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Abstract

We propose to establish a research direction based on Reinforcement Learning in the scope of Cross Domain Fusion. More
precisely, we combine the algorithmic approach of evolutionary rule-based Reinforcement Learning with the efficiency
and performance of Deep Reinforcement Learning, while simultaneously developing a sound mathematical foundation.

A possible scenario is traffic control in urban regions.

Reinforcement Learning als eine Grundlage fiir die Cross Domain Fusion heterogener Daten

Introduction

The basic idea of Cross Domain Fusion (CDF) is to go be-
yond a pure combination of different data sources, knowl-
edge bases, models, and views towards leveraging the com-
bination of resources to gain a more comprehensive un-
derstanding. This is assumed to result in more accurate,
more stable, more interpretable, and more holistic models
of conditions and processes.

CDF aims at cross-cutting integration and can thus in-
clude a wide variety of sources of knowledge and stages
of the processing chain. This leads to several challenges
in terms of the interaction of models and observations, the
combination of heterogeneous data and the adaptive link-
ing of steps in the processing chain. Accordingly, the main
questions are what should be fused (raw data, preprocessed
data, interpreted data, scientific models, derived patterns,
background knowledge), how this should be done (quanti-
tative, qualitative, supervised, unsupervised, autonomous)
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and where (interactive, automatic, at the sensor, in the
cloud).

In this article, we propose to establish a research direc-
tion based on Reinforcement Learning (RL) in the scope of
CDF to allow for an adaptive runtime fusion and, therefore,
more appropriate modelling capabilities when interacting
with processes. This means working on processed data, in
combination with identified patterns and established scien-
tific models, to perform the fusion automatically by consid-
ering rewards as feedback signals, and to do this efficiently,
enabling an application directly at the sensor as well as in
cloud environments.

We consider traffic control in urban regions as a possible
scenario: Assume a control system combining local deci-
sions at each intersection controller with city-based global
control strategies (see [6] for a motivating example). Lo-
cally this has access to sensor information (e.g. induction
loop and camera sensors), to preprocessed data from neigh-
boured intersection controllers and to established models
(e.g. topology and simulation models reflecting the setup of
the infrastructure). City-wide, this can be augmented with
expected traffic patterns (i.e. known regular and seasonal
demands) as well as unstructured data from the Internet
(i.e. to predict unexpected events with severe impact on the
observed and predicted traffic flow volumes).

In the remainder of this article, we initially summarise
the background of our proposal by briefly revisiting the
necessary basic foundation (Sect.2, Background), develop
a research agenda towards interpretable and self-explain-
ing RL technology for CDF (Sect.3, Research Agenda) and
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give an outlook on how this can be implemented (Sect.4,
Conclusion).

Background

RL models the agent’s environment as a Markov Decision
Process (MDP), which is given as a fivetuple <S, A, P,
R, y>. In the standard case, S is a finite set of discrete
states in the environment, A contains the finite set of the
agent’s actions, P is the state transition probability matrix,
R quantifies the reward function and vy € [0, 1] is a discount
factor given priority to future or immediate rewards. Such
an RL agent continuously interacts with the environment
and learns an optimal policy based on trial and error. At
each time step t, the agent observes the state s, € S and
responds with an action a,. Subsequently, the environmental
state is changed to s according to the transition probability
matrix. Further, the agent receives an immediate reward 1,
according to the underlying (unknown) reward function R.
This reward is used to update the probability to apply a, in s
again with the goal to maximise the cumulative discounted
reward. Due to the curse of dimensionality, approximation
techniques have to be used (see [1] for an overview).
Deep RL methods use deep learning to approximate any
of the following components of RL: the value function,
the policy, or the model (i.e. state transition function and
reward function). Especially, in non-deterministic or large

environments (such as real-world robotic scenarios [2] or
complex video games [7]), the value of deep neural network
(DNN) pays off since raw sensor input can directly be for-
warded to the network. Although the agents are limited to
human action constraints, e.g. a maximum number of ac-
tions per minute, they reached super-human performance
in the games of the Atari collection [4] or Starcraft II [8].
For the latter, so-called long short-term networks [3] play
an important role in finding the perfect memory horizon.
Evolutionary rule-based RL models the learning prob-
lem using a population of classifiers that are evolved on-
line. Initially established by Holland, the field is currently
characterised by the Extended Classifier System (XCS) as
invented by Wilson in 1995 [9]. Figure 1 depicts an ex-
ample of an XCS for continuous values as an input signal
(i.e. sy)). The current knowledge is stored in the “popula-
tion”, where each classifier contains a condition part (i.e.
a niche of the input space encoded as hyperrectangle), an
action (here encoded as discrete options A, to A,), a pre-
dicted payoff p, a prediction error € and a fitness f. Such
a classifier encodes the statement “If you perform action A;
in this condition you will receive the payoff p”. The error €
describes the reliability of this prediction, while the fitness
transforms it into a strength value. Classifiers in XCS con-
tain further attributes such as numerosity or experiences that
are not relevant for the basic cycle. The standard algorithm
works as follows: In each activation cycle, all classifiers
of the population are checked against the input signal and
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Fig. 1 Schematic illustration of the Extended Classifier System. GA Genetic Algorithm
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the matching ones are copied to the “match set”. The “pre-
diction array” determines the fitness-weighted p-values for
all contained actions in the match set. Based on a roulette-
wheel scheme, one action is selected and all the supporting
classifiers copied to the “action set”. This action is applied
to the system and the payoff is observed (at time t+1).
This observed payoff is used to update the classifiers of the
previous action set using the modified delta-rule (Widrow-
Hoff delta rule) in combination with the moyenne adaptive
modifee technique.

Another component of our approach is the theory of op-
timal stopping and related areas, such as optimal switching
or optimal impulse control. This provides the framework
to enable optimal timing for certain actions in a random
environment. Mathematically, this is represented by the op-
timisation problem of maximising the expected payoff of
the stopped process X. over stopping times t. Originally,
such problems were studied in sequential statistics ("When
to stop collecting data?”’) and financial mathematics (‘“When
to execute options?”’), but the areas of application are nowa-
days much broader [5]. Surprisingly, however, its use as
a component of an RL process has rarely been carried out
to date.

One reason may be the theoretical hurdle for an adequate
formulation of the problems.

Research agenda

We assume that one of the major goals of CDF is a sophis-
ticated, automated understanding of real-world processes
and behaviour. This should, for instance, serve as a basis
for interaction with humans and provide means for deci-
sion support. For the scope of applied RL technology, this
directly poses two severe goals:

1. The current knowledge should always be interpretable by
humans in the sense that the representation allows for an
intuitive understanding.

2. The learning system should be able to automatically de-
tect causalities and turn them into self-explanations com-
prehensible to the user.

Besides these user-centred goals, the RL system should,
of course, be as efficient, adaptive and appropriate as pos-
sible, fusioning information sources from various possible
sources. To allow for such an approach, we propose to com-
bine the algorithmic approach of evolutionary rule-based
RL with the efficiency and performance of DRL, while si-
multaneously developing a sound mathematical foundation.
This results in the formulation of the following research
agenda.

@ Springer

Challenge A: basic algorithmic concept Based on Wilson’s
XCS system for real-valued environments, the underlying
process needs to be augmented and/or replaced by concepts
using DNN technology. This means keeping the algorithmic
structure and initially investigating the classifier condition
and matching routine, the actions, and the subsequent steps
for prediction array definition and exploration.

Challenge B: uncertainty in optimal switching problems
Based on optimal stopping theory, we require a framework
for an initial stochastic control decision problem that takes
uncertainty into account. We need to explicitly model and
analyse the incorporated uncertainty of switching deci-
sions, which then needs to become an integral part of the
algorithmic description above.

Challenge C: runtime learning from feedback Next to the al-
gorithmic schema of the learning technique, we have to es-
tablish the basic reinforcement learning functionality. This
goal can be subdivided into answering the three research
questions of how the update of the classifiers of the previ-
ous cycle is done, how the covering mechanism is realised
and combined with DNN-based knowledge, and how we
can evolve the population over time? This further entails
the aspect of how to incorporate non-static intervals for
switching decisions and credit assignment?

Challenge D: deep optimal switching The framework for
the initial, simple switching problem is used for modelling
uncertainty. This needs to be extended and revised to de-
velop a framework for using deep neural networks for
solving high-dimensional optimal (stopping and) switching
problems with long time horizons and to analyse them
mathematically.

Challenge E: active population management To establish
active management of the population to improve the effi-
ciency of the learning behaviour, we have to investigate
how the update of the classifiers of the last action sets is
done. This includes implications on the covering mecha-
nism realised and combined with DNN-based knowledge
and the generation of novel classifiers.

Challenge F: exploration vs. exploitation An integral part
of RL processes is always to balance between exploration
and exploitation. Especially in the optimal switching prob-
lem outlined above, there is an inherent exploration-vs.-ex-
ploitation dilemma. This demands for a mathematical foun-
dation for applying a strategy. The same holds for the selec-
tion processes in the basic scheme where usually a roulette
wheel approach is used.
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Challenge G: cross domain fusion @ traffic control From
a CDF standpoint, a major challenge is an inclusion of the
different types of data in all stages of the analysis. For
example, in addition to the obvious quantitative data the
methods must always allow for the inclusion of additional
qualitative data (e.g. knowledge about major events that
have not yet occurred or information on new roads). In
principle, the general structure of the models used allows
such inclusion. However, this must be taken into account
from the beginning. Consequently, using the example of
an existing traffic control system allows to demonstrate the
CDF effects performed by our novel RL approach.

Conclusion

In this article, we propose to investigate novel RL tech-
nology as a basis for CDF. This technology combines the
clear algorithmic structure and inherent interpretability of
the gathered knowledge of Learning Classifier Systems with
the performance and deep learning. With an additional, the-
oretical mathematical foundation from the field of optimal
switching theory, this is assumed to pave the path towards
more intuitive human interaction as a self-assessment of de-
cisions, knowledge and behaviour will allow for establish-
ing self-explanatory capabilities. Especially this intended
use of the model to obtain explanations of the actual learn-
ing behaviour poses challenges on both the mathematical
and the computer science side.

For the underlying stochastic control problem, a DNN-
based algorithm for learning the action and no-action re-
gions has to be developed to obtain explainable stopping
rules. As a second step, mathematical structural properties
(e.g. geometric properties or the relevant underlying mono-
tone statistics for rules) have to be studied to improve the
results of the algorithms and explain their behaviour.

For the algorithmic part (i.e. the computer science side),
a user-understandable behaviour needs to be established.
The interpretable representation from the first phase will be
augmented with identification of root causes and chains of
control decisions derived from the existing population. This
includes guarantees for learning and decision behaviour
based on corridor representations.

There are obvious limitations of our analysis. On the
mathematical side, we concentrate on the challenges com-
ing from a probabilistic and statistical analysis and just
partly go deeper into the analysis of the underlying (de-
terministic) optimisation issues arising in the procedures
based on DNN. There are also obvious limitations of our
algorithmic approach. Even though the interpretability is
considered in terms of the representation of the knowledge,

a sophisticated user interface with a semantic description
is not part of the focus. Furthermore, a transfer of knowl-
edge among similar systems is not directly possible in the
proposed concept. Subsequent efforts will have to deal with
automatic adaptations of the knowledge to new (but related)
problem domains, e.g. self-adaptation behaviour of an inter-
section controller in the traffic control system with a similar
topology model.
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