and
γ 2 [0, 1] is a discount factor given priority to future or im-
mediate rewards. Such an RL agent continuously interacts
with the environment and learns an optimal policy based on
trial and error. At each time step t, the agent observes the
state st 2 S and responds with an action at. Subsequently,
the environmental state is changed to st+1 according to the
transition probability matrix. Further, the agent receives an
immediate reward rt according to the underlying (unknown)
reward function R. This reward is used to update the prob-
ability to apply at in st again with the goal to maximise the
cumulative discounted reward. Due to the curse of dimen-
sionality, approximation techniques have to be used, see [1]
for an overview.

Deep RL methods use deep learning to approximate any
of the following components of RL: the value function,
the policy, or the model (i.e., state transition function and
reward function). Especially, in non-deterministic or large
environments (such as real-world robotic scenarios [2] or
complex video games [8]), the value of deep neural net-
work pays off since raw sensor input can directly be for-
warded to the network. Although the agents are limited to
human action constraints, e.g., a maximum number of ac-
tions per minute, they reached super-human performance
in the games of the Atari collection [4] or Starcraft II [7].
For the latter, so-called long short-term networks [3] play
an important role in finding the perfect memory horizon.

Evolutionary rule-based RL models the learning prob-
lem using a population of classifiers that are evolved online.
Initially established by Holland, the field is currently char-
acterised by the Extended Classifier System as invented by
Wilson in 1995 [9]. Fig. 1 depicts an example of an XCS for
continuous values as an input signal (i.e., st). The current
knowledge is stored in the “population”, where each classi-
fier contains a condition part (i.e., a niche of the input space
encoded as hyper-rectangle), an action (here encoded as dis-
crete options A1 to An), a predicted payoff p, a prediction
error ϵ and a fitness f. Such a classifier encodes the state-
ment “If you perform action Ai in this condition you will
receive the payoff p”. The error ϵ describes the reliability of
this prediction, while the fitness transforms it into a strength
value. Classifiers in XCS contain further attributes such as
numerosity or experiences that are not relevant for the basic
cycle. The standard algorithm works as follows: In each ac-
tivation cycle, all classifiers of the population are checked
against the input signal and the matching ones are copied

to the “match set”. The “prediction array” determines the
fitness-weighted p-values for all contained actions in the
match set. Based on a roulette-wheel scheme, one action is
selected and all the supporting classifiers copied to the “ac-
tion set”. This action is applied to the system and the payoff
is observed (at time t+ 1). This observed payoff is used to
update the classifiers of the previous action set using the
modified delta-rule (Widrow-Hoff delta rule) in combina-
tion with the moyenne adaptive modifee technique.

Another component of our approach is the theory of op-
timal stopping and related areas, such as optimal switching
or optimal impulse control. This provides the framework
to enable optimal timing for certain actions in a random
environment. Mathematically, this is represented by the op-
timisation problem of maximising the expected payoff of
the stopped process Xτ over stopping times τ. Originally,
such problems were studied in sequential statistics (“When
to stop collecting data?”) and financial mathematics (“When
to execute options?”), but the areas of application are much
broader nowadays [5]. Surprisingly, however, its use as
a component of an RL process has rarely been carried out
to date.

One reason may be the theoretical hurdle for an adequate
formulation of the problems.

Research agenda

We assume that one of the major goals of CDF is a sophis-
ticated, automated understanding of real-world processes
and behaviour. This should, for instance, serve as a basis
for interaction with humans and provide means for deci-
sion support. For the scope of applied RL technology, this
directly poses two strict goals:

1. The current knowledge should always be interpretable by
humans in the sense that the representation allows for an
intuitive understanding

2. The learning system should be able to automatically de-
tect causalities and turn them into self-explanations com-
prehensible to the user

Besides these user-centred goals, the RL system should,
of course, be as efficient, adaptive and appropriate as pos-
sible, fusioning information sources from various possi-
ble sources. To allow for such an approach, we propose
to combine the algorithmic approach of evolutionary rule-
based RL with the efficiency and performance of deep re-
inforcement learning (DRL), while simultaneously devel-
oping a sound mathematical foundation. This results in the
formulation of the following research agenda.

Challenge A: Basic algorithmic concept Based on Wilson’s
XCS system for real-valued environments, the underlying
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Fig. 1 Schematic illustration of the Extended Classifier System, XCS

process needs to be augmented and/or replaced by concepts
using deep neural network (DNN) technology. This means
keeping the algorithmic structure and initially investigating
the classifier condition and matching routine, the actions,
and the subsequent steps for prediction array definition and
exploration.

Challenge B: Uncertainty in optimal switching problems
Based on optimal stopping theory, we require a framework
for an initial stochastic control decision problem that takes
uncertainty into account. We need to explicitly model and
analyse the incorporated uncertainty of switching deci-
sions, which then needs to become an integral part of the
algorithmic description above.

Challenge C: Runtime learning from feedback Next to the
algorithmic schema of the learning technique, we have to
establish the basic RL functionality. This goal can be sub-

divided into answering the three research questions of how
the update of the classifiers of the previous cycle is done,
how the covering mechanism is realised and combined with
DNN-based knowledge, and how we can evolve the popu-
lation over time. This further entails the aspect of how to
incorporate nonstatic intervals for switching decisions and
credit assignment.

Challenge D: Deep optimal switching The framework for
the initial, simple switching problem is used for modelling
uncertainty. This needs to be extended and revised to de-
velop a framework for using DNNs for solving high-dimen-
sional optimal (stopping and) switching problems with long
time horizons and analysing them mathematically.

Challenge E: Active population management To establish
active management of the population to improve the ef-
ficiency of the learning behaviour, we have to investigate
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how the update of the classifiers of the last action sets is
done. This includes implications on the covering mecha-
nism realised and combined with DNN-based knowledge
and the generation of novel classifiers.

Challenge F: Exploration vs. exploitation An integral part of
RL processes is always to balance between exploration and
exploitation. Especially in the optimal switching problem
outlined above, there is an inherent exploration- vs.-ex-
ploitation dilemma. This demands for a mathematical foun-
dation for applying a strategy. The same holds for the selec-
tion processes in the basic scheme where a roulette wheel
approach is usually used.

Challenge G: Cross Domain Fusion @ Traffic Control From
a CDF standpoint, a major challenge is an inclusion of
the different types of data in all stages of the analysis. For
example, in addition to the obvious quantitative data the
methods must always allow for the inclusion of additional
qualitative data (e.g., knowledge about major events that
have not yet occurred or information on new roads). In
principle, the general structure of the models used allows
such inclusion. However, this must be taken into account
from the beginning. Consequently, using the example of an
existing traffic control system allows one to demonstrate
the CDF effects performed by our novel RL approach.

Conclusion

In this article, we propose to investigate novel RL technol-
ogy as a basis for CDF. This technology combines the clear
algorithmic structure and inherent interpretability of the
gathered knowledge of Learning classifier systems (LCS)
with the performance and deep learning. With an additional,
theoretical mathematical foundation from the field of op-
timal switching theory, this is assumed to pave the way
towards more intuitive human interaction as a self-assess-
ment of decisions, knowledge and behaviour will allow for
establishing self-explanatory capabilities. Especially this in-
tended use of the model to obtain explanations of the actual
learning behaviour poses challenges on both the mathemat-
ical and the computer science side.

For the underlying stochastic control problem, a DNN-
based algorithm for learning the action- and no-action re-
gions has to be developed to obtain explainable stopping
rules. As a second step, mathematical structural properties
(e.g., geometric properties or the relevant underlying mono-
tone statistics for rules) have to be studied to improve the
results of the algorithms and explain their behaviour.

For the algorithmic part (i.e., the computer science side),
a user-understandable behaviour needs to be established.
The interpretable representation from the first phase will be

augmented with identification of root causes and chains of
control decisions derived from the existing population. This
includes guarantees for learning and decision behaviour
based on corridor representations.

There are obvious limitations of our analysis. On the
mathematical side, we concentrate on the challenges com-
ing from a probabilistic and statistical analysis and just
partly go deeper into the analysis of the underlying (de-
terministic) optimisation issues arising in the procedures
based on DNN. There are also obvious limitations of our
algorithmic approach. Even though the interpretability is
considered in terms of the representation of the knowledge,
a sophisticated user interface with a semantic description is
not part of the focus. Furthermore, a transfer of knowledge
among similar systems is not directly possible in the pro-
posed concept. Subsequent efforts will have to deal with
automatic adaptations of the knowledge to new (but re-
lated) problem domains, e.g., self-adaptation behaviour of
an intersection controller in the traffic control system with
a similar topology model.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons At-
tribution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view
a copy of this licence, visit http://creativecommons.org/licenses/by/4.
0/.

References

1. Bertsekas DP (2019) Reinforcement learning and optimal control.
Athena Scientific, Belmont

2. Gu S, Holly E, Lillicrap T, Levine S (2017) Deep reinforcement
learning for robotic manipulation with asynchronous off-policy
updates. In: International conference on robotics and automation.
IEEE, pp 3389–3396

3. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780

4. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wier-
stra D, Riedmiller M (2013) Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602

5. Peskir G, Shiryaev A (2006) Optimal stopping and free-boundary
problems. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel

6. Sommer M, Tomforde S, Hähner J (2016) An organic computing
approach to resilient traffic management. In: McCluskey T, Kotsia-
los A, Müller J, Klügl F, Rana O, Schumann R (eds) Autonomic
road transport support systems. Autonomic systems. Birkhäuser,
Cham, pp 113–130 https://doi.org/10.1007/978-3-319-25808-9_7

7. Vinyals O, Babuschkin I, Czarnecki WM, Mathieu M, Dudzik A,
Chung J, Choi DH, Powell R, Ewalds T, Georgiev P et al (2019)

K

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-319-25808-9_7


Informatik Spektrum (2022) 45:295–299 299

Grandmaster level in starcraft ii using multi-agent reinforcement
learning. Nature 575(7782):350–354

8. Vinyals O, Ewalds T, Bartunov S, Georgiev P, Vezhnevets AS,
Yeo M, Makhzani A, Küttler H, Agapiou J, Schrittwieser J et al
(2017) Starcraft ii: a new challenge for reinforcement learning.
arXiv preprint arXiv:1708.04782

9. Wilson SW (1995) Classifier fitness based on accuracy. Evol Com-
put 3(2):149–175

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

K


	Reinforcement learning as a basis for cross domain fusion of heterogeneous data
	Abstract
	Introduction
	Background
	Research agenda
	Conclusion
	References


