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Abstract
The aim of this paper is to develop and investigate a novel mathematical model of
the dynamical behaviors of chronic hepatitis B virus infection. The model includes
exposed infected hepatocytes, intracellular HBVDNA-containing capsids, uses a gen-
eral incidence function for viral infection covering a variety of special cases available
in the literature, and describes the interaction of cytotoxic T lymphocytes that kill the
infected hepatocytes and the magnitude of B-cells that send antibody immune defense
to neutralize free virions. Further, one time delay is incorporated to account for actual
capsids production. The other time delays are used to account formaturation of capsids
and free viruses. We start with the analysis of the proposed model by establishing the
local and global existence, uniqueness, non-negativity and boundedness of solutions.
After defined the threshold parameters, we discuss the stability properties of all pos-
sible steady state constants by using the crafty Lyapunov functionals, the LaSalle’s
invariance principle and linearization methods. The impacts of the three time delays
on the HBV infection transmission are discussed through local and global sensitivity
analysis of the basic reproduction number and of the classes of infected states. Finally,
an application is provided and numerical simulations are performed to illustrate and
interpret the theoretical results obtained. It is suggested that, a good strategy to erad-
icate or to control HBV infection within a host should concentrate on any drugs that
may prolong the values of the three delays.
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1 Introduction

As one of the most deadly and devastating recognized diseases worldwide, hepatitis
B is a potentially life-threatening liver infection (Lok and McMahon 2007). It is an
acute and chronic infection caused by the hepatitis B virus (HBV) a member of the
DNA viruses in the family Hepadnaviridae (Chen et al. 2015), which is contracted
through mainly contact with blood or other bodily fluids. HBV infection is related to
the major global health problems as it can cause chronic infection and lead to high
risk of death from primary hepatocellular carcinoma, liver failure, liver cancers or
cirrhosis and acute renal failure, which is an additional new complication attributable
to HBV (Chen et al. 2015; Kishi 2013). In 2010, chronic HBV was ranked as the
fifteenth cause of mortality through the world, with about 800 000 deaths of the total
(Lavanchy and Kane 2016).

It is widely admitted that the parenchymal cell of the liver, called hepatocyte, is the
primary site of HBV infection (Guidotti and Chisari 2006). HBV is an enveloped hep-
atotropic virus containing a relaxed circular partially double-stranded DNA genome
with is 3.2 kb in length (Guo et al. 2018; Guo 2007; Ribeirom et al. 2002; Tu 2021).
The life cycle of HBV can be detailed as follows. First, during hepatocytes infection,
viral genomic DNA is converted into an episomal covalently closed circular DNA
(cccDNA) inside the nucleus of the infected hepatocyte and serve as the template
for mRNA production (Guo 2007; Lewin et al. 2002; Ribeirom et al. 2002; Tu 2021).
Thenceforth, several copies of cccDNAcreate the pregenomic and subgenomicmRNA
and can be transcribed into at least four major viral RNAs (Guo et al. 2018; Guo 2007;
Manna 2017; Ribeirom et al. 2002; Tu 2021). Afterwards, the polymerase and pgRNA
are encapsidated into the viral nucleocapsid, indicating the genome replication initi-
ation (Lentz and Loeb 2010). Next, pgRNA follows reverse transcription procedure
to transform into a double-stranded HBV DNA (Guo et al. 2018; Lewin et al. 2002;
Manna 2017; Murray et al. 2006). Finally, this leads to the production of HBV DNA-
containing capsid and then a part of freshly produced HBV DNA-containing capsid is
transmitted to plasma under HBV core particle form and packed by HBsAg to create
the complete free virions (Guo et al. 2018;Manna 2017), another part ofHBVcore par-
ticle is reemployed for the next replication cycle (Guo et al. 2018). Therefore, capsid
represents the protein coat surrounding the nucleic acid of a virus. It plays an important
role in virus formation and replication during the maturation phase of the free virions
(Bruss 2004; Grimm et al. 2011; Pairan and Bruss 2009). Free HBV particles can
lead to develop viral persistence in the patients when strong cytotoxic T lymphocytes
(CTL) and antibody immune defense are absents. But, it is worth mentioning that
HBV can replicate and duplicate within target cells without causing direct cell dam-
age (Tan et al. 2015). The defense against HBV infection pathogen is a major function
of the adaptive immunity (Bertoletti and Ferrari 2016). The adaptive immunity, which
is constituted of CTLs and antibody B cells, has been recognized as a main crucial
player in the clearance of HBV infection (Tan et al. 2015). When CTLs attack and kill
infected hepatocytes to reduce HBV load, B cells attack and neutralize free virions
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to prevent reinfection process. Hence, focusing on the adaptive immunity activation
states, may provide new strategies for evaluating immune status of HBV infection,
policing progression of hepatitis B and predicting efficacy of antiviral treatment (Li
et al. 2014).

Over the past few decades, several mathematical models have been developed
and studied to explore mechanisms and within-host viral infection dynamics process
by employing ordinary differential equations (ODEs), delay differential equations
(DDEs) and partial differential equations (PDEs). These models provide insights into
in vivo viral load dynamics and play a significant role in the development of a better
understanding of HBV infection. Furthermore, as samples cannot always be taken
frequently from patients, or detection techniques of the free virion may not be faithful
to the truth, testing specific hypotheses based on clinical experimental data remains a
worthwhile challenge, justifying the role played by mathematical models in this area.
The history of mathematical modeling of the dynamics of HBV infection transmission
begins with the pioneering work of Nowak and his co-workers (Nowak et al. 1996).
Their model consists of ODE and investigates the relation between uninfected hepato-
cytes, infected hepatocytes and free viruses. They gave a quantitative understanding of
HBV replication dynamics in vivo. After that, many other models have been designed
to improve the shortcomings observed and extend this basic model by including other
forms of infection rates or additional components. We can cite the work of Nowak
and Bangham, which extended this baseline model by incorporating cytotoxic T lym-
phocyte immune responses in Nowak and Bangham (1996). By building Lyapunov
functions, Korobeinikov (2004) established the global stability of system proposed in
Nowak et al. (1996). Min and co-workers (Min et al. (2008)) amended this basic viral
infection model by replacing the mass action term by a standard incidence function
for the infection process. Wang and his collaborators (Wang et al. 2010) extended
the model in Nowak et al. (1996) by taking into account the cytokine-mediated cure
of infected liver cells and investigated a global stability analysis. Hews et al. (2010)
extended the basic model in Nowak et al. (1996) by replacing the constant infusion of
healthy hepatocytes with a logistic growth term and the mass action term by a standard
incidence function. A similar type ofmodel for HBV infectionwith logistic hepatocyte
growth and mass action term was formulated and analyzed in Li et al. (2011). Manna
and Chakrabarty (2015a) were the first to model HBV infection by incorporating
both uninfected hepatocytes and HBV DNA-containing capsids. Meskaf et al. (2023)
investigated anODEmodel of hepatitis Bwith capsids by considering the proliferating
of its dynamics following logistic growth function and saturated incidence rate. The
dynamics of a viral infection model with Crowley-Martin type functional response
was studied in Xu (2012). The models including the role of the adaptive immunity
in fighting the free virions and reducing the infected hepatocytes were investigated in
Harroudi et al. (2020), Jiang and Wang (2014), Yousf et al. (2011). It is worthy noting
that the above models do not take into account the time delay. As a matter of fact,
for HBV infection and many other infectious diseases, it is important to consider the
influences of delays on the dynamics transmission of the disease. This is justified by
the fact that in epidemiological models, delay can be caused by a variety of factors
(Geng et al. 2018). Also, from the life cycle of HBV, it can be seen that the different
stages of the evolution of HBV in the hepatocytes do not take place at the same time.
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In order to take into account the effect of time delay, in the literature (Eikenberry et al.
2009), the authors proposed a delayed HBV infection model with logistic hepatocyte
growth. From the obtained model, they demonstrated the existence of sustained oscil-
lations aside from the stability of the biological relevant equilibria and their bifurcation
behavior. Wang and Tian (2013) discussed the global stability properties of a delayed
HBV infection model with CTL immune response. By using a simple ODE version
of the HBV infection model, Murray and co-workers (Murray et al. 2006) found that
the half-life of HBV virions is approximately 4h. Manna and Chakrabarty (2017)
presented and analyzed the dynamical behaviours of an HBV infection model with
capsids and two discrete delays. Dixit and Perelson (2004) estimated that the time
delay for virus production is approximately one day.

By using the assumption, made in Wang and Wang (2007), that the motion of virus
follows the Fickian diffusion, many authors incorporated the spatial dependence in the
modeling of HBV infection process in vivo. Tadmon and Foko (2019) extended the
work inWang andWang (2007) by incorporating logistic growth term and by replacing
themass action term by a standard incidence function. Afterward, in Tadmon and Foko
(2020), they considered the spatiotemporal model in Tadmon and Foko (2019) and
constructed two different discrete models by using the nonstandard finite difference
method. Manna (2018) made an extension of the reaction-diffusion HBV infection
model developed in Manna (2017) which studied the role of CTL immune response.
Geng et al. (2018) extended the model presented in Manna and Chakrabarty (2015b)
by considering the mobility of capsids and free viruses. They used the nonstandard
finite difference scheme to obtained a discrete model of the corresponding continuous
HBV infection model with capsids. In Guo et al. (2018), the authors formulated a
three delays spatiotemporal HBV infection model with general incidence functional
and capsids, where the third delay is taken in to account in the production of matured
free viruses. In Miao et al. (2018), the global stability of a two-time-delayed reaction-
diffusion model with general incidence rate and adaptive immunity was investigated
by employing appropriate Lyapunov functionals and LaSalle’s invariance principle.
Recently, Manna and Hattaf (2019), Miao et al. (2018), Danane and Allali (2018) and
Elaiw and Agha (2019), in this order, were the first to contain both capsids and adap-
tive immunity aside from uninfected cells, infected cells and free viruses. However, In
Manna and Hattaf (2019), Miao et al. (2018) and Elaiw and Agha (2019), the authors
considered the spatial mobility of capsids and free viruses and investigated the global
stability of the homogeneous equilibria by using suitable Lyapunov functionals. But,
in Danane and Allali (2018), the authors ignored the random mobility of capsids and
free virus particles and did not also discussed the global stability of the equilibrium
points. We first note that the threshold parameters of these models are independent
to the diffusion coefficients of capsids and free viruses. This indicates that diffusion
of capsids and free viruses have no effect on the global dynamical behavior of their
models. Next, we note that all the models developed in the above aforementioned
works have ignored an explicit equation for exposed infected hepatocytes and then
assumed that the uninfected hepatocyteswhich are exposed to free virions immediately
become infected. Gourley et al. (2008) proposed a global dynamics of a simple ODE
model of HBV with time delay and exposed infected cells, and used the method of
step to investigate the positivity of solutions. In Elaiw (2015), the author developed a
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mathematical virus dynamics model with Beddington-DeAngelis functional response
and humoral immunity including latently infected cells. He ignored the spatial diffu-
sion of free viruses and said that the proposed model may describe the dynamics of
HBV infection. In this case, the latently infected cells become the exposed infected
hepatocytes. Very recently, Tadmon et al. (2021) investigated a delayed spatiotem-
poral HBV infection model in presence of humoral immune response and exposed
infected hepatocytes. Foko and Tadmon (2022) proposed and analyzed a general dif-
fusive within-host HBV dynamics model with capsids, adaptive immunity and two
categories of infected hepatocytes: exposed infected hepatocytes and productively
infected hepatocytes. The model assumed that the different stages of the evolution
of intracellular HBV replication in the hepatocytes and the maturation process of the
capsids as well as free virus particles are instantaneous despite the fact that time delay
actually exists at each stage (Guo et al. 2018; Manna and Hattaf 2019). By employing
the nonstandard finite difference method, they studied the dynamics of fundamental
properties of both discrete and continuous models and shown that the discrete sys-
tem is dynamically consistent with the continuous model. To the best knowledge of
ours, there does not exit any work in the literature which incorporates at once capsids,
exposed infected hepatocytes, adaptive immunity and delay for the modeling of HBV
infection process in vivo.

Therefore, the objective of this work is threefold. Firstly, to propose a general math-
ematical model extending the work in Elaiw (2015), Elaiw and Agha (2019), Foko
and Tadmon (2022), Gourley et al. (2008), Manna and Hattaf (2019) by the incor-
poration of two categories of infected hepatocytes: exposed infected hepatocytes and
productively infected hepatocytes; secondly, to rigorously study the coming model by
addressing the global stability properties of the model; finally, to provide an applica-
tion of the model generalized and through this, carry out local and global sensitivity
analysis of the basic reproduction number and of the classes of infected states, and
perform numerical simulations through which, we present the impacts of the time
delays and mortalities during these time delays.

For the reason stated above, we will neglect the spatial mobility of capsids and free
viruses.

The model is built base on the model developed in Foko and Tadmon (2022).
Assuming that the different stages of the evolution of HBV in the hepatocytes do not
take place at the same time, we extend this model by incorporating three time delays
and mortalities during the three time delays. We derive five threshold parameters, and
show, employing the method of global Lyapunov function, that the global dynamics
of the model is completely determined by the range of the five threshold parameters.
From a sensitivity analysis of the basic reproduction number and of the classes of
infected states, we are able to discuss the impact of parameters that significantly
affect the basic reproduction number and the classes of infected states. The Lyapunov
functionals employed in this paper to prove the global stability of all possible equilibria
have the same form as those used in Elaiw and Agha (2019), Manna and Hattaf (2019)
when the diffusion of capsids and free viruses is neglected.

The work is organized as follows. In Sect. 2, we present the relevant biological
assumptions for the construction of themodel ofHBV infection in vivo. Themathemat-
ical model for the within-host dynamics of HBV infection presenting the interactions
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between intracellular HBV DNA-containing capsids, free viruses, adaptive immunity
and hepatocytes is also proposed. In Sect. 3, we investigate the mathematical analysis
of the established model. We prove global existence, uniqueness, non-negativity and
boundedness of the solution to the obtained model. In Sect. 4, we define the threshold
parameters and discuss the existence of all possible homogeneous equilibria. Sec-
tion5 is devoted to the stability properties of all possible equilibrium points by using
the crafty Lyapunov functionals, the LaSalle’s invariance principle and linearization
methods. In Sect. 6, an application is given to confirm the theoretical results obtained.
Finally, a conclusion and discussion are drawn in Sect. 7.

2 Model construction

We begin this section by describing the process of HBV infection. We note that after
entering the body, the HBV is driven into the liver through the bloodstream. Then
it binds to receptors situated at the surface of a susceptible hepatocyte. Thereafter,
these hepatocytes go through an exposed stage, during which they change to produce
immature viral capsids after τ1 units of time, where τ1 denotes the time necessary
to construct, transcribe and translate the episomal viral DNA genome, fabricate and
then release the first new immature capsids. In addition, at the same τ1 units of time,
exposed infected hepatocytes convert to productively infected hepatocytes, which in
turn contributes to the production of matured intracellular HBVDNA-containing cap-
sids after τ2 units of time, where τ2 means the time spend needed for that production.
More specifically, the intracellular delay τ1 describes the exposure period between the
time when target cells are exposed and the time when exposed infected hepatocytes
become actively infected and the immature viral capsids are fabricated. The newly
activated infected target cells at time t are such that a quantity is the survival rate
of virion-infected hepatocytes at time t and become activated at τ1 time later. The
intracellular delay τ2 describes the time between viral capsids release and maturation.
Then, the number of mature capsids produced at time t is such that a fraction is the
survival rate of hepatocytes that start budding from activated infected hepatocytes at
time t and become mature capsids at τ2 time later. Now, after maturation, capsids are
released and become new virions after τ3 units of time, where τ3 denotes the time
needed for the newly produced virions to become mature. On the other words, the
virus replication delay τ3 describes the time between viral release and maturation.
Then, the number of mature viral particles generated at time t is such that a quantity is
the survival rate of capsids that will be, in life at time t and become free mature viruses
at τ3 time later. Finally, a general incidence rate may help us to obtain the unification
theory by omitting unessential details. Inspired by the aforementioned process, we
formulate the following HBV infection model with capsids, adaptive immunity, three
time delays and a general incidence rate, and including both the number of exposed
infected hepatocytes and productively infected hepatocytes:
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Fig. 1 A schematic diagram of the model (2.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dH
dt = s0 − dH(t) − f (H(t), V (t))V (t),
dE
dt = f (H(t), V (t))V (t) − e−β1τ1 f (H(t − τ1), V (t − τ1))V (t − τ1) − β1E(t),
d I
dt = e−β1τ1 f (H(t − τ1), V (t − τ1))V (t − τ1) − δ I (t) − pI (t)Z(t),
dD
dt = ke−β2τ2 I (t − τ2) − (α + δ)D(t),
dV
dt = αe−β3τ3D(t − τ3) − μV (t) − rV (t)W (t),
dW
dt = bV (t)W (t) − cW (t),
dZ
dt = aI (t)Z(t) − qZ(t).

(2.1)
For biological reasons, the initial conditions for model (2.1) take the form

H(θ) = φ1(θ), E(θ) = φ2(θ), I (θ) = φ3(θ),

D(θ) = φ4(θ), V (θ) = φ5(θ), W (θ) = φ6(θ),

Z(θ) = φ7(θ), θ ∈ [−τ, 0], τ = max{τ1, τ2, τ3}, φi (0) > 0, i = 1, . . . , 7.
(2.2)

where φ1(θ), φ2(θ), φ3(θ), φ4(θ), φ5(θ), φ6(θ) and φ7(θ) ∈ C+ and φ =
(φ1, φ2, φ3, φ4, φ5, φ6, φ7) ∈ C+ × C+ × C+ × C+ × C+ × C+ × C+

The biological terms H(t), E(t), I (t), D(t), V (t), W (t) and Z(t) represent
the densities of uninfected hepatocytes, exposed infected hepatocytes, productively
infected hepatocytes, HBV DNA-containing capsids, free viruses, the magnitude of B
cells and CTL cells at time t . The uninfected hepatocytes are created at a constant rate
s0, either from differentiation of progenitor cells or by direct proliferation of mature
hepatocytes (Ribeirom et al. 2002). Moreover, uninfected hepatocytes die at rate dH
and become exposed infected through free virus at rate f (H , V )V . The second equa-
tion of model (2.1) describes the behavior of exposed infected hepatocytes, that is,
hepatocytes that have been infected but are not yet producing new capsids, and shows

123



75 Page 8 of 55 S. Foko

that they die at rate β1E . We assume that all infected cells initially enter a period of
exposure to infection that last exactly τ1 days. That is, the delay parameter τ1 repre-
sents the time necessary for exposed cells to convert to productively infected and then
produce immature viral capsids. This implicitly assumes that exposed infected hepa-
tocytes are not targeted by the CTL immune defense. Recall that after τ1 day, exposed
infected hepatocytes become actively infected. Therefore, all hepatocytes infected
t − τ1 days ago, where t stands for the current time, will either transition to the active
class at the proportion 1 − e−β1τ1 or die in the meantime at the proportion e−β1τ1 .

Thus, the quantity e−β1τ1 denotes the probability of surviving of hepatocytes infected
from t − τ1 to t,where β1 denotes the death rate for exposed infected hepatocytes that
are not yet actively infected. The third equation of system (2.1) describes the behavior
of hepatocytes that are actively producing capsids. The transition from the exposure
to active infection has already been described. The parameter k denotes the produc-
tion rate of HBVDNA-containing capsids from actively infected hepatocytes, while α

indicates the rate at which these capsids are transmitted to blood with a view to convert
into free virions. In Murray et al. (2005), the authors by considering that clearance
of infection proceeds through death of infected cells, they assumed that the amount
of death per day of total infected hepatocytes and HBV DNA-containing capsids is
proportional to some maximum related to alanine transaminase levels. But in Murray
et al. (2006), the authors, based on this assumption, developed a simplified version
of the HBV infection model described in Murray et al. (2005), in which they take
the same death rate for both infected hepatocytes and HBV DNA-containing capsids.
In the same vein, in this formulation, δ denotes the per capita death rate of produc-
tively infected hepatocytes as well as HBV DNA-containing capsids. The biological
parameter μ denotes the clearance rate of virions in plasma. Productively infected
hepatocytes are removed by CTL cells at rate pI Z whereas free virions are neutral-
ized by antibodies at a rate rVW .Besides, B cells expand in response to free virions at
rate bVW and decreased at rate cW . CTL cells are activated by infected hepatocytes
at rate aI Z and decreased in the absence of antigenic stimulation at rate qZ . Delay
parameter τ2 is the time for capsids to become mature before produce free virions.
From the literatures (Bruss 2004; Ganem and Prince 2004), we note that the produc-
tively infected hepatocytes release the HBV DNA-containing capsids under the form
ofmature virions after being enveloped by cellular membrane lipids and viral envelope
proteins. The term e−β2τ2 denotes the survival probability of immature capsids and
1/β2 represents the average lifetime of an immature capsids, where β2 is the decay
rate of immature capsids newly produced during the time period [t − τ2, t]. Delay
parameter τ3 represents the time needed for newly produced HBV DNA-containing
capsids to become free virions. The quotient e−β3τ3 is the probability of survival of
immature virions over the interval time period [t−τ3, t] and 1/β3 denotes the average
lifetime of immature virions, where β3 is the decreasing rate of new immature virions
produced during the delay period. Now, taking in to account the CTL and antibodies
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immune response time delays, system (2.1) become

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dH
dt = s0 − dH(t) − f (H(t), V (t))V (t),
dE
dt = f (H(t), V (t))V (t) − e−β1τ1 f (H(t − τ1), V (t − τ1))V (t − τ1) − β1E(t),
d I
dt = e−β1τ1 f (H(t − τ1), V (t − τ1))V (t − τ1) − δ I (t) − pI (t)Z(t),
dD
dt = ke−β2τ2 I (t − τ2) − (α + δ)D(t),
dV
dt = αe−β3τ3D(t − τ3) − μV (t) − rV (t)W (t),
dW
dt = be−β4τ4V (t − τ4)W (t − τ4) − cW (t),
dZ
dt = ae−β5τ5 I (t − τ5)Z(t − τ5) − qZ(t).

(2.3)
Here, since the antigenic activation generating CTL cells may require a period of time
lag, it can be assume that CTL produced at time t depends on the number of CTL
and productively infected hepatocytes at time t − τ5, for a time lag τ5 > 0. Thus,
the newly proliferated CTL cells at time t are given by a delayed term ae−β5τ5 I (t −
τ5)Z(t − τ5), where the quantity e−β5τ5 stands for the proportion of CTL cells that
can survive from time t − τ5 to time t . Similarly, antigenic stimulation generating B
cells may also need a period of time τ4 i.e., the B cells response at time t may depend
on the population of antigen at a previous time t − τ4. Then, we propose the form
be−β4τ4V (t − τ4)W (t − τ4) to model the antibodies immune response in system (2.3),
where the fraction e−β4τ4 denotes the proportion of B cells that can survive from time
t−τ4 to time t .Now, in Pang and Cui (2017) by analyzing aHBV infectionmodel with
immune response delay, the authors concluded that majority of hepatitis B infection
would eventually become a chronic infection due to the immune response time delay
which is fairly long. In Yosyingyong and Viriyapong (2023), the authors arrived to
the same conclusion for a six compartmental HBV infection model with capsids and
adaptive immune response, and only the delay in the productively infected hepatocytes
and in an antigenic stimulation generating CTL. Therefore, we first neglect the CTL
and antibodies immune response time delays and explore the dynamical behavior of
the model (2.1) with only the above three time delays. Investigation of the model
(2.3) taking into account the CTL and antibodies immune response time delays will
be the concern of a forthcoming work via an in-depth analysis of the system obtained.
Figure1 exhibits the connection between seven compartments and model parameters.
The general incidence function f (H , V ) is assumed to be continuously differentiable
in the interior ofR4+.Furthermore,we assume that f satisfies the following hypotheses.

Hypothesis 2.1 We assume that:

(B1) f (0, V ) = 0, for all V ≥ 0,
(B2) f (H , V ) is a strictly monotonically nondecreasing function with respect to H ,

that is, d f (H ,V )
dH > 0, for any fixed H > 0 and V ≥ 0,

(B3) f (H , V ) is a monotonically nonincreasing function with respect to V , that is,
d f (H ,V )

dV ≤ 0, for H ≥ 0, and V ≥ 0,

Biologically, the three hypotheses above are reasonable and accordant with the reality.
More precisely, assumption (B1) indicates that HBV infection cannot spread if there
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are no new exposed infected hepatocytes and actively infected hepatocytes (that is
f (H , V ) = 0) without healthy hepatocytes (H = 0) or virus particles (V = 0).
Requirement (B2) implies that the incidence function f (H , V )V becomes faster
as the densities of free viruses are constant and the density of healthy hepatocytes
increases. Thus, if the total number of free virion is constant, then the more the
amount of healthy hepatocyte is, the more the average number of hepatocytes which
are exposed through each virus and then converted to productively infected in the
unit time will be. Assumption (B3) indicates that the per capita infection rate by
free virions will slow down due to inhibition influence. Thus, if the total number
of healthy hepatocytes is constant, then the more the amount of free virions is, the
less the average number of hepatocytes which are infected by each free virion in
the unit time will be. Furthermore, for β0, a0, b0, κ0, c1 > 0, we can check that
class of general incidence function f (H , V ) satisfying Hypothesis 2.1 (B1)–(B3)

include several incidence function forms such as f (H , V ) = β0H in Manna (2018),
f (H , V ) = β0H

H+V in Hattaf and Yousfi (2016), Zhuo (2012), f (H , V ) = β0H
1+b0V

in

Xu and Ma (2009), f (H , V ) = β0H
1+a0H+b0V

in Beddington (1975), DeAngelis et al.

(1975), Zhang and Xu (2014), f (H , V ) = β0H
1+a0H+b0V+a0b0HV in Kang et al. (2017)

and f (H , V ) = β0H
κ0+a0H+b0V+c1HV in Hattaf and Yousfi (2016).

We aim in this paper to study the dynamical properties of model (2.1). Specifically,
the stability of all possible homogeneous equilibria, which induces the behaviors of
the proposed model, will be investigated.

3 Basic properties results

Consider the Banach space C = C([−τ, 0],R), of continuous functions from [−τ, 0]
toR endowed with the usual supremum norm. The nonnegative cone of C is defined by
C+ = C([−τ, 0],R+). By the fundamental theory of functional differential equations
(Hale and Verduyn Lunel (1993)), it is known that there exists a unique solution
(H(t), E(t), I (t), D(t), V (t),W (t), Z(t)) of model (2.1) satisfying initial conditions
(2.2).

From Theorem 2.1 in Cooke and van den Driessche (1996), we have the following
result.

Theorem 3.1 Let (H(t), E(t), I (t), D(t), V (t),W (t), Z(t)) be any arbitrary solu-
tion of model (2.1), with initial conditions given in (2.2). If in addition we have the
following compatibility condition

φ2(0) = E(0) =
∫ 0

−τ1

eβ1θ f (φ1(θ), φ4(θ))φ4(θ)dθ, (3.1)

then this solution satisfies the following integro-differential equation system
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dH
dt = s0 − dH(t) − f (H(t), V (t))V (t),

E(t) =
∫ t

t−τ1

e−β1(t−θ) f (H(θ), V (θ))V (θ)dθ,

d I
dt = e−β1τ1 f (H(t − τ1), V (t − τ1))V (t − τ1) − δ I (t) − pI (t)Z(t),
dD
dt = ke−β2τ2 I (t − τ2) − (α + δ)D(t),
dV
dt = αe−β3τ3D(t − τ3) − μV (t) − rV (t)W (t),
dW
dt = bV (t)W (t) − cW (t),
dZ
dt = aI (t)Z(t) − qZ(t).

(3.2)

Conversely, any arbitrary solution of the integro-differential equation system (3.2)
satisfies the second equation of system (2.1).

Proof The converse is obvious. Now, we prove the first assertion. From the second
equation of system (2.1), we get

d

dt

(
E(t)eβ1t

)
= eβ1t ( f (H(t), V (t))V (t) − e−β1τ1 f (H(t − τ1), V (t − τ1))V (t − τ1)),

which is equivalent to

d

dt

(
E(t)eβ1t

) = d

dt

{∫ t

t−τ1

eβ1θ f (H(θ), V (θ))V (θ)dθ

}

.

Integrating this over [0, t], gives

E(t) = e−β1t
(

E(0) −
∫ 0

−τ1

eβ1θ f (H(x, θ), V (θ))V (θ)dθ

)

+
∫ t

t−τ1

e−β1(t−θ) f (H(x, θ), V (θ))V (θ)dθ.

Using (2.2) and (3.1), the second equation of system (3.2) is established. This achieves
the proof. ��

The following result establishes the well-posedness of solutions of model (2.1) with
initial conditions (2.2).

Theorem 3.2 Let Hypotheses (B1)–(B3) hold. Then, solutions of model (2.1) with
initial conditions (2.2) are positive and ultimately uniformly bounded for t > 0.

Proof From the last two equations in (2.1), we have

W (t) = φ6(0) exp

{

−ct + b
∫ t

0
V (s)ds

}

> 0, for t ≥ 0 and

Z(t) = φ7(0) exp

{

−qt + a
∫ t

0
I (s)ds

}

> 0, for t ≥ 0.
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Now, we prove in this order that I , D, V H and E are positive.
By the third, fourth and fifth equations in (2.1), we get

I (t) = φ3(0) exp

{

−δt − p
∫ t

0
Z(s)ds

}

+
∫ t

0

{
e−β1τ1 f (H(φ − τ1), V (φ − τ1))V (φ − τ1)

}

×eδ(φ−t) exp

{

−p
∫ t

φ

Z(s)ds

}

dφ, (3.3)

D(t) =
[

φ4(0) + ke−β2τ2

∫ t

0
I (φ − τ2)e

(α+δ)φdφ

]

e−(α+δ)t , (3.4)

V (t) = φ5(0)e
− ∫ t0 z(s)ds + αe−β3τ3

∫ t

0
D(φ − τ3)e

− ∫ tφ z(s)dsdφ, (3.5)

where z(t) = μ + rW (t). Let t ∈ [0, τ ], where τ = max{τ1, τ2, τ3}. Then one has
φ − τ ∈ [−τ, 0] for all φ ∈ [0, τ ]. H(t) ≥ 0, I (t) ≥ 0, D(t) ≥ 0, V (t) ≥ 0 for
t ∈ [−τ, 0] and H(0) > 0, I (0) > 0, D(0) > 0, V (0) > 0. If t ∈ [0, τ ], then
the second term of (3.3) is non-negative, therefore I (t) > 0. Accordingly, the second
terms of (3.4) is positive, implying D(t) > 0. This in turn implies that the second
terms of (3.5) is positive, which means that V (t) > 0.

Next, let t1 be the first value of t such that H(t1) = 0. If t1 ≤ τ, then from the first
equation of system (2.1) and hypothesis (B1), we obtain that

dH(t)

dt

∣
∣
∣
∣
t=t1

= s0 > 0,

which give us a contradiction, because this implies that there exists an ε > 0 such that
H(t) < 0 for t ∈ (t1 − ε, t1). Thus H(t) > 0 for all t ∈ [0, τ ].

Now, let t2 be the first value of t such that E(t2) = 0. If t2 ≤ τ, then, since
E(t) = ∫ t

t−τ1
e−β1(t−s) f (H(s), V (s))V (s)ds by Theorem 3.1, we have

E(t2) =
∫ t2

t2−τ1

e−β1(t2−s) f (H(s), V (s))V (s)ds > 0,

a contradiction. Thus E(t) > 0 for all t ∈ [0, τ ]. Therefore, we have demonstrated
that H(t) > 0, E(t) > 0, I (t) > 0, D(t) > 0, V (t) > 0 for all t ∈ [0, τ ].

By repeating the above arguments, it can be shown that the variables H , E I , D and
V are positive on successive interval [nτ, (n + 1)τ ], n = 1, 2, . . . , where all include
times are positive.
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Now, it remains to prove the boundedness of solutions. For this, consider the fol-
lowing functional

Y (t) = H(t) + E(t) + I (t) + δ

kn
D(t) + δ(α + δ)

kαm
V (t) + p

a
Z(t) + rδ(α + δ)

kαbm
W (t)

+ δ

n

∫ t

t−τ2

e−β2(t−θ) I (θ)dθ + δ(α + δ)

km

∫ t

t−τ3

e−β3(t−θ)D(θ)dθ, m � n � 1.

(3.6)

Taking the time derivative of Y (t) yields

dY (t)

dt
= s0 − dH(t) − β1E(t) − δ(n − 1)

n
I (t) − δ(α + δ)(m − n)

knm
D(t)

−δμ(α + δ)

kαm
V (t) − pq

a
Z(t)

−rcδ(α + δ)

kαbm
W (t) − β2δ

n

∫ t

t−τ2

e−β2(t−θ) I (θ)dθ − β3δ(α + δ)

km
∫ t

t−τ3

e−β3(t−θ)D(θ)dθ

≤ s0 − γ0Y (t),

where γ0 = min

{

d, β1,
δ(n − 1)

n
,
(α + δ)(m − n)

m
, μ, q, c, β2, β3

}

.

Hence, lim sup
t→∞

Y (t) ≤ s0
γ0

:= M1, implying that lim sup
t→∞

H(t) ≤ M1,

lim sup
t→∞

E(t) ≤ M1, lim sup
t→∞

I (t) ≤ M1, lim sup
t→∞

D(t) ≤ knM1

δ
:= M2,

lim sup
t→∞

V (t) ≤ kαmM1

δ(α + δ)
:= M3, lim sup

t→∞
W (t) ≤ kαbmM1

rδ(α + δ)
:= M4, lim sup

t→∞
Z(t) ≤

aM1

p
:= M5. This shows that the variables H , E, I , D, V , W and Z are uniformly

bounded. This completes the proof. �
Theorem 3.2 implies that omega limit sets of model (2.1) are contained in the

following bounded feasible region:

� = {(H , E, I , D, V ,W , Z) ∈ R
7+ : ‖H‖∞, ‖E‖∞, ‖I‖∞

≤ M1, ‖D‖∞ ≤ M2, ‖V ‖∞ ≤ M3,

‖W‖∞ ≤ M4, ‖Z‖∞ ≤ M5}.

It can be verified that the region � is positively invariant with respect model (2.1) and
the system is well posed.
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4 Equilibria and threshold parameters

In this section, the biological feasible steady states of system (2.1) is investigated.
Further, the virus basic reproduction number, the antibody immune response repro-
duction number, the CTL immune response reproduction number, the competitive
CTL immune response reproduction number and the competitive antibody immune
response reproduction number are also discussed. Let P = (Ȟ , Ě, Ǐ , Ď, V̌ , W̌ , Ž)

be any feasible steady state of system (2.1). Then P satisfies the following algebraic
equations system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0 − d Ȟ − f (Ȟ , V̌ )V̌ = 0,

(1 − e−β1τ1) f (Ȟ , V̌ )V̌ − β1 Ě = 0,

e−β1τ1 f (Ȟ , V̌ )V̌ − δ Ǐ − p Ǐ Ž = 0,

ke−β2τ2 Ǐ − (α + δ)Ď = 0,

αe−β3τ3 Ď − μV̌ − r V̌ W̌ = 0,

bV̌ W̌ − cW̌ = 0,

a Ǐ Ž − q Ž = 0.

(4.1)

Then, from system (4.1), it can be easily shown that the unique HBV-free equilibrium

of system (2.1) is given by P0 = (H0, 0, 0, 0, 0, 0, 0), where H0 = s0
d

. Further, P0
always exists. It can be proven that the virus basic reproduction number of system
(2.1) is given by

R0 =
kα f

( s0
d

, 0
)

δμ(α + δ)
e−β1τ1−β2τ2−β3τ3 . (4.2)

Biologically speaking,R0 measures the average number of newly infected hepatocytes
generated by a single virion at the beginning of the infection process in a completely
susceptible population. Now, by writingR0 as

R0 = αe−β3τ3

μ
· ke

−β2τ2

α + δ
·
e−β1τ1 f

( s0
d

, 0
)

δ
, (4.3)

we obtain the following significance interpretations. The average survival time of an
infectious cell in the compartment I is 1

δ
. During this period, a virus-producing cell

generates k HBV DNA-containing capsids per unit time. α
α+δ

gives the amount of
virions created from an intracellular HBV DNA-containing capsid during its survival
duration. The fraction e−β1τ1 is the probability of surviving of hepatocytes infected
from t − τ1 to t,whereas the quotients e−β2τ2 and e−β3τ3 represent the probabilities of
surviving the immature capsids from time t−τ2 to time t, as well as the immature free
virus particles from time t − τ3 to time t, respectively. The average life expectancy

of a free virus is given by 1
μ
and f

( s0
d

, 0
)
denotes the value of the function f at the

beginning of the HBV infection process in vivo. These relevant arguments infer that
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R0 represents the expected number of newly actively infected cells generated either
by one exposed infected cell or one actively infected cell.

Now, from the sixth equation in (4.1), we have (bV̌ − c)W̌ = 0. This gives two
possible options, namely

V̌ = c

b
or W̌ = 0. (4.4)

Also, by the seventh equation in (4.1), we get (a Ǐ − q)Ž = 0. This also gives two
possible options, namely

Ǐ = q

a
or Ž = 0. (4.5)

Owing to (4.4) and (4.5), there are four cases.
First, consider that W̌ = 0 and Ž = 0. In this case, equilibrium conditions in (4.1)

are reduced to the following system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

s0 − d Ȟ − f (Ȟ , V̌ )V̌ = 0,

(1 − e−β1τ1) f (Ȟ , V̌ )V̌ − β1 Ě = 0,

e−β1τ1 f (Ȟ , V̌ )V̌ − δ Ǐ = 0,

ke−β2τ2 Ǐ − (α + δ)Ď = 0,

αe−β3τ3 Ď − μV̌ = 0.

(4.6)

Then, from (4.6), we establish the following relationships

f (Ȟ , V̌ )V̌ = s0 − d Ȟ , Ě = (s0 − d Ȟ)(1 − e−β1τ1)

β1
, Ǐ = (s0 − d Ȟ)e−β1τ1

δ
,

Ď = k(s0 − d Ȟ)e−β1τ1−β2τ2

δ(α + δ)
and V̌ = kα(s0 − d Ȟ)

δμ(α + δ)
e−β1τ1−β2τ2−β3τ3 . (4.7)

Equations in (4.7) yield

f

(

Ȟ ,
kα(s0 − d Ȟ)

δμ(α + δ)
e−β1τ1−β2τ2−β3τ3

)

= δμ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3 . (4.8)

Since Ǐ denotes the number of infected hepatocytes, it is required that Ǐ ≥ 0. So,

with this condition, it follows from the third term in (4.7) that Ȟ ≤ s0
d

. Define the

following function on [0, s0/d] as

F1(H) = f

(

H ,
kα(s0 − dH)

δμ(α + δ)
e−β1τ1−β2τ2−β3τ3

)

− δμ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3 .

(4.9)
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Based on the assumptions (B1)-(B3), we find

F1(0) = −δμ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3 < 0,

F1
( s0
d

)
= δμ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3(R0 − 1),

and

F ′
1(H) = ∂ f

∂H
− kαd

δμ(α + δ)
e−β1τ1−β2τ2−β3τ3

∂ f

∂V
> 0.

Clearly, we have F1
( s0
d

)
> 0 wheneverR0 > 1. Owing to (B2)-(B3), we know that

F1(H) is strictly monotonically nondecreasing function with respect to H . Thus, if
R0 > 1, there exists a unique root H1 ∈ (0, s0/d) such that F1(H1) = 0.Accordingly,
we get a unique immune-free equilibrium P1 = (H1, E1, I1, D1, V1, 0, 0), where

H1 ∈ (0, s0/d), E1 = (s0 − dH1)(1 − e−β1τ1)

β1
, I1 = (s0 − dH1)e−β1τ1

δ
,

D1 = k(s0 − dH1)e−β1τ1−β2τ2

δ(α + δ)
and V1 = kα(s0 − dH1)

δμ(α + δ)
e−β1τ1−β2τ2−β3τ3 .

This means that in the absence of immune response, the equilibrium infection point
P1 would exist whenever R0 > 1.

Next, if W̌ �= 0 and Ž = 0, then from (4.4), we have V̌ = c

b
. By the first three

equations in (4.6), we get

f
(
Ȟ ,

c

b

)
= b(s0 − d Ȟ)

c
.

Since, W̌ = kbα(s0 − d Ȟ)

δ(α + δ)rc
e−β1τ1−β2τ2−β3τ3 − μ

r
≥ 0 in term of biology, we have

Ȟ ≤ s0
d

− δμ(α + δ)c

dkbα
eβ1τ1+β2τ2+β3τ3 .

Now, we define the following function on the closed interval[

0,
s0
d

− δμc(α + δ)

dkbα
eβ1τ1+β2τ2+β3τ3

]

as

F2(H) = f
(
H ,

c

b

)
− b(s0 − dH)

c
.

Then, with the aid of (B1)-(B3), one has

F2(0) = −bs0
c

< 0 and F ′
2(H) = ∂ f

∂H
+ bd

c
> 0.
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This implies that the function F2 is strictly monotonically increasing with respect to
H . Define the antibody immune response reproduction number for system (2.1) by

R1 = b

c
V1 = kαb(s0 − dH1)

δμc(α + δ)
e−β1τ1−β2τ2−β3τ3 . (4.10)

R1 is the expected average number of antibody immune cells activated by virus when
HBV infection is successful and CTL immune response is not yet established (Manna
2018; Miao et al. 2018). In the expression of R1, b represents the activation rate of
antibody immune response, and 1

c denotes the average life span of antibody immune
cells and V1 is the number of free virions at equilibrium point P1.

Now, ifR1 > 1, then V1 >
c

b
and H1 <

s0
d

− δμc(α + δ)

dkbα
eβ1τ1+β2τ2+β3τ3 . So, we

have

F2

(
s0
d

− δμc(α + δ)

dkbα
eβ1τ1+β2τ2+β3τ3

)

= f

(
s0
d

− δμc(α + δ)

dkbα
eβ1τ1+β2τ2+β3τ3 ,

c

b

)

− δμ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3 ,

= F1

(
s0
d

− δμc(α + δ)

dkbα
eβ1τ1+β2τ2+β3τ3

)

> F1 (H1) = 0

This implies that whenR1 > 1, system (2.1) has a unique infection equilibrium with
only antibody immune response P2 = (H2, E2, I2, D2, V2,W2, 0), where

H2 ∈
(

0,
s0
d

− δμc(α + δ)

dkbα
eβ1τ1+β2τ2+β3τ3

)

, E2 = (s0 − dH2)(1 − e−β1τ1)

β1
,

I2 = (s0 − dH2)e−β1τ1

δ
, D2 = k(s0 − dH2)

δ(α + δ)
e−β1τ1−β2τ2 ,

V2 = c

b
and W2 = kbα(s0 − dH2)

δ(α + δ)rc
e−β1τ1−β2τ2−β3τ3 − μ

r
.

Now, if W̌ = 0 and Ž �= 0, then from (4.5), we have Ǐ = q

a
, Ě =

(s0 − d Ȟ)(1 − e−β1τ1)

β1
,

Ď = kqe−β2τ2

a(α + δ)
and V̌ = kαq

aμ(α + δ)
e−β2τ2−β3τ3 . By the first equation in (4.1), we

get

f

(

Ȟ ,
kαq

aμ(α + δ)
e−β2τ2−β3τ3

)

= aμ(α + δ)(s0 − d Ȟ)

kαq
eβ2τ2+β3τ3 . (4.11)
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But, by the third equation in (4.6), the number of CTL immune cells gives

Ž = a(s0 − d Ȟ)e−β1τ1

pq
− δ

p
≥ 0,

in term of biology, which reads as Ȟ ≤ s0
d

− δqeβ1τ1

ad
. Define the following function

on

[

0,
s0
d

− δqeβ1τ1

ad

]

as

F3(H) = f

(

H ,
kαq

aμ(α + δ)
e−β2τ2−β3τ3

)

− aμ(α + δ)(s0 − dH)

kαq
eβ2τ2+β3τ3 .

Then, thanks to (B1)-(B3), we have

F3(0) = −aμ(α + δ)s0
kαq

eβ2τ2+β3τ3 < 0 and

F ′
3(H) = ∂ f

∂H
+ adμ(α + δ)

kαq
eβ2τ2+β3τ3 > 0.

Now, we define the CTL immune defense reproduction number as

R2 = a

q
I1 = a(s0 − dH1)e−β1τ1

δq
. (4.12)

Then,R2 denotes the expected average number of CTL immune defense activated by
both exposed cells and infected hepatocytes when HBV infection is successful and
antibody immune response is not yet established. In the expression ofR2, a represents
the activation rate of CTL immune response, 1

q denotes the average life span of CTL
immune cells and I1 is the number of infected hepatocytes at equilibrium P1.

It is obvious that ifR2 > 1, then I1 >
q

a
and H1 <

s0
d

− δqeβ1τ1

ad
. So, we have

F3

(
s0
d

− δqeβ1τ1

ad

)

= f

(
s0
d

− δqeβ1τ1

ad
,

kαq

aμ(α + δ)
e−β2τ2−β3τ3

)

−δμ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3 ,

> f (H1, V1) − δμ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3 = 0.
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Accordingly, when R2 > 1, system (2.1) has a unique infection equilibrium point
with only CTL immune defense P3 = (H3, E3, I3, D3, V3, 0, Z3), where

H3 ∈
(

0,
s0
d

− δqeβ1τ1

ad

)

, E3 = (s0 − dH3)(1 − e−β1τ1)

β1
, I3 = q

a
,

D3 = kq

a(α + δ)
e−β2τ2 , V3 = kαq

aμ(α + δ)
e−β2τ2−β3τ3 and

Z3 = a(s0 − dH3)(β1e−β1τ1

pq
− δ

p
.

Finally, if W̌ �= 0 and Ž �= 0, then from (4.6), (4.4) and (4.5), we have Ě =
(s0 − d Ȟ)(1 − e−β1τ1)

β1
, Ď = kq

a(α + δ)
e−β2τ2 , Ǐ = q

a
, V̌ = c

b
and

f
(
Ȟ ,

c

b

)
= b

c
(s0 − d Ȟ).

Again, from the third equation in (4.6), the number of CTL immune cells is

Ž = a(s0 − d Ȟ)e−β1τ1

pq
− δ

p
≥ 0

in term of biology, which leads to Ȟ ≤ s0
d

− δqeβ1τ1

ad
. Define the following function

on

[

0,
s0
d

− δqeβ1τ1

ad

]

as

F4(H) = f
(
H ,

c

b

)
− b

c
(s0 − dH).

Then, according to (B1)-(B3),wehave F4(0) = −bs0
c

< 0 and F ′
4(H) = ∂ f

∂H
+bd

c
>

0.
Defined the competitive CTL immune response reproduction number for system

(2.1) by

R3 = aI2
q

= a(s0 − dH2)e−β1τ1

δq
. (4.13)

This threshold number R3 denotes the expected average number of CTL immune
cells activated by both exposed cells and infected hepatocytes when antibody immune
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defense has already been established. Consequently, if R3 > 1, then we get I >
q

a
,

H2 <
s0
d

− δqeβ1τ1

ad
and

F4

(
s0
d

− δqeβ1τ1

ad

)

= f

(
s0
d

− δqeβ1τ1

ad
,
c

b

)

− δbq

ac
eβ1τ1

= F2

(
s0
d

− δqeβ1τ1

ad

)

> F2(H2) = 0.

Accordingly, there exists a unique root H4 ∈
(

0,
s0
d

− δqeβ1τ1

ad

)

, such that F4(H4) =

0. From the fifth equation in (4.1), we get W4 = kαbq

arc(α + δ)
e−β2τ2−β3τ3 − μ

r
=

μ

r
(R4 − 1), where R4 represents the competitive antibody immune response repro-

duction number and defined by

R4 = bV3
c

= kαbq

aμc(α + δ)
e−β2τ2−β3τ3 . (4.14)

This threshold numberR4 denotes the expected average number of B cells activated by
free virions whenever the CTL immune defense has already been established (Manna
2018; Miao et al. 2018).

IfR3 > 1 andR4 > 1, system (2.1) admits a unique infection equilibrium point in
presence of adaptive immune responses characterized by antibody and CTL immune
responses P4 = (H4, E4, I4, D4, V4, W4, Z4), where

H4 ∈
(

0,
s0
d

− δqeβ1τ1

ad

)

, E4 = (s0 − dH4)(1 − e−β1τ1)

β1
, I4 = q

a
,

D4 = kq

a(α + δ)
e−β2τ2 , V4 = c

b
, W4 = μ

r
(R4 − 1) and

Z4 = a(s0 − dH4)e−β1τ1

pq
− δ

p
.

The above investigations can be summarized in the following result.

Theorem 4.1 System (2.1) has a unique infection-free equilibrium
P0 = (s0/d, 0, 0, 0, 0, 0, 0) whenever R0 ≤ 1. When R0 > 1, the system (2.1)
admits five equilibria including the equilibrium point P0. Moreover, forR0 > 1,

(i1) the unique immune-free equilibrium P1 = (H1, E1, I1, D1, V1, 0, 0), where
H1 ∈ (0, s0/d) and H1, E1, I1, D1, V1 > 0, always exists;

(i2) the infection equilibrium with only antibody immune defense P2 = (H2, E2,

I2, D2, V2,W2, 0), where H2 ∈
(

0,
s0
d

− δμc(α + δ)

dkbα
eβ1τ1+β2τ2+β3τ3

)

and

E2, I2, D2, V2,W2 > 0, exists and is unique when R1 > 1;
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(i3) the infection equilibrium with only CTL immune response P3 = (H3, E3, I3,

D3, V3, 0, Z3), where H3 ∈
(

0,
s0
d

− δqeβ1τ1

ad

)

and E3, I3, D3, V3, Z3 > 0,

exists and is unique when R2 > 1;
(i4) the interior infection equilibrium with both antibody and CTL immune response

P4 = (H4, E4, I4, D4, V4, W4, Z4), where H4 ∈
(

0,
s0
d

− δqeβ1τ1

ad

)

and

E4, I4, D4, V4,W4, Z4 > 0, exists and is unique when R1 > 1, R2 > 1,
R3 > 1 and R4 > 1.

5 Stability analysis of constants equilibria

In this section, we discuss the stability properties of the five constants equilibria P0,
P1, P2, P3 and P4, secured by Theorem 4.1, of the proposedmodel (2.1), by analyzing
the corresponding characteristic equation and by using the Lyapunov method. To do
this, we introduce the following assumption:

(B4)

(

1 − f (H , V )

f (H , Vi )

)(
f (H , Vi )

f (H , V )
− V

Vi

)

≤ 0, for all H , V > 0,

where Vi is the free virion components of the steady state Pi , i = 1, 2, 3, 4.
Now, let P∗ = (H∗, E∗, I ∗, D∗, V ∗,W ∗, Z∗) be any steady state of system (2.1)

and consider the perturbation related to the components of the steady state P∗ as
follows

y1(t) = H(t) − H∗, y2(t) = E(t) − E∗, y3(t) = I (t) − I∗,

y4(t) = D(t) − D∗, y5(t) = V (t) − V ∗, y6(t) = W (t) − W∗, y7(t) = Z(t) − Z∗.

Linearizing system (2.1) at the equilibrium point P∗, we get the following linearized system:

dy

dt
= G1y(t) + G2y(t − τ1) + G3y(t − τ2) + G4y(t − τ3), (5.1)

where

G1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−d − ∂ f
∂H V ∗ 0 0 0 − ∂ f

∂V V ∗ − f (H∗, V ∗) 0 0
∂ f
∂H V ∗ −β1 0 0 ∂ f

∂V V ∗ + f (H∗, V ∗) 0 0
0 0 −δ − pZ∗ 0 0 0 −pI ∗
0 0 0 −α − δ 0 0 0
0 0 0 0 −μ − rW ∗ −rV ∗ 0
0 0 0 0 bW ∗ bV ∗ − c 0
0 0 aZ∗ 0 0 0 aI ∗ − q

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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G2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0

−e−β1τ1 ∂ f
∂H V ∗ 0 0 0 −e−β1τ1

(
∂ f
∂V V ∗ + f (H∗, V ∗)

)
0 0

e−β1τ1 ∂ f
∂H V ∗ 0 0 0 e−β1τ1

(
∂ f
∂V V ∗ + f (H∗, V ∗)

)
0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

G3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 ke−β2τ2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 αe−β3τ3 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

and y = (y1, y2, y3, y4, y5, y6, y7)
T .

It is worth mentioning that the partial derivatives ∂ f
∂H and ∂ f

∂V in the first two matrices G1 and
G2 are evaluated at the steady state P∗. Hence, the characteristic equation of model (2.1) at the
equilibrium P∗ is

det(−λI7 + G1 + G2e
−λτ1 + G3e

−λτ2 + G4e
−λτ3 ) = 0.

5.1 Stability of infection-free equilibrium P0

5.1.1 Local stability of infection-free equilibrium

In this section, we investigate the local stability of infection-free equilibrium, P0, of model
(2.1), by analyzing the corresponding characteristic equation. We have the following result.

Lemma 5.1 The infection-free equilibrium P0 = (s0/d, 0, 0, 0, 0, 0, 0) of model (2.1) is locally
asymptotically stable for any time delays τ1, τ2, τ3 ≥ 0 whenever R0 < 1 and unstable when
R0 > 1,

Proof From system (5.1), by calculating, we see that, the stability of the equilibriumpoint, P0, is
investigated via the roots of the following characteristic equation representing the corresponding
linearized system of model (2.1) at the steady state P0

(λ + d)(λ + c)(λ + q)(λ + β1)
[
λ3 + a2λ

2 + a1λ + a0 + b0e
−λ(τ1+τ2+τ3)

]
= 0, (5.2)

where a2 = 2δ + α + μ, a1 = (α + δ)(μ + δ) + δμ, a0 = δμ(α + δ), b0 =
−kα f

( s0
d , 0

)
e−β1τ1−β2τ2−β3τ3 .

It is obvious that, the characteristic equation (5.2) always admits the reals rootsλ1 = −d < 0,
λ2 = −c < 0, λ3 = −q < 0, λ4 = −β1 < 0, and all other roots of that equation (5.2) are
given by the following equation:

h(λ) =: λ3 + a2λ
2 + a1λ + a0 + b0e

−λ(τ1+τ2+τ3) = 0. (5.3)
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IfR0 > 1, then, it can be shown that for λ real,

h(0) = δμ(α + δ)(1 − R0) < 0 and lim
λ→+∞ h(λ) = +∞.

Thus, equation (5.3) has a positive real root. Consequently, there exists a characteristic root
λ with positive real part of (5.3) and therefore, if R0 > 1, the infection-free equilibrium
P0 = (s0/d, 0, 0, 0, 0, 0, 0) is unstable.

Now, assume thatR0 < 1 and let τ0 = τ1 + τ2 + τ3. Then if iω (with ω > 0) is a solution
to (5.3), separating real and imaginary parts yields

{
a2ω

2 − a0 = b0 cosωτ0,

−ω3 + a1ω = b0 sinωτ0.
(5.4)

From (5.4), we get the following equation

ω6 + (a22 − 2a1)ω
4 + (a21 − 2a0a2)ω

2 + a20 − b20 = 0. (5.5)

Setting z = ω2 then equation (5.5) becomes

z3 + c2z
2 + c1z + c0 = 0, (5.6)

where
c2 = a22 − 2a1 = (α + δ)2 + μ2 + δ2 > 0,

c1 = a21 − 2a0a2 = (μ2 + δ2)(α + δ)2 + δ2μ2 > 0,

c0 = a20 − b20 = δ2μ2(α + δ)2(1 − R2
0) > 0,

c1c2 − c0 = (μ2 + δ2)(α + δ)4 + (μ2 + δ2)
[
(μ2 + δ2)(α + δ)2 + δ2μ2

]
+ δ2μ2(α +

δ)2R2
0 > 0.

Hence, by the Routh-Hurwitz Theorem (Gradshteyn and Ryzhik 2000), if R0 < 1, equation
(5.6) has no positive roots. It is easy to show that P0 is locally asymptotically stable when
τ1 = τ2 = τ3 = 0, Consequently, if R0 < 1, the infection-free equilibrium P0 is locally
asymptotically stable for all τ1, τ2, τ3 ≥ 0. ��
Remark 5.2 We note that the local asymptotic stability of the infection-free equilibrium P0
could also be obtained by using a contradiction argument.

Indeed, for τ1, τ2, τ3 ≥ 0, by computation, equation (5.3) becomes

1 = R0
δ

λ + δ

μ

λ + μ

α + δ

λ + α + δ
e−λ(τ1+τ2+τ3).

If λ is a root of equation (5.3) with Reλ ≥ 0 andR0 < 1, then, observe

∣
∣
∣
∣

δ

λ + δ

∣
∣
∣
∣ < 1,

∣
∣
∣
∣

μ

λ + μ

∣
∣
∣
∣ < 1,

∣
∣
∣
∣

α + δ

λ + α + δ

∣
∣
∣
∣ < 1,

∣
∣
∣e−λ(τ1+τ2+τ3)

∣
∣
∣ < 1,

which infers that

∣
∣
∣
∣R0

δ

λ + δ

μ

λ + μ

α + δ

λ + α + δ
e−λ(τ1+τ2+τ3)

∣
∣
∣
∣ < 1.
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This is a contradiction. Thus, all roots of equation (5.3) have no positive real parts. Accordingly,
if R0 < 1, the infection-free equilibrium P0 is locally asymptotically stable for all τ1, τ2,

τ3 ≥ 0. ��

5.1.2 Global asymptotic stability of the equilibrium P0

In this section, by constructing a suitable Lyapunov functional, we discuss the global stability
of the infection-free equilibrium P0.

Theorem 5.3 The infection-free equilibrium P0 of model (2.1) is globally asymptotically stable
in � ifR0 ≤ 1.

Proof Let H(t), E(t), I (t), D(t), V (t),W (t), Z(t) be any arbitrary positive solution of system
(2.1). Recall that H0 = s0/d. We define a Lyapunov functional L̃0(t) as

L̃0(t) = H(t) − H0 −
∫ H(t)

H0

f (H0, 0)

f (s, 0)
ds + eβ1τ1 I (t) + δ

k
eβ1τ1+β2τ2D(t)

+ δ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3V (t) + rδ(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3W (t)

+ p

a
eβ1τ1 Z(t) + δeβ1τ1

∫ t

t−τ2

I (θ)dθ + δ(α + δ)

k
eβ1τ1+β2τ2

∫ t

t−τ3

D(θ)dθ

+
∫ t

t−τ1

f (H(θ), V (θ))V (θ)dθ.

For the sake of notational convenience, we represent χ = χ(t) and χτi = χ(t − τi ), for

i = 1, 2, 3 and χ ∈ {H , E, I , D, V ,W , Z}. Let G0(y) = y − H0 −
∫ y

H0

f (H0, 0)

f (s, 0)
ds. Then,

the functionG0 is nonnegative for all y > 0. Indeed, if y ≤ H0, then with the aid of assumption
(B2), we obtain

∫ y

H0

f (H0, 0)

f (s, 0)
ds ≤

∫ y

H0

f (H0, 0)

f (H0, 0)
ds = y − H0.

If y ≥ H0 is valid, we again obtain the same above inequality. Further, G0(y) = 0 if and only
if y = H0. Therefore, G0(y) ≥ 0 for all y > 0. Thus, it is clear that the functional L̃0(t) is
nonnegative definite with respect to P0. Now, by computing the time derivative of L̃0(t) along
the solution of system (2.1), we have

d L̃0(t)

dt
= dH0

(

1 − H

H0

)(

1 − f (H0, 0)

f (H , 0)

)

+ δ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3

×V

(
f (H , V )

f (H , 0)
R0 − 1

)

− rcδ(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3W − pq

a
eβ1τ1 Z .

With the aid of (B2) and (B3), one has

f (H , V ) ≤ f (H , 0), for all H ≥ 0, V ≥ 0. (5.7)
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Thus

d L̃0(t)

dt
≤ dH0

(

1 − H

H0

)(

1 − f (H0, 0)

f (H , 0)

)

+ δ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3V (R0 − 1)

−rcδ(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3W − pq

a
eβ1τ1 Z

Since f (H , V ) is a strictly monotonically nondecreasing function with respect to H , by
assumption (B2), it is easy to show that assumption (B2) ultimately gives rise to the following
inequality:

(

1 − H

H0

)(

1 − f (H0, 0)

f (H , 0)

)

≤ 0.

Clearly, condition R0 ≤ 1 underwrites d L̃0(t)
dt ≤ 0, for all H , I , D, V ,W , Z ≥ 0, and

d L̃0(t)
dt = 0 is satisfied if and only if H = H0, I = 0, D = 0, V = 0, W = 0 and Z = 0.

Hence, L̃0(t) is a Lyapunov function on�.Accordingly, by LaSalle’s invariance principle (Hale
and Verduyn Lunel 1993, Theorem 5.3.1), it follows that

lim
t→∞(H , I , D, V ,W , Z) = (H0, 0, 0, 0, 0, 0) . (5.8)

From (5.8), we have lim supt→∞ H = H0 and lim supt→∞ V = 0. This means that for
sufficiently small ε > 0, there exist constants N1 > 0 and N2 > 0 such that lim supt→∞ H ≤
H0 + ε, for all t > N1 and lim supt→∞ V ≤ ε, for all t > N2. So, from the second equation
of system (2.1) and assumption (B2), it follows that for t > max{N1, N2},

E∞ = lim sup
t→∞

E ≤ f (H0 + ε, ε)ε

β1
, (5.9)

so that, by setting ε → 0 in (5.9), we obtain

E∞ = lim sup
t→∞

E ≤ 0. (5.10)

Also, from (5.8), we have lim inf t→∞ H = H0 and lim inf t→∞ V = 0. Hence, by employing
a similar argument as above, it can be shown that

E∞ = lim inf
t→∞ E ≥ 0. (5.11)

Then, from (5.10) and (5.11), we get

E∞ ≤ 0 ≤ E∞,

implying that
lim
t→∞ E = 0. (5.12)

Hence, we obtain from (5.8) and (5.12) that

lim
t→∞(H , E, I , D, V ,W , Z) = (H0, 0, 0, 0, 0, 0, 0) .
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Furthermore, � is an invariant and attracting set of R7+. It follows that the largest com-

pact invariant subset in
{
(H , E, I , D, V ,W , Z) ∈ � : d L̃0

dt = 0
}
is the singleton {P0}. So,

by LaSalle’s invariance Principle (Hale and Verduyn Lunel 1993, Theorem 5.3.1), it follows
that every solution of system (2.1) approaches the infection-free equilibrium P0 as t → ∞
whenever R0 ≤ 1. That is, the infection-free equilibrium P0 is globally asymptotically stable
if R0 ≤ 1. This completes the proof. ��

The epidemiological implication of Theorem 5.3 is that if the threshold quantity R0 has
a value less than unity, then the free virions will be cleared from a body even in the absence
of adaptive immunity which is represented by antibodies and CTLs. Moreover, we expect that
by adding multi-time delays and the mortalities during the three time delays could contribute
to obtain the condition R0 ≤ 1. Thus, for the delayed model (2.1), the condition R0 ≤ 1 is
necessary and sufficient for infection elimination.

In the sequel we will need the following function defined on R
∗+: Q̃(ξ) = ξ − 1 − ln ξ.

Obviously, Q̃(ξ) ≥ 0 for all ξ ∈ R
∗+ and Q̃(ξ) = 0 if and only if ξ = 1.

5.2 Global asymptotic stability of equilibrium P1

In this section, by constructing a crafty Lyapunov functional, we investigate the global asymp-
totic stability of the immune-free equilibrium P1. The following result is established.

Theorem 5.4 Let requirement (B4) and condition R0 > 1 hold. Then if R1 ≤ 1 and R2 ≤ 1,
the immune-free equilibrium P1 of the delayed model (2.1) is globally asymptotically stable
and it is unstable whenever R1 > 1 or R2 > 1.

Proof Let (H(t), E(t), I (t), D(t), V (t),W (t), Z(t)) be any arbitrary positive solution of sys-
tem (2.1). Define the following Lyapunov function

L̃1(t) = H − H1 −
∫ H

H1

f (H1, V1)

f (s, V1)
ds + e−β1τ1 I1Q̃

(
I

I1

)

+ δ

k
eβ1τ1+β2τ2D1Q̃

(
D

D1

)

+ δ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3V1Q̃

(
V (x, t)

V1

)

+rδ(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3W + p

a
eβ1τ1 Z

+ f (H1, E1, I1, V1)V1

∫ t

t−τ1

Q̃
(

f (H(θ), V (θ))V (θ)

f (H1, V1)V1

)

dθ

+δeβ1τ1 I1

∫ t

t−τ2

Q̃
(
I (θ)

I1

)

dθ

+ δ(α + δ)

k
eβ1τ1+β2τ2D1

∫ t

t−τ3

Q̃
(
D(θ)

D1

)

dθ.

Recall that H1, E1, I1, D1 and V1 are the first five components of the immune-free equilibrium
secured by Theorem 4.1. It is obvious that the function L̃1(t) is nonnegative definite in [−τ, 0]
with respect to P1. Taking the time derivative of L̃1(t) along the positive solution of system
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(2.1) and using the equilibrium conditions for P1, we obtain

d L̃1(t)

dt
= dH1

(

1 − H

H1

)(

1 − f (H1, V1)

f (H , V1)

)

− f (H1, V1)V1

[

Q̃
(

f (H1, V1)

f (H , V1)

)

+Q̃
(

f (H , V1)

f (H , V )

)

+ Q̃
(
D1 Iτ2
DI1

)

+ Q̃
(
Dτ3V1
V D1

)

+ Q̃
(

f (Hτ1 , Vτ1)Vτ1 I1
f (H1, V1)V1 I

)]

+ f (H1, V1)V1

(

−1 + f (H , V1)

f (H , V )
− V

V1
+ f (H , V )V

f (H , V1)V1

)

+ δrc(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3(R1 − 1)W + pq

a
eβ1τ1 (R2 − 1)Z .

With the aid of (B4), we obtain

−1 + f (H , V1)

f (H , V )
− V

V1
+ f (H , V )V

f (H , V1)V1
=
(

1 − f (H , V )

f (H , V1)

)(
f (H , V1)

f (H , V )
− V

V1

)

≤ 0.

Since f (H , V ) is a strictlymonotonically nondecreasing functionwith respect to H , by assump-
tion (B2), then it is easy to show that assumption (B2) ultimately gives rise to the following
inequality:

(

1 − H

H1

)(

1 − f (H1, V1)

f (H , V1)

)

≤ 0.

Thus, if R1 ≤ 1 and R2 ≤ 1, we get
d L̃1(t)

dt
≤ 0 for all H , I , D, V ,W , Z > 0 with

d L̃1(t)

dt
= 0 if and only if H = H1, I = I1, D = D1, V = V1, W = 0 and Z = 0.

Accordingly, L̃1 is aLyapunov function. So, byLaSalle’s invariance principle (Hale andVerduyn
Lunel 1993, Theorem 5.3.1), it follows that

lim
t→∞(H , I , D, V ,W , Z) = (H1, I1, D1, V1, 0, 0). (5.13)

Again, combining (5.13) with system (2.1), gives lim
t→∞ E(t) = E1 as described in the proof of

Theorem 5.3. Thus, every solution of themodel approaches the unique immune-free equilibrium
P1 of system (2.1) when t tends to ∞ for R0 > 1, R1 ≤ 1 andR2 ≤ 1.

Next, we discuss the stability property of the unique immune-free equilibrium P1 when
one of the following conditions R1 > 1 and R2 > 1 holds. From (5.1), by calculating, we
get the characteristic equation of the linearization system of model (2.1) at the immune-free
equilibrium P1 as follows:

(λ + q − aI1)(λ + c − bV1)gi (λ) = 0, (5.14)

where

gi (λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 0 0 0 a15
a21 a22 0 0 a25
a31 0 a33 0 a35
0 0 a43 a44 0
0 0 0 a54 a55

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,
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with
a11 = λ + d + ∂ f

∂H V1, a15 = ∂ f
∂V V1 + f (H1, V1), a21 = −(1 − e−λτ1−β1τ1)

∂ f
∂H V1,

a22 = λ + β1,

a25 = −(1 − e−λτ1−β1τ1)
(

∂ f
∂V V1 + f (H1, V1)

)
, a31 = − ∂ f

∂H V1e
−λτ1−β1τ1 , a33 =

λ + δ,

a35 = − f (H1, V1)e
−λτ1−β1τ1 a43 = −ke−λτ2−β2τ2 , a44 = λ + α + δ, a54 =

−αe−λτ3−β3τ3 , a55 = λ + μ.

By equation (5.14), it clearly appears that λ1 = bV1 − c = c(R1 − 1) and λ2 = aI1 − q =
q(R2 − 1) are two reals roots of the characteristic equation (5.14). Thus, it follows that if
R1 = bV1

c > 1 then we get λ1 > 0 and if R2 = aI1
q > 1 then we get λ2 > 0. This implies

that when one of the following conditions R1 > 1 and R2 > 1 holds then there exists a real
positive root of the characteristic equation (5.14). Thus, ifR2 > 1 orR2 > 1, the immune-free
equilibrium P1 is unstable. This completes the proof. ��

Biologically speaking, the result of Theorem 5.4 means that HBV infection could persist
if the adaptive immunity, represented by antibodies and CTLs, is not yet activated. Thus, this
result exhibit a patient’s suffering state when his adaptive immune defense is not yet activated.

5.3 Global asymptotic stability of the equilibrium P2

In this section, again, by shaping a suitable Lyapunov function, we study the global asymptotic
stability of the infection equilibrium with only antibody immune defense P2. The following
result can be obtained.

Theorem 5.5 Let requirement (B4) and conditionsR0 > 1 andR1 > 1 hold. Then ifR3 ≤ 1,
the infection equilibrium with only antibody immune defense P2 of the delayed system (2.1) is
globally asymptotically stable and becomes unstable whenever R3 > 1.

Proof Let H(t), E(t), I (t), D(t), V (t),W (t), Z(t) be any arbitrary positive solution of prob-
lem (2.1). Define the following Lyapunov function

L̃2(t) = H(t) − H2 −
∫ H(t)

H2

f (H2, V2)

f (s, V2)
ds + e−β1τ1 I2Q̃

(
I (t)

I2

)

+ δ

k
eβ1τ1+β2τ2D2Q̃

(
D(t)

D2

)

+ δ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3V2Q̃

(
V (t)

V2

)

+rδ(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3W2Q̃

(
W (t)

W2

)

+ p

a
eβ1τ1 Z(t) + f (H2, V2)V2

∫ t

t−τ1

Q̃
(

f (H(θ), V (θ))V (θ)

f (H2, E2, I2, V2)V2

)

dθ

+δeβ1τ1 I2

∫ t

t−τ2

Q̃
(
I (θ)

I2

)

dθ + δ(α + δ)

k
eβ1τ1+β2τ2D2

∫ t

t−τ3

Q̃
(
D(θ)

D2

)

dθ.

Recall that H2, E2, I2, D2, V2 andW2 are the first six components of the infection equilibrium
with only antibody immune defense guaranteed by Theorem 4.1. By employing the equilibrium
conditions for P2, after lengthy calculations, the derivative of the above Lyapunov function
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computed along the solutions of system (2.1) is given below:

d L̃2(t)

dt
≤ dH2

(

1 − H

H2

)(

1 − f (H2, V2)

f (H , V2)

)

− f (H2, V2)V2

[

Q̃
(

f (H2, V2)

f (H , V2)

)

+ Q̃
(

f (H , V2)

f (H , V )

)

+ Q̃
(
D2 Iτ2
DI2

)

+ Q̃
(
Dτ3V2
V D2

)

+ Q̃
(

f (Hτ1 , Vτ1)Vτ1 I2
f (H2, V2)V2 I

)]

+ pq

a
eβ1τ1(R3 − 1)Z

+ f (H2, V2)V2

(

1 − f (H , V )

f (H , V2)

)(
f (H , V2)

f (H , V )
− V

V2

)

.

Since f (H , E, I , V ) is a strictly monotonically nondecreasing function with respect to H ,

by assumption (B2), then it is easy to show that assumption (B2) ultimately gives rise to the
following inequality:

(

1 − H

H2

)(

1 − f (H2, V2)

f (H , V2)

)

≤ 0.

Thus, using assumption (B4), it follows that ifR3 ≤ 1,we have d L̃2(t)
dt ≤ 0 for all H , I , D,

V , W , Z > 0, with d L̃2(t)
dt = 0 if and only if H = H2, I = I2, D = D2, V = V2, W = W2

and Z2 = 0. Combining this with the delayed model (2.1), we have E = E2. This indicates

that the largest compact invariant subset in
{
(H , E, I , D, V ,W , Z) ∈ R

7+ : d L̃2
dt = 0

}
is the

singleton set {P2}. Hence, by LaSalle’s invariance principle (Hale and Verduyn Lunel 1993,
Theorem 5.3.1), it follows that the unique infection equilibrium with only antibody immune
defense P2 is globally asymptotically stable when R0 > 1, R1 > 1 andR3 ≤ 1.

To end the proof, we investigate the stability property of the infection equilibrium with only
antibody immune defense P2 when the following condition R3 > 1 holds. Again from (5.1),
by simple calculation, we get the characteristic equation of the linearization system of model
(2.1) at the equilibrium steady state P2 as follows:

(λ + q − aI2)g
�
i (λ) = 0, (5.15)

where

g�
i (λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 0 0 0 a15 0
a21 a22 0 0 a25 0
a31 0 a33 0 a35 0
0 0 a43 a44 0 0
0 0 0 a54 a55 a56
0 0 0 0 a65 a66

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

with
a11 = λ+d+ ∂ f

∂H V2, a15 = ∂ f
∂V V2+ f (H2, V2), a21 = −(1−e−λτ1−β1+τ1 )

∂ f
∂H V2, a22 =

λ + β1

a25 = −(1−e−λτ1−β1τ1)
(

∂ f
∂H V2 + f (H2, V2)

)
, a31 = − ∂ f

∂H V2e
−λτ1−(β1+σ)τ1 , a33 =

λ + δ,
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a35 = − f (H2, V2)e
−λτ1−β1τ1 , a43 = −ke−λτ2−β2τ2 , a44 = λ + α + δ, a54 =

−αe−λτ3−β3τ3 ,

a55 = λ + μ + rW2, a56 = rV2, a65 = −bW2, a66 = λ + c − bV2.
From equation (5.15), it is seen that λ1 = aI2 − q = q(R3 − 1) denotes a real root of
the characteristic equation (5.15). Therefore, it follows that if R3 = aI2

q > 1 then we get
λ1 > 0. This indicate that when conditionR3 > 1 holds, there exists a real positive root of the
characteristic equation (5.15). Hence, if R3 > 1 the infection equilibrium with only antibody
immune defense P2 is unstable. This achieves the proof. ��

Theorem 5.5 communicates that the infection could persist due to the absence of one com-
ponent of adaptive immunity. In other words, the body with only antibody immune response
activated cannot prevent the progression of the viral infection.

5.4 Global asymptotic stability of the equilibrium P3

In this section, again, by shaping a suitable Lyapunov function, we study the global asymptotic
stability of the infection equilibrium with only CTL immune response P3. The following result
can be obtained.

Theorem 5.6 Let assumption (B4) and conditions R0 > 1 and R2 > 1 be valid. Then if
R4 ≤ 1, the infection equilibrium with only CTL immune response P3 of the delayed diffusive
problem (2.1) is globally asymptotically stable and becomes unstable whenever R4 > 1.

Proof Let H(t), E(t), I (t), D(t), V (t),W (t), Z(t) be any arbitrary positive solution of prob-
lem (2.1). Define the following Lyapunov function

L̃3(t) = H(x, t) − H3 −
∫ H(x,t)

H3

f (H3, V3)

f (s, V3)
ds + eβ1τ1 I3Q̃

(
I (t)

I3

)

+ δ + pZ3
k

eβ1τ1+β2τ2D3Q̃
(
D(t)

D3

)

+ (δ + pZ3)(α + δ)

kα
eβ1τ1+β2τ2+β3τ3V3Q̃

(
V (t)

V3

)

+ r(δ + pZ3)(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3W (t)

+ p

a
eβ1τ1 Z3Q̃

(
Z(t)

Z3

)

+ f (H3, V3)V3

∫ t

t−τ1

Q̃
(

f (H(θ), V (θ))V (θ)

f (H3, V3)V3

)

dθ

+(δ + pZ3)e
β1τ1 I3

∫ t

t−τ2

Q̃
(
I (θ)

I3

)

dθ

+ (δ + pZ3)(α + δ)

k
eβ1τ1+β2τ2D3

∫ t

t−τ3

Q̃
(
D(θ)

D3

)

dθ.

Recall that H3, E3, I3, D3, V3 and Z3 are the first five and last components of the infection
equilibriumwith only CTL immune response P3 guaranteed by Theorem 4.1. By employing the
equilibrium conditions for P3, after lengthy calculations, the derivative of the above Lyapunov
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function computed along the solutions of system (2.1) is given below:

d L̃3(t)

dt
≤ dH3

(

1 − H

H3

)(

1 − f (H3, V3)

f (H , V3)

)

− f (H3, V3)V3

[

Q̃
(

f (H3, V3)

f (H , V3)

)

+Q̃
(

f (H , V3)

f (H , V )

)

+Q̃
(
D3 Iτ2
DI3

)

+ Q̃
(
Dτ3V3
V D3

)

+ Q̃
(

f (Hτ1 , Vτ1)Vτ1 I3
f (H3, V3)V3 I

)]

+ f (H3, V3)V3

×
(

1 − f (H , V )

f (H , V3)

)(
f (H , V3)

f (H , V )
− V

V3

)

+ (δ + pZ3)rc(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3(R4 − 1)W .

Since f (H , E, I , V ) is a strictly monotonically nondecreasing function with respect to H ,

by assumption (B2), then it is easy to show that assumption (B2) ultimately gives rise to the
following inequality:

(

1 − H

H3

)(

1 − f (H3, V3)

f (H , V3)

)

≤ 0.

Thus, using assumption (B4), it follows that if R4 ≤ 1, we get
d L̃3(t)

dt
≤ 0 for all

H , E, I , D, V ,W , Z > 0, with
d L̃3(t)

dt
= 0 if and only if H = H3, I = I3, D = D3,

V = V3, W = 0 and Z = Z3. Combining this with the system (2.1), we have E = E3. This

indicates that the largest compact invariant subset in
{
(H , I , D, V ,W , Z) ∈ R

7+ : d L̃3
dt = 0

}

is the singleton set {P3}. Therefore, by LaSalle’s invariance principle (Hale and Verduyn Lunel
1993, Theorem 5.3.1), it follows that the infection equilibrium with only CTL response P3 is
globally asymptotically stable when R0 > 1, R2 > 1 andR4 ≤ 1.

We now study the stability property of the infection equilibrium with only CTL response P3
when the following condition R4 > 1 holds. Again from (5.1), by simple calculation, we get
the characteristic equation of the linearization system of model (2.1) at the equilibrium steady
state P3 as follows:

(λ + c − bV3)g
��
i (λ) = 0, (5.16)

where

g��
i (λ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 0 0 0 a15 0
a21 a22 0 0 a25 0
a31 0 a33 0 a35 a36
0 0 a43 a44 0 0
0 0 0 a54 a55 0
0 0 a63 0 0 a66

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

with
a11 = λ + d + ∂ f

∂H V3, a15 = ∂ f
∂V V3 + f (H3, V3), a21 = −(1 − e−λτ1−β1τ1)

∂ f
∂H V3,

a22 = λ + β1,

a25 = −(1 − e−λτ1−(β1+σ)τ1 )
(

∂ f
∂V V3 + f (H3, V3)

)
, a31 = − ∂ f

∂H V3e
−λτ1−(β1+σ)τ1 ,

a33 = λ + δ + pZ3,
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a35 = − f (H3, V3)e
−λτ1−β1τ1 , a36 = pI3, a43 = −ke−λτ2−β2τ2 , a44 = λ+α+δ,

a54 = −αe−λτ3−β3τ3 , a55 = λ + μ, a63 = −aZ3, a66 = λ + q − aI3.
From equation (5.16), it is seen that λ1 = bV3 − c = c(R4 − 1) denotes a real root of
the characteristic equation (5.16). Therefore, it follows that if R4 = bV3

c > 1 then we get
λ1 > 0. This indicate that when condition R4 > 1 holds, there exists a real positive root of
the characteristic equation (5.16). Hence, if R4 > 1 the infection equilibrium with only CTL
response P3 is unstable. This achieves the proof. ��

Theorem 5.6 communicates that the infection could persist due to the absence of antibody
immune response. In other words, the body with only CTL immune defense activated cannot
prevent the progression of the viral infection. This conclusion and the one exhibited by Theorem
5.5, imply that an infected person may suffer fromHBV infection symptoms if his total immune
defense is not activated.

5.5 Global asymptotic stability of the equilibrium P4

In this section, again, by constructing a crafty Lyapunov function, we investigate the global
asymptotic stability of the infection equilibrium with CTL and antibody immune defense P4.
The following result can be obtained.

Theorem 5.7 Let assumption (B4) be valid. If R0 > 1, R1 > 1, R2 > 1, R3 > 1 and
R4 > 1, then the infection equilibrium with CTL and antibody immune defense P4 of the
delayed diffusive problem (2.1) is globally asymptotically stable.

Proof Let H(t), E(t), I (t), D(t), V (t),W (t), Z(t) be any arbitrary positive solution of prob-
lem (2.1). Define the following Lyapunov function

L̃4(t) = H(t) − H4 −
∫ H(t)

H4

f (H4, V4)

f (s, V4)
ds + eβ1τ1 I4Q̃

(
I (t)

I4

)

+ δ + pZ4
k

eβ1τ1+β2τ2D4Q̃
(
D(t)

D4

)

+ (δ + pZ4)(α + δ)

kα
eβ1τ1+β2τ2+β3τ3V4Q̃

(
V (t)

V4

)

+r(δ + pZ4)(α + δ)

kbα
eβ1τ1+β2τ2+β3τ3W4Q̃

(
W (t)

W4

)

+ p

a
eβ1τ1 Z4Q̃

(
Z(t)

Z4

)

+ f (H4, V4)V4

∫ t

t−τ1

Q̃
(

f (H(θ), V (θ))V (θ)

f (H4, V4)V4

)

dθ

+(δ + pZ4)e
β1τ1 I4

∫ t

t−τ2

Q̃
(
I (θ)

I4

)

dθ

+ (δ + pZ4)(α + δ)

k
eβ1τ1+β2τ2D4

∫ t

t−τ3

Q̃
(
D(θ)

D4

)

dθ.

Recall that H4, E4, I4, D4, V4, W4 and Z4 denote the components of the infection equilibrium
with both CTL and antibody immune defense P4 guaranteed by Theorem 4.1. By employing the
equilibrium conditions for P4, after lengthy calculations, the derivative of the above Lyapunov
function computed along the solutions of system (2.1) is given below:
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d L̃4(t)

dt
≤ dH4

(

1 − H

H4

)(

1 − f (H4, V4)

f (H , V4)

)

− f (H4, V4)V4

[

Q̃
(

f (H4, V4)

f (H , V4)

)

+ Q̃
(

f (H , V4)

f (H , V )

)

+Q̃
(
D4 Iτ2
DI4

)

+Q̃
(
Dτ3V4
V D4

)

+Q̃
(

f (Hτ1 , Vτ1)Vτ1 I4
f (H4, V4)V4 I

)]

+ f (H4, V4)V4

(

1 − f (H , V )

f (H , V4)

)(
f (H , V4)

f (H , V )
− V

V4

)

.

Since f (H , E, I , V ) is a strictly monotonically nondecreasing function with respect to H ,

by assumption (B2), then it is easy to show that assumption (B2) ultimately gives rise to the
following inequality:

(

1 − H

H4

)(

1 − f (H4, V4)

f (H , V4)

)

≤ 0.

Therefore, using assumption (B4), we get
d L̃4(t)
dt ≤ 0 for all H , E, I , D, V ,W , Z > 0 with

d L̃4(t)
dt = 0 if and only if H = H4, I = I4, D = D4, V = V4, W = W4 and Z = Z4.

Combining this with the system (2.1), we have E = E4. This indicates that the largest compact

invariant subset in
{
(H , I , D, V ,W , Z) ∈ R

7+ : d L̃4
dt = 0

}
is the singleton set {P4}. Hence, by

LaSalle’s invariance principle (Hale and Verduyn Lunel 1993, Theorem 5.3.1), it follows that
the infection equilibriumwith CTL and antibody immune defense P4 is globally asymptotically
stable when R0 > 1, R1 > 1, R2 > 1, R3 > 1 and R4 > 1. This completes the proof. ��

Theorem5.7 communicates thatHBV infection could persist fromabodyeven in the presence
of adaptive immunity which is represented by antibodies and CTLs.

6 Application and numerical simulations

This section is devoted to the application of theoretical results obtained in the previous sections
by performing some numerical simulations. For this purpose, we consider the following partic-
ular Crowley-Martin functional response f (H , V ) = β0H

1+a0H+b0V+a0b0HV (Kang et al. 2017).
In this case, the generalized model (2.1) turns into the following particular delayed model
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dH
dt = s0 − dH(t) − β0H(t)V (t)

1 + a0H(t) + b0V (t) + a0b0H(t)V (t)
,

dE
dt = β0H(t)V (t)

1 + a0H(t) + b0V (t) + a0b0H(t)V (t)

− β0e
−β1τ1H(t − τ1)V (t − τ1)

1 + a0H(t − τ1) + b0V (t − τ1) + a0b0H(t − τ1)V (t − τ1)
− β1E(t),

d I
dt = β0e

−β1τ1H(t − τ1)V (t − τ1)

1 + a0H(t − τ1) + b0V (t − τ1) + a0b0H(t − τ1)V (t − τ1)
− δ I (t) − pI (t)Z(t),

dD
dt = ke−β2τ2 I (t − τ2) − (α + δ)D(t),
dV
dt = αe−β3τ3D(t − τ3) − μV (t) − rV (x, t)W (t),
dW
dt = bV (t)W (t) − cW (t),
dZ
dt = aI (t)Z(t) − qZ(t),

(6.1)
subjected to the nonnegative initial conditions (2.2). Clearly, it can be seen that for the specific

form of functional response choosen, the hypotheses (B1)-(B3) are satisfied. Moreover, it is
straightforward to check that assumption (B4) is satisfied. We note that the choice of Crowley-
Martin functional response here is that it: generalizes many common types existing in the
literature, some of which are given in section 2; describes the infection of healthy target cells
by the free virions; and considers the inhibitory or physiological effects of virus. Moreover, the
nonnegative constants a0, b0 and c0 = a0b0 are saturation factors measuring the inhibitory or
physiological effect.

The biological description of the parameters as well as their values and units are summed
up in Table 1.

The infection-free equilibrium of the particular system (6.1) is given by P0 = (s0/d, 0, 0,
0, 0, 0, 0) and the basic reproduction numberR0 and other reproduction numbersR1, R2, R3
andR4 are given by

R0 = kαs0β0
δμ(d + a0s0)(α + δ)

e−β1τ1−β2τ2−β3τ3 ,

R1 = kbαβ0H1V1e
−β1τ1−β2τ2−β3τ3

δμc(α + δ)(1 + a0H1 + b0V1 + a0b0H1V1)
,

R2 = aβ0H1V1e
−β1τ1

δq(1 + a0H1 + b0V1 + a0b0H1V1)
,

R3 = aβ0H2V2e
−β1τ1

δq(1 + a0H2 + b0V2 + a0b0H2V2)
, R4 = kαbq

aμc(α + δ)
e−β2τ2−β3τ3 ,

respectively, where

H1 = a0b0s0 − β0 − b0d + a0ζ1
2da0b0

+
√

(a0b0s0 − β0 − b0d + a0ζ1)2 + 4da0b0(ζ1 + b0s0)

2da0b0
,

H2 = (s0a0 − d)(1 + b0V2) − β0V2
2da0(1 + b0V2)

+
√

[(s0a0 − d)(1 + b0V2) − β0V2]2 + 4ds0a0(1 + b0V2)2

2da0(1 + b0V2)
,

V1 = β0H1 − ζ1(1 + a0H1)

ζ1b0(1 + a0H1)
, ζ1 = δμ(α + δ)

kα
eβ1τ1+β2τ2+β3τ3 , V2 = c

b
.
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Note that from the biological point of view, the basic reproduction number

R0 = kαe−β1τ1−β2τ2−β3τ3
δμ(α+δ)

β0s0
(d+a0s0)

ofmodel (6.1) subjected to the nonnegative initial conditions

(2.2), is not proportional to s0
d which represents the number of all cells in the liver of a patient.

Thus the artifact stated in Gourley et al. (2008) when the mass action incidence function is used,
is avoided. Therefore, the Crowley-Martin functional response considered makes our system
more realistic for the dynamics of HBV infection.

For all numerical simulations, we take different initial conditions for each scenario and varied
the values of the parameters β0, b, τ1, a0 and q, as they get the most important effects on the
global stability of the steady state constants. From experimental data and literatures (Elaiw
2015; Elaiw and Agha 2019; Guo et al. 2018; Manna 2018; Manna and Hattaf 2019), we set
the values of all other parameters in Table 1. For each equilibrium point, we take the values of
τ2 and τ3 as in Manna and Hattaf (2019).

Firstly, when β0 = 10−3, b = 0.3, τ1 = 1, τ2 = 2, τ3 = 5, a0 = 1 and q = 0.05, we
obtain R0 = 0.5306 < 1, which means that the solution trajectories asymptotically approach
towards the infection-free steady state P0 = (2.6 × 109, 0, 0, 0, 0, 0, 0), as can be observed
in Fig. 2. Here, the parameter β0 was obtained from Elaiw and Agha (2019), b and q are from
Manna and Hattaf (2019). We chose four sets of initial conditions as

Initial-1: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 107, 0.3, 0.005, 0.1, 0.1,
0.2, 0.2),

Initial-2: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 1.3, 0.05, 1, 1, 2, 2),
Initial-3: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 2, 1, 4, 4, 5, 5),
Initial-4: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 4, 5, 10, 10, 6, 6),

for θ ∈ [−5, 0]. Here, we observe that healthy hepatocytes increase and attain their maximum
level 2.6 × 109. Meanwhile, the other viral infection components converge toward zero. This
confirms the result stated in Theorem 5.3 and it then follows that the infection is clear out.

Now, fixing the other parameters, and considering the values of the parameters β1 = 0.2,
β2 = 0.28, β3 = 0.1, τ1 = 5.8, τ2 = 6 and τ3 = 4 as in Guo et al. (2018), we obtain
R0 = 0.0275 < 1. This is illustrated in Fig. 3, where we see that exposed infected hepatocytes
converge toward zero after 20 days, unlike the previous one where they converge after 400 days.
Also, in Fig. 3, we observe that the peaks of compartments D and V are very low compared to
those observed in Fig. 2. This means that the higher the values of the parameters β1, β2, β3,

τ1, τ2 and τ3, the more significant eradication of the infection within-host is expected.
Secondly, when β0 = 3 × 10−3, b = 0.03, τ1 = 15, τ2 = 2, τ3 = 5, a0 = 0.6 and

q = 0.05, then we get R0 = 2.3063 > 1, R1 = 0.7838 < 1 and R2 = 0.1840 < 1. In this
case, the initial conditions are

Initial-1: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 107, 0.01, 0.005, 0.1, 0.1,
0.2, 0.2),

Initial-2: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5×108, 0.02, 0.006, 0.2, 0.1, 2,
2),

Initial-3: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5× 108, 0.03, 0.01, 0.4, 0.4, 5,
5),

Initial-4: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 0.05, 0.02, 0.7, 0.7,
6, 6),
for θ ∈ [−15, 0]. This shows that the solution trajectories asymptotically tend towards the
immune-free equilibrium P1 = (2.6× 109, 0.0394, 0.0460, 7.3562, 1.3063, 0, 0) as presented
in Fig. 4, which support the result exhibited by Theorem 5.4. From this figure, we observe that
uninfected hepatocytes increase and reach their maximum level 2.6 × 109, and that the total
immune defense which is represented by the CTLs and antibodies vanish. Also, we can observe
the persistence of the virus at a low level in the absence of the adaptive immunity.
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Here, we only consider the values of the parameters β1 = 0.2, β2 = 0.28, β3 = 0.1, and
fix the other parameters as for Fig. 4. In this case we getR0 = 1.1424 > 1, R1 = 0.8524 < 1
and R2 = 0.0442 < 1. Fig. 5 displays the role of β1, β2 and β3 in the absence of CTL cells
and B cells. It is seen from this figure that for large values of that parameters, the compartments
of the infected classes remain zero up to nearly 200 days compared to those observed in Fig. 4,
which are even zero for less than 250 days. This shows that, for large values of that parameters,
the model studied is relevant and thus can be used to curtail the viral load within a host of an
infected patient.

Thirdly, when β0 = 3 × 10−3, b = 0.03, τ1 = 15, τ2 = 2, τ3 = 5, a0 = 0.3 and
q = 0.05, then we find R0 = 4.6126 > 1, R1 = 2.1676 > 1 and R3 = 0.5088 < 1.
Here, the initial conditions are as one in the second case. This set of parameters shows that the
trajectories converge to the infection equilibrium with only antibody immune defense P2 =
(2.6×109, 0.0871, 0.1015, 16.1683, 1.667, 9.2432, 0), as can be seen from Fig. 6, which valid
the result in Theorem 5.5. We can see from this figure that the uninfected hepatocytes always
continue to reach their maximum level 2.6 × 109 and we also observe that antibodies vanish
during time. We remark that the free virus always persist at a low level in the absence of the
B cells. Now, when β1 = 0.2, β2 = 0.28, β3 = 0.1, and the other parameters as for Fig. 6
are fixed, we see from Fig. 7 that the trajectories converge to an infection equilibrium with only
antibody immune defense with a very reduced viral load. At this stage, the patient may suffer
less from the symptoms.

Fourthly, when β0 = 3×10−3, b = 0.03, τ1 = 4, τ2 = 2, τ3 = 5, a0 = 0.3 and q = 0.009,
then we have R0 = 5.1489 > 1, R2 = 3.2461 > 1 and R4 = 0.7669 < 1. In this case, the
initial conditions are

Initial-1: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 107, 0.01, 0.005, 0.1, 0.1,
0.2, 0.002),

Initial-2: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 0.01, 0.006, 0.2, 0.1,
2, 0.2),

Initial-3: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 0.03, 0.01, 0.4, 0.4,
5, 0.5),

Initial-4: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 0.05, 0.02, 0.7,
0.7, 6, 0.6),
for θ ∈ [−5, 0].This proves that the trajectories eventually converge to the infection equilibrium
with only CTL immune response P3 = (2.6×109, 0.0220, 0.0450, 7.1683, 1.2781, 0, 0.0703),
as can be observed from Fig. 8, which is actually the result exhibited by Theorem 5.6. From
this figure, one can observe that the CTL immune response vanishes. This numerical result
confirms that the virus persist at a low level in the absence of the cellular immunity. Again,
when β1 = 0.2, β2 = 0.28, β3 = 0.1, and the other parameters as for Fig. 8 are fixed, we
observe from Fig. 9 that the trajectories converge toward an infection equilibrium with only
CTL immune response with a very reduced viral load. Also at this stage, the patient may suffer
less from the symptoms.

Finally, when β0 = 3× 10−3, b = 0.03, τ1 = 15, τ2 = 2, τ3 = 5, a0 = 0.3 and q = 0.02,
then we get R0 = 4.6126 > 1, R1 = 2.1676 > 1, R2 = 1.2719 > 1 R3 = 1.0150 > 1 and
R4 = 1.7042 > 1. In this last case, the initial conditions are

Initial-1: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 107, 0.01, 0.005, 0.1,
0.1, 0.02, 0.0002),

Initial-2: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 0.02, 0.006, 0.2, 0.1,
0.02, 0.0002),

Initial-3: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 0.003, 0.01, 0.4, 0.4,
0.05, 0.0005),
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Initial-4: (H(θ), E(θ), I (θ), D(θ), V (θ),W (θ), Z(θ)) = (5 × 108, 0.005, 0.02, 0.7, 0.7,
0.06, 0.0006),
for θ ∈ [−15, 0]. This eventually shows that the trajectories asymptotically converge
to the infection equilibrium with CTL and antibody immune defense P4 = (2.6 ×
109, 0.0871, 0.1000, 15.9296, 1.6667, 8.9197, 8.3603 × 10−4), as can be seen from Fig. 10,
which is in accord with the result exhibited by Theorem 5.7. Within the parameters of this last
figure, we observe that all the infection components do not vanish as function of time. This
situation corresponds to the chronic HBV infection and the adaptive immunity represented by
antibodies and CTLs should play its essential role during all the period of infection, which
is to decrease the HBV infection symptoms and improve the health of the patient. Moreover,
we can see from Fig. 11, that when β1 = 0.2, β2 = 0.28, β3 = 0.1, this infection decreases
significantly. It follows that the large values of the mortalities during the three time delays may
help adaptive immune response to curtail the viral load within a host of an infected patient.

All the numerical simulations show that uninfected hepatocytes reach their maximum level
2.6 × 109 and the viruses stay at an all-lime low in both the absence and the presence of the
adaptive immune response which is represented by antibodies and CTLs, for all equilibrium
points scenarios. Moreover, it appears that an all-lime low of exposed infected hepatocytes
could lead to that of other infected compartments. Accordingly, focusing on the consideration
of exposed infected hepatocytes may provide new strategies for determining new status of HBV
infection, monitoring progression of hepatitis B and predicting efficiency of antiviral treatment.

Figure12 displays the values of β1, β2, β3, τ1, τ2 and τ3 that could lead the virus to the
healthy state. From this figure, we can see that by decreasing of these parameters the infection
gets out of control in an infected host. Therefore, the control measures which will be established
should be aimed at increasing these parameters. Moreover, it can be seen from this figure that
adaptive immunity increase with the presence of productively infected hepatocytes and free
virions. Thismeans that developing a drug that take into account large values of thesemortalities
rates and prolongs the time delays could stimulate the immune system to respond promptly and
effectively.

6.1 Sensitivity analysis

It is vital to find out numerous aspect that contribute to the infection transmission and prevalence
in order to decide the best technique for controlling or minimizing the number of affected
individual. Sensitivity analysis (SA) is a method that is employed to determine the relative
importance of model parameters to disease transmission and its prevalence (Chitnis et al. 2008).
We carry out the analysis by computing the sensitivity indices of the basic reproduction number
R0 to the parameters in the delayed model by employing local and global methods. Since there
are usually errors or uncertainties in data collection and estimated values, SA is commonly
employed to evaluate themodel robustness to parameter values. In this section, we are interested
in identifying the most influential parameters that significantly affect the basic reproduction
number. These are the parameters that should be taken in to considerationwhenfinding treatment
strategies to significantly curtail the infection within a host of an infected patient.

6.1.1 Local sensitivity analysis ofR0

Local sensitivity analysis dealswith the sensitivity relative to change of a single parameter value.
This method is based on the normalized sensitivity index of R0. The corresponding variance
in the state variable, by the variation of a parameter can be computed through the normalized
forward sensitivity indices. Let � be denote the generic parameter of the delay system (4.1).
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Fig. 2 Simulations of model (4.1) using various initial conditions with β0 = 10−3, b = 0.3, τ1 = 1,
τ2 = 2, τ3 = 5, a0 = 1 and q = 0.05 so that R0 = 0.5306 < 1

The normalized forward sensitivity index of � denoted S� is the number of the corresponding
normalized changes (Diekmann and Heesterbeek 2000). Since R0 is a differentiable function
of the parameters, then according to the literature (Gjorgjieva et al. 2005), the normalized
sensitivity index for parameter � can alternately be defined, in the form of partial derivatives
as give below

S� = �

R0

∂R0

∂�
,

where� represents a parameter in the quantityR0 and the expressionS� indicates howsensitive
R0 is to a change in this parameter �.

When determining the sensitivity index of each parameter, we use β1 = 0.2, β2 = 0.28,
β3 = 0.1, τ1 = 5.8, τ2 = 6, and τ3 = 4, fromGuo et al. (2018), a0 = 0.3 and other parameters
from Table 1.

It is observed from Table 2 that the parameters k, β0, α and s0 respectively have a positive
influence in the value ofR0. This indicates that the increase or the decrease of these parameters
say by 10%, thenR0 will increase or decrease by 10%, 10%, 0.7%, and 0.3% respectively. Note
however that for the choice of the parameter values, α and s0 have a weak positive influence in
the value ofR0. The index for parameter δ, representing the death rate of productively infected
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Fig. 3 Simulations of model (4.1) using various initial conditions with β0 = 10−3, β1 = 0.2, β2 = 0.28,
β3 = 0.1, b = 0.3, τ1 = 5.8, τ2 = 6, τ3 = 4, a0 = 1 and q = 0.05 so that R0 = 0.0275 < 1. All other
parameters as in Table 1. The infection-free equilibrium P0 is globally asymptotically stable

Table 2 Sensitivity indices forR0 with respect to parameters for the delayed model (4.1)

Parameters Sensitivity index Value Parameters Sensitivity index Value

k Sk +1 δ Sδ −1.0574

β0 Sβ0 +1 β1 Sβ1 −1.1600

μ Sμ −1 β2 Sβ2 −1.6800

a0 Sa0 −1 β3 Sβ3 −0.4000

d Sd −1.2821 × 10−9 τ1 Sτ1 −1.1600

s0 Ss0 +0.0333 τ2 Sτ2 −1.6800

α Sα +0.0574 τ3 Sτ3 −0.4000
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Fig. 4 Simulations of model (4.1) using various initial conditions with β0 = 3×10−3, b = 0.03, τ1 = 15,
τ2 = 2, τ3 = 5, a0 = 0.6 and q = 0.05 so thatR0 = 2.3063 > 1,R1 = 0.788 < 1 andR2 = 0.1840 < 1

hepatocytes and Capsids, shows that increasing its value by 10% will decrease the value ofR0
by 10.6%. In a similar way, the index for parameters τ1, τ2, τ3, β1, β2 and β3 which denote the
time necessary for exposed cells to convert to productively infected hepatocytes, the time for
capsids to become mature, the time needed for newly produced HBV DNA-containing capsids
to become free virions and the mortalities during the three time delays respectively, show that
increasing their values by 10% will decrease R0 almost by 11.6%, 16.8%, 4%, 11.6%, 16.8%
and 4% respectively. Clearly, for the choice of fixed parameter values, the percentages of the
parameter δ, τ1, τ2, β1, and β2 remain higher than any percentage consider. It follows from this
analysis that a higher death rate of productively infected hepatocytes and Capsids δ, the delays
τ1, and τ2, and the death rates β1, and β2 decrease sufficientlyR0.Using β1 = 0.2, β2 = 0.28,
β3 = 0.1, τ1 = 5.8, τ2 = 6, and τ3 = 4, fromGuo et al. (2018), a0 = 0.3 and other parameters
from Table 1, the plot results displayed in Fig13 and 14 illustrate the role of τ1, τ2, τ3 β1, β2
and β3 on the basic reproduction numberR0, from which we see thatR0 decreases whenever
the parameters τ1, τ2, τ3, β1, β2 and β3 increase. Thus it is clear as argued in Guo et al. (2018)
that the neglect of the mortalities during the three time delays must result in increase in size
of R0. Also, from the plot result Fig14, we observe that the basic reproduction number R0
become large enough whenever the death rates β1, β2 and β3 tend toward 0. From Theorem
5.3, we have that the infection-free equilibrium P0 is globally asymptotically stable whenever
the value of R0 is below one, which means that the viruses are cleared and the infection wipe
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Fig. 5 Simulations of model (4.1) using various initial conditions with β0 = 3 × 10−3, β1 = 0.2,
β2 = 0.28, β3 = 0.1, b = 0.3, b = 0.03, τ1 = 15, τ2 = 2, τ3 = 5, a0 = 0.6 and q = 0.05 so that
R0 = 1.1424 > 1, R1 = 0.8524 < 1 and R2 = 0.0442 < 1. All other parameters as in Table 1. The
immune-free equilibrium P1 = (2.6×109, 0.0559, 0.0110, 1.0253, 01424, 0, 0) is globally asymptotically
stable

out. Therefore, in an effort to eliminate the HBV infection, we need to reduce the value of R0
to a level lower than unity by increasing the value of τ1, τ2 and τ3. This suggest that, a good
strategy to eradicate or to control HBV infection within a host should concentrate on any drugs
that may prolong the values of these three delays.

6.1.2 Uncertainty and global sensitivity analysis ofR0

Local sensitivity analysis focus more on a single input’s behavior while other parts remain the
same. In other words, it evaluates the outcomes of individual parameters at particular points in
parameter space without taking into account the combined variability resulting from simultane-
ous consideration of all input parameters. In this section, we carry out a global SA to examine
the sensitivity with regard to the entire parameter distribution in a wider range of the parameter
space. The baseline values of parameters are given in Table 1, except β1 = 0.2, β2 = 0.28,
β3 = 0.1, τ1 = 5.8, τ2 = 6, τ3 = 4, and a0 = 0.3, and the range values of these parameters
in Table 3.
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Fig. 6 Simulations of model (4.1) using various initial conditions with β0 = 3 × 10−3, b = 0.03,
τ1 = 15, τ2 = 2, τ3 = 5, a0 = 0.3 and q = 0.05 so that R0 = 4.6126 > 1, R1 = 2.1676 > 1 and
R3 = 0.4060 < 1

Table 3 Parameter value ranges of system (2.1) used as input for the LHS method

Parameters Range Parameters Range Parameters Range

s0 [5.04 × 104, 2.6 × 109] a [25 × 10−8, 1.5] β0 [0.001, 0.2]
d [0.0039, 0.1] q [0.002, 0.5] β1 [0.001, 1]
p [0.2, 0.98] τ1 [1, 15] β2 [0.001, 1]
k [50, 280] τ2 [1, 14] β3 [0.001, 1]
α [0.58, 0.99] τ3 [1, 15] δ [0.03, 0.1]
r [0.006, 0.9] a0 [0.01, 0.95] μ [0.693, 6]
b [0.03, 0.5] b0 [0.01, 2.25] c [0.01, 0.3]
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Fig. 7 Simulations of model (4.1) using various initial conditions with β0 = 3 × 10−3, β1 = 0.2,
β2 = 0.28, β3 = 0.1, b = 0.3, τ1 = 15, τ2 = 2, τ3 = 5, a0 = 0.3 and q = 0.05 so thatR0 = 2.0182 > 1,
R1 = 6.1092 > 1 andR3 = 0.0895 < 1.All other parameters as in Table 1. The infection equilibriumwith
only antibody immune defense P2 = (2.6 × 109, 0.1131, 0.0224, 2.0762, 0.1667, 9.2451, 0) is globally
asymptotically stable

It is worth noting that, variations of these parameters in our compartmental delay model lead
to uncertainty to model predictions sinceR0 varies with parameters. Following the approach of
Marino et al. (2008), we use partial rank correlation coefficients (PRCC) and Latin Hypercube
Sampling (LHS) to explore each parameter in the basic reproduction numberR0 of model (4.1).
To implement the LHS scheme, a uniform distribution is chosen for all parameters. The sets of
input parameter values sampled using the LHS method were used to run 1000 simulations. The
results of the PRCC computation betweenR0 and each parameter of model (4.1) are displayed
in Table 4. Figure15 represents the SA plot of R0.

The most influential parameters in model (4.1) have a PRCC value greater than 0.5 or less
than −0.5 and a P value less than 0.05 (Gomero 2012). Table 4.3 and Fig. 15 show that the
parameter β0 have the highest influence on the reproduction numberR0, followed in decreasing
order by the parameters β1, β2, β3 τ1, τ2, and τ3. The parameters which do not have almost
any effect onR0 are s0, d, p, α, r b, a, b0, c, and q, where the saturation factor measuring the
inhibitory or physiological effect b0, is the least sensitive of the parameters. It can be seen that
parameters τ1, τ3, and τ3, permit us to considerably reduce the reproduction number. Thus,
the global SA consistently reinforces our suggestion that the most effective way to reduce the
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Fig. 8 Simulations of model (4.1) using various initial conditions with β0 = 3 × 10−3, b = 0.03,
τ1 = 4, τ2 = 2, τ3 = 5, a0 = 0.3 and q = 0.009 so that R0 = 5.1489 > 1, R2 = 3.2461 > 1 and
R4 = 0.7669 < 1

Table 4 PRCC between R0 and each parameter

Parameters PRCCs P values Parameters PRCCs P values

s0 −0.0646 0.0431 β0 0.3844 7.3533E−36

d 0.0011 0.9719 β1 −0.6882∗∗ 1.9814E−138

p 0.0504 0.1148 β2 −0.6832∗∗ 1.0282E−135

k 0.1892 2.3710E−09 β3 −0.7002∗∗∗ 2.8325E−145

α 0.0427 0.1813 δ −0.0792 0.0132

r −0.0064 0.8414 μ −0.2094 3.5962E−11

b 0.0101 0.7533 c −0.0384 0.2300

a −0.0634 0.0471 q 0.0397 0.2145

τ1 −0.6347∗∗ 1.3373E−111 τ2 −0.6393∗∗ 1.0397E−113

τ3 −0.6627∗∗ 5.7146E−125 a0 −0.3072 7.2366E−23

b0 −0.0007 0.9828
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Fig. 9 Simulations ofmodel (4.1) usingvarious initial conditionswithβ0 = 3×10−3, β1 = 0.2, β2 = 0.28,
β3 = 0.1, b = 0.3, τ1 = 10, τ2 = 2, τ3 = 5, a0 = 0.3 and q = 0.002 so that R0 = 5.4860 > 1,
R2 = 34.8007 > 1 and R4 = 0.7734 < 1. All other parameters as in Table 1. The infection equilibrium
with only CTL immune response P3 = (2.6× 109, 0.0823, 0.0100, 0.9283, 0.1289, 0, 0.2153) is globally
asymptotically stable

infection within a host is to increase the three time delays. It follows that, the strategies and
action presented on these three parameters will be useful in order that the spread of infection
enters a downward course.

6.1.3 Sensitivity analysis of Infected states of model (4.1)

In this subsection, with 1000 runs of LHS, we calculate the PRCC between infected compart-
ments E(t), I (t), D(t) and V (t) and each parameters of model (4.1). The results is represented
in Tables 5, t002, t003 and 8. Here too, the most influential parameters in model (4.1) have a
PRCC value greater than 0.5 or less than −0.5 and a P value less than 0.05.

From Tables 5, t002, t003 and 8, the following facts can be observed.
1) For the value of E, the most important parameters are β0 and k. The parameters which

do not have almost any effects on the variation of E are s0, d, p, α, r , a, τ1, τ2, τ3, b0 and q.

The least sensitive parameter is a, the CTL activation rate.
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Fig. 10 Simulations of model (4.1) using various initial conditions with β0 = 3× 10−3, τ1 = 15, τ2 = 2,
τ3 = 5, a0 = 0.3 and q = 0.02 so that R0 = 4.6126 > 1, R1 = 2.1676 > 1, R2 = 1.2719 > 1
R3 = 1.0150 > 1 andR4 = 1.7042 > 1

2) For the value of I , the most important parameters are β0, k and β1. The least sensitive
parameters are d and b0, the natural death rate of healthy hepatocytes and the Crowley-Martin
coefficient respectively.

3) For the value of D, the most important parameters are k and β0. The least sensitive
parameter is p, the rate at which productively infected hepatocytes are removed by CTL cells.

4) For the value of V , the most important parameters are k and β0. The least sensitive
parameter is p, the CTL effectiveness.

Apart from the time delays parameters whose model is sensitive to their variations, other
parameters, such as k, β0 and β1, have a considerable impact on the value of the basic repro-
duction number R0 and the number of infected compartments. Consequently, it is crucial to
take into account other favorable and adequate strategies in the elimination of HBV infection.
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Fig. 11 Simulations of model (4.1) using various initial conditions with β0 = 3 × 10−3, β1 = 0.2,
β2 = 0.28, β3 = 0.1, τ1 = 10, τ2 = 2, τ3 = 5, a0 = 0.3 and q = 0.005 so that R0 = 5.4860 > 1,
R1 = 26.9161 > 1, R2 = 13.9203 > 1 R3 = 2.4319 > 1 and R4 = 1.9336 > 1. All other
parameters as in Table 1. The interior infection equilibrium with both antibody and CTL immune response
P4 = (2.6 × 109, 0.1029, 0.0250, 2.3207, 0.1667, 11.8255, 0.0799) is globally asymptotically stable

Table 5 PRCC between exposed infected hepatocytes E and each parameter

Parameters PRCCs P values Parameters PRCCs P values

s0 0.0508 0.6460 β0 0.6688∗∗ 4.4041E−128

d 0.0053 0.2597 β1 −0.4603 1.5276E−52

p 0.0066 0.8372 β2 −0.1260 7.6946E−05

k 0.5089∗ 1.1211E−65 β3 −0.1270 6.6923E−05

α −0.0403 0.2077 δ −0.1333 2.8383E−05

r −0.0123 0.7009 μ −0.2130 1.6293E−11

b −0.2588 1.8235E−16 c 0.2340 1.1733E−13

a 0.0030 0.9242 q 0.0432 0.1767

τ1 −0.0947 0.0030 τ2 −0.0755 0.0181

τ3 −0.0748 0.0191 a0 −0.3866 2.7971E−36

b0 0.0116 0.7158
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Fig. 12 Time plots for model (4.1) with different values of τ1, τ2, τ3, β1, β2 and β3

Fig. 13 Simulations of the basic reproduction number R0 versus some parameters: (a) R0 versus τ1 and
τ2, (b)R0 versus τ1 and τ3, (c)R0 versus τ2 and τ3

Fig. 14 Simulations of the basic reproduction number R0 versus some parameters: (a) R0 versus β1 and
β2, (b)R0 versus β1 and β3, (c)R0 versus β2 and β3
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Fig. 15 The graphs of PRCC values between R0 and each parameter for 1000 simulations

Table 6 PRCC between productively infected hepatocytes I and each parameter

Parameters PRCCs P values Parameters PRCCs P values

s0 −0.0580 0.0693 β0 0.5808∗ 1.8429E−89

d 0.0017 0.9588 β1 −0.5076∗ 2.6384E−65

p −0.0641 0.0447 β2 −0.1200 1.6330E−04

k 0.5190∗ 1.1258E−68 β3 −0.1050 9.9187E−04

α 0.0094 0.7685 δ −0.1251 8.5621E−05

r −0.0122 0.7021 μ −0.1739 4.3203E−08

b −0.1825 8.6958E−09 c 0.1148 3.1568E−04

a −0.0655 0.0404 q 0.1740 4.1890E−08

τ1 −0.3148 5.4938E−24 τ2 −0.1160 2.7266E−04

τ3 −0.1484 3.0965E−06 a0 −0.3030 2.9267E−22

b0 0.0017 0.9580
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Table 7 PRCC between HBV DNA-containing capsids D and each parameter

Parameters PRCCs P values Parameters PRCCs P values

s0 0.0312 0.3291 β0 0.6161∗∗ 1.6853E−103

d 0.0455 0.1549 β1 −0.4727 1.0647E−55

p −0.0099 0.7559 β2 −0.3075 6.6309E−23

k 0.6236∗∗ 1.0529E−106 β3 −0.1567 8.2828E−07

α −0.0412 0.1977 δ −0.1948 7.7552E−10

r 0.0178 0.5770 μ −0.1811 1.1335E−08

b −0.2390 3.3903E−14 c 0.2139 1.3299E−11

a −0.0971 0.0023 q 0.1499 2.4371E−06

τ1 −0.2927 8.2531E−21 τ2 −0.1043 0.0011

τ3 −0.1053 9.6041E−04 a0 −0.3426 2.2447E−28

b0 0.0399 0.2117

Table 8 PRCC between free viruses V and each parameter

Parameters PRCCs P values Parameters PRCCs P values

s0 0.0108 0.7350 β0 0.5271 3.7123E−71

d −0.0099 0.7569 β1 −0.3713 2.1433E−33

p −0.0061 0.8491 β2 −0.2151 1.0197E−11

k 0.5221 1.2645E−69 β3 −0.2097 3.3483E−11

α −0476 0.1368 δ −0.1541 1.2526E−06

r 0.0975 0.0023 μ −0.2293 3.7120E−13

b −0.3328 9.0226E−27 c 0.2510 1.5044E−15

a 0.0241 0.4516 q 0.0436 0.1723

τ1 −0.1809 1.1675E−08 τ2 −0.0869 0.0065

τ3 −0.1086 6.5700E−04 a0 −0.1570 7.7872E−07

b0 0.0131 0.6819

7 Conclusion and discussion

In this paper we have formulated and analyzed a new model for HBV infection process in
vivo. The obtained model includes intracellular HBVDNA-containing capsids, adaptive immu-
nity, exposed infected hepatocytes, three-time delays and general incidence functional. For the
proposed model, we have established five threshold parameters, namely, the basic reproduc-
tion numberR0, the antibody immune response activation reproduction numberR1, the CTL
immune defense activation reproduction number R2, the competitive CTL immune response
reproduction numberR3, and the competitive antibody immune response reproduction number
R4, and proved the existence of five equilibrium points, namely, the infection-free equilibrium
P0, the immune-free equilibrium P1, the infection equilibrium with only antibody immune
defense P2, the infection equilibrium with only CTL immune response P3 and the interior
infection equilibrium with both antibody and CTL immune response P4. Under assumptions
(B1)-(B3) and (B4), the stability properties of the five equilibria were investigated by con-
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structing five suitable Lyapunov functionals and using LaSalle’s invariance principle, as well
as the linearization method. More precisely, we have proved that P0 is globally asymptoti-
cally stable whenever R0 ≤ 1. This implies that all solutions trajectories converge towards
P0 and the disease ultimately dies out. When R0 > 1, P0 becomes unstable and the four
other aforementioned equilibrium points appear. Concretely, we have proved that P1 is globally
asymptotically stable whenever R1 ≤ 1 and R2 ≤ 1 and becomes unstable when R1 > 1 or
R2 > 1. Next, we have shown that when R1 > 1, P2 exists, and it is globally asymptotically
stable if R3 ≤ 1 and becomes unstable when R3 > 1. The existence of P3 is obtained when
R2 > 1, and it is globally asymptotically stable if R4 ≤ 1 and becomes unstable if R4 > 1.
Finally, we have shown that the last equilibrium point P4 is globally asymptotically stable if
it exists and the five threshold indices are strictly greater than unity. This indicates that both
CTL and antibody immune defense will be activated only when R1 > 1, R2 > 1, R3 > 1
andR4 > 1. In this case, all solutions trajectories tend to P4 and the disease will be persistent
in the host. This argument and some previous one indicate that the activation of one or both
CTL and antibody immune response is either able to diminish the viral load by blocking the
HBV infection process or unable to eradicate the free viruses from the infected human liver. The
numerical simulations implemented in Sect. 6 exhibit the behavior of solutions in time. Further-
more, all the seven state variables influenced by multi-time delays can better impact the viral
infection progression. Therefore, the investigations in this paper can be seen as an improvement
for a better understanding of HBV infection. On the other hand, the condition given in Theo-
rem 5.3 which indicates that the infection-free equilibrium P0 is globally asymptotically stable
wheneverR0 = kαs0β0

δμ(d+a0s0)(α+δ)
e−β1τ1−β2τ2−β3τ3 < 1, gives the analytical conditions under

which the solution trajectories asymptotically approach towards the infection-free steady state.
Thus, this can help to find treatment strategies to significantly curtail the infection within a host
of an infected patient. Moreover, from the sensitivity analysis, it follows that the expression of
R0 is relies on six key parameters, namely β0, β1, k, τ1, τ2, and τ3. This to mean that the
variation of these six parameters can play a crucial role in hepatitis B treatment. In this case,
the medical staff have to adapt these parameters thanks to the above expression ofR0 in order
to eradicate HBV infection within a host. It follows that the parameters β0, β1, k, τ1, τ2, and
τ3 might be varied to adjust hepatitis B treatment. Note that the analysis shows that R0 is a
proportionally increasing function of parameter β0 and a proportionally decreasing function of
parameters τ1, τ2, and τ3. Therefore, in an effort to eliminate the HBV infection, we need to
reduce the value of R0 to a level lower than unity by increasing the value of β1, τ1, τ2, or
τ3. Decreased infection rate β0 leads to disappearance of immune-free equilibrium, infection
equilibrium with only antibody immune defense, infection equilibrium with only CTL immune
response and interior infection equilibrium with both antibody and CTL immune response and
infection-free equilibrium will become stable. This indicates the HBV eradication and that the
patient is healed. Note that the discussion around these parameters shows that they play an
important role insofar as if β0 is very small, the swiftness of virus infection progression could
be slowed enough. Also, if the multi-time delays and the mortalities during these time delays are
very large, the density of each compartment involved (i.e., E, I , D, V ) could be significantly
reduced over time.

Another important challenge from a therapeutic point of view is to study the factors which
cause growth of free virions. From Fig. 12, we saw that by decreasing the value of the parame-
ters β1, β2, β3, τ1, τ2 and τ3, the infection gets out of control in an infected host. Therefore,
the control measures which will be established should be aimed at increasing these parameters.
Moreover, it appears in all numerical simulations that an all-lime low of exposed infected hep-
atocytes could lead to that of other infected compartments compared to models in the literature
that do not include the compartment of exposed infected hepatocytes. Thus, focusing on the
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consideration of a delayed model of viral infection taking in to account the exposed cells may
provide new strategies for developing new antiviral drugs and design optimal combination of
therapies for patients.

However, as argued in Xie et al. (2016) that time delays cannot be ignored in models for
adaptive immune response, in a forthcomingwork,we shall study amodel (2.3)with intracellular
delay, intracellularHBVDNA-containing capsids delay, virus replication delay and two adaptive
immune response delays to explore five delays on how they impact the dynamical behavior of
viral infection model.
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