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Abstract

This paper discusses the challenges of applying a data analytics pipeline for a large volume of data as can be found in
natural and life sciences. To address this challenge, we attempt to elaborate an approach for an improved detection of
outliers. We discuss an approach for outlier quantification for bathymetric data. As a use case, we selected ocean science
(multibeam) data to calculate the outlierness for each data point. The benefit of outlier quantification is a more accurate
estimation of which outliers should be removed or further analyzed. To shed light on the subject, this paper is structured
as follows: first, a summary of related works on outlier detection is provided. The usefulness for a structured approach
of outlier quantification is then discussed using multibeam data. This is followed by a presentation of the challenges for

a suitable solution, and the paper concludes with a summary.

Introduction

Data analytics techniques such as data mining and machine
learning can give valuable insights into the data. They allow
rules that describe specific patterns within the data to be
identified or can reveal hidden knowledge. Based on the
analysis results, informed decisions can be made.

The most time-consuming step in the analytics pipeline
from processing raw data to discovering knowledge is data
pre-processing. This step includes activities for data integra-
tion, data enhancement, data transformation, data reduction,
data discretization and data cleaning. The reason for the
time-consuming nature of this activity is usually the qual-
ity of the data (i.e. missing or incomplete entries). Some
approaches to improving quality can be found in the litera-
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ture [18]. These approaches are usually based on detecting
and filtering of outliers. In statistics, outliers are defined as
“high measurements where the value is some standard devi-
ation above the average” [5]. In data engineering, outliers,
commonly referred to as “anomalies”, refer to “something
that is out of range”. This can, on the one hand, point to
insignificant data or, on the other hand, to interesting and
useful information about the underlying system. Hence, dis-
tinguishing the essence of outliers in terms of undesired or
unwanted behavior versus surprisingly correct and infor-
mative data is of particular interest for the quality of data
analysis.

The purpose of our work is to develop an outlier quantifi-
cation framework making the analysis results explainable.
As a use case, we selected ocean science (multibeam) data
to calculate the outlierness for each data point. The bene-
fit of outlier quantification is a more accurate estimation of
which outliers should be removed or further analyzed. Fig. 1
shows, on the left, the convential process of outlier detec-
tion. The data is pre-processed and outlier techniques are
interweaved in this step, resulting in analysis results such
as clusters or patterns. The right-hand side of Fig. 1 shows
a new approach to outlier detection. Outlier information is
propagated through each step of the process from raw data
to the analysis results in terms of meta-data annotations.

Although plenty of approaches exist that classify, filter
and remove outliers, the number of approaches for explain-
able outlier quantification is limited. To shed light on the
subject, this paper is structured as follows: the next section
summarizes related works on outlier detection. The useful-
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Fig. 1 Left-hand side: the pro-
cess from raw data to clustering
without outlier quantification.
Right-hand side: the process
with outlier quantification. Out-
liers are continuously annotated
within the analytics pipeline

ness for a structured approach of outlier quantification is
discussed with a use-case scenario using multibeam data.
Finally, the last section sketches challenges for a suitable
solution and concludes the paper with a summary.

Related work

Existing outlier detection methods differ in the way they
model and find the outliers and, thus, in the assumptions
they rely on, implicitly or explicitly. In statistics, outlier
detection is usually addressed by modelling the generat-
ing mechanism(s) of the normal data instances using a sin-
gle or a mixture of multivariate Gaussian distribution(s)
and measuring the Mahalanobis distance to the mean(s) of
this (these) distribution(s). Barnett and Lewis [1] discuss
numerous tests for different distributions in their classical
textbook. As a rule of thumb, objects that have a distance of
more than 3 - o to the mean of a given distribution (¢ denotes
the standard deviation of this distribution) are considered
as outliers to the corresponding distribution. However, we
are not aware of any approach that continuously tracks the
outlier scores and updates the values within the analytics
pipeline. Problems of these classical approaches are obvi-
ously the required assumption of a specific distribution in
order to apply a specific test.

According to the data distribution, there are tests for uni-
variate as well as multivariate data distributions, but all tests
assume a single, known data distribution to determine an
outlier. A classical approach is to fit a Gaussian distribu-
tion to a data set, or, equivalently, to use the Mahalanobis
distance as a measure of outlierness. Sometimes, the data
are assumed to consist of k Gaussian distributions and the
means and standard deviations are computed data driven.
However, mean and standard deviation are rather sensitive
to outliers and the potential outliers are still considered for
the computational step.

Related to the outlier detection techniques, many differ-
ent approaches exist that have less statistically oriented but
more spatially oriented ways of modelling outliers, partic-
ularly using distances between data objects. These models
consider the number of nearby objects, the distances to
nearby objects and/or the density around objects as an in-
dication of the “outlierness” of an object [2, 10, 12, 13,

15]. However, all these approaches rely implicitly on the
assumption that a globally fixed set of features (usually
all available attributes) are equally relevant for the outlier
detection process.

Outlier detection addresses the problem of discovering
patterns in data that do not replicate the expected behavior.
Although many approaches for outlier detection using su-
pervised machine learning [6, 8] or signal processing based
methods [9, 11] exist, the risk to unintendedly eliminate
necessary signals if the sound data is unknown is present
and a holistic approach is missing that combines different
techniques, data distributions and tests and aim to provide
a quantification.

The related work analysis attempts to identify apparent
trends towards outlier detection, different techniques to find
outliers and filter them. The next section discusses a suitable
use case for outlier quantification. Particularly, we discuss
multibeam (bathymetric) data for seafloor classification.

Use-case scenario

Pre-processing of bathymetric data is a time consuming
task. Due to new technologies for data acquisition, in
which a fan-shaped bundle of acoustic beams (“multi-
beams”) is repeatedly transmitted (each transmission being
called a “ping”) from the ship perpendicular to the direction
of travel (see first image in Fig. 2), a huge amount of data
is collected. Not only the amount of data increases, but the
data is noisy and contains many outliers.

Although the amount of data continues to grow, data
processing steps, like outlier detection and filtering, are car-
ried out manually by domain experts. This task is repetitive
and subjective, so there is a need to ensure objectivity and
a cleaning procedure which ensures traceability for out-
lier detection. In order to meet these goals, artificial neural
networks (ANN), especially supervised machine learning
(ML) methods, can be applied to reduce processing time
and ensure objectivity and traceability. Figure 2 shows the
pipeline for outlier quantification in multibeam data.

As a suitable use case for outlier quantification multi-
beam bathymetry raw data of RV MARIA S. MERIAN
during cruise MSM88 [19] with records in the Atlantic that
took place between 2019-12-19 and 2020-01-14 could be
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Fig. 2 Pipeline for outlier quan-
tification in multibeam data
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Fig.3 Route of the MSM88/2 expedition between Cape Verde and Barbados. RV MARIA S. MERIAN cruise is located between red anchor points

used. The data were collected using the Kongsberg EM 122
system and cover an area of 153,121 square kilometres.

Next, the following analytics pipeline can be applied for
this data set. Multibeam data is saved as .all files. The depth
amplitude goes from 5244 to 5840m. Figure 3 shows the
location of the survey in the Atlantic. Firstly, multibeam
data is transformed into a generally readable comma-sepa-
rated values (csv) format containing latitude, longitude and
depth values. Additionally, the backscattering strength (BS)
is calculated and added to the csv file. BS data is a measure
of intensity of the acoustic return and is used to detect and
quantify the bottom echoes, so several seabed types like
coral reefs, seagrass, salt or mud can be taken into account.

A prerequisite for supervised learning is the need for la-
belled data. So, for outlier detection a domain expert man-
ually labelled all outliers in the collected data set. Each
sounding thus receives an additional attribute and a flag is
saved. The data set is 59.5 GB in size, so that the usual data
processing steps cause high computational costs and the
runtime for processing the data is very high. This challenge
is described further in the next section.

A moving window data pattern can be applied to the data
for data selection. Moving window algorithms are data-
centric, because the moving window changes position it-
eratively while being centered on one sounding. The red
cross in Fig. 2 for data selection is the centre of the mov-
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ing window and the yellow plus signs are the points being
selected to calculate the local neighbourhood. Only one pa-
rameter, which is the search radius around the sounding, is
needed. Although the method is time consuming, the local
neighbourhood calculation is representative and is suitable
for detecting the local neighbourhood for each sounding.
Local neighbourhoods are saved in an additional file.

In order to train ML algorithms to automatically de-
tect outliers in multibeam data, a proper description of
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Fig.4 Definition of a beam and a ping presented in ping/beam view
[16]
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the soundings is needed. We use the local neighbourhood,
to calculate features for each sounding. These features are
used for ANN training, so a trained network is generated,
which is able to detect and flag outliers in multibeam data.

Depending on the attributes which should be calculated
for each local neighbourhood, the raw view, spatial view or
sequential view is suitable. Multibeam data can be handled
with a dual representation; a ping/beam view as time-series
where data is stored in a matrix (see Fig. 4) or as an absolute
georeferential view where each sounding is represented as
a triplet containing latitude, longitude and depth values (see
Fig. 5). Raw features are based on the raw data set collected
on the MSM88 expedition like the BS or the depth values.
Spatial features include attributes like a local outlier factor
or the standard deviation for each local neighbourhood. The
sequential view is suitable for bad ping detection.

All calculated attributes are added to the csv file to gain
metadata and a proper description of each sounding that
can be utilized to train ML algorithms. These data and their
associated description are used by ML algorithms for train-
ing, so in this use case these data are the basis to decide
whether a sounding is an outlier or not.

To evaluate this approach, MB-System can be applied to
the dataset to automatically detect outliers with the imple-
mented outlier detection methods. MB-System is an open
source software package for the processing and display
of bathymetry and backscatter imagery data derived from
multibeam, interferometry and sidescan sonars. MB-Sys-
tem detects outliers with simple interpolation methods or by
adoption of alternate values. Finally, all detected outliers by

MB-System can be contrasted to the outliers detected with
the presented supervised ML approach to verify the accu-
racy.

Conclusion and research challenges

This paper discusses the challenges of applying a data an-
alytics pipeline for a large volume of data as can be found
in natural and life sciences. To address this challenge, we
attempt to elaborate an approach for the improved detection
of outliers. We discuss an approach for outlier quantification
for bathymetric data. The approach presented in this paper
contributes to the concept of cross domain fusion (CDF)
as follows. The data-driven pipeline presented in this pa-
per aims to replace or complement the predominately used
model-driven approach in the domain of seafloor classifi-
cation. We are convinced that a data-driven approach can
give more insights than traditional approaches do. For this,
however, several challenges must be addressed in order to
provide a solution.

Challenge 1 Disciplines like natural and life-cycles have
a large volume of data. This calls first for techniques to
efficiently pre-process the data. We found that conventional
pre-processing must be fine-tuned and adjusted to run al-
gorithms for data integration and transformation. Even then
it is difficult to calculate and summarize all features in one
data set needed for training to enable the ANN to detect
outliers. Moreover, the resulting csv file will be very large,
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so that the training of the ANN, depending on the method
used, is also challenging. For example, linear regression to
predict a binary target is simple to implement, but there is
a risk of underfitting.

Challenge 2 The number of approaches to accurately rec-
ognize objects is limited. While these techniques have been
deeply studied for shallow water for instance [4, 14, 17],
they fail for deep sea. Seafloor classification tasks should
satisfy the precondition that the area covered by several
consecutive pings belongs to the same seafloor type [3].
This precondition is easily met in shallow water, but it is
difficult to ensure in the deep sea because, due to the fan-
shaped nature of the beam bundle, the width of seafloor
insonified by one ping is proportional to depth, and so con-
secutive pings cover a much larger area. This shows how
challenging object recognition is in large data sources with
certain properties like depth.

Challenge 3 Due to the complex pre-processing of the data,
there is a great range of uncertainty in the analysis result.
The analysis result should be interpreted more as a fuzzy
value with a certain range. In addition, ANN methods like
gradient boosting are very fast and powerful, but the re-
sults are not easily interpretable. Once again, this hampers
transparency and explainability of the analysis result.
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