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Abstract
Phylogenetic diversity indices provide a formal way to apportion evolutionary history
amongst living species. Understanding the properties of thesemeasures is key to deter-
mining their applicability in conservation biology settings. In this work, we investigate
some questions posed in a recent paper by Fischer et al. (Syst Biol 72(3):606–615,
2023). In that paper, it is shown that under certain extinction scenarios, the ranking of
the surviving species by their Fair Proportion index scoresmay be the complete reverse
of their ranking beforehand. Our main results here show that this behaviour extends to
a large class of phylogenetic diversity indices, including the Equal-Splits index. We
also provide a necessary condition for reversals of Fair Proportion rankings to occur
on phylogenetic trees whose edge lengths obey the ultrametric constraint. Specific
examples of rooted phylogenetic trees displaying these behaviours are given and the
impact of our results on the use of phylogenetic diversity indices more generally is
discussed.

Keywords Phylogenetic tree · Biodiversity conservation · Fair Proportion index ·
Equal-Splits index · Phylogenetic diversity · Species prioritization

Mathematics Subject Classification 05C05 · 92B05

1 Introduction

Each species on earth is the product of some evolutionary history, both unique to itself
and shared with other species. Phylogenetic diversity indices are a family of measures
that quantify this history on a species-by-species basis. They do so by assigning to each
species a numerical score that aims to indicate that species’ contribution to biodiversity.
One characteristic of diversity indices is that they calculate this contribution based on
species’ positions in a rooted phylogenetic tree. This is in contrast to other approaches
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such as measuring the mean ‘patristic distance’ to other species or the shortest such
distance, the ‘pendant edge length’ approach (Redding et al. 2014). Moreover, unlike
distance-based methods which measure the difference between species and their close
relatives, diversity indices use phylogenetic information going right back to the root
of the phylogeny under investigation.

Diversity indices and the scores they provide have found practical application
in conservation biology. In particular, they have been used to suggest prioritisation
rankings for biodiversity conservation, often in conjunction with other measures. For
example, see Isaac et al. (2007), Bordewich et al. (2008), Jetz et al. (2014), Forest et al.
(2018) and other work by the EDGE of Existence programme (EDGE of Existence
Programme 2022). One aim of using diversity indices is to move beyond conservation
that overwhelmingly protects the most charismatic species at the expense of others
(Mace et al. 2003). The use of these measures can inform the distribution of conserva-
tion resources, prioritising those programmes that spread benefits and protection more
widely, and properly reflect the full breadth of biodiversity.

That said, conservation efforts take place at a time heavily impacted by extinctions
of species (Davis et al. 2018) and these extinction events impact the verymeasures that
conservation biologists use to try to prevent them. Figuratively speaking, extinctions
remove branches from the ‘tree of life’, thereby altering the phylogenetic tree structure
on which these measures are based. For a conservation programme based on diversity
indices, each extinction event necessitates the recalculationof diversity index scores for
surviving species. This may lead to changes in relative rankings among species. Since
conservation programmes often employ large amounts of scarce resources (White et al.
2022) and require community buy-in (Griffiths et al. 2019), it is useful to know if and
when extinction events could lead to recalculations that givemarkedly different results.
Large changes in priorities, and any subsequent reallocation of resources that followed,
would not be conducive to the long-term planning required of many conservation
programmes. Ideally, phylogenetic diversity indices would not only give informative
prioritisation rankings but also be ‘robust’, that is, not particularly sensitive to changes
caused by extinction.

Two diversity index methods have proven to be most popular, essentially to the
exclusion of other approaches in this area. These are the Fair Proportion (FP) (Redding
2003; Isaac et al. 2007) and Equal-Splits (ES) (Redding 2003; Redding et al. 2014)
indices.Nonetheless, it is possible to definemanyother diversity indices that followour
definition (see p. 5) and we give some examples of these in Sect. 2.1. But in current
practice only FP and ES are diversity indices of any significance. A third diversity
index based on the Shapley value from co-operative game theory (Shapley 1953)
has also been considered. Yet it was subsequently shown that on rooted phylogenetic
trees the Shapley value is identical to the Fair Proportion index (Fuchs and Jin 2015).
Other evolutionary isolation measures exist, such as those evaluated in Redding et al.
(2014) and a measure based on another co-operative game approach, the Banzhaf
index (discussed in Supplementary material). However, none of these measures are
phylogenetic diversity indices by the definition used here, largely ignoring edge lengths
altogether. For this reason they will be set aside in the present discussion.

A recent paper by Fischer et al. (2023) assesses the robustness of the Fair Proportion
index on rooted phylogenetic trees. Those authors showed that species rankings under
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the FP index can change markedly following certain extinction events. Furthermore,
“for each phylogenetic tree, there are edge lengths such that the extinction of one leaf
per cherry completely reverses the ranking” (Fischer et al. 2023, p. 2.) We call such
an outcome a ‘ranking reversal’ induced by a set of extinctions. Their results raise
concerns about the appropriateness of the Fair Proportion index and thus there would
seem to be merit in developing an alternative. Some recent theoretical work has begun
to look at properties of diversity indices in an abstract sense, with a view to evaluating
their effectiveness asmeasures of species-level diversity (Bordewich andSemple 2024;
Manson and Steel 2023). One motivating factor is that by taking a properties-first
approach it may be that we can discover useful diversity index measures beyond FP
and ES that do not share their flaws. However, our main results here (Theorems 5 and
9) show that a lack of robustness is exhibited by a large class of diversity indices.
Moreover, we argue that those diversity indices outside this class have an unrealistic
basis and thus any biologically reasonable diversity index used as an alternative to
FP will not avoid the robustness problem. For this reason we do not claim that any
alternative diversity index is unambiguously better than FP or ES for diversity index
applications.

The FP index was a natural choice for Fischer et al. (2023) to begin the study of
robustness of diversity indices. Given its relative importance, we also investigate the
ES index specifically. The ES index generally requires more species to go extinct to
induce a ranking reversal than FP does. This number may still be small though, and
we give an example of a ranking reversal under ES caused by the extinction of just
two species. Following Fischer and colleagues, we initially place no constraint on the
size of edge lengths required to obtain such reversals. The examples contained in the
original paper, the constructive methods appearing in the proofs of their Theorem 2
(Fischer et al. 2023, Supp. Mat. pp. 2–15) and Theorems 5 and 9 here all tend to
place the leaves at quite varied distances from the root vertex. This leads to questions
about whether similar results can be obtained when edge lengths obey an ultrametric
constraint. In particular:

“if we restrict the analysis to ultrametric trees where all leaves have the same
distance to the root, what are the worst-case scenarios in this setting?” (Fischer
et al. 2023, p. 5)

By “worst-case” those authors refer to a combination of edge lengths and extinctions
that re-orders the FP index score ranking as much as possible. In Sect. 5 we outline
some necessary conditions for a reversal of FP index scores in the ultrametric context.
We then present examples of ultrametric rooted phylogenetic trees for which FP index
score rankings are completely reversible. This answers the question above by showing
that the “worst-case scenario” on an ultrametric phylogenetic tree is as bad as possible.

The rest of this paper is organised as follows.We beginwith a section of preliminary
definitions and notation before describing a handful of diversity indices besides FP
and ES. The following two sections contain our main results: that two large classes
of diversity index, called ‘non-rigid interior’ and ‘rigid interior’ indices respectively,
are not robust in the sense described above. Section5 focusses on robustness under
an ultrametric constraint on edge lengths and is followed by a short final section of
concluding remarks.
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Fig. 1 Schematic diagram
showing the notation for a
rooted phylogenetic tree T and
its maximal pendant subtrees Ta
and Tb , which are descended
from the root vertex ρ via edges
a and b

2 Preliminaries

Let X be a non-empty set of taxa (e.g. species), with |X | = n. A rooted phylogenetic
X -tree is a rooted tree T = (V , E), where X is the set of leaves, and all edges are
directed away from a distinguished root vertex ρ. An interior vertex of T is any vertex
that is not a leaf. A rooted phylogenetic tree is called binary if every interior vertex
has out-degree 2. All edges drawn in this paper will be directed down the page.

Let P(T ; ρ, v) be the unique path in T from the root ρ to v ∈ V (T ). For any edge
e ∈ E(T ), we write x ∈ cT (e) if x ∈ X and P(T ; ρ, x) includes e. That is, cT (e) is
the set (cluster) of leaves descended from the terminal vertex of e. For v ∈ V (T ), we
also write x ∈ cT (v) if x ∈ X and P(T ; ρ, x) includes v. If the (directed) edge (u, v)

appears in a phylogenetic tree T , we say that u is the parent of v. If two distinct leaves
x1 and x2 in X have the same parent vertex v and no other vertex in V (T ) has v as a
parent then we call {x1, x2} a cherry. A rooted binary phylogenetic tree with exactly
one cherry is called a caterpillar tree. If a set of m ≥ 2 leaves Y ⊆ X all have the
common parent vertex v and no other vertex in V (T ) has v as a parent then we call Y
an m-cherry.

The term ‘pendant’ is used in two related senses in this paper. First, a pendant edge
is an edge whose terminal vertex is a leaf. Second, a pendant subtree of T is any
subtree that does not contain the root vertex and can be a connected component of a
graph formed from T by the deletion of exactly one edge. We write Pe for the pendant
subtree that would be formed from the deletion of edge e. A rooted phylogenetic tree
has a number of maximal pendant subtrees equal to the out-degree of the root, each
formed by the deletion of an edge incident with the root.

We denote the twomaximal pendant subtrees of a rooted binary phylogenetic tree T
by Ta and Tb. Further subtrees, in the nonbinary case, shall be denoted similarly. The
tree shape of T may be expressed in terms its maximal pendant subtrees by writing
T = (Ta, Tb, . . .). We may extend this notation to non-root non-leaf vertices of T ,
writing Ta(v), Tb(v), and so on, for the maximal pendant subtrees contained within
the pendant subtree rooted at vertex v. The edge connecting the root vertex to Ta will
be labelled a, and the set of leaves in Ta will be denoted Xa , with |Xa | = na . Parallel
notation applies to the other maximal pendant subtrees of T . Figure1 illustrates this
notation for the simplest case, where ρ has out-degree 2.
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The edges of rooted phylogenetic trees in this paper are positively weighted. Let T
be a rooted phylogenetic X -tree and let � : E(T ) → R

>0 be a function that assigns a
positive real-valued length �(e) to each edge e ∈ E(T ). Suppose that u, v ∈ V (T ) are
two vertices of T connected by a directed path from u to v. Then the distance from u
to v, denoted d(u, v), is the sum of the lengths of the edges in this path. If � is such
that for every two distinct leaves x and y we have d(ρ, x) = d(ρ, y), we say that �

satisfies the ultrametric condition.
A (phylogenetic) diversity index on a rooted phylogenetic tree T is a function that

assigns a portion of the total edge length of T to each species. This can be seen
as partitioning the total evolutionary history, or phylogenetic diversity (Faith 1992),
of a phylogenetic tree among its species. Loosely speaking, these functions allocate
the value of each edge length among that edge’s descendants in such a way that
respects the symmetries of the tree shape. We write ϕT ,� to denote the diversity index
ϕ applied to the phylogenetic tree T given edge lengths by �, although one or both
of the subscripts may be omitted when clear from context. The formal definition of a
diversity index builds on the related class of allocation functions (Manson and Steel
2023). Let T = (V , E) be a rooted phylogenetic X -tree with edge length assignment
function �. An allocation function ϕ� : X → R

≥0 is a real-valued function on the set
of leaves of T that both satisfies the following equation:

∑

x∈X
ϕ�(x) =

∑

e∈E
�(e),

and moreover may be expressed as ϕ�(x) = ∑
e∈E γ (x, e)�(e), for every edge length

assignment function �, where all of the coefficients γ (x, e) are from the interval [0, 1].
Importantly, this means each such coefficient is non-negative.

A diversity index (on T ) is an allocation function ϕ� : X → R
>0 given

by ϕ�(x) = ∑
e∈E γ (x, e)�(e) for every edge length assignment function �, that

additionally satisfies the conditions (DI1) and (DI2) below:

• (DI1) Descent condition: γ (x, e) = 0 if x is not descended from e.
• (DI2)Neutrality condition:The coefficients γ (x, e) are a function of the tree shape
of Pe. Moreover, suppose that Pe and Pf are pendant subtrees of T with the same
tree shape. If the leaves x in Pe and y in Pf appear in corresponding positions in
their respective subtrees, then γ (x, e) = γ (y, f ).

One important consequence of these conditions is that γ (x, e) = 1 if e is the edge
with leaf x as its terminal vertex. That is, the length of the edge incident to each leaf
represents the evolutionary history unique to that leaf’s species, so its value must be
allocated entirely to that species and no other.

We call ϕ(x) the diversity index score of x under ϕ. When comparing these scores
we use, and repeat here, the definitions of ranking, strict, and reversible as they appear
in Fischer et al. (2023, pp. 2, 3). A rankingπ(S, f ) for a set S = {s1, . . . , sn} based on
a function f : S → R is an ordered list of the elements of S such that f (si ) ≥ f (s j )
if and only if si appears before s j in π . A ranking π(S, f ) is called strict if none of the
values of f in S are equal. A ranking πT is called reversible for diversity index ϕ if
there is a subset X ′ of X whose removal from T leads to an induced subtree T̃ whose
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corresponding ranking πT̃ = π(X\X ′, ϕT̃ ) ranks the species in the opposite order to
the ranking πT = π(X\X ′, ϕT ). We call the removal of species from X an extinction
event and will write X̃ = {x̃1, x̃2, . . . , x̃t } for the t species from X that survive an
extinction event. The induced subtree T̃ is the minimal subtree of T that spans X̃ and
the root vertex. Note that extinction events often cause vertices with out-degree one
to appear. We suppress any such vertex and sum the lengths of its incident edges to
give the length of the resultant edge in T̃ .

It will be useful to discuss diversity indices on T in terms of their ratios of allo-
cations, which we now define. Let �i (v, e) = ∑

x∈Ti (v) γ (x, e), that is, the sum of
all coefficients associated with both edge e and some leaf in the i-th pendant subtree
below vertex v. Let e = (u, v) be an edge of T . Then the ratio �1(v, e) : · · · : �d(v, e)
is called the ratio of allocations at v, where d is the out-degree of v. Moreover, diver-
sity indices in this paper will be assumed to be consistent in the sense that the values
�i (v, f ) lie in the same ratio as the ratio of allocations at v for every edge f in the
path between the root vertex and v. Each diversity index may be described by its (con-
sistent) ratios of allocations, with Manson and Steel (2023) showing both how these
ratios may be converted into γ (x, e)-type coefficients and that all diversity indices
may be expressed in a consistent form.

Two types of diversity index will be considered further, defined in terms of their
ratios of allocations. A boundary diversity index is a diversity indexwhere it is possible
for a term in a ratio of allocations to equal zero. In other words, boundary diversity
indices contain ratios of allocations that mean some leaf is allocated no portion of
the evolutionary history arising from one or more of its ancestral edges. We call any
diversity index that is not boundary an interior diversity index. Equivalently, a diversity
index ϕ(x) = ∑

e∈E γ (x, e)�(e) is interior if and only if γ (x, e) is strictly positive
whenever x is descended from e. The names ‘boundary’ and ‘interior’ refer to the
position of a diversity index in S(T , �), the compact convex space of diversity indices
on the tree T under edge length assignment � (see Manson and Steel 2023 for details).

Given a rooted phylogenetic tree T , its non-root non-leaf vertices may be cate-
gorised by an equivalence relation ∼, where for u, v ∈ V (T ) we write u ∼ v if
and only if the multiset of tree shapes {Ta(u), Tb(u), . . .} is the same as the multiset
of tree shapes {Ta(v), Tb(v), . . .}. Each diversity index can be thought of as a rule
that determines ratios of allocations for every possible ∼-equivalence class. For a ∼-
equivalence class with representative v, we say that [v] has breadth equal to |cT (v)|.
Let a singular ∼-equivalence class be one whose representative vertex is the parent
of a leaf of T . Equivalently, for a singular ∼-equivalence class with representative v,
the multiset of tree shapes {Ta(v), Tb(v), . . .} contains a tree that consists of a single
vertex. In Fig. 3, vertices q, s and v are from distinct singular ∼-equivalence classes.
A rigid diversity index is a diversity index where the ratio of allocations is the same
for at least two singular ∼-equivalence classes of different breadth on some rooted
phylogenetic tree. We note that the majority of diversity indices are non-rigid inte-
rior indices. See Supplementary Material for details on the relative numbers of rigid,
non-rigid and boundary indices.
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Fig. 2 a The Equal-Splits index is a rigid diversity index, as the ratio of allocations is unchanged from
u to v although the number of leaves in the left-hand subtree (represented by a triangle) is changed. b In
contrast, the Fair Proportion index is not a rigid diversity index, as can be seen from the different ratio of
allocations in each case

2.1 Examples of diversity indices

In this section we present those diversity indices known from the literature and intro-
duce some further examples to aid discussion. A small phylogenetic tree in Fig. 3 is
used to compare the effects of various diversity index functions. We begin with the
formal definitions of the Fair Proportion (or Evolutionary Distinctiveness) index and
the Equal-Splits index on a rooted phylogenetic X -tree T . For each leaf x ∈ X , the
Fair Proportion (FP) index (Redding 2003; Isaac et al. 2007) of x in T is given by

FPT (x) =
∑

e∈P(T ;ρ,x)

�(e)

|cT (e)| .

Now let e = (u, v) be an edge of T . We define π(e, x) to be the product of the
out-degrees of the interior vertices in the path P(T ; v, x) unless e is a pendant edge,
in which case π(e, x) = 1. Then for each leaf x ∈ X , the Equal-Splits (ES) index
(Redding 2003; Redding et al. 2014) of x in T is given by

EST (x) =
∑

e∈P(T ;ρ,x)

�(e)

π(e, x)
.

These two indices are both interior diversity indices, but are different in terms of being
rigid or not, as shown in the following lemmas.

Lemma 1 (i) The Equal-Splits diversity index is interior. (ii) The Fair Proportion
diversity index is interior.

Proof Let v be an interior non-root vertex of a rooted phylogenetic X -tree T . Suppose
v has out-degree d and that T1(v), T2(v), …, Td(v) are the maximal pendant subtrees
descended from v. Let |X | = n and write ni for the number of leaves in Ti (v).

(i) Under Equal-Splits the ratio of allocations at v is 1
d : 1

d : · · · : 1
d . Each term in

this ratio is non-zero for every choice of v. Hence ES is an interior diversity index.
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Fig. 3 A rooted binary
phylogenetic tree T . Many
diversity indices may be defined
on T by specifying ratios of
allocations at vertices p, q, r , s,
t and v

(ii) Under Fair Proportion the ratio of allocations at v is n1
n : n2

n : · · · : nd
n . Each

term in this ratio is non-zero for every choice of v. Hence FP is an interior diversity
index. �	
Lemma 2 (i) TheEqual-Splits diversity index is rigid. (ii) TheFairProportion diversity
index is not rigid.

Proof Let T be a rooted phylogenetic tree with at least two singular ∼-equivalence
classes of different breadth. Let u and v be vertices that are representatives of distinct
∼-equivalence classes where |cT (u)| = nu and |cT (v)| = nv , and nu 
= nv .

(i) Suppose T is binary. Then the ratio of allocations is 1
2 : 1

2 for every vertex under
Equal-Splits. Thus the ratios of allocations at u and v are the same and hence ES is
rigid.

(ii) Under Fair Proportion the term in the ratio of allocations pertaining to a leaf
that has parent u is 1

nu
. Similarly, a leaf with parent v has the associated term of 1

nv

in the ratio of allocations at v. As nu 
= nv these terms are different, and since these
terms are necessarily the smallest terms in their respective ratios of allocations, the
overall ratios must be different as well. Therefore FP is not rigid. �	

Figure2 pictorially represents the rigid/non-rigid classifications for ES and FP,
as per Lemma 2. These two diversity indices are essentially the only ones found in
existing biodiversity literature. We give a handful of further examples to outline the
breadth of the diversity index concept and to illustrate some of the terms introduced
above. The problem of finding useful diversity indices to complement FP and ES does
not lie in finding functions that satisfy the diversity index definition, but rather in
finding such functions that are biologically justified. The examples should therefore
not all be interpreted as practical solutions to the problem of partitioning evolutionary
history. For simplicity’s sake, we momentarily restrict our attention to rooted binary
phylogenetic trees. Our examples are defined by a rule that determines their ratio of
allocations at an arbitrary vertex v with maximal descendant pendant subtrees Ta(v)
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Table 1 Ratios of allocation for
diversity indices discussed in
Sect. 2.1, at labelled vertices
from the tree T in Fig. 3

Index p q r s t, v

FP 5
10 : 5

10
4
5 : 1

5
3
5 : 2

5
3
4 : 1

4
2
3 : 1

3

ES 1
2 : 1

2
1
2 : 1

2
1
2 : 1

2
1
2 : 1

2
1
2 : 1

2

α 1
2 : 1

2
2
3 : 1

3
2
3 : 1

3
2
3 : 1

3
2
3 : 1

3

β 1
2 : 1

2 1 : 0 1 : 0 1 : 0 1 : 0
γ 1

2 : 1
2 0 : 1 0 : 1 0 : 1 0 : 1

δ 1
4 : 3

4
3
4 : 1

4
1
2 : 1

2
3
4 : 1

4
3
4 : 1

4

ε 3
4 : 1

4 1 : 0 1 : 0 1 : 0 1
2 : 1

2

ζ 25
50 : 25

50
16
17 : 1

17
9
13 : 4

13
9
10 : 1

10
4
5 : 1

5

η 1
2 : 1

2
1
2 : 1

2
1
2 : 1

2
3
4 : 1

4
2
3 : 1

3

θ 4
8 : 4

8
8
8 : 0

8
5
8 : 3

8
0
8 : 8

8
2
8 : 6

8

and Tb(v). Table 1 displays the ratios of allocations when the example indices are
applied to named vertices from the tree in Fig. 3. Note that, by the neutrality condition
of the diversity index definition, the vertices labelled u, w and y in Fig. 3 will have a
ratio of allocations of 1

2 : 1
2 for every diversity index.

Ourfirst index,α, compares the twopendant subtreesTa(v) andTb(v) andprioritises
the subtree that containsmore leaves. If both Ta(v) and Tb(v) contain the same number
of leaves, the α index has a 1

2 : 1
2 ratio of allocations at v. Otherwise α has a 2

3 : 1
3 ratio

of allocations at v that allocates 2
3 of the preceding evolutionary history to the more

populous subtree. Our second index, β, follows the same approach, but takes the ratios
to an extreme. Again, if both Ta(v) and Tb(v) contain the same number of leaves, the β

index has a 1
2 : 1

2 ratio of allocations at v. Otherwise β has a 1 : 0 ratio of allocations
at v that allocates all of the preceding edge’s length to the more populous subtree.
Another similar diversity index, γ , can be constructed by taking the other extreme,
that is where each 1 : 0 ratio of allocations gives all of the preceding edge’s length to
the less populous subtree. The indices α, β and γ can be seen as three functions from
a family of diversity indices that includes ES as its midpoint. All are rigid diversity
indices, as the same ratio is used for many ∼-equivalence classes. Indices β and γ are
also boundary diversity indices.

We can also choose other aspects of a tree’s structure on which to base a diversity
index’s ratios of allocations. For example, the index δ uses the number of cherries
rather than the number of leaves: if both Ta(v) and Tb(v) contain the same number of
cherries, the δ index has a 1

2 : 1
2 ratio of allocations at v. Otherwise δ has a 3

4 : 1
4 ratio

of allocations at v that allocates 3
4 to the subtree with the greater number of cherries.

(The value of 3
4 was chosen arbitrarily from the range [0, 1].) A further feature that

could be used is the number of interior vertices in Ta(v) and Tb(v) that are parents to
exactly one leaf. This feature is used by the ε index, where the ratios of allocations
are proportionate to the number of such vertices in each maximal pendant subtree
descended from v, or a 1

2 : 1
2 ratio if no such vertices exist. The use of proportionate
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allocations in this way is closer to how the Fair Proportion index works than the use
of fixed ratios in α, β, γ and δ.

In addition to direct proportions of leaves, cherries, interior vertices or other features
of tree topology, we can form ratios of allocations based on some function of these
numbers. The (non-rigid) ζ diversity index uses the proportions of the squares of the
numbers of leaves in each subtree to determine its ratios of allocations. We can also
combine existing diversity indices piecewise. For example, our η index has ratios
of allocations that match ES for vertices that have five or more descendant leaves
and ratios that match FP for each other vertex. A final type of diversity index that we
mention here is the arbitrary diversity index θ . We sampled five integers between 0 and
8 and used each as the numerator of the left hand term in the ratios in our table. This is
clearly not a biologically-relevant approach but does determine a legitimate diversity
index. Lastly we note that linear combinations of diversity indices are themselves
diversity indices, subject to some basic constraints (Manson and Steel 2023).

The indices above highlight the wide variety of possibilities using the diversity
index concept. Each diversity index carries with it a set of assumptions about how
evolutionary history is shared or embodied among descendants. The usefulness of
each index depends on how biologically credible these assumptions are, because the
differences in assumptions are reflected in the scores given to each species. For exam-
ple, the indices in Table 1 give rise to the following scores for leaf x3 if all edges have
unit length: FP(x3) = 1.88, ES(x3) = 1.94, α(x3) = 1.78, β(x3) = 1, γ (x3) = 2,
δ(x3) = 1.61, ε(x3) = 2.88, ζ(x3) = 1.63, η(x3) = 1.77 and θ(x3) = 1.75 (all
rounded to 2 d.p.). Note the large range of values, from 1 to 2.88 units.

The Fair Proportion index assumes that each species descended from an edge
exhibits that edge’s evolutionary developments equally. For Equal-Splits the assump-
tions are that at the time of the speciation event that terminated an edge, that edge’s
developments were embodied equally among the new lineages, and that further speci-
ation events do not alter this original separation. Index β effectively considers the less
populous subtrees to be developing evolutionary history from scratch after a speciation
event, whereas γ places this assumption on the more populous subtrees. We suggest
that while the assumptions for FP and ES are reasonable, the final two are not readily
justified.

It turns out that theβ index can bemore robust than interior indices (see Sect. 4, page
17 for details). Balanced against this observation is the fact that often it achieves this
robustness by essentially ignoring much of the tree structure. Many β index scores are
simply pendant edge lengths. This circumvents the entire reason for using phylogenetic
trees to give a more structured and nuanced picture of evolution compared to plain
distancemethods. Hencewe do not seeβ as a comprehensive solution to the robustness
problem. Boundary indices can also act in an inconsistent and somewhat arbitrary
fashion. A zero term in a ratio of allocations is making a strong claim about the way
evolutionary history is embodied in living species. Each zero allocation excludes some
species from a share of ancestral evolutionary developments, despite these species
being descended from the ancestor where such developments arose. We therefore
conclude that boundary diversity indices are not a good model for measuring the
evolutionary history of species and are only interesting as the theoretical limit of the
diversity index concept.
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3 Non-rigid interior diversity indices

We begin our examination of robustness with a broad question: Given the freedom
to choose any positive edge lengths for a known rooted phylogenetic tree, is there a
set of extinctions that induces a strict and reversible ranking on the surviving species’
diversity index scores? Note that eventually, after more and more extinctions, we must
arrive at a set of surviving leaves that form a strict and reversible ranking, regardless of
the particular diversity index (even if this is a trivial set containing one or two leaves).
Hence the pertinent question is: How many extinctions are necessary and sufficient
to achieve this effect? The answer to this question depends on the diversity index
being used and the structure of the given phylogenetic tree. For the FP index on rooted
binary phylogenetic trees the extinction of one leaf per cherry is both necessary and
sufficient (Fischer et al. 2023, Theorem 2). In this section we show that all non-rigid
interior diversity indices exhibit the same ranking reversal behaviour as FP. That is,
the number of necessary and sufficient extinctions, and their distribution among the
leaves, is the same for any non-rigid interior index as it is for FP. Our results are given
for rooted phylogenetic trees with unrestricted out-degree.

The separation of diversity indices into the classes of rigid and non-rigid is needed
because the patterns of extinctions necessary to generate a diversity index ranking
reversal differ in each case. The number of necessary and sufficient extinctions for rigid
interior diversity indices is somewhat larger, and includes those extinctions necessary
in the non-rigid case. Hence, rigid interior indices are slightly more robust than non-
rigid indices, although still susceptible to complete ranking reversals as shown in
Sect. 4.

The first result we establish concerns the number and type of extinctions neces-
sary for a non-rigid index ranking reversal. The question of sufficiency will then be
addressed, showing that the necessary extinctions suffice. Theorem 1 of Fischer et al.
(2023) described the necessary number and type of leaf deletions for the Fair Propor-
tion index on rooted binary phylogenetic trees. In fact, their result that at least one
leaf per cherry must be deleted generalises directly to every diversity index. We now
present a generalisation of that theorem, covering all phylogenetic diversity indices
and also those rooted phylogenetic trees that are not binary. Proposition 3 includes
the one-per-cherry extinction events as a special case and is proven in a very similar
manner to Theorem 1 of Fischer et al. (2023).

Proposition 3 Let T be a rooted phylogenetic X-tree with |X | ≥ 3 and let ϕ be a
diversity index on T . Suppose πT is a strict and reversible ranking concerning the ϕ

diversity index with respect to X̃ and induced subtree T̃ . Then X ′ = X \ X̃ contains
at least all but one of the leaves adjacent to each interior vertex of T .

Proof With a view to contradiction, assume that leaves xi and x j are adjacent to the
interior vertex v and that neither xi nor x j is in X ′. Let ei and e j be the pendant edges
incident with xi and x j respectively. By the neutrality condition in the definition of a
diversity index, ϕT (xi ) = p + �(ei ) and ϕT (x j ) = p + �(e j ) for some real value p,
and ϕT̃ (xi ) = q+�(ei ) and ϕT̃ (xi ) = q+�(ei ) for some real value q. Without loss of
generality suppose that πT (xi ) < πT (x j ) and πT̃ (x j ) < πT̃ (xi ). But then substituting
the values from above gives rise to the contradictory expressions �(xi ) < �(x j ) and
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Fig. 4 At least three out of the four leaves in A and one of the two leaves in each of B and C must be
deleted in order for a strict reversal of diversity index score values to be possible. One such set of leaves is
indicated above by the unfilled vertices

�(x j ) < �(xi ). Hence our initial assumption was false and thus at least one of xi and
x j is in the set X ′. As xi and x j were chosen arbitrarily from the leaves adjacent to v,
the result follows. �	

Figure4 shows a rooted phylogenetic tree on nine leaves, where the leaves are
grouped according to their parent vertex. The unfilled leaves represent one set of leaf
deletions of the smallest size required for a strict and reversible ranking to be possible.
This number of deletions can be a large proportion of the leaves for a nonbinary tree.
However, it can be much smaller for some rooted binary phylogenetic trees, such as a
single vertex for caterpillar trees.

Our task now is to show that this necessary set of extinctions is also sufficient
to cause a non-rigid index ranking reversal. This was proven for the Fair Proportion
index, as Theorem 2 in Fischer et al. (2023). The main result of this section is to show
that that theorem can be extended beyond the FP index to apply to every non-rigid
interior diversity index (Theorem 5). Hence, FP is not uniquely subject to robustness
issues in light of ongoing extinctions.

Let ϕ be an interior non-rigid diversity index. Our inductive proof below relies on
building up a collection of edge lengths for a phylogenetic tree T based upon edge
lengths that make ϕ reversible on the maximal pendant subtrees of T . This follows
the same general approach of Fischer and colleagues in the proof of their Theorem 2
(Fischer et al. 2023). Both results are proved inductively, building from small trees
into larger ones. As the smaller trees are combined into larger ones and eventually into
T as a whole, the edge lengths are repeatedly adjusted to have strict and reversible
rankings at each step. Themain difference here is that our approach abstracts the scores
away from any particular diversity index and tree structure that creates them. We only
require that all, or all but one, species experience a change in diversity score because
of an extinction event. We begin with Lemma 4, a result that allows us to adjust edge
lengths from the smaller trees in a useful way throughout the proof of Theorem 5.

Lemma 4 Let T = (Ta, Tb, . . .) be a rooted phylogenetic X-tree where |Xa | ≥ 2. Let
ϕT = ∑

e∈E(T ) γT (x, e)�(e) be an interior diversity index on T that is not rigid.

Suppose that ϕ induces a strict and reversible ordering of taxa in X̃a ⊂ Xa after the
extinction of all but one of the leaves adjacent to each interior vertex of Ta. Let T̃ be
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the rooted phylogenetic subtree of T induced by this extinction event. Then there exist
edge lengths for T such that ϕT (x̃i ) 
= ϕT̃ (x̃ j ) for all x̃i and x̃ j in X̃a.

Proof Let X̃a be indexed in such a way to give the ϕ diversity index score ranking
ϕTa (x̃1) < . . . < ϕTa (x̃na−ca ), where ca is the number of leaves deleted under this
extinction event. We prove the result by describing how those edge lengths of Ta that
allow the ranking reversal on X̃a can be adjusted to give distinct ϕ index scores.

First, assume that x̃i is a leaf with ϕT (x̃i ) = ϕT̃ (x̃i ). As ϕ induced a strict and
reversible ranking, x̃i is the only leaf for which this equality holds. Let ei be the
pendant edge incident to x̃i in T and let e+

i be the edge in T whose terminal vertex
is the parent of x̃i . Suppose that e+

i is edge a, incident with the root of T . Since
ϕ is an interior diversity index, γT (x̃i , e

+
i ) and γT̃ (x̃i , e

+
i ) are both strictly positive.

Moreover, as ϕ is not rigid we have γT (x̃i , e
+
i ) 
= γT̃ (x̃i , e

+
i ) and because x̃i is the

only descendant of ei , we have γT (x̃i , ei ) = γT̃ (x̃i , ei ) = 1. But then

ϕT (x̃i ) = 1 · �(ei ) + γT (x̃i , e
+
i )�(e+

i ) 
= 1 · �(ei ) + γT̃ (x̃i , e
+
i )�(e+

i ) = ϕT̃ (x̃i ),

contradicting our supposition.
So it must be the case that e+

i lies in Ta . Now extending e+
i will increase ϕTa (x̃i )

and ϕT̃a
(x̃i ) by different amounts because ϕ is not rigid. Specifically, we choose to

extend e+
i by the lesser of 1

2

[
ϕTa (x̃i+1) − ϕTa (x̃i )

]
and 1

2

[
ϕT̃a

(x̃i−1) − ϕT̃a
(x̃i )

]
(or

the defined value from these two choices if only one exists). This particular choice is
small enough to ensure that neither the πa ranking nor the π̃a ranking is altered by the
extension. Hence strict reversibility is maintained. Moreover, extending e+

i in such a
manner ensures that ϕT (x̃i ) and ϕT̃ (x̃i ) will have distinct values.

Second, assume that x̃i and x̃ j are distinct leaves with ϕT (x̃i ) = ϕT̃ (x̃ j ). Then we
can extend ei , the pendant edge incident to x̃i , by the lesser of 1

2

[
ϕTa (x̃i+1) − ϕTa (x̃i )

]

and 1
2

[
ϕT̃a

(x̃i−1) − ϕT̃a
(x̃i )

]
(or the defined value from these two choices if only one

exists). Extending the pendant edge incident to x̃i increases both ϕT (x̃i ) and ϕT̃ (x̃i )
by equal amounts but does not alter ϕT̃ (x̃ j ). This particular choice is small enough to
ensure that neither the πa ranking nor the π̃a ranking is altered by the extension. Hence
strict reversibility is maintained. Moreover, extending the pendant edge incident to x̃i
in such a manner ensures that ϕT (x̃i ) and ϕT̃ (x̃ j ) will have distinct values. We repeat
this step as necessary for every such pair of leaves.

Finally, we choose �(a) to be short enough to ensure that it is less than the smallest
difference between any two ϕTa or ϕT̃a

index scores from our modified version of Ta .
So even if one leaf were to be allocated the entire length of edge a, the ranking orders
πa and π̃a would not change.

Therefore, given a set of edge lengths for T , we can adjust them in the manner
described above to ensure ϕT (x̃i ) 
= ϕT̃ (x̃ j ) for all x̃i and x̃ j in T̃a . �	

We turn now to the first main result of the paper.

Theorem 5 Let T = (Ta, Tb, . . .) be a rooted phylogenetic X-tree with |X | = n,
where n ≥ 2. Let T̃ be the induced X̃-tree that results from deleting all but one of the
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leaves adjacent to each interior vertex of T . Then, for any non-rigid interior diversity
index ϕ, there exists an edge length assignment function � on T such that there is a
strict ϕ ranking πT for the leaves of T that is reversible with respect to T̃ and such
that X̃ contains the species that has the highest ϕ index score in T .

Proof We first prove the result for a rooted phylogenetic tree where the root vertex
has out-degree 2 before describing how this technique can be extended to trees with
larger out-degree at the root.Weproceed by induction on the number of interior vertices
present in a rooted phylogenetic tree. As a base case we consider a rooted phylogenetic
‘star’ tree with exactly one interior vertex, the root, and n edges of different lengths. If
every taxon except that incident with the longest edge is deleted, then this remaining
taxon is in a strict and reversible ordering (of size one) and the result holds.

Next, for the inductive step assume that the theorem holds for the non-rigid interior
diversity index ϕ on all rooted phylogenetic trees with less than k interior vertices.
Let T = (Ta, Tb) be a rooted phylogenetic tree with k interior vertices and n leaves,
as drawn in Fig. 1. Without loss of generality we have na ≥ nb. Let cT be the number
of leaves removed when deleting all but one of the leaves adjacent to each interior
vertex of T and let ca and cb denote the number of these leaves contained in Ta and Tb,
respectively. We show that by using the edge lengths that allowed reversible orderings
of ϕ on Ta and Tb, we are able to choose edge lengths that make ϕ reversible on T as
a whole.

As Ta has less than k interior vertices, the extinction of all but one of the leaves
adjacent to each interior vertex of T induces a strict and reversible ranking πa on the
leaves of Ta . Let X̃ = {x̃1, . . . , x̃n−cT } be the set of leaves that is not deleted, labelled
such that {x̃1, . . . , x̃na−ca } is contained in Ta and {x̃na−ca+1, . . . , x̃n−cT } is contained
in Tb. Relabelling if necessary, we have

ϕTa (x̃1) < ϕTa (x̃2) < . . . < ϕTa (x̃na−ca )

and
ϕT̃a

(x̃1) > ϕT̃a
(x̃2) > . . . > ϕT̃a

(x̃na−ca ).

As described in Lemma 4, we choose a small value for �(a) that does not alter any
of these inequalities. Then we construct a set of combined ϕ index scores for X̃ from
both T and T̃ , denoted �a ⊂ R

>0. In particular:

�a = {ϕT (x̃i )|i = 1, . . . , na − ca} ∪ {ϕT̃ (x̃i )|i = 1, . . . , na − ca}.

By Lemma 4, since ϕ is non-rigid and interior, each element of�a can bemade to have
a unique value by adjusting edge lengths within Ta . Moreover, this is achievable in a
way that the ranking πT restricted to Ta is the same as πa . Thus we are able to ensure
that�a contains 2(na −ca) distinct positive real numbers without altering the ranking
that we began with. See Fig. 5 for an illustration of this construction. Let �∗ be the
subset of �a containing the na − ca least elements of �a under the usual ordering of
real numbers and let �∗ be the subset of �a containing the na − ca greatest elements
of �a under the same ordering. Hence, �a is the disjoint union of �∗ and �∗.
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Fig. 5 Illustration of the first part of the construction described in the proof of Theorem 5. Each horizontal
line represents the set of real numbers. Dotted lines indicate the reversal of index scores of leaves in Ta
after the extinction of all but one of the leaves adjacent to each interior vertex of T , as per our induction
hypothesis. The scores for both Ta and T̃a are combined on the bottom number line, where, by Lemma 4,
the 2(na − ca) scores may be made distinct without affecting the initial reversal. Finally the edge lengths
of subtree Tb are adjusted and scaled to fit the index scores into the interval of size δ between the vertical
dashed lines

Next we consider the remaining taxa of T . The subtree Tb has less than k interior
vertices and hence the extinction of all but one of the leaves adjacent to each interior
vertex of T induces a strict and reversible ranking πb on X̃b. Similar to Ta , relabelling
if necessary, we have

ϕTb (x̃na−ca+1) < ϕTb (x̃na−ca+2) < . . . < ϕTb (x̃n−cT )

and
ϕT̃b

(x̃na−ca+1) > ϕT̃b
(x̃na−ca+2) > . . . > ϕT̃b

(x̃n−cT ).

As in the Ta case, we choose a small enough value for �(b) so that the above rankings
are maintained. We construct the set

�b = {ϕT (x̃i )|i = na − ca +1, . . . , n− cT }∪ {ϕT̃ (x̃i )|i = na − ca +1, . . . , n− cT },

but, in contrast to �a , do not require that �b contains 2(nb − cb) distinct values. (For
instance Tb may consist of a single vertex whose diversity index score is necessarily
fixed as the length of its pendant edge.) However, we do note that, because diversity
indices allocate the entirety of each pendant edge length to their incident leaf, every
member of �b is strictly positive.

Now let δ = min�∗ −max�∗ be the size of the gap between the two halves of �a

(see Fig. 5). We uniformly multiply the lengths of edges in E(Tb) ∪ {b} by a positive
real constant c, chosen so that c (max�b) < δ. That is, we scale (down) the entirety
of Tb as well as edge b so that the range of values in the rescaled �b extends less than
δ. (In practice it may be tidier to scale up Ta and a to achieve the same result.) Call
the resulting subtree T ′

b. Finally, to each pendant edge in T ′
b add the value of max�∗.
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This shifts the index scores of T ′
b into the gap between �∗ and �∗ without altering the

ranking of these leaves.
Let x̃α be the taxon such that ϕTa (x̃α) is the largest value in �∗ among scores from

Ta (as opposed to T̃a). The result of the above construction is that we have

ϕT (x̃1) < . . . < ϕT (x̃α) < ϕT (x̃na−ca+1)

< . . . < ϕT (x̃n−cT ) < ϕT (x̃α+1) < . . . < ϕT (x̃na−ca )

and

ϕT̃ (x̃1) > . . . > ϕT̃ (x̃α) > ϕT̃ (x̃na−ca+1)

> . . . > ϕT̃ (x̃n−cT ) > ϕT̃ (x̃α+1) > . . . > ϕT̃ (x̃na−ca ).

Therefore the extinction of X \ X̃ has induced a strict and reversible ranking on X̃
given our chosen edge lengths. Hence the induction is proved and the theorem holds
for all rooted phylogenetic trees where the root has out-degree 2.

We now describe how to extend the above idea to phylogenetic trees where the
root has greater out-degree. Let T̃ be the rooted phylogenetic tree induced from T
by the extinction of all but one leaf adjacent to each interior vertex. Suppose that T̃
has maximal pendant subtrees T̃1, T̃2, …, T̃d̃ , where d̃ is the out-degree of the root
in T̃ . Without loss of generality we further suppose that T̃d̃ is the maximal pendant
subtree with the fewest leaves from this list. Note that, since T̃ contains at most one
leaf adjacent to each interior vertex, at most T̃d̃ consists of a single leaf.

We first apply the above interleaving process to the subtrees T̃1 and T̃2, with one
small change. Since T̃2 has at least two leaves we use Lemma 4 to ensure that the
set �2 contains no repeated values. Thus the strict and reversible ranking obtained
across leaves from T̃1 and T̃2 contains some interval δ′ between the lower half of
diversity index scores and the upper half of these scores. It is into this interval, scaling
as before, that we place the scores from �3, which itself will contain an inter-score
interval δ′′ in which to place scores from �4, and so on. We proceed iteratively in this
manner until finally we place the scores from �d̃ into the last interval. The result is a
single completely reversible ranking across all leaves of T̃ , with edge lengths chosen
according to the steps described. Therefore the statement of the theorem is proved for
all rooted phylogenetic trees. �	

4 Rigid interior diversity indices

Theorem 5 has shown that the non-rigid interior diversity indices, to the same extent as
FP, are not robust to extinctions.Wewould also like to establish the sameunderstanding
of rigid interior diversity indices. That is, which extinctions are required before a
complete ranking reversal can occur and, given the freedom to choose positive edge
lengths, which extinctions are sufficient? For a ranking derived from a rigid interior
diversity index to undergo a strict reversal, the extinction of at least all but one leaf
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adjacent to each interior vertex is still required, as Proposition 3 includes all diversity
indices. However, as an examination of (the quintessential rigid diversity index) ES
will show, such an extinction eventmay not be sufficient to reverse the entire ranking of
survivors’ index scores (Proposition 6). We then establish the necessary and sufficient
sets of extinctions for this class of diversity index. This involves a new definition,
categorising some leaves of a rooted phylogenetic tree as ‘isolated’. We show that
the additional extinction of these isolated leaves is sufficient for inducing a reversible
index ranking for any rigid diversity index (Theorem 9).

Proposition 6 Let T be a rooted caterpillar tree with at least four leaves. Then the
extinction of one leaf from the cherry of T is necessary, but not sufficient, to cause a
strict ranking of Equal-Splits index scores to reverse.

Moreover, let X = {x1, x2, x3, . . . , xn} be the leaves of T , where xn is adjacent to
the root vertex, and there is a path of length two from the root vertex to xn−1. Then the
extinction of any proper subset of {x1, x2, x3, . . . , xn−2} cannot cause a strict ranking
of Equal-Splits index scores to reverse.

Proof Let x1 and x2 be the two distinct leaves that form the unique cherry of T . By
Theorem 1 in Fischer et al. (2023), it is necessary for at least one of x1, x2 to be deleted
for the ranking of ES index scores to reverse.

The extinction of, say, x1 alone will lead to an increase in the ES index score of x2,
but the ES index scores of all other vertices remain the same. If T contains at least four
leaves, there are at least two leaves whose index scores are unaffected, and hence their
ranking order does not reverse. Thus the extinction of x1 or x2 alone is not enough to
reverse the ES index scores.

For a rooted caterpillar tree with n ≥ 4 leaves, suppose a strict subset of
{x1, x2, x3, . . . , xn−2} becomes extinct. Note that the extinction of a leaf xi affects
the ES index score of precisely those leaves descended from the parent of xi and no
others. By this reasoning the ES index scores of xn−1 and xn are unaffected by such
an extinction and the ranking cannot reverse. Therefore the deletion of xn−1 or xn is
necessary for an ES ranking reversal. �	

This result confirms our claim above, that some rigid interior indices can be robust to
the type of extinction events that cause ranking reversals on non-rigid interior indices.
We would like to know how few extinctions beyond those specified in Proposition
3 are necessary to induce a ranking reversal. Let T be a phylogenetic X -tree rooted
at ρ and let T̃ be the X̃ -tree induced by the extinction of X\X̃ . A fixed leaf for the
diversity index ϕ on T is any leaf x in X where ϕT (x) = ϕT̃ (x) independent of the
edge length assignment. For a strict and reversible ϕ ranking on X̃ to exist, there
must be at most one fixed leaf for ϕ on T . The focus on fixed leaves can help us to
understand the robustness of various diversity indices. Consider the β diversity index
defined in Sect. 2.1.When applied to caterpillar trees with n leaves (seeCatn in Fig. 6),
we require more than n − 4 extinctions to possibly induce a β ranking reversal on
surviving leaves. This is because all leaves on Catn , except the three leaves furthest
from the root, are fixed leaves under β for every extinction event that they survive.
Thus it is necessary for at least n − 4 of these fixed leaves to go extinct, plus one
from the cherry. This makes β more robust on Catn than other indices we examine,
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Fig. 6 A general caterpillar tree
used to show that ES index score
rankings can be reversed with as
few as two extinctions. Observe
that leaf xn−1 is the only
isolated leaf in this tree

however this advantage needs to be weighed against the disadvantages of boundary
indices discussed earlier.

Next, let x ∈ X be a leaf vertex with parent v ∈ V (T ) distinct from ρ, where x is
not contained in any m-cherry. Then we call x an isolated leaf if there is no vertex
u in the path P(T ; ρ, v) \ {ρ, v}, such that u itself is the parent of a leaf vertex. For
example, in the tree Catn in Fig. 6, leaf xn−1 is an isolated leaf because there is no
additional vertex in the path from the root ρ to w, the parent of xn−1, other than the
endpoints. Leaf xn is not isolated because its parent vertex is the root. All other leaves
of this tree are not isolated because the vertex w appears on all paths from ρ to the
parents of other leaves. Proposition 7 below shows that in addition to all but one leaf
adjacent to each interior vertex, we also require all but one isolated leaf to go extinct
before a strict and reversible ranking on T can occur for rigid interior diversity indices.

Proposition 7 Let T be a rooted phylogenetic X-tree with |X | ≥ 3 and let ϕ be a rigid
diversity index on T . Suppose πT is a strict and reversible ranking concerning the
ϕ diversity index for T with respect to X̃ and induced subtree T̃ . Then X ′ = X \ X̃
contains at least all but one of the leaves adjacent to each interior vertex of T and
at least all but one of the isolated leaves of T . In the case that one of the maximal
pendant subtrees of T contains a single leaf, then X ′ must contain all of the isolated
leaves of T .

Proof Each isolated leaf may be a fixed leaf if ϕ is a rigid diversity index. Any leaf
whose parent vertex is the root is also a fixed leaf, because its diversity index score is
always just the length of the incident pendant edge. To induce a strict and reversible
ranking on X̃ under a diversity index at most one fixed leaf for ϕ on T can remain.
Therefore, the deletion of at least all but one isolated vertex is required and if one of
the maximal pendant subtrees of T contains a single leaf then the final isolated leaf
must be deleted too. Since the extinction of at least all but one of the leaves adjacent
to each interior vertex is needed to reverse any strict diversity index ranking, the result
is shown. �	
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Our next results show that the extra extinction of isolated vertices is sufficient to give
a ranking reversal for rigid interior diversity indices. That is, those interior diversity
indices not covered byTheorem5 are also not robust given this larger set of extinctions.
Lemma 8 describes how we can choose edge lengths for a rooted phylogenetic tree
T so that, after the extinction of all isolated leaves and all but one leaf adjacent to
each interior vertex of T , we can ensure that there is at most one fixed leaf for any
rigid interior diversity index. Theorem 9 then uses this lack of multiple fixed leaves to
determine edge lengths that induce a ranking reversal.

Lemma 8 Let T be a rooted phylogenetic X-tree and let ϕT = ∑
e∈E(T ) γ (x, e)�(e)

be an interior diversity index on T . Suppose that T̃ is the rooted phylogenetic X̃ -tree
induced by the extinction of all isolated leaves and all but one leaf adjacent to each
interior vertex of T . Then there exist edge lengths for T such that X̃ contains at most
one fixed leaf for ϕ on T .

Proof We prove the result by describing how certain edge lengths can be extended to
ensure that at most one fixed leaf for ϕ exists in T . Let � be an edge length assignment
function on E(T ). Assume that there exists vertex x̃i ∈ X̃ such that ϕT (x̃i ) = ϕT̃ (x̃i )
and x̃i is not adjacent to the root vertex. If x̃i is a member of an m-cherry in T , let e+

i
be the edge whose terminal vertex is the parent of x̃i in T . Then increasing the length
of e+

i will increase ϕT̃ (x̃i ) by m times the amount that ϕT (x̃i ) increases. Hence, x̃i is
no longer a fixed leaf after extending e+

i .
If x̃i is not a member of an m-cherry in T , then there exists some isolated leaf

x j ∈ X whose parent in T is in the path P(T ; ρ, x̃i ). This must be the case or x̃i
would itself be an isolated leaf of T , contradicting the fact that all isolated leaves have
been deleted. Let e+

j be the edge in T whose terminal vertex is the parent of x j . We set

γ (x j , e
+
j ) = α, where α lies in the open interval (0, 1) because ϕ is not a boundary

index. Let γ (x̃i , e
+
j ) = p. Since ϕ has a consistent form (Proposition 11 of Manson

and Steel 2023), we can write p = (1−α)q for some q ∈ (0, 1). Increasing the length
of e+

j by, say, k units increases ϕT (x̃i ) by pk but increases ϕT̃ (x̃i ) by qk, a different

amount since α is nonzero. Hence x̃i is no longer a fixed leaf after extending e+
j .

Therefore we can extend particular edges as required to get a set of edge lengths
for which ϕT (x̃i ) 
= ϕT̃ (x̃i ) whenever x̃i is not adjacent to the root vertex. �	
Theorem 9 Let T be a rooted phylogenetic X-tree and let ϕT = ∑

e∈E(T ) γ (x, e)�(e)

be an interior diversity index on T . Suppose that T̃ is the rooted phylogenetic X̃ -tree
induced by the extinction of all isolated leaves and all but one leaf adjacent to each
interior vertex of T . Then there exists an edge length assignment function � on T
such that there is a strict ϕ ranking πT for the leaves of T that is reversible with
respect to T̃ .

Proof The proof consists of two parts. We first construct an edge length assignment
function �′ for T . Next, we adjust the lengths of pendant edges to construct the edge
length assignment function � with the desired reversal property.

Let Fiso be a set containing precisely those edgeswhose terminal vertex is the parent
of an isolated leaf. Let Fch be a set containing precisely those edges whose terminal
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vertex is the parent of leaves in an m-cherry, except any edge e = (u, v) for which
some edge in Fiso lies in the path P(T ; ρ, u). We now combine these two sets, writing
Fiso ∪ Fch = F = { f1, f2, . . . , ft }.

Let �′ : E(T ) → R
>0 be an edge length assignment function on T given by

�′( fk) = M + kε for each fk ∈ F and �′(e) = ε for each e ∈ E(T )\F , where
0 < ε � M . We ensure that the value of M is chosen to be large enough that there
are no fixed leaves in X̃ except possibly one fixed leaf whose parent is the root vertex.
It is possible to choose M with this property by Lemma 8.

Next, we define a number of values based on the �′ edge lengths that will help
define the function �. For each surviving leaf we calculate the difference between
their ϕ index scores, under �′, before and after the extinction event. That is, for each
x̃ ∈ X̃ we calculate ��′(x̃) = ϕT̃ ,�′(x̃) − ϕT ,�′(x̃). By our choice of M , at most one
��′ value is zero and including the kε terms in the definition of �′ ensures each ��′
value is distinct. Hence we can label the leaves of X̃ as x̃1, x̃2, . . . , x̃m in such a way

that ��′(x̃1) > ��′(x̃2) > . . . > ��′( ˜xm). Let ci = 1
2

(
ϕT̃ ,�′(x̃) + ϕT ,�′(x̃)

)
and let

c = max{ci : 1 ≤ i ≤ m}. Finally, let ei be the pendant edge incident with x̃i and
P = {ei : 1 ≤ i ≤ m} be the set of these pendant edges.

Now we define the edge length assignment function � : E(T ) → R
>0, given by

�(e) = �′(e) for all e ∈ E(T )\P and �(ei ) = c− ci + ε for all ei ∈ P . Using the edge
lengths given by �, we see that for each distinct xi and x j with i < j the following
two inequalities hold:

ϕT ,�(x̃i ) = [ϕT ,�′(x̃i ) − ε] + c − ci + ε

= c + ϕT ,�′(x̃i ) − 1

2
ϕT ,�′(x̃i ) − 1

2
ϕT̃ ,�′(x̃i )

= c − 1

2
��′(x̃i )

< c − 1

2
��′(x̃ j ) = ϕT ,�(x̃ j )

ϕT̃ ,�
(x̃i ) = [ϕT ,�′(x̃i ) − ε] + ��′(x̃i ) + c − ci + ε

= c + 1

2
��′(x̃i )

> c + 1

2
��′(x̃ j ) = ϕT̃ ,�

(x̃ j )

Therefore ϕT ,�(x̃1) < ϕT ,�(x̃2) < . . . < ϕT ,�(x̃m) before this extinction event and
ϕT̃ ,�

(x̃1) > ϕT̃ ,�
(x̃2) > . . . > ϕT̃ ,�

(x̃m) afterwards. That is, there is a strict ranking

for the leaves of T that is reversible with respect to T̃ . �	
We now give a concrete example of the construction used in the proof of Theorem

9. Consider the tree T in Fig. 3 under the Equal-Splits diversity index. The set F in
this case consists of three edges: f1 = (p, q), f2 = (r , t) and f3 = (r , u). Suppose
that leaves x2, x5, x7, x8 and x10 are deleted, inducing the tree T̃ that connects the
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Table 2 Values used to establish edge lengths for the tree T in Fig. 7 that lead to a strict and reversible
ranking of Equal-Splits index scores

xi EST ,�′ (xi ) EST̃ ,�′ (xi ) ��′ (xi ) ci �(ei ) EST ,�(xi ) EST̃ ,�
(xi )

x6 8 32 24 20 4 12 36

x9 16 32 16 24 ε 16 32

x4 8 16 8 12 12 20 28

x1 2 8 6 5 19 21 27

x3 4 8 4 6 18 22 26

x11 ε ε 0 ε 24 24 24

The values are determined in accordance with the construction described in the proof of Theorem 9 with a
chosen value of M = 32

Fig. 7 Rooted phylogenetic tree
T labelled with edge lengths.
For these edge lengths, the
extinction of leaves x2, x5, x7,
x8 and x10 leads to a reversal of
Equal-Splits rankings for the
surviving species

six remaining leaves. Table 2 gives values for Equal-Splits on both T and T̃ for the
surviving species, using an edge length assignment �′ that uses a value of M = 32.
This table also shows values for ��′(x̃i ) and ci for each leaf x̃i . The value of c is
indicated in bold. The next columns give the lengths of the pendant edges under the
assignment function � and values for Equal-Splits on both T and T̃ using an edge
length assignment �. We have chosen to simplify the table by not including the terms
of order O(ε) where they do not impact the rankings we construct. Note that the
ordering of the values is opposite in the final two columns, showing that this selection
of edge lengths has indeed induced a reversible ranking of ES scores. Figure7 shows
the tree T with the edge lengths given by � labelled.

5 Robustness of diversity indices under the ultrametric constraint

We now consider the rankings of diversity index scores on phylogenetic trees whose
edge lengths obey the ultrametric constraint. Fischer and colleagues noted that for a
rooted ultrametric caterpillar tree no set of extinctions is able to change the ranking
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order of the remaining leaves (Fischer et al. 2023, Proposition 1). However, we shall
show here that this robustness does not extend to all ultrametric rooted phylogenetic
trees, by giving examples of complete ranking reversals for FP and ES. To understand
how these example trees were found, we first outline some necessary conditions for
the reversibility of FP index scores in the ultrametric context. Note that, to simplify
the presentation in this section, we restrict our attention to rooted binary phylogenetic
trees.

For every diversity index ϕ the ranking π(X , ϕT ) on an ultrametric rooted binary
phylogenetic X -tree T cannot be strict, as both leaves from any ultrametric cherry
must have equal index scores. With this in mind, we impose some further conditions
that are not explicitly addressed by the earlier definition of a reversible diversity
index. For xi , x j ∈ X , whenever πT (xi ) < πT (x j ) we require πT̃ (xi ) > πT̃ (x j )
for πT̃ to be considered to be in the opposite order to πT . That is, it is not enough
for πT̃ (xi ) = πT̃ (x j ). Moreover, to eliminate trivial reversals, for a ranking πT̃ to
be considered to be in the opposite order to πT , we require πT (xi ) < πT (x j ) and
πT̃ (xi ) > πT̃ (x j ) for at least one pair of distinct leaves xi , x j . The necessary conditions
for a Fair Proportion ranking reversal under the ultrametric constraint are given in
Proposition 10 and Corollary 11. It can be easily seen that caterpillar trees do not meet
the criterion below. However many other ultrametric rooted phylogenetic trees do, as
shown in Sect. 5.1.

Proposition 10 Let T be a rooted binary phylogenetic X-tree whose edge lengths
satisfy the ultrametric condition and let πT be the ranking of FP index scores for T .
Suppose x ∈ X is a leaf vertex contained in no cherry of T . Let v be the parent vertex
of x and write cT (v) as the disjoint union {x} ∪ A, where A contains at least two
distinct leaves of T .

Then there exist ultrametric edge lengths and a set of extinctions for which the
ranking πT is reversible only if, whenever x survives, the entire set A has become
extinct.

Proof Let x ∈ X be a leaf of T that is not contained in any cherry, and let v be the
parent vertex of x . As x is not in a cherry, cT (v) must contain at least two distinct leaf
vertices different from x , say y and z.

Then FPT (x) must be larger than FPT (y). To see this, first note that both x and y
are allocated the same proportion of edge lengths along the path from the root vertex
to v. As T satisfies the ultrametric condition, the length of edge (v, x) is the same as
the length of the path between v and y. Yet while leaf x is allocated the entire length
of edge (v, x), leaf y is only allocated part of the total length of the edges along the
path from v to y. This is because y must share some of this total with z (from along
the edges connecting v to the common parent of y and z).

Next, suppose a set of extinctions occurs that both x and y survive and that T̃ is the
resulting phylogenetic tree. Then FPT̃ (y) can be no larger than FPT̃ (x), with equality
holding if and only if x and y form a cherry in T̃ . Hence x and y are not ranked in
the opposite order in πT̃ compared to πT . Hence the ranking πT is not reversible if y
survives alongside x . Repeating this observation for all vertices in cT (v) (other than
x) gives the stated result. �	
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Fig. 8 An ultrametric rooted phylogenetic treeU before and after a set of extinctions that reverses both the
FP and ES index score rankings for surviving species. See Table 3 for details

Corollary 11 Let T be a rooted binary phylogenetic X-tree whose edge lengths satisfy
the ultrametric condition and let πT be the ranking of FP index scores for T . There
exist ultrametric edge lengths and a one-per-cherry extinction event for which the
ranking πT is reversible only if every leaf in X is a member of some cherry.

Proof Let x ∈ X be a leaf of T that is not contained in any cherry, and let v be the
parent vertex of x . As x is not in a cherry, cT (v) must contain at least two distinct leaf
vertices different from x .

Choose two vertices from cT (v) that form a cherry, say y and z. Suppose that, say,
y survives a one-per-cherry extinction event. Since x is not contained in any cherry
of T , then x must also survive the extinction event. Therefore, by Proposition 10, the
ranking πT is not reversible. �	

5.1 Examples of ultrametric phylogenetic X-trees with reversible rankings

We present a family of ultrametric rooted binary phylogenetic trees with reversible
rankings under both the Fair Proportion and Equal-Splits indices. Moreover we give
specific edge lengths to illustrate such reversals for both indices after the extinction of
one leaf per cherry. The family is illustrated by a representative treeU in Fig. 8a, with
twelve leaves: x1, . . . , x12. A similar tree can be constructed for any even number of
leaves n, where the sum of the edge lengths on the unique path from the root vertex
to a leaf is n − 1 and the pendant edges right-to-left follow the pattern of increasing
positive integer values as shown. A second reversible ultrametric family, consisting of
balanced phylogenetic trees, is presented in supplementary material, as well as some
further individual examples.
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Table 3 Fair Proportion and
Equal-Splits index values for U
and Ũ , rounded to three decimal
places

x FPU (x) FPŨ (x) ESU (x) ESŨ (x)

x1 6.642 8.283 6.469 7.938

x3 6.642 8.283 6.469 7.938

x5 6.392 8.783 6.438 8.875

x7 6.225 9.450 6.375 9.750

x9 6.100 10.200 6.250 10.500

x11 6.000 11.000 6.000 11.000

The largest value in each column appears in boldface

Let U be the rooted phylogenetic tree in Fig. 8a with ultrametric edge lengths as
marked. The tree Ũ in Fig. 8b is obtained fromU after the extinction of every species
with an even subscript. The Fair Proportion index scores for each surviving leaf are
given in Table 3. Let πU and πŨ be rankings of FP index scores for the trees U

and Ũ respectively. Observe that πŨ ranks the species in the opposite order to πU ,
hence πU is reversible. (The scores of leaves x1 and x3 remain equal before and after
the extinctions.) Table 3 also shows that the same behaviour occurs under the Equal-
Splits index on U . This example answers the question posed in Fischer et al. (2023)
by showing that the ‘worst-case’ scenario is possible under the ultrametric constraint.

6 Concluding remarks

Diversity indices offer us the ability to take a rooted phylogenetic tree that describes
the evolution of a set of species and quantify the evolutionary history of species indi-
vidually. Helpfully, the ranking of these diversity index scores can indicate priorities
for conservation. However, the usefulness of these rankings is diminished somewhat if
they are inconsistent over time.Were the changes to diversity rankings small in nature,
they might be easily ignored. But the potential for the complete reversal of these rank-
ings could cause uncertainty over the usefulness of diversity indices in general. Fischer
et al. (2023) do not conclude that reversibility was grounds for disregarding the use
of the Fair Proportion index entirely, but that it was an effect that needed to be kept
in mind. They suggest that taking various extinction events into account could be an
important consideration before applying diversity indices. Based on Theorems 5 and
9 here, we suggest that the lack of robustness is an unavoidable part of using phylo-
genetic diversity indices, apart from possibly some boundary indices that seem quite
unrealistic. These results indicate that the lack of a diversity index that is both robust
and biologically reasonable is because such an index does not exist.

As such, reversibility is less a property to be held against FP or ES in preference
to other diversity indices and rather more an aspect of measuring at a species-by-
species level starting from a phylogenetic tree. We should not be surprised that a
species’ contribution to the phylogenetic diversity of a larger set changes (usually
increasing) given the demise of close relatives. Thus a diversity index that sensibly
measures this contribution cannot be expected to fix its scores in the face of ongoing
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extinction events. Combinations of extinctions will likely lead to many score changes
(of differing magnitudes) that could upset the initial ranking. In the extreme, we have
seen complete reversals of rankings are possible.

The examples given in this paper have shown that ranking reversals may be induced
not only given quite varied edge lengths but also on rooted phylogenetic trees under
the ultrametric constraint. It may be useful for further investigation to determine the
minimumnumber of extinctions required to cause anFP ranking reversal on ultrametric
trees. This number will likely depend on the total number of leaves in a tree, as well
as the number of leaves allowed to have the same FP index score despite not sharing a
cherry. An understanding of these minimal extinction events could help to determine
whether the converse of Proposition 10 holds and the extent to which real, time-based
phylogenies may be susceptible to reversals.

Our presentation has largely been concerned with the theoretical worst-case sce-
narios. For this reason, the examples provided may not seem particularly realistic or
relevant, especially given the large number of simultaneous extinctions required for
the effects shown. The one-per-cherry extinction for binary non-rigid indices, the fur-
ther isolated leaf extinctions for rigid indices and the even more extinctions required
on nonbinary trees all push the limits of plausibility. Furthermore, Proposition 10
demands an even larger number of extinctions before an ultrametric ranking reversal
can occur, namely at least half of all species. This is likely an unrealistic number of
extinctions to occur together, but the point is that the extreme scenario is theoretically
possible. We hope that the negative effects of ranking disruption in real scenarios are
brought into focus by the stronger results shown in theory. Indeed, while simultaneous
extinctions may seem unlikely, the timescale of progressive extinctions is still possi-
bly shorter than that on which the related conservation efforts are able to adapt and
reprioritise. Short of a complete reversal are many types of ranking alterations that
would be quite unsettling to a co-ordinated programme of conservation. In addition,
Fischer and colleagues investigated the effect of one-per-cherry extinctions on 575
real phylogenies under Fair Proportion and found dramatic re-orderings of FP index
scores were indeed possible with real data (Fischer et al. 2023).

Finally, phylogenetic diversity indices, as have been used until now and as were
described in Manson and Steel (2023), have been based on the assumption that, while
edge lengths are used to calculate particular score values, the method of calculation
should be independent of the lengths themselves. This has not been adequately justified
apart from on the grounds ofmathematical simplicity and the fact that the two diversity
indices used in practice (FP and ES) both have this property. The widespread nature
of diversity index ranking reversals suggests there may be value in using a measure
that takes into account edge lengths more directly, if doing so could minimise ranking
disruptions.
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