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Abstract
Dynamical systems on networks typically involve several dynamical processes evolv-
ing at different timescales. For instance, in Alzheimer’s disease, the spread of toxic
protein throughout the brain not only disrupts neuronal activity but is also influenced
by neuronal activity itself, establishing a feedback loop between the fast neuronal
activity and the slow protein spreading. Motivated by the case of Alzheimer’s dis-
ease, we study the multiple-timescale dynamics of a heterodimer spreading process
on an adaptive network of Kuramoto oscillators. Using aminimal two-nodemodel, we
establish that heterogeneous oscillatory activity facilitates toxic outbreaks and induces
symmetry breaking in the spreading patterns.We then extend themodel formulation to
larger networks and perform numerical simulations of the slow-fast dynamics on com-
mon network motifs and on the brain connectome. The simulations corroborate the
findings from the minimal model, underscoring the significance of multiple-timescale
dynamics in the modeling of neurodegenerative diseases.

Keywords Neurodegenerative disease · Human connectome · Dynamics on
networks · Brain activity · Toxic spreading · Adaptive networks · Multiple time
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1 Introduction

Mathematical models of dynamical processes on networks are crucial to our under-
standing of pandemics, economics, opinion formation, evolution, ecology, and
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neurodegenerative disease (Siettos and Russo 2013; Schweitzer et al. 2009; Ureña
et al. 2019; Proulx et al. 2005; Lloret-Villas et al. 2017). While the underlying net-
work structure is traditionally assumed to be static, it has become clear that network
adaptivity is a crucial constituent to many real-world dynamical systems (Gross and
Blasius 2007; Berner et al. 2023). For example, infectious diseases spreading (Gross
et al. 2006) and biological neural circuits (Butz et al. 2009) alter the network struc-
tures they are evolving on, establishing a feedback loop between dynamics and network
structure. Networks exhibiting such mutual interactions between dynamical processes
and network topology are referred to as adaptive, or coevolutionary, networks (Maslen-
nikov and Nekorkin 2017; Wang et al. 2019; Gross and Blasius 2007). In a range of
applications, including oscillator networks (Gkogkas et al. 2022; Jüttner and Martens
2023; Ratas et al. 2021; Thiele et al. 2023), consensus dynamics (Jardón-Kojakhmetov
and Kuehn 2020), and epidemic-resource dynamics (Böttcher et al. 2015), coevolu-
tionary dynamics may also operate on disparate timescales. Although techniques from
geometric singular perturbation theory (Kuehn 2015) and averaging theory (Sander
et al. 2007) can provide insights into the emerging multiple-timescale dynamics, these
methods become daunting in high dimensions.

A crucial—yet poorly understood—example of an adaptive network with multiple
timescale dynamics is the human brain during neurodegenerative diseases, such as
Alzheimer’s disease. The defining feature of Alzheimer’s disease is the accumulation
of toxic variants of amyloid-β and tau protein aggregates throughout the brain (Duy-
ckaerts et al. 2019). It is believed that these toxic variants are produced by a prion-like
mechanism, where toxic variants of the protein transform healthy variants into toxic
ones (Harris et al. 2020). Although both amyloid-β and tau are fundamental to the
disease, the presence of tau correlates more significantly with cognitive decline. Fur-
thermore, it has been shown that tau proteins spread throughout the brain following
axonal pathways (Vogel et al. 2020; Cho et al. 2016), leading to neurodegeneration
and decreases in neuronal activity levels (Harris et al. 2020). Tau proteins tend to
follow a general spreading sequence—called the Braak staging pattern—starting in
the entorhinal cortex. However, the basis for the initiation of Braak staging in the
entorhinal cortex and the ensuing spreading pattern remains disputed. Furthermore,
subgroupings of patients according to systematic aberrations in Braak staging patterns
further complicate our picture of the disease (Duits et al. 2021; Ferreira et al. 2020).
In recent years, however, it has become clear that neuronal activity plays a crucial
role in the spreading of tau protein. Specifically, it has been shown that neurons with
higher firing rates transport tau proteins at a higher rate into their neighbors (Wu et al.
2016; Sokolow et al. 2015; Pooler et al. 2013). As such, neuronal activity increases
the outward transport of tau proteins, while tau proteins lower neuronal activity lev-
els. Importantly, protein spreading and neuronal activity evolve on vastly different
timescales; protein spreading operates on a timescale of years while neuronal activity
operates on a timescale of seconds. The newly discovered bidirectional relationship
between neuronal activity and protein spreading may be the missing link in our under-
standing of Alzheimer’s disease and other neurodegenerative diseases.

Mathematical modeling of neurodegenerative diseases has mostly focused on pro-
tein spreading and neuronal activity in isolation. On the one hand, the slow evolution
of the protein spreading and subsequent damage to the neural networks in Alzheimer’s
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disease can be captured with a continuum approach using Fisher-KPP equations
(Weickenmeier et al. 2018). However, protein spreading dynamics can also be effec-
tively modeled from a network perspective using structural network reconstructions
of the human brain. This idea was initially introduced in Raj et al. (2012)—and later
expanded in Fornari et al. (2019)—and involves simplifying continuummodels, easing
the investigation of staging patterns (Putra et al. 2021, 2023) and parameter esti-
mation through Bayesian techniques (Schäfer et al. 2022). Furthermore, a separate
and successful approach employs a heterodimer model to investigate how amyloid-
β and tau spread during Alzheimer’s disease (Thompson et al. 2020; Brennan et al.
2023). On the other hand, the activity of individual neurons that give rise to neural
oscillations—which are fast relative to disease progression—are captured by mod-
els of neuronal dynamics, such as the highly detailed Hodgkin–Huxley model which
can emulate pathologies by incorporating defects in ion channel conductivity. How-
ever, the Hodgkin–Huxley model becomes intractable in larger networks of neurons,
where oscillator models such as Kuramoto oscillators (Kuramoto 1975), theta neu-
rons (Ermentrout and Kopell 1986), and integrate-and-fire neurons (Burkitt 2006)
have shown great utility. In these models, the instantaneous oscillator frequencies are
commonly interpreted as neuronal firing rates, which is a commonmetric for neuronal
activity. Only recently have the two aspects of slow disease progression and fast neural
dynamics been captured in a single modeling framework; see for example (Goriely
et al. 2020; Alexandersen et al. 2023).

Motivated by the progression of Alzheimer’s disease, we here develop a multiple
timescale approach to elucidate the dynamics of spreading processes and oscillator
dynamics on adaptive networks. More specifically, we formulate a multiple timescale
system where a slow heterodimer spreading process occurs on a network of fast
Kuramoto oscillators. The presence of protein slows the natural frequencies of the
Kuramoto oscillators, while the instantaneous frequencies of the Kuramoto oscillators
increase the outward transport of protein from their respective nodes. The network
structure is adaptive, as the Kuramoto frequencies alter the transport rates by scaling
the link weights of the spreading network. In other words, the Kuramoto oscillators
are enforcing a global adaptivity rule on the spreading process. With the goal of elu-
cidating the role of fast oscillatory processes on the spreading patterns and vice versa,
we begin by studying a minimal two-node model using slow manifold reduction and
ad hoc averaging before corroborating our findings with numerical simulations of
the generalized network model. We find that heterogeneously distributed frequencies
of oscillators destabilize the spreading process by lowering the threshold for toxic
outbreaks and inducing symmetry breaking in the spreading patterns. Moreover, we
find two modes for toxic outbreaks: conversion-dominated and shunting-dominated
spreading.

This article is organized as follows: In Sect. 2, we consider the heterodimer model
on a minimal network of two nodes with asymmetric link weights to reflect the effect
of activity on the spreading dynamics. In Sect. 3, we consider amultiple timescale two-
node system, now equipped with both heterodimer and Kuramoto dynamics, which
we call the heterodimer-oscillator. In Sect. 4, we support the findings from the mini-
mal heterodimer-oscillator system by performing numerical simulations on common
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motifs found in complex networks and investigating the effect oscillatory activity can
have on tau spreading in the human brain during Alzheimer’s disease.

2 Heterodimer dynamics

In this section, we build on the classical heterodimer model for a simple 2-node graph
and introduce asymmetry in the coupling between the nodes to understand its impact
on the system dynamics. Specifically, we identify a pair of fixed points exchanging
stability at a transcritical bifurcation and observe that the asymmetrical coupling not
only shifts the location of this bifurcation in parameter space but also disrupts symme-
tries within the fixed points. The dynamical behavior of the asymmetrically-coupled
heterodimer model will be instrumental in our analysis of the full system with coevo-
lutionary spreading and oscillator dynamics later on in Sect. 3.

2.1 The heterodimer model

The heterodimer model describes a process of healthy proteins being converted into
toxic proteins by a second-order rate equation. The heterodimer model is often used
in the context of networks, over which both the healthy and toxic proteins are spread-
ing. We assume that the process takes place on a network with N nodes defined by a
weighted adjacency matrix W = (Wi j ). For W we define the standard graph Lapla-
cian L = (Li j ) with components

Li j = −Wi j + δi j

N∑

j=1

Wi j , (1)

where δi j is the Kronecker symbol. According to the heterodimer model, the evolution
of the concentration of healthy proteins ui ≥ 0 and of toxic proteins vi ≥ 0 at node i
is given by

u̇i = −
N∑

j=1

Li j u j + k0 − k1ui − k2uivi , i = 1, . . . , N , (2a)

v̇i = −
N∑

j=1

Li jv j − k3vi + k2uivi , i = 1, . . . , N , (2b)

where k0 > 0 is the healthy protein production rate, k1 > 0 and k3 > 0 are the healthy
and toxic clearance (protein degradation) rates, and k2 > 0 is the rate of conversion
from healthy to toxic proteins.

With the ultimate goal of understanding how the possible dynamics of this system
are affected byoscillatory activity,we startwith the simple case of twonodes connected
by an undirected link as shown in Fig. 1a:

u̇1 = −�u1 + �u2 + k0 − k1u1 − k2u1v1, (3a)

v̇1 = −�v1 + �v2 − k3v1 + k2u1v1, (3b)
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Fig. 1 Overview of the heterodimer variations. a The original heterodimer model, with healthy and toxic
species transported between the nodes at equal rates. b The skewed heterodimer model where node 1 has
higher activity and thus increases the transport rate into node 2. Note that toxic species do not affect the
activity parameter A. c The heterodimer-oscillatormodel, where each node harbors an oscillator operating at
a faster time rate than the spreading process. The oscillators are coupled and their frequency determines the
transport rate of species between the nodes; in this illustration, node 1 has a higher frequency. Conversely,
the toxic species affect the intrinsic frequency of the oscillators

u̇2 = �u1 − �u2 + k0 − k1u2 − k2u2v2, (3c)

v̇2 = �v1 − �v2 − k3v2 + k2u2v2, (3d)

where � > 0 is the single, reciprocal weight link. Note that all parameters and
variables are nonnegative. The system has two fixed points. In general, we refer to a
fixed point as healthy if vi = 0 for all i = 1, . . . , N and toxic if vi > 0 for at least one
i ∈ {1, . . . , N }. The 2-node heterodimer model has exactly one healthy fixed point
(denoted by a superscript H) and one toxic fixed point (superscript T), given by

uH1 = uH2 = k0
k1

, vH1 = vH2 = 0, (4a)

uT1 = uT2 = k3
k2

, vT1 = vT2 = κ

k2k3
, (4b)

where κ = k0k2 − k1k3.
In terms of the dynamics, we are mostly interested in the transition between healthy

states and toxic states. In other words, we are interested in bifurcations where a healthy
equilibrium loses stability and a toxic equilibrium becomes stable. For (3), a direct
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computation of the linearized system around the healthy equilibrium indicates that
healthy and toxic equilibria interchange stability through a transcritical bifurcation
occurring at κ = 0. Indeed, the stability of the healthy state is governed by a single
eigenvalue

λH = κ

k1
(5)

of the system’s Jacobian matrix evaluated at the healthy fixed point. Hence, we con-
clude that the healthy state is stable for κ ≤ 0 and the toxic fixed point is stable for
κ ≥ 0.

2.2 The skewed heterodimer model

To understand the effect of activity dynamics on spreading, we now consider a constant
activity A ≥ 0 that affects the spreading as shown in Fig. 1b but exclude the effect
that spreading may have on activity dynamics. Assuming that the activity process
A > 0 taking place in node 1 increases spreading to its neighbor, we obtain a skewed
heterodimer model where the concentrations evolve according to

u̇1 = −(� + A)u1 + �u2 + k0 − k1u1 − k2u1v1, (6a)

v̇1 = −(� + A)v1 + �v2 − k3v1 + k2u1v1, (6b)

u̇2 = (� + A)u1 − �u2 + k0 − k1u2 − k2u2v2, (6c)

v̇2 = (� + A)v1 − �v2 − k3v2 + k2u2v2. (6d)

If A = 0 we recover (3). For the skewed heterodimer model (6), there is a single
healthy fixed point

uH1 = k0(2� + k1)

k1(2� + A + k1)
, uH2 = k0(2(� + A) + k1)

k1(2� + A + k1)
, vH1 = vH2 = 0. (7a)

Note that introducing A breaks the symmetry in the healthy fixed point between the
two nodes, which previously were independent of �. Eliminating u1, u2 and v1 from
the first fixed points, we find a cubic equation for the toxic fixed point (vT2 �= 0) given
by

c0 + c1v2 + c2v
2
2 + c3v

3
2 = 0

with coefficient values given in “Appendix A”.
To identify transitions between healthy and toxic states, we linearize the vector field

at the healthy fixed point. The eigenvalues of the Jacobian at the healthy fixed point
are

λ1 = −k1 − 2� − A, λ2 = −k1, (8a)

λ3 = κ − ζ

k1
, λ4 = κ + κcrit

k1
, (8b)
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where κcrit and ζ are given by

κcrit = k1(2� + A)

√
s20 + s1 − s0

2s0
, (9a)

ζ = k1(2� + A)

√
s20 + s1 + s0

2s0
, (9b)

with constants s0 = k1(2�+ A)(2�+ A+k1), s1 = 4A2k0k2(k1(2�+ A+k1)+k0k2).
Since all parameters are positive, it follows that κcrit ≥ 0 and ζ ≥ 0. As such, we have
that λ3 ≤ λ4 and λ1 < λ2 < 0, and hence λ4 dictates the stability of the healthy fixed
point. The fixed point switches stability at a critical value κ = −κcrit, from which we
can easily separate k3. Freezing all parameters but the toxic clearance rate k3, we look
at the bifurcation in terms of the parameter k3, with critical value

kcrit3 = k0k2 + κcrit

k1
, (10)

which satisfies k0k2/k1 ≤ kcrit3 ≤ 2k0k2/k1 and is monotonically increasing in A
(see “Appendix B”). We conclude that introducing the activity parameter A shifts the
transcritical bifurcation to higher values with respect to k3. The effect of activity is
to destabilize the healthy fixed point as shown in Fig. 2. Equivalently, in terms of
neuroscientific applications, heterogeneous neuronal activity pushes neurons toward
pathology.

It is interesting to understand the behavior of the toxic equilibrium as a function of
the activity. Assuming that activity A is small compared to �, we can expand the toxic
equilibrium to first order in A to obtain

Fig. 2 Bifurcation diagram for toxic load in nodes 1 and 2 as a function of toxic clearance k3; other
parameters are A = 1/2, � = 1, k0 = 1, k1 = 1, k2 = 1. Inset: Bifurcation in (A,k3) parameter space.
Increasing activity destabilizes the healthy fixed point by shifting the transcritical bifurcation
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uT1 = k3
k2

(
1 + κ − 2k3�

4k3�2 + 2k0k2� + k3κ
A

)
+ O(A2), (11a)

uT2 = k3
k2

(
1 − κ − 2k3�

4k3�2 + 2k0k2� + k3κ
A

)
+ O(A2), (11b)

vT1 = κ

k2k3

(
1 − 2k3� + k23 + k0k2

4k3�2 + 2k0k2� + k3κ
A

)
+ O(A2), (11c)

vT2 = κ

k2k3

(
1 + 2k3� + k23 + k0k2

4k3�2 + 2k0k2� + k3κ
A

)
+ O(A2), (11d)

We see that activity can affect the fixed point in two distinct ways assuming κ > 0 so
that the healthy fixed point is unstable: If κ − 2k3� > 0, then u1 increases while v1
decreases and u2 decreases while v2 increases. By contrast, if κ − 2k3� < 0 is small,
then u1 decreaseswhile v1 decreases, and u2 increaseswhile v2 increases. In the former
case, the conversion process is dominating, and the effective conversion at node 1 has
decreased while it has increased in node 2. In the latter case, the transport process
dominates and both species at node 1 are being shunted over to node 2. This shunting
phenomenon does not occur in the original heterodimer model and is showcased in
Fig. 3.

3 Coupling heterodimer dynamics with oscillatory activity

In the previous analysis, we considered the activity A to be a constant. In the brain,
activitymay relate to collective neural oscillations that are fast compared to the disease
progression. Therefore, we now assume that A is determined by the evolution of
a pair of phase oscillators with Kuramoto coupling. Since the spreading and activity
processes evolve on different time scales, the coupling between the two systems defines
a slow-fast dynamical system.

3.1 Two coupled phase oscillators

First, consider two phase oscillators, one on each node, with Kuramoto coupling. That
is, the state of the oscillation on node i ∈ {1, 2} is given by a phase θi ∈ S := R/2πZ
that evolves according to

θ̇1 = ω1 + K

2
sin (θ2 − θ1), (12a)

θ̇2 = ω2 + K

2
sin (θ1 − θ2), (12b)

where ωi > 0 are the intrinsic frequencies of the nodes and K ≥ 0 is the coupling
strength. Since the coupling depends solely on the phase difference, the dynamics
are completely determined by the evolution of the phase difference φ := θ1 − θ2
determined by
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Fig. 3 Comparison of steady-states of healthy and toxic species in nodes 1 (black) and 2 (red) determined
by simulation (solid lines) and first-order Taylor expansion (stippled line) of the activity parameter A.
The upper row demonstrates the conversion-dominated regime, whereas the bottom row demonstrates the
shunting-dominated regime. All parameters are set to 1, except for k3 = 0.25 in the first row (far from the
transcritical bifurcation at kcrit3 = 1) and k3 = 0.95 in the second row (close to the transcritical bifurcation)
(color figure online)

φ̇ = �ω − K sin φ, (13)

where �ω = ω1 − ω2 is assumed to be positive, without loss of generality. For
K > |�ω| there are two fixed points (one unstable and one stable attracting all initial
conditions except the unstable fixed point). For K < |�ω| there are no fixed points
and any solution φ(t) is periodic. At the critical coupling strength K = |�ω|, there
is a saddle-node bifurcation. Hence, we essentially have two regimes depending on
the dynamics; we refer to them as the strong-coupling regime (fixed points) and the
weak-coupling regime (periodic orbit).

We assume that the activity at each node is related to the instantaneous frequen-
cies, θ̇1 and θ̇2 of each node. We define the average frequency of each oscillator:


i = lim
T→∞

1

T

∫ T

0
θ̇i (t)dt, (14)

which is independent of the initial conditions. In the strong-coupling regime (the
coupling between oscillators is strong compared to the frequency mismatch and the
phase difference φ converges to a fixed point), the oscillators are frequency locked. At
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the fixed points, we have a constant instantaneous frequency θ̇1(t) = θ̇2(t) = 〈ω〉 :=
(ω1 + ω2)/2, which implies


1 = 
2 = 〈ω〉. (15)

In the weak-coupling regime (the coupling between the oscillators is weak compared
to their frequency mismatch and the phase difference undergoes periodic oscillations),
we compute the average frequencies 
i through the average frequency difference

�
 = lim
T→∞

1

T

∫ T

0
φ̇(t)dt . (16)

Define �T = 2π/�
, assume 0 ≤ K < �ω, and let φ(t) be the �T -periodic
solution of (13). Note that the sign of φ̇ is constant. With (13) we have

�
 = �ω − K lim
T→∞

1

T

∫ T

0
sin φ(t)dt, (17)

With m = T /|�T |, we can rewrite the integral as

lim
m→∞

1

m|�T |
∫ m|�T |

0
sin φ(t)dt = 1

|�T |
∫ |�T |

0
sin φ(t)dt

= �


K

(
�ω√

�ω2 − K 2
− 1

)
, (18)

where the last equality follows from substituting t by φ (which is possible since the
sign of φ̇ is constant) and solving the resulting integral by Weierstrass substitution.
Using this last expression in (17) yields

�
 =
√

�ω2 − K 2, (19)

from which we compute the asymptotic frequencies of each node


1 = 〈ω〉 +
√

�ω2 − K 2

2
, (20a)


2 = 〈ω〉 −
√

�ω2 − K 2

2
. (20b)

3.2 Slow-fast heterodimer-oscillator dynamics

Next, we couple the oscillatory dynamics with the heterodimer model of protein
spreading. The two processes will evolve on distinct time scales, determined by a
small strictly positive constant ε � 1, representing the ratio between the fast activity
time scale and the slow spreading time scale. Specifically, the two-node heterodimer-
oscillator (see Fig. 1c) system is

u̇1 = −(� + δA1(φ))u1 + (� + δA2(φ))u2 + k0 − k1u1 − k2u1v1, (21a)
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v̇1 = −(� + δA1(φ))v1 + (� + δA2(φ))v2 − k3v1 + k2u1v1, (21b)

u̇2 = (� + δA1(φ))u1 − (� + δA2(φ))u2 + k0 − k1u2 − k2u2v2, (21c)

v̇2 = (� + δA1(φ))v1 − (� + δA2(φ))v2 − k3v2 + k2u2v2, (21d)

εθ̇1 = ω̂1(v1) + K

2
sin (θ2 − θ1), (21e)

εθ̇2 = ω̂2(v2) + K

2
sin (θ1 − θ2), (21f)

where δ > 0 scales the oscillators’ effect on spreading. We assume that the coupling
between heterodimer and oscillatory dynamics is through the phase-dependent activity
of nodes 1 and 2, that is,

A1(φ) = εθ̇1, A2(φ) = εθ̇2, (22)

and the intrinsic frequencies

ω̂1(v1) = ω1 − cv1, ω̂2(v2) = ω2 − cv2, (23)

that are decreased by the presence of toxic proteins with a scaling parameter c > 0.
As discussed above, we may replace the phase dynamics in (21) by the evolution of
the phase difference φ as above given by

εφ̇ = �ω − c�v − K sin φ, (24)

where �v = v1 − v2 is the difference in toxic protein concentration. The phase
locking behavior is now determined by the effective intrinsic frequency difference
�ω̂ = ω̂1 − ω̂2 = �ω − c�v, which is a function of �v. As there is no sensible
interpretation of negative neuronal activity, wewill only consider parameters forwhich
Ai (t) ≥ 0, i ∈ {1, 2} for all t , which implies that the intrinsic frequencies are positive
ωi > 0.

Given that the spreading dynamics is much slower than the oscillator dynamics
(on the order of years versus seconds), we are interested in the dynamics for small ε

close to the singular limit ε → 0. In the singular limit, the phase dynamics relax
instantaneously to the asymptotic dynamics of the phase-difference φ(t). Thus, the
dynamics in the singular limit depend onwhich dynamical regime the phase difference
is operating in. In the phase-locked regime, the dynamics relax instantaneously to
equilibrium, which defines the critical manifold of the slow-fast system on which Ai

takes its value at equilibrium. In the regime where the phase difference φ(t) is drifting,
we replace the instantaneous frequency in Ai by the temporal average
i ; this is similar
to the approach in Thiele et al. (2023). Finally, we consider the system at the border
between the two regimes.
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3.3 The phase-locking regime

Assume that |�ω̂(�v)| ≤ K . Then the singular-limit dynamics on the slow manifold
is determined by the stable phase-difference equilibria

φ = sin−1
(

�ω − c�v

K

)
. (25)

Inserting the fixed point into Ai , both nodes have identical activities

A1 = A2 = 〈ω〉 − c(v1 + v2)

2
. (26)

Substituting these expressions into the slow system gives us the dynamics on the
phase-locking critical manifold.

Since the nodes have identical activity levels, the dynamics are qualitatively equiv-
alent to those of the isolated heterodimer model. In particular, the system has the same
pair of healthy and toxic fixed points as the heterodimer model given by (4):

uH,P
1 = uH,P

2 = k0
k1

, v
H,P
1 = v

H,P
2 = 0, (27a)

uT,P
1 = uT,P

2 = k3
k2

, v
T,P
1 = v

T,P
2 = κ

k2k3
. (27b)

The stability of the healthy fixed point is determined by the eigenvalues of the Jacobian
matrix:

λ1 = −k1 − 2(� + δ〈ω〉), λ2 = −k1, (28a)

λ3 = κ

k1
− 2(� + δ〈ω〉), λ4 = κ

k1
. (28b)

Thus, the healthy fixed point loses its stability at κ = 0.
The assumption of being in the phase-locking regime, |�ω̂(�v)| < K , gives a

consistency condition for the existence of the fixed points on the critical manifold.
Note that since the activity of each node in the phase-locking regime is identical,
the slow dynamics is symmetric in the sense that exchanging the two nodes has no
impact on the dynamics. Furthermore, for both fixed points, the nodes are “equal” in
the sense that they take the same state and satisfy �v = 0. Thus, the healthy and toxic
fixed points only exist as fixed points on the critical manifold for the slow dynamics
if |�ω̂(0)| = |�ω| ≤ K .

3.4 The drifting regime

Outside the phase-locked regime, |�ω̂(�v)| > K , the fast oscillatory dynamics do
not relax to equilibrium but evolve on a periodic orbit. As these oscillations are much
faster than the evolution of the slow dynamics, we average out the fast oscillations
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by replacing the activities Ai by their temporal averages to define the drifting regime.
Specifically, replacing ωi with ω̂i (vi ) in (20) and assuming, without loss of generality,
that �ω̂ ≥ 0 yields the activities

A1(v) := ε
̂1 = 〈ω〉 − c(v1 + v2) − √
(�ω̂(�v))2 − K 2

2
, (29a)

A2(v) := ε
̂2 = 〈ω〉 − c(v1 + v2) + √
(�ω̂(�v))2 − K 2

2
. (29b)

Substituting these activities into the dynamical equations for the slowly-evolving het-
erodimer equations yields the dynamics of the drifting regime. As the activities of
the two nodes are now distinct, the dynamics is similar to the skewed heterodimer
model in Sect. 2.2. There is one healthy fixed point uH,D in the drifting regime with
coefficients

uH,D
1 = k0

k1

(
1 − δ

√
�ω2 − K 2

k1 + 2� + 2δ〈ω〉

)
, (30a)

uH,D
2 = k0

k1

(
1 + δ

√
�ω2 − K 2

k1 + 2� + 2δ〈ω〉

)
, (30b)

v
H,D
1 = v

H,D
2 = 0, (30c)

under the assumption that |�ω̂(0)| = |�ω| ≥ K . Similar to the skewed heterodimer
model, the symmetry of the fixed points is broken. Linear stability of the healthy fixed
point is determined by the eigenvalues of the Jacobian matrix:

λ1 = −k1 − 2(� + δ〈ω〉), λ2 = −k1, (31a)

λ3 = κ − ζ

k1
, λ4 = κ + κcrit

k1
, (31b)

where

κcrit = k1(� + δ〈ω〉)
√
s20 + s1 − s0

s0
,

ζ = k1(� + δ〈ω〉)
√
s20 + s1 + s0

s0
,

with s0 = 2k1 (� + δ〈ω〉) (k1 + 2� + 2δ〈ω〉) and s1 = 4δ2k0k2(�ω2 − K 2)(k0k2 +
k1 (k1 + 2� + 2δ〈ω〉)). Remembering that the healthy fixed point only exists for
|�ω| > K , we can assert that κcrit, ζ > 0, as is verifiable by inspecting s1. As
such, λ4 determines the stability of uH,D. The critical value for kcrit3 at which the
transcritical bifurcation occurs is
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kcrit3 = k0k2 + κcrit

k1
. (32)

Assuming δ small compared to �, we expand the toxic fixed point uT,D in the drifting
regime to first order in δ, giving us

uT,D
1 = k3

k2

(
1 + δ

(κ − 2k3�)
√

�ω2 − K 2

4k3�2 + 2k0k2� + k3κ

)
+ O(δ2), (33a)

uT,D
2 = k3

k2

(
1 − δ

(κ − 2k3�)
√

�ω2 − K 2

4k3�2 + 2k0k2� + k3κ

)
+ O(δ2), (33b)

v
T,D
1 = κ

k2k3

(
1 − δ

(
2k3� + k23 + k0k2

) √
�ω2 − K 2

4k3�2 + 2k0k2� + k3κ

)
+ O(δ2), (33c)

v
T,D
2 = κ

k2k3

(
1 + δ

(
2k3� + k23 + k0k2

) √
�ω2 − K 2

4k3�2 + 2k0k2� + k3κ

)
+ O(δ2), (33d)

where the coefficients are similar to the expansion of the skewed heterodimer toxic
fixed point, except that they are scaled by

√
�ω2 − K 2. As such, we have transport-

and conversion-dominated behavior for small and large values of κ−2k3� respectively.
More importantly, we have established the existence of a toxic fixed point uT,D on the
drifting regime for small δ.

Note that the above coefficients are only defined for K ≤ |�ω|, similarly to uH,D.
As such, our preceding analysis suggests a symmetry-breaking, global bifurcation
occurring at K = |�ω| in which from one side (from the phase-locking regime) two
fixed point branches collide and disappear (saddle-node bifurcation on an invariant cir-
cle), but from the other side (from the drifting regime) two periodic solutions collide
and disappear. Furthermore, the fixed points in the phase-locking regime are sym-
metric between the nodes with respect to their heterodimer variables, whereas both
the periodic solutions are asymmetric in this respect. A summary of the heterodimer-
oscillator dynamics in the strong-coupling and weak-coupling regimes can be found in
Fig. 4 alongside numerical solutions for ε > 0. Moreover, an overview of the dynam-
ical regimes and the (singular-limit) transcritical bifurcation is illustrated in (K , k3)
parameter space in Fig. 5.

3.5 Transitions between the phase-locking and drifting regimes

With an understanding of the dynamicswithin the phase-locking regime (Sect. 3.3) and
drifting regime (Sect. 3.4) at hand, we can now elucidate possible transitions between
the regimes. The boundary between the regimes is where the fast dynamics undergo
a saddle-node bifurcation at |�ω̂(�v)| = |�ω − c�v| = K . Equivalently, we obtain
the following condition for the regime border

�v = �ω ± K

c
. (34)
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Fig. 4 Summary of the dynamics in the phase-locking and drifting regime with simulations in the healthy
(black) and toxic (red) regimes of the heterodimer-oscillator with ε > 0. Left: Summary for K > �ω

over the phase-difference and toxic species difference, where K = 2, �ω = 1, c = 1, k0 = 1, k1 =
1, k2 = 1, δ = 1, � = 10−3 with forward solutions in the toxic (ε = 0.2, k3 = 0.75) and healthy regime
(ε = 0.075, k3 = 1.25). Both forward solutions are symmetric with respect to the slow variables. Right:
Summary for K < �ω where K = 1, �ω = 2, c = 1, k0 = 1.5, k1 = 1, k2 = 1, δ = 1, � = 10−3 and
with forward solutions in toxic (ε = 0.1, k3 = 0.125) and healthy regimes (ε = 0.075, k3 = 1.25). Both
forward solutions are asymmetric with respect to the slow variables (the healthy solution is asymmetric
with respect to the healthy species). Note that the trajectories in the healthy regimes converge to �v = 0
(highlighted with a stippled, orange line) in both diagrams (color figure online)

Fig. 5 Summary of the dynamics of the 2-node heterodimer-oscillator in the singular limit (ε → 0).
The labels in each quadrant state which fixed point we know to be stable. The transcritical bifurcation in
the weak-coupling and strong-coupling regime is presented, together with the breaking of the symmetry
between the two nodes in the fixed points, which occurs at K = |�ω|. Parameters are k0 = 1, k1 = 1, k2 =
1, � = 1, ω1 = 10, ω2 = 5, δ = 5

The value of�v is subject to the slow dynamics (21). Specifically, the sign of (�v)̇ :=
d
dt (�v) determines the transitions between the phase-locking and drifting regimes: For
the right boundary of the phase-locking regime,�v = �ω+K

c , negative (�v)̇ indicates
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Fig. 6 The vector field of�v in terms of�ω and�v in the strong-coupling (left) and weak-coupling regime
(right). The inner region in both diagrams is the phase-locking regime, and the outer regions are the drifting
regime. We see that for strong coupling K > |�ω|, the vector field points inwards to the phase-locking
regime. However, for the weak-coupling regime K < |�ω|, the vector field points to the left-hand drifting
regime for �ω > 0 (node 1 is more active than node 2) and to the right-hand drifting regime for �ω < 0
(node 2 is more active than node 1)

that the slow flow points from the drifting regime into the phase-locking regime and
a positive (�v)̇ in the opposite direction. For the left boundary, the conditions are the
other way around. In the following, we will argue that, under certain assumptions, the
flow points towards the phase-locking regime for K > |�ω| and towards the drifting
regime for K < |�ω|; this is sketched in Fig. 6.

To determine the transitions between the regimes, we consider the dynamics of�v.
In the singular limit, the dynamics have relaxed to the saddle-node equilibrium and
thus A∗ := A1 = A2. Now we assume that the ui take their equilibrium values,
with u1 = u2 = k0/k1 (healthy regime) and u1 = u2 = k3/k2 (toxic regime);
u1 = u2 =: u∗ in either case. According to (21), the evolution of �v is determined by

(�v)̇ = −(2� + δA∗ + (k3 − k2u
∗))�v. (35)

We claim that the first factor is not positive (i.e., the quantity in the parentheses is not
negative). The first two terms are clearly positive since � ≥ 0 and, by assumption,
A∗ ≥ 0. For the third term, k3−k2u∗ ≥ 0 is equivalent to u∗ ≤ k3

k2
. But, by assumption,

u∗ = k3/k2 or u∗ = k0/k1 ≤ k3/k2 so in either case the third term is not negative. We
conclude that the sign of (�v)̇ only depends on the sign of�v. For the right boundary
of the phase-locking regime, we have �v = (�ω + K )/c so �v > 0 or equivalently
K > −�ω implies (�v)̇ ≤ 0 (flow towards the phase-locking regime). Conversely,
K < −�ω implies (�v)̇ ≥ 0 (flow towards the drifting regime). Similarly, for the
left boundary of the phase-locking regime, we have �v = (�ω − K )/c so K < �ω

implies (�v)̇ ≤ 0 (flow towards the drifting regime) and K > �ω implies (�v)̇ ≥ 0
(flow towards the phase-locking regime).

Thus in terms of the systemparameters, the crucial quantity is the oscillator coupling
relative to the intrinsic frequency mismatch. If K > |�ω| then the flow points towards
the phase-locking regime on either boundary. If K < |�ω| then the flow points in the
same direction on each boundary and the direction is determined by the sign of �v.
These cases are illustrated in Fig. 6.
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3.6 Extending the parameter regime

From the beginning, we have assumed c and δ to be positive. These assumptions,
however, may not be fit for all applications of the heterodimer-oscillator model. For
example, one might envision spreading processes that increases oscillatory activity
locally (c < 0), and, in return, oscillatory processes that decreases spreading to its
neighboring oscillators (δ < 0). First,we consider the case c < 0.None of the singular-
limit fixed points nor their stability depend on c, and the regime border analysis above
can be repeated successfully for c < 0 and δ > 0 (noting that the left- and right-hand
borders swap places). For δ < 0, we may assume δ〈ω〉 > −� to guarantee that our
stability analysis of the phase-locking and drifting equilibria remains unaffected [see
eigenvalues in Eqs. (28) and (31)]. The assumption is within reason; it is equivalent to
stating that the link between the nodes � + δA(φ) does not change signs for �v = 0.
For the regime border analysis to hold, we require δ ≥ −2�/A∗

max where A∗
max is the

maximum of the phase-locked activity over v1 and v2 [see Eq. (26)]. For c > 0, we
have that A∗

max = 〈ω〉 giving δ〈ω〉 ≥ −2�, which is already satisfied by δ〈ω〉 > −�.
However, A∗

max increases indefinitely in v1 and v2 for c < 0.Hence, we need additional
bounds on the variables v1 and v2 to ensure that the regime border analysis holds.
Although the regime border analysis cannot be repeated for c, δ < 0 without further
assumptions, we can conclude that the fixed point linear stability analysis generalizes
to c, δ ∈ R,

4 Activity-spreading feedback on networks

Investigating the dynamics of the heterodimer-oscillator system on more general net-
works, we find that the results from the 2-node heterodimer-oscillator system provide
a strong intuition for the generalized network dynamics. Specifically, we consider a
network of N nodes determined by the N × N (weighted) adjacency matrix W with
LaplacianL. Let u, v ∈ R

N denote the healthy and toxic species concentration at each
node and θ ∈ S

N the state of the oscillators on each node. Generalizing (21), the states
evolve according to

u̇i = −
N∑

j=1

Li j (1 + δA j )u j + k0 − k1ui − k2uivi , for 1 ≤ i ≤ N (36a)

v̇i = −
N∑

j=1

Li j (1 + δA j )v j − k3vi + k2uivi , for 1 ≤ i ≤ N (36b)

εθ̇i = ωi − cvi + K
N∑

j=1

Wi j sin (θ j − θi ), for 1 ≤ i ≤ N (36c)

where A = ε[θ̇1, θ̇2, . . . , θ̇N ].
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4.1 Numerical exploration of key example networks

Erdős–Rényi randomgraphsDynamics onErdős–Rényi randomgraphs retain the tran-
scritical bifurcation near κ = 0 alongside its symmetry for small differences between
the intrinsic frequencies of the nodes; cf. Fig. 7. However, with large differences in the
intrinsic frequencies, the transcritical bifurcation extends the toxic parameter regime
and breaks the symmetry of the fixed points between the nodes, just as expected from
our analysis of the 2-node system.

Chain graphs To further test our intuition, we create a chain graph with decreasing
frequencies along the chain. If we initialize a small amount of toxic species in each
node, we expect (in the steady state) a gradient of increasing toxic species along the
chain. As observed in Fig. 8, this prediction is accurate. Additionally, we observe
shunting behavior. First, the healthy species are quickly transported according to the
nodes’ activity gradient, and then the healthy species are converted into toxic species.
According to our 2-node analysis, such shunting behavior should occur close to the
original transcritical bifurcation κ = 0, which is where the simulation in Fig. 8 has
been parameterized.

Fig. 7 Simulations demonstrating the transcritical bifurcation during the weak-coupling and strong-
coupling regime in a random graph. All weights in the network are set to 1, and the intrinsic frequencies
were drawn from a normal distribution. a The weak-coupling parameters are ρ = 0.1, k0 = 1, k1 =
1, k2 = 1, E(ω) = 10,Var(ω) = 0.25, c = 0.5, ε = 10−3, δ = 10, K = 0.1, while one of the oscillators
(dark black) at a slower frequency ω = 5. b The strong-coupling parameters are ρ = 0.1, k0 = 1, k1 =
1, k2 = 1, E(ω) = 10,Var(ω) = 0, c = 0.5, ε = 10−3, δ = 10, K = 0.1. c The Erdős–Rényi graph
(N = 10, p = 0.5)
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Fig. 8 Simulations demonstrating heterodimer-oscillator dynamics on a chain network. All link weights are
set to 0.1 while other parameters are ρ = 0.5, k0 = 1, k1 = 1, k3 = 0.75, k2 = 1, ε = 10−3, δ = 1 K =
1, c = 0.5. The natural frequencies of the nodes, ωi , range from 5 to 15 with increments of 2.5. Colors are
consistent across figure panels. a The evolution of healthy species. b The evolution of toxic species. c The
activity (instantaneous frequencies) of the nodes. d The phase-coherence of the Kuramoto order parameter
of the oscillators. e Graph of the network (color figure online)

Clustered networksMany complex networks show high degrees of clustering. As such,
we created a network of 3 fully-connected clusters of 10 nodes each,where each cluster
is connected to each other by two links chosen between a random node pair; cf. Fig. 9.
We then drew the intrinsic frequencies from normal distributions where each cluster
has a different mean. That is, one cluster will be highly active, one will be moderately
active, and one will be less active. By doing so, we will have 3 synchronized clusters
that are weakly connected to each other. As before, we set the parameters in the toxic
regime, yet close to the original transcritical bifurcation at κ = 0. As shown in Fig. 9,
the simulations confirm the intuition from the 2-node system. At first, the healthy
species are shunted towards the lesser active clusters, where they are subsequently
converted into toxic species. The least active cluster thus produces the most toxic
species followed by the moderately active and highly active clusters, respectively.
These simulations suggest that the heterodimer-oscillator might also be suitable for
mean-field models of population dynamics.
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Fig. 9 Simulations demonstrating heterodimer-oscillator dynamics on a clustered network. All network
link weights are set to 0.1, while other parameters are ρ = 0.5, k0 = 1, k1 = 1, k3 = 0.75, k2 = 1, ε =
10−3, δ = 1 K = 1, c = 0.5. Clusters are colored green (highest activity), red (medium activity), and red
(lowest activity) respectively. The average intrinsic frequencies of the clusters, ωi , are normally distributed
with means 5 (black), 10 (red), and 15 (green) and a common standard deviation of 0.5. a The evolution of
healthy species. b The evolution of toxic species. c The activity (instantaneous frequencies) of the nodes
d The phase-coherence of the Kuramoto order parameter of the oscillators. e Graph of the network (color
figure online)

4.2 Exploring coevolutionary dynamics in Alzheimer’s disease

Our original motivation was to investigate the effect that the slow-fast dynamics
between neuronal activity and pathological protein spreading exert on the progres-
sion of neurodegenerative diseases. Previous studies have modeled the progression of
Alzheimer’s disease as a spreading process on network reconstructions of the human
brain. These network reconstructions are called connectomes and are built using DTI

123



Neuronal activity induces symmetry breaking in... Page 21 of 29     3 

imaging which are subsequently parcellated into networks of arbitrary size. Nodes in
the network represent brain regions and links between brain regions represent axonal
bundles.

Typically, modelers will simulate the spreading of tau proteins across the connec-
tome, leading to neurodegeneration and neuronal death. Tau proteins start to aggregate
at the entorhinal cortex and spread progressively to the hippocampus, the limbic sys-
tem, and the neocortex. The successive spread of tau has been shown to follow a
pattern, and, as such, the spreading of tau is divided into six stages known as the
Braak staging scheme. However, not all patients follow the Braak staging scheme.
In fact, studies suggest that Alzheimer’s patients fit into different subgroups based
on their staging patterns (Duits et al. 2021; Ferreira et al. 2020). Furthermore, as
noted in the Introduction, tau proteins are believed to be transported at a higher rate
from higher-active neurons (Wu et al. 2016), and several studies suggest a crucial
link between brain-wide correlations of brain activity and disease spreading patterns
(Seemiller et al. 2021; Franzmeier et al. 2020). We here provide proof-of-concept,
with our heterodimer-oscillator model, that neuronal activity may play a mechanistic
role in the spreading of tau protein seen in Alzheimer’s disease staging.

We simulate the spreading of tau on the 83-node Budapest Reference Connec-
tome (Szalkai et al. 2017)—in which the simulation initially follows the canonical
Braak staging pattern—and gradually increase the effect that neuronal activity has on
spreading, which is achieved by increasing δ. To simulate the natural progression of
Alzheimer’s disease, we only initialize a nonzero concentration of toxic protein in the
entorhinal cortex (Braak stage I).

To visualize the Alzheimer’s simulations more easily, we investigate metrics aver-
aged over the regions per their Braak staging. As shown in Fig. 10a, we see that
neuronal activity induces symmetry breaking in asymptotic toxic protein concen-
trations (asymptotic refers here to the end of disease simulation). Different regions
become more susceptible to tau pathology than others due to the activity-dependence
of tau spreading. Furthermore, in Fig. 10b, we see that the arrival time of the Braak
staging is affected by neuronal activity, although the ordering of the Braak stages is
robust. Even without activity-dependent spreading, the tau spreading model achieves
the correct Braak staging. Including neuronal activity swaps the order of Braak stage
II and III, but the ordering remains unaffected otherwise.

However, the inclusion of activity-dependent spreading has little effect on the neu-
ronal dynamics themselves, as evidenced in Fig. 10c, d. In Fig. 10c, we show the
asymptotic average frequency of the neural oscillators. As tau spreads, it decreases
the intrinsic frequencies of the oscillators. However, the amount of frequency slowing
caused by the tau spreading is not impacted by its activity dependence. As such, there
is little change in asymptotic frequencies due to the parameter δ. The average phase
coherence of the neural oscillators is not affected either by the inclusion of activity
dependence, as shown in Fig. 10d. Therefore, we find that the spreading dynamics
is affected by its dependence on neuronal dynamics, while the neuronal dynamics
themselves appear mostly unaffected.
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Fig. 10 Simulations of toxic tau spreading across an 83-node human connectome showing the asymptotic
(steady-state) behavior of the system as a function of δ (the effect activity has on spreading). Parameters are
ρ = 0.001, k0 = 1, k1 = 1, k3 = 0.9, k2 = 1, ε = 0.01, K = 0.1, c = 10. The natural frequencies, ωi ,
are drawn from a normal distribution with a mean 10 and standard deviation of 0.5. Nodes are initialized
with ui = 1 and vi = 0, apart from the entorhinal cortices which are initialized with ui = 1 and vi = 0.1
(nonzero toxic concentration). a Average asymptotic amount of tau species in each Braak stage. b Average
time for regions in different Braak stages to become infected with tau. c Asymptotic average frequencies
of the oscillators at the end of the slow-time simulation. d Average global phase-coherence over the entire
slow-time spreading simulation. eGraph of the brain network with edges colored according to their weight.
Nodes that are not part of any Braak stage are colored gray
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5 Discussion

Reduction to slow manifolds and ad hoc averaging allows us to elucidate the
heterodimer-oscillator dynamics in the singular limit. The heterodimer-oscillator oper-
ates in two regimes, as the oscillators are either phase-locked or drifting. In the
phase-locking regime, the heterodimer-oscillator exhibits dynamics similar to the orig-
inal heterodimer model, whereas in the drifting regime, the dynamics is similar to the
skewed heterodimer model. This is not surprising, as the links are symmetric during
the phase-locking regime and asymmetric during the drifting regime. In both regimes,
we identify a pair of healthy and toxic fixed points exchanging stability at a transcritical
bifurcation (for small δ in the drifting regime). Inspecting the evolution equations for
the heterodimer-oscillator, we see that it inherits the symmetric fixed points of the het-
erodimer model when A1 = A2 (under phase-locking), as the transport terms cancel
each other out. Additionally, there is a unique healthy fixed point in both the drifting
and phase-locking regimes; setting v1 = v2 = 0 reduces the equilibrium conditions
to a determinate system of linear equations. The healthy fixed point only exists in the
phase-locking regime when K ≤ |�ω|, and likewise, the healthy fixed point only
exists in the drifting regime K ≥ |�ω|. However, the nonlinearities introduced by the
heterodimer-oscillator may introduce novel (toxic) equilibria beyond those identified
herein. We also established—when healthy species u are close to their steady-state
values—the direction of the vector field of�v at the border between the phase-locking
and drifting regimes. In doing so, we ruled out the possibility of stable limit cycles
crossing the regime border at the singular limit. However, we cannot rule out the exis-
tence of limit cycles within either of the regimes. Nonetheless, it seems likely that the
heterodimer-oscillator approaches the phase-locking regime for K ≥ |�ω| and the
drifting regime for K < |�ω|.

The large timescale separation one typically has for the evolution of neurodegen-
erative diseases justifies the analysis of the singular limit. While smaller timescale
separationmay alter the dynamics of the system, the numerically obtained solution tra-
jectories shown in Fig. 4 suggest that the heterodimer-oscillator is well-approximated
by the singular-limit dynamics even for ε ≈ 0.1. In particular, numerical simula-
tions indicate that the stability of the phase-locking and drifting regimes is accurately
described by the singular limit analysis, even for complex networks. However, we
cannot rule out the occurrence of more complex dynamical phenomena for larger ε,
though it has not yet been observed.

In addition to a smaller timescale separation, generalizations of the oscillator
dynamics and the coupling between oscillator and spreading dynamics are likely to
induce new dynamical phenomena. We chose a simple relationship between the het-
erodimer dynamics and the oscillator intrinsic frequencies by setting ω̂(v) = ω − cv,
which can be interpreted as a first-order Taylor expansion of a more complicated ω̂(v).
From the expansion of the toxic fixed point in the drifting regime in the singular
limit, we have that |c�v| = |�ω̂ − �ω| = O(

√
�ω2 − K 2) which implies that

�ω̂ → �ω as K → |�ω|. In other words, the heterodimer-oscillator SNIC bifurca-
tion at K = |�ω̂| becomes indistinguishable from K = |�ω|. As such, the Kuramoto
oscillators appear to only depend on the oscillator parameters. As such, higher-order
terms in ω̂(v) may be necessary to induce qualitative changes in Kuramoto dynamics.
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The activity-dependence, A(θ) = εθ̇ , was also assumed to be linear, though this rela-
tionship may be more complicated in reality. In the case of neurodegenerative disease,
more empirical data is necessary to determine the quantitative relationship between
neuronal firing and protein transport rate. A smaller timescale separation may also
lead to more interesting behavior in the Kuramoto dynamics. If the temporal changes
of the effective intrinsic frequencies ω̂ are faster, there may be transient chimera-like
states, where parts of the network are severely affected by the spreading and others
are not, leading to clusters synchronized at different frequencies. Another interesting
scenario involves several heterodimer species on the same network. These speciesmay
interact (Thompson et al. 2020) and even affect the underlying oscillator dynamics
differently (Alexandersen et al. 2023). The latter case could be realized by having two
heterodimer species evolving, where one speeds up (negative c) and the other slows
down (positive c) the intrinsic frequencies of the oscillators. It is also possible to mod-
ify the heterodimer-oscillator to affect the coupling strengths between oscillators as
opposed to their intrinsic frequencies. With the addition of coupling strength adap-
tation rules, we expect more elaborate oscillator dynamics in the symmetry-breaking
(drifting) regime in line with previous research (Jüttner and Martens 2023).

We have focused on oscillatory processes that accelerate spreading (δ > 0)
and spreading processes that slow oscillatory processes (c > 0). Nonetheless, the
heterodimer-oscillator may be fit for modeling phenomena where either c or δ are
negative. By asserting a lower bound on δ, we can extend the linear stability results to
c, δ ∈ R. However, we cannot repeat the regime border analysis when both c < 0 and
δ < 0. In this case, one can imagine a positive feedback loop leading to a stable toxic
solution for large �v, independently of the stability of the healthy fixed point; the
node with the highest toxic concentration will increase in activity, causing a reduction
in outward transport, followed by an increase in toxic concentration and so on. Still,
we are yet to identify applications to which both c and δ should be negative.

From both the discussion on the toxic equilibrium stability and the network simu-
lations, we conclude that there are two modes of toxic propagation in the heterodimer-
oscillator: conversion-dominated spreading and shunting-dominated spreading. The
latter does not exist in the heterodimer model, in which a redistribution of healthy
proteins precedes the production of toxic proteins. When the healthy proteins are
distributed through the network according to the activity gradient, some nodes are
overwhelmed by the amount of healthy protein, and thus, the conversion to toxic
proteins proceeds. In conversion-dominated spreading, toxic proteins are produced
whether or not there is an activity gradient. The activity gradient causes some nodes to
have more protein than others, but it is not the determining factor causing an outbreak.
Shunting-dominated spreading occurs when the parameters are close to the transcriti-
cal bifurcation, whereas conversion-dominated spreading occurs when the parameters
are far away from the transcritical bifurcation. In Alzheimer’s disease, it has been
hypothesized that lowered toxic clearance may initiate the disease. Therefore, the
heterodimer-oscillator model posits that the disease initiates with shunting-dominated
spreading and that the gradient of neuronal activity levels determines which regions
are first affected.

The formulation of the heterodimer-oscillator was primarily motivated by the case
of Alzheimer’s disease and other neurodegenerative diseases. The impact of neuronal
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activity on pathological protein spreading patterns is becoming increasingly clear and
provokes the need for mechanistic, mathematical modeling of the bidirectional rela-
tionship between disease progression and neuronal activity. Building our model from
mechanistic principles from the neuroscientific literature, we provide a simple math-
ematical model of this relationship. Importantly, the heterodimer-oscillator provides
falsifiable hypotheses on the nature of prion-like spreading; protein spreading patterns
follow a neuronal activity gradient and more extreme gradients push the brain towards
a pathological state. We have also demonstrated that the heterodimer-oscillator indeed
alters the tau staging patterns when simulated on a human brain connectome. It is
not uncommon for patients to deviate from the stereotypical Braak staging patterns,
and the heterodimer-oscillator may thus provide a mechanistic explanation for such
aberrations. Future work is needed to establish the predictive power and ramifications
of the heterodimer-oscillator in applications to neurodegenerative disease modeling.

A Coefficients of the cubic

The toxic solution for the skewed heterodimer model is given by the real positive
solution (when it exists) of a cubic equation for the toxic fixed point (v2 �= 0) given
by

c0 + c1v2 + c2v
2
2 + c3v

3
2 = 0

with

c0 = (A + �)(k3(A + 2� + k3) + k41 + 4�(A + �)k20k
2
2 − 2(A + 2�)k0k1k2

× (A2 + 2�(� + k3) + A(2� + k3) − k0k2) + k31(2(A + 2�)k3(A + 2� + k3)

− (A + 2(� + k3))k0k2) + k21((A + 2�)2k3(A + 2� + k3)c − (3A2 + 8�(� + k3)

+ 4A(2� + k3))k0k2 + k20k
2
2)),

c1 = k2(A
4k1k3 + A3(3k21k3 − 2k0k1k2 + 2k0k3k2 + 6k1k3�) + A2(2k31k3

+ 2k0k2(k
2
3 + 2k0k2 + k3�) + k21(3k

2
3 − k0k2 + 15k3�)

− k1(k
3
3 + 6k0k3k2 + 8k0k2� − 14k3�

2)) + (k1 + 2�)(k21k3(k
2
3 + 5k3� + 6�2)

+ k0k2(−2k3�
2 + k0k2(k3 + 2�)) + k1(2k3�

2(k3 + 2�) − k0k2(2k
2
3 + 7k3� + 4�2)))

+ A(k31k3(3k3 + 7�) + 2k0k2(k3(k3 − 2�)� + k0k2(k3 + 4l))

+ k21(−5k0k2(k3 + l) + k3�(11k3 + 26�)) + 2k1(k
2
0k

2
2 − k0k2(k

2
3 + 10k3� + 7�2)

+ k3�(−k23 + k3� + 8�2))),

c2 = k22(A
3(k1 − k3)k3 + A2k3(k

2
1 + 2k1k3 − k23 − 4k0k2 + 5k1� − 3k3�)

+ (k3 + 2�)(−3k0k3k2� − k0k1k2(2k3 + �) + k21k3(2k3 + 3�) + k1k3�(3k3 + 4�))

+ A(k21k3(3k3 + 5�) + k1(k
3
3 − 3k0k3k2 + 8k23� − 2k0k2�

+ 10k3�
2) − k3(k3�(k3 + 2�) + k0k2(3k3 + 10�))),

c3 = k3k
3
2(A + k3 + 2�)(Ak3 + k3� + k1(k3 + �)).
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B Critical clearance for the skewed heterodimermodel

In this section, we show that the critical clearance of the 2-node skewed heterodimer
model is constrained to the interval [k0k2/k1, 2k0k2/k1] and is monotonically increas-
ing in the activity parameter A.

B.1 Critical clearance bounds

In the skewed heterodimer 2-node system (Sect. 2.2), the healthy fixed point switches
stability at a critical value for toxic clearance given by

kcrit3 = k0k2 + κcrit

k1
, (37)

where κcrit is given in Sect. 2.2. We now verify the statement that k0k2
k1

≤ kcrit3 ≤ 2 k0k2
k1

by showing that 0 ≤ κcrit ≤ k0k2. As all parameters are nonnegative the following
inequality holds

4k0k2 (k1 (A + k1 + 2l) (k1(A + 2l) + 4l(A + l)) + k0k2 (k1 + 2l) (2(A + l) + k1))

≥ 0. (38)

The inequality can be rewritten in terms of s0 and s1 as defined in Sect. 2.2, giving

(2l + A + k1)
2(k1(2l + A) + 2k0k2)

2 ≥ s20 + s1. (39)

Taking the square root of both sides and rearranging gives us the desired κcrit ≤ k0k2.
Asmentioned in Sect. 2.2, κcrit ≥ 0 since all parameters are nonnegative. Conclusively,
we have that k0k2

k1
≤ kcrit3 ≤ 2 k0k2

k1
.

B.2 Monotonic dependence of critical clearance on activity

We now verify the statement that kcrit3 is monotonically increasing in A by showing

that δκcrit

δA ≥ 0. As all parameters are nonnegative, the following inequality holds

4Ak0k2
k21(2l + A + k1)4

[B1 + B2 + B3 + B4] ≥ 0, (40)

where

B1 = k31 (A + k1 + 2l) 4 (k1(A + 4l) + 4l(A + 2l)) , (41a)

B2 = k0k
2
1k2 (k1 + 2l) (A + k1 + 2l) 2

(
4A2 + k1(5A + 4l) + 14Al + 8l2

)
,

(41b)

B3 = 4Ak20k1k
2
2 (k1 + 2l) (A + k1 + 2l) (A + 2k1 + 4l) , (41c)
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B4 = 4Ak30k
3
2 (k1 + 2l) 2. (41d)

Rearranging the above inequality gives

(
4Ak20k

2
2 (k1 + 2l)

k1 (A + k1 + 2l) 2
+ 2Ak0k2 (A + 2k1 + 4l)

A + k1 + 2l
+ k1(A + 2l) (A + k1 + 2l)

)
2

≥ s20 + s1, (42)

where s0 and s1 are again defined as in Sect. 2.2. Taking the square root of the right-
and left-hand side of the above inequality, and dividing both sides by 4(2 l + A +
k1)2

√
s20 + s1 produces

k1
∂κcrit

∂A
≥ 0, (43)

showing that kcrit3 is monotonically increasing in A. The full expression of the partial
derivative has been omitted due to its length.
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