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Abstract
In this paper, we study in detail the structure of the global attractor for the Lotka–
Volterra system with a Volterra–Lyapunov stable structural matrix. We consider the
invasion graph as recently introduced in Hofbauer and Schreiber (J Math Biol 85:54,
2022) and prove that its edges represent all the heteroclinic connections between the
equilibria of the system. We also study the stability of this structure with respect to
the perturbation of the problem parameters. This allows us to introduce a definition
of structural stability in ecology in coherence with the classical mathematical concept
where there exists a detailed geometrical structure, robust under perturbation, that
governs the transient and asymptotic dynamics.

Mathematics Subject Classification 34C37 · 37C70 · 34D45 · 92D25

B Piotr Kalita
piotr.kalita@ii.uj.edu.pl

Pablo Almaraz
pablo.almaraz@csic.es

José A. Langa
langa@us.es

Fernando Soler–Toscano
fsoler@us.es

1 Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla,
Campus Reina Mercedes, 41012 Sevilla, Spain

2 Grupo de Oceanografía de Ecosistemas, Instituto de Ciencias Marinas de Andalucía
(ICMAN-CSIC), Campus Universitario de Puerto Real, Puerto Real 11519, Spain

3 Faculty of Mathematics and Computer Science, Jagiellonian University, ul. Łojasiewicza 6,
30-348 Kraków, Poland

4 Departamento de Filosofía, Lógica y Filosofía de la Ciencia, Universidad de Sevilla, C/ Camillo José
Cela, s/n, 41018 Sevilla, Spain

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-024-02087-8&domain=pdf
http://orcid.org/0000-0002-2651-9666


64 Page 2 of 25 P. Almaraz et al.

1 Introduction. Invasion graphs and ecological assembly

The relations between populations of interacting species in ecosystems can be
described by structured networks, where nodes represent species, and the edges rep-
resent the fact that the presence of one species affects another one Bascompte and
Jordano (2014). In order to understand the behavior of the ecosystem, however, it is
necessary to study the dynamics of the interactions between species, i.e. how their
quantities vary in time in relation to each other. The classical study of ecological
dynamical models has been focused in their asymptotic behavior May (1973), but
what is actually observed during the evolution in time of real systems is the presence
of transient states Hastings et al. (2018). These transient states are known to last for
hundreds of generations in many natural systems in which stochasticity is an integral
part of their dynamics Hastings et al. (2021), so a major goal in current theoretical
ecology is to evaluate the impact of transient dynamics on the persistence of com-
munities in a constantly changing environment Hastings et al. (2018). The interplay
between transient and asymptotic dynamics is particularly important when we want
to analyze the way in which communities assemble, or the invasion of one or several
species to a given state of the ecosystem. The description of the sequence of both the
potential assemblies or invasions (bottom-up), and the disassemblies or extinctions
(top-down) is usually described by a network structure whose nodes are subcommuni-
ties and edges represent the possibility of evolution from one subcommunity to another
Hang-Kwang and Pimm (1993). Full knowledge of such structure allows us to draw
a complete landscape of all possible states in all possible times for the associated
ecosystem. As it encompasses the essential information on the ecosystem, following
our earlier terminology, we call it the informational structure (IS), cf. Esteban et al.
(2018), Portillo et al. (2022). The IS is the key object to investigate for a deeper under-
standing of the dynamics of the system, as it encapsulates both the transient states
and the asymptotic dynamics. The complete characterization of the IS gives the infor-
mation on the mechanics of ecological assembly. Indeed, given the close connection
between the IS and the concept of assembly or community transition graph tradition-
ally used in ecology (Hang-Kwang and Pimm 1993; Morton et al. 1996; Serván and
Allesina 2021), the IS gives a picture of the pattern of possible developments of the
ecological community containing the species present in the ecosystem.

If a model is a dissipative system of autonomous Ordinary Differential Equations
which has a finite number of equilibria, then the underlying IS is contained in the struc-
ture of its global attractor. The nodes of IS correspond to the equilibria of the system
and the edges represent the heteroclinic connections between them. In this paper, we
focus on the Lotka–Volterra system of ODEs. While we choose this relatively simple
model, there may exist many other factors affecting the evolution of an ecosystem,
so that the modelling approach can include a variety of functional forms, from very
basic ones to highly nonlinear vector fields including stochastic delays, or even higher
order terms. The system under consideration here has the form

u′
i = ui

⎛
⎝bi +

n∑
j=1

ai j u j

⎞
⎠ for i ∈ {1, . . . , n}.

123



Structural stability of invasion graphs... Page 3 of 25 64

where ui is the state variable for species i (e.g., population density or number of
individuals); bi is the intrinsic growth rate for species i ; and ai j is the direct effect
of the average species j individual on species i’s population growth rate Novak et al.
(2016). We assume that the matrix A = (ai j )

n
i, j=1 is Volterra–Lyapunov stable (see

Definition 3).
For such a system, based on recent discoveries by Hofbauer and Schreiber (2022),

we present an algorithm to construct the graph that represents the connections between
the equilibria of the system, the IS, and we show that it is equivalent to the Invasion
Graph (IG) as proposed in Hofbauer and Schreiber (2022). Thus, we complement the
results of Hofbauer and Schreiber (2022) which states, in a more general framework,
that the graph of connections is a subgraph of the IG, but the possibility that IG
is essentially bigger is generally not excluded. We show that for a particular case
of Lotka–Volterra system with Volterra–Lyapunov stable matrix the two structures
coincide. In this way, we give a joint framework for the study of ecological assembly
(Serván and Allesina 2021), Invasion Graphs (Hofbauer and Schreiber 2022) and
Information Structures (Esteban et al. 2018; Portillo et al. 2022).

We stress that our argument works only in the Volterra–Lyapunov stable case where
the IG (and equivalently IS) is the directed graph and the results of Takeuchi (1996)
allow to construct the unique minimal element, the globally asymptotically stable
stationary point (GASS). While this assumption may be restrictive, the advantage is
that we explicitly describe the structure of all connections between the equilibria.
In the general case, the Lotka–Volterra systems may encompass many rich dynamic
phenomena, such as limit cycles (Afraimovich et al. 2008), but the analytical algorithm
to construct the whole dynamics for a general n-dimensional system is still unknown.

The problem of structural stability is of a fundamental importance in biology: it
concerns the question ofwhether the state of a system and its stabilitywill survive upon
a small perturbation of model parameters. Recently, Rohr et al. (2014) represented the
structural stability of ecological networks as a problem of community persistence.
Essentially, the aim is to provide a measure of the range of admissible perturbations
to a system under which no interacting species become extinct, i.e. the community
is feasible. Feasibility refers here to the existence of a saturated equilibrium vector,
that is, given a particular combination of species interaction parameters and intrinsic
growth rates (ai j and bi in (1), respectively) all of the abundances are strictly positive
at the equilibrium. Thus, there is a connection between structural stability, as it is
currently used in ecology, and the Modern Coexistence Theory (MCT) (Barabás et al.
2018), which aims at determining the number of species that can coexist in an ecosys-
tem (Barabás et al. 2018). Invasion Graphs, as introduced by Hofbauer and Schreiber
(2022), extends the concept of assembly graphs to the invasibility criteria of the MCT:
the condition that a set of persisting interacting species should have positive per-capita
growths rates when rare (Chesson 1994; Barabás et al. 2018). A novel contribution
of our paper is to provide a link between Information Structures and Invasion Graphs
through a measure of structural stability of global attractors that integrate both the
transient and asymptotic dynamics. This achievement can be of paramount impor-
tance for a more detailed understanding of community coexistence and functioning in
variable environments.
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Inspired by these considerations, and by the study on the stability of the global
attractor structure (Bortolan et al. 2022), we show that, not only the stable equilibrium
but also the whole assembly remains unchanged upon a small perturbation of model
parameters. This result is interesting from a mathematical point of view as we get
a result on structural stability for a problem which is not necessarily Morse–Smale,
contrary to many classical structural stability results (see Bortolan et al. (2022) and
references therein). On the other hand, its interest from the point of view of ecology is
that it links the concept of structural stability from Rohr et al. (2014) with ecological
assembly (Serván and Allesina 2021) and invasion dynamics (Hofbauer and Schreiber
2022). Indeed, the notion of stability of all the assembly canbeviewed as the refinement
of the notion of the stability of the persistent equilibrium (see Rohr et al. (2014)), as
it induces the decomposition of the stability cones for the latter case into the smaller
cones of the stability of assemblies.

The structure of the paper is as follows: in Sect. 2 we formulate the problem and
summarize its basic properties; in particular, we recall the result of Takeuchi (1996)
on the existence and characterization of a globally asymptotically stable steady state.
The next Sect. 3 is devoted to local properties of the system: we explicitly linearize
it around the equilibria and study the properties of this linearization. The first main
result of the paper, which states that the IS coincides with the IG is contained in Sect. 4.
The following Sect. 5 contains the second main result, on the problem of structural
stability, and on the stability cones for the assembly. Finally, in the appendices, we
show that the considered problem is not necessarily Morse–Smale, and we formulate
the open questions for the cases which are not Volterra–Lyapunov stable.

2 Lotka–Volterra systems and their global attractors.

In this section we introduce the Lotka–Volterra systems and, for Volterra–Lyapunov
stable matrices in the governing equation, we formulate the results on the underlying
dynamics. The key concept is the global attractor. This attractor contains the minimal
invariant sets (in our case, the equilibria) and the complete trajectories joining them
in a hierarchical way. In our case, each admissible equilibrium or stationary point
describes a subcommunity of the system. If this admissible equilibrium has strictly
positive components, it is also feasible. Equilibria are joined by complete trajectories,
i.e., global solutions of the system defined for all t ∈ R. This structure encodes all
possible stationary states of the system and the underlying backward and forward
behavior of the dynamics via the heteroclinic connections. It is a directed graph,
which has been defined as an information structure in Esteban et al. (2018), Kalita
et al. (2019), Portillo et al. (2022), and it induces a landscape of the phase space defined
as an informational field (Kalita et al. 2019).

We start from definitions of classes of stable matrices. More information on them,
as well as on the underlying dynamics of the associated Lotka–Volterra systems can
be found in Hofbauer and Sigmund (1988, 1998), Logofet (1993), Takeuchi (1996).

Definition 1 A real matrix A ∈ R
n×n is stable if σ(A) ⊂ {λ ∈ C : Re λ < 0}, where

σ(A) is the spectrum of A.
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Definition 2 A real matrix A ∈ R
n×n is D-stable if for every matrix D =

diag{d1, . . . , dn} with di > 0 for every i the matrix D A is stable.

Definition 3 A real matrix A ∈ R
n×n is Volterra–Lyapunov stable (VL-stable) if there

exists a matrix H = diag{h1, . . . , hn} with hi > 0 such that H A + AT H is negative
definite (i.e. stable).

Consider the following Lotka–Volterra system with Volterra–Lyapunov stable
matrix A = (ai j )

n
i, j=1 and a vector b ∈ R

n .

u′
i = Fi (u) = ui

⎛
⎝bi +

n∑
j=1

ai j u j

⎞
⎠ for i ∈ {1, . . . , n}. (1)

Let n ∈ N. We denote

C+ = {x = (x1, . . . , xn) ∈ R
n : xi ≥ 0 for i ∈ {1, . . . , n}},

and

C+ = int C+ = {x = (x1, . . . , xn) ∈ R
n : xi > 0 for i ∈ {1, . . . , n}}.

Now let x = (x1, . . . , xn) ∈ C+. If J ⊂ {1, . . . , n} is a set of indices then we will use
a notation

C J+ = {x ∈ C+ xi > 0 for i ∈ J }.

If x ∈ C+, then we denote J (x) = {i ∈ {1, . . . , n} : xi > 0}. Having such x ∈ C+,
we have

C J (x)
+ = {y ∈ C+ yi > 0 for i ∈ J (x)}.

We present a result on the system (1) from Takeuchi (1996). We will be first inter-
ested in its equilibria in C+. Clearly 0 = (0, . . . , 0) ∈ R

n is one of them. If we choose
the nonempty subset of indices J ⊂ {1, . . . , n}, say J = {i1, . . . , im}, then we will
say that this set defines an admissible equilibrium if there exists a point x ∈ C J+ with
xi = 0 for i /∈ J which is an equilibrium of (1). The statement will be made more
precise with some auxiliary notation introduced with the next definition.

Definition 4 Let A = (ai j )
n
i, j=1 ∈ R

n×n be a matrix. If m < n, then m × m principal
submatrix of A is obtained by removing any n − m columns and n − m rows with the
same indices from A, i.e. if 1 ≤ i1 < i2 < . . . < im ≤ n. The principal submatrix
of A associated with the set J = {i1, . . . , im} has a form A(J ) = (A(J ) jk)

m
j,k=1 =

(ai j ik )
m
j,k=1.
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Also, for a vector b ∈ R
n we can associate with a set of indices J = {i1, . . . , im}

its subvector b(J ) = (bi j )
m
j=1. So, the set J defines a feasible equilibrium of the

subsystem consisting only of the equations indexed by elements of J and taking
the variables outside J as zero, if the solution of the system A(J )v = −b(J ) has
all coordinates strictly positive. We denote this solution by u∗(J ). The associated
admissible equilibrium of the original n-dimensional system is given by ui = 0
for i /∈ J , and ui j = v j for j ∈ {1, . . . , m}, i.e., i j ∈ J . We use the notation
u∗ = (u∗(J ), 0i∈{1,...,n}\J ).

Since every subset of {1, . . . , n} can potentially define an admissible equilibrium,
theremay bemaximally 2n of them (including zero), each of themdetermined uniquely
by splitting {1, . . . , n} into the union of two disjoint subsets: the set J on which the
coordinates are strictly positive (this set defines the equilibrium) and the remainder
on which they must be zero.

It is not difficult to prove that for every subset of indices J ⊂ {1, . . . , n} the set

{x ∈ C+ xi = 0 for some i ∈ J } = C+\C J+

is positively and negatively invariant with respect to the flow defined by (1).
We recall the definition of the Linear Complementarity Problem (LCP). Given a

matrix B ∈ R
n×n and a vector c ∈ R

n the linear complementarity problem LC P(B, c)
consists in finding a vector x ∈ R

n such that

Bx + c ≥ 0,

x ≥ 0,

x�(Bx + c) = 0.

If the matrix A is Volterra–Lyapunov stable then the problem LC P(−A,−b) has
a unique solution for every b ∈ R

n , cf. [Lemma 3.2.1 and Lemma 3.2.2] Takeuchi
(1996).

We cite the asymptotic stability result from Takeuchi (1996).

Theorem 5 (Takeuchi (1996), Theorem 3.2.1) If A is Volterra–Lyapunov stable then
for every b ∈ R

n there exists a unique equilibrium u∗ ∈ C+ of (1) which is globally
asymptotically stable in the sense that for every u0 ∈ C J (u∗)

+ the solution u(t) of (1)
with the initial data u0 converges to u∗ as time tends to infinity. This u∗ is the unique
solution of the linear complementarity problem LC P(−A,−b). In particular, if the
solution u of the system Au = −b is positive, then u∗ = u.

Wewill denote this u∗ as GASS (globally asymptotically stable stationary point). The
following result is a straightforward consequence of the previous theorem.

Corollary 6 If u∗ is a GASS for the problem governed by (1), then for every set J =
{ j1, . . . , jk} ⊂ {1, . . . , n}, such that J (u∗) ⊂ J the point y ∈ R

k defined by yi = u∗
ji

for i ∈ {1, . . . , k} is a GASS for the k dimensional problem with A(J ) and b(J ).

We present the definition of a global attractor (Hale 1988):
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Definition 7 Let X be a metric space and let S(t) : X → X be a semigroup of
mappings parameterized by t ≥ 0. The set A ⊂ X is called a global attractor for
{S(t)}t≥0 if it is nonempty, compact, invariant (i.e. S(t)A = A for every t ≥ 0),
and it attracts all bounded sets of X (i.e. if B ⊂ X is nonempty and bounded
then limt→∞ dist(S(t)B,A) = 0, where dist(C, D) = supx∈C inf y∈D d(x, y) is the
Hausdorff semidistance between sets C, D ⊂ X ).

If the mappings S(t) : X → X are continuous, for the global attractor existence we
need two properties to hold: the dissipativity and asymptotic compactness Robinson
(2001). As a consequence of Theorem 5 we have the following result.

Theorem 8 For every u0 ∈ C+ the problem governed by (1) has a unique solution
which is a continuous function of time, and the initial data. Moreover, assuming the
Volterra–Lyapunov stability of A, the problem has a global attractor.

Proof The result follows the argument of Guerrero et al. (2017). We only need to
prove the dissipativity, i.e. the existence of the bounded absorbing set; once we have
it, the asymptotic compactness is trivial. To this end it is sufficient to prove that if∑n

i=1 uiwi ≥ R for R large enough with some fixed weights wi > 0, then

d

dt

n∑
i=1

uiwi ≤ −D(R).

Indeed defining |u| as ∑n
i=1 uiwi ,

d

dt
|u| = d

dt

n∑
i=1

uiwi =
n∑

i=1

ui biwi +
n∑

i, j=1

ui ai jwi u j =
n∑

i=1

ui biwi

+ 1

2

n∑
i, j=1

ui (ai jwi + a jiw j )u j ≤ c|u| − d|u|2.

where c > 0 and d > 0 are some constants. Then if |u| ≥ 2c
d , then the right-hand side

of the last expression is decreasing as a function of |u|, and

d

dt
|u| ≤ 2c2

d
− d

4c2

d2 = −2c2

d
,

which is enough for the global attractor existence. ��

3 Equilibria and the local dynamics

While it is straightforward to find all the equilibria of (1) (it suffices to solve 2n linear
systems and determine the ones whose solutions are strictly positive, see also Lischke
and Löffler (2017) for an efficient algorithm), finding the connections between them
is a harder task. Our aim here is to give an algorithm that can be used to find exactly
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for which equilibria there exist heteroclinic connections, i.e. the solutions which tend
to one equilibrium when time goes to minus infinity and another equilibrium when
time goes to plus infinity. Before we move on to the study of the dynamics, we focus
in this section on the local behavior in the neighborhood of the equilibria.

3.1 Linearization and its properties

We construct the linearized system in the neighborhood of the equilibrium u∗ of (1).
Let u∗ be an equilibrium and denote v = u − u∗. Then the system (1) can be rewritten
as

v′
i =

n∑
j=1

∂ Fi (u∗)
∂u j

v j + Gi (v),

where Gi (v) = ∑n
j=1 ai jv jvi is the quadratic remainder term. Assume that u∗ is an

equilibrium inwhich the variables are sorted in such away that u∗
i 
= 0 for i = 1, . . . , k

and u∗
i = 0 for i = k + 1, . . . , n. Then for i = 1, . . . , k the equation of the above

system is

v′
i =

k∑
j=1

v j ai j u
∗
i +

n∑
j=k+1

v j ai j u
∗
i + Gi (v),

and, for i = k + 1, . . . , n,

v′
i = vi

⎛
⎝bi +

k∑
j=1

ai j u
∗
j

⎞
⎠ + Gi (v),

The linearized system has the following block diagonal form

w′ = Bw =
(

B11 B12

0 B22

)
w, (2)

where the matrix B22 is diagonal and B22
i i = bi + ∑k

j=1 ai j u∗
j , while B11

i j = ai j u∗
i ,

and B12
i j = ai j u∗

i .
Wewill name the subsets J ⊂ {1, . . . , n} corresponding to the admissible equilibria

as admissible communities, according to the next definition.

Definition 9 The set (community) I ⊂ {1, . . . , n} is admissible if there exists the
nonnegative equilibrium u∗ = (u∗

1, . . . , u∗
n) of (1) with u∗

i > 0 if and only if i ∈ I .
The family of all admissible communities will be denoted by E ⊂ 2{1,...,n}. The
corresponding set of equilibria is denoted by E = {u0, . . . , uK }. As 0 ∈ E we always
denote u0 = 0.
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Whenever we speak about themultiple equilibria wewill denote them by upper indices
such as ui , u j . On the other hand, lower indices will denote coordinates of vectors
u = (u1, . . . , un).

The following lemmas summarize the properties of the matrix of the linearized
system. Note that similar observations were made in different context in Lischke and
Löffler (2017).

Lemma 10 Assume that the matrix A of the system (1) is Volterra–Lyapunov stable.
Consider the admissible community I and the corresponding equilibrium u∗. The
system linearized around u∗ has the form (2). The spectrum of the matrix B11 is
contained in the open half-plane with the negative real part, i.e. σ(B11) ⊂ {z ∈ C :
Re z < 0}.
Proof Denote u∗ = (u∗

1, . . . , u∗
n). The matrix {ai j }i, j∈I as a principal submatrix of A

is Volterra–Lyapunov stable, cf. Cross (1978, Theorem 1 c). Hence is is also D-stable
by Takeuchi (1996, Lemma 3.2.1). Thismeans that the product diag((u∗

i )i∈I )(ai j )i, j∈I

is stable. This product is exactly B11. ��
We are in a position to formulate a result of the properties of the linearized system

(2).

Lemma 11 Let A be Volterra–Lyapunov stable and let u∗ be an equilibrium with the
admissible community {1, . . . , k}. The spectrum of the matrix B, denoted by σ(B)

is given by σ(B) = σ(B11) ∪ � where λ ∈ � if and only if λ = B22
i i for some

i ∈ {k + 1, . . . , n}, and σ(B11) ⊂ {Re λ < 0}. So, if for some λ ∈ σ(B) we have
Re λ ≥ 0, then λ is real and λ = B22

i i for some i ∈ {k + 1, . . . , n}. The eigenvector
associated with the eigenvalue B22

i i is given by x = (x1, . . . , xk, 0, . . . , 0, 1, 0, . . . , 0),
where 1 is on the position i and (x j )

k
j=1 is some vector.

Proof The assertion that σ(B11) ⊂ {Re λ < 0} follows from Lemma 10.
Now we prove that x = (x1, . . . , xk, 0, . . . , 0, 1, 0, . . . , 0) is the eigenvector

associated with eigenvalue B22
i i . We need to have

B11

⎛
⎜⎜⎜⎜⎝

x1
.

.

.

xk

⎞
⎟⎟⎟⎟⎠

+ B12

⎛
⎜⎜⎜⎜⎝

0
.

1
.

0

⎞
⎟⎟⎟⎟⎠

= B22
i i

⎛
⎜⎜⎜⎜⎝

x1
.

.

.

xk

⎞
⎟⎟⎟⎟⎠

.

Such (x1, . . . , xk) can be found because thematrix B11−B22
i i I is invertible as B22

i i ≥ 0
and it cannot be the eigenvalue of the matrix B11 as all its eigenvalues have negative
real part. Moreover

0

⎛
⎜⎜⎜⎜⎝

x1
.

.

.

xk

⎞
⎟⎟⎟⎟⎠

+ B22

⎛
⎜⎜⎜⎜⎝

0
.

1
.

0

⎞
⎟⎟⎟⎟⎠

= B22
i i

⎛
⎜⎜⎜⎜⎝

0
.

1
.

0

⎞
⎟⎟⎟⎟⎠

,

123
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holds trivially. Note that the result is also valid if the eigenvalues of B22 have
multiplicity greater than one. ��

4 Invasion graphs and information structures

The main aim of this section is to propose the algorithm to determine the network of
connections between equilibria, i.e. the graph forwhich the equilibria of the systemcor-
respond to the nodes, and the edges correspond to the heteroclinic connections. More
specifically, the vertices are given by the set of admissible communities E correspond-
ing to the equilibria E = {u0, u1, . . . , uK } and the edge between two communities
J (ui ) �→ J (u j ) exists if and only if there exists a solution γ (t) which connects ui

with u j i.e. limt→−∞ ‖γ (t) − ui‖ = 0 and limt→∞ ‖γ (t) − u j‖ = 0. Such solutions
are called the heteroclinic connections. We show in this section that, in the Volterra–
Lyapunov stable case, if we assume that all equilibria of the system are hyperbolic,
then this graph is exactly the same as the Invasion Graph (IG) as defined by Hofbauer
and Schreiber in Hofbauer and Schreiber (2022).

4.1 Invasion rates and invasion graphs.

Let I ∈ E , i.e. I is an admissible community of (1). For every species i ∈ {1, . . . , n},
following Chesson (1994) we define the invasion rates ri (I ) [see Barabás et al. (2018)
for the recent overview of Chesson coexistence theory in which the key role is played
by the invasion rates].

Definition 12 Let I ∈ E and let u∗ be the related equilibrium such that u∗
i > 0 for

i ∈ I and u∗
i = 0 for i /∈ I . Then the invasion rate of the species i of the community

I is defined as

ri (I ) = bi +
∑
j∈I

ai j u
∗
j .

If I = ∅ then we use the convention ri (∅) = bi .

We first observe that the invasion rates are always zero for i ∈ I , this is a counterpart
of Lemma 1 from Hofbauer and Schreiber (2022).

Remark 13 If i ∈ I then ri (I ) = 0. This follows from the fact that u∗ =
(u∗(I ), 0i∈{1,...,n}\I ) is an equilibrium, whence A(I )u∗(I ) = −b(I ).

The remaining invasion rates are the eigenvalues of the system linearization at the
equilibrium u∗.

Remark 14 If i /∈ I then the entries B22
i i of the linearization matrix B given in

Lemma 11 by B22
i i = bi + ∑

j∈I ai j u∗
j , are the invasion rates ri (I ).

Following Hofbauer and Schreiber (2022) we present the construction of the Inva-
sion Graph (IG) together with the result that all heteroclinic connections between the
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equilibria correspond to some edges in this graph. The construction and results in Hof-
bauer and Schreiber (2022) are very general: they do not need the minimal invariant
sets to be equilibria only, and the case of more general structures is covered too (see
May and Leonard (1975), where an example of periodic solutions is given; for such
case the invasion rate is defined for an ergodic measure supported by such solution).
We restrict the presentation in this section to the simpler situation where the minimal
isolated invariant sets (and thus the supports of the ergodic invariant measures) are
only the equilibria of the system. While this is guaranteed to be true in the case of
a Lyapunov–Volterra stable matrix, this assumption is hard to verify in the case of a
general A.

We revisit the algorithm for constructing the IG, presented in Hofbauer and
Schreiber (2022):

Algorithm 15 The Invasion Graph is constructed in two steps: the first step defines its
vertexes, and the second one its edges.

(Step 1) The set of vertexes of the graph is E , i.e., the vertexes are given by all
admissible communities.
(Step 2) The graph contains the edge from I to J (we denote it by I → J ) if I 
= J ,
ri (I ) > 0 for every i ∈ J\I , and ri (J ) < 0 for every i ∈ I\J .

In the graphs that we construct we identify equilibria with the sets of their nonzero
variables which define them uniquely. Hence sometimes we will speak of edges
between the equilibria ui → u j and sometimes, equivalently between the sets of
natural numbers such as, for example, I → J .

The key property of the IG obtained in Hofbauer and Schreiber (2022) is contained
in the next result, cf. Hofbauer and Schreiber (2022, Lemma 2).

Lemma 16 Let A, b be such that ri (I ) 
= 0 for every I ∈ E and for every i /∈ I . Assume
that γ (t) is the solution of (1) with limt→−∞ ‖γ (t) − u j‖ = 0 and limt→∞ ‖γ (t) −
uk‖ = 0, where u j , uk are two equilibria of the system. Then, in the invasion graph
there exists the edge from J (u j ) to J (uk).

We define the graph of connections:

Definition 17 The set of vertices of the graph of connections is given by E . The edge
J (u j ) → J (uk), where J (u j ), J (uk) ∈ E exists in the graphof connections if andonly
if there exists the solution γ of (1) such that limt→−∞ γ (t) = u j and limt→∞ γ (t) =
uk .

Finally, following Hofbauer and Schreiber (2022) we define the Invasion Scheme
as the table of the signs of the invasion rates, i.e.

IS(i, I ) = sgn ri (I ) for I ⊂ E, i ∈ {1, . . . , n}.

If i ∈ I then always IS(i, I ) = 0. If for some i /∈ I we have IS(i, I ) = 0 then
the equilibrium associated with I is nonhyperbolic. In other cases, we always have
IS(i, I ) = 1 or IS(i, I ) = −1. This matrix is sufficient to construct the IG.
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4.2 Finding the connections between equilibria

Lemma 16 guarantees that the existence of the edge in the IG is the necessary condition
for the existence of the connection between equilibria. That is, the graph of connections
is the subgraph of the IG. This section is devoted to the proof that this necessary
condition is also sufficient for the case of a Volterra–Lyapunov stable matrix A.

Theorem 18 Let A be a Volterra–Lyapunov stable matrix. Let u∗ be an admissible
equilibrium which corresponds to the community I ∈ E . If the set J ⊃ I is such that
for every j ∈ J\I we have r j (I ) > 0 then there exists a solution γ of (1) such that
limt→−∞ γ (t) = u∗ and limt→∞ γ (t) is a GASS for the community J .

Proof It is enough to show that the unstablemanifold of the point u∗ in the nonnegative
cone intersects the interior of the cone associated with J , denoted by C J+. Then the
result follows by Theorem 5. For the equilibrium u∗, by Lemma 11 the local unstable
space Eu contains the vector (y1, . . . , yk, 1i∈J\I ), where the characteristic vector
1i∈J\I of B22 has coordinates equal to 1 if i ∈ J\I and 0 otherwise. Now by the
local unstable manifold theorem, cf. Kelley (1967, Theorem 1), Guckenheimer and
Holmes (2013, Theorem 3.2.1), the manifold W u

loc(u
∗), contains points

uε = u∗ + ε(y1, . . . , yk, 1i∈J\I ) + �(ε(y1, . . . , yk, 1i∈J\I )),

where (y1, . . . , yk) are given vectors independent of ε, with ε > 0 being a sufficiently
small number, and � being a smooth function with �(0) = 0 and D�(0) = 0. By
the Taylor theorem for j ∈ J\I

uε
j = ε + Cε2,

where C depends on (y1, . . . , yk) and |C | is bounded by a constant depending on the
maximum norm of the Hessian of � on the set U which is a neighborhood of zero.
Hence, for sufficiently small ε > 0 the local unstable manifold of u∗ contains points
with all entries in J\I positive. As u∗ is positive on coordinates associated with I , the
proof is complete. ��

The above result justifies the following algorithm, and we refer to the constructed
graph as the Information Structure (IS; for the definition of the Linear Complementary
Problem, refer to Sect. 2).

Algorithm 19 (Construction of IS) In Step 1 for each subcommunity J of {1, . . . , n}
(including the empty set and the full subcommunity) we construct its GASS. Any tra-
jectory with the initial data having positive entries on the coordinates in J and zeros
on coordinates outside J will converge to this GASS.

(Step 1) For all 2n subcomunities in {1, . . . , n} find their GASSes by solving
LC P(−A(J ),−b(J )) for every subset J ⊂ {1, . . . , n}. For each GASS the pro-
cedure returns also the set of its nonzero coordinates. In this step we not only
construct GASSes for all communities in {1, . . . , n}, but also find the set E of all
admissible communities.
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Fig. 1 Information Structure for
the problem given in Example 21

(Step 2) For every I ∈ E denote by u∗ the associated equilibrium. Draw outgoing
edges from I according to the algorithm below.

(1) For every i ∈ {1, . . . , n}\I calculate the invasion rate

ri (I ) = bi +
∑
j∈I

ai j u
∗
j .

Take J as the set of those i ∈ {1, . . . , n}\I for which ri (I ) > 0, i.e. those
species which can successfully invade the equilibrium community I .

(2) For every set K such that I � K ⊆ I ∪ J draw an edge from I to G ASS(K ).

Remark 20 Note that the concept of the IS, as defined by this algorithm, only applies
to Volterra-Lyapunov stable systems. This is because it relies on the existence of the
GASS, which is characterized as the solution to the Linear Complementarity Problem,
cf. Theorem 5. However, the concept of IS as the skeleton of a global attractor is more
general. Indeed, it can be defined as a graph whose vertexes are isolated invariant sets
(see Aragão-Costa et al. (2011) for the concept of generalized gradient systems, where
the set of connections is between sets more than equilibria) and edges in the IS are the
possible connections between them.

The following example illustrates the algorithm of the IS construction.

Example 21 Consider the following systemwith the Volterra–Lyapunov stable matrix.

u′
1 = u1(1.8 − u1 + 0.24u2 + 0.11u3 + 0.2u4),

u′
2 = u2(−0.45 + 0.16u1 − u2 + 0.05u3 + 0.22u4),

u′
3 = u3(0.14u1 + 0.1u2 − u3 + 0.18u4),

u′
4 = u4(−0.35 + 0.11u1 + 0.19u2 + 0.01u3 − u4).

The IG (which must coincide with the IS and the graph of connections) of the above
system is depicted in Fig. 1.

In order to run Algorithm 19 in the first step we solve the Linear Complementarity
Problem for each subcommunity in order to find GASSes. The result is given in the
following table:
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Community GASS Community GASS Community GASS Community GASS

∅ ∅ {4} ∅ {2, 3} ∅ {1, 2, 4} {1}
{1} {1} {1, 2} {1} {2, 4} ∅ {1, 3, 4} {1, 3}
{2} ∅ {1, 3} {1, 3} {3, 4} ∅ {2, 3, 4} ∅
{3} ∅ {1, 4} {1} {1, 2, 3} {1, 3} {1, 2, 3, 4} {1, 3}

Three equilibria were found in the course of computation of all GASSes, namely
the equilibria corresponding to the communities ∅, {1}, {1, 3}. For these communities,
in Step 2 we first find those invasion rates by the species not belonging to them which
are positive. These are: r1(∅) and r3({1}). This means we have to draw edges from ∅
to G ASS({1}) and from {1} to G ASS({1, 3}). These are the two edges depicted in the
graph.

By Theorem 18 we have the following Corollary

Corollary 22 Let A be Volterra–Lyapunov stable and let u j and uk be the admissible
equilibria. If the above algorithm produces the edge from the community J (u j ) to the
community J (uk) then there exists the solution γ of (1) such that limt→−∞ γ (t) = u j

and limt→∞ γ (t) = uk.

By the above corollary we can be sure that if the above algorithm produces the
edge, then this edge represents the actual connection between the equilibria of the
system. It is hence a kind of “inner approximation” of the graph of all connections
between the equilibria. On the other hand, Lemma 16 implies that the IG of Hofbauer
and Schreiber (2022) is the “outer approximation”, because every existing connection
is represented in the IG. So, if we are able to prove that every connection present in the
IG is also constructed by the above algorithm, we have the following chain of graphs,
where each preceding graph is the subgraph of the next one:

(IS of Algorithm 19)(1)⊂ (Graph of connections)(2)⊂ (Invasion Graph)(3)⊂ (IS of Algorithm19),

and all three structures must coincide. The inclusion (1) follows from Corollary 22
and needs A to be Volterra–Lyapunov stable. The inclusion (2) follows from Lemma
16, and does not necessarily need the Volterra–Lyapunov stability. We continue by
proving (3).

Theorem 23 Assume the A is Volterra–Lyapunov stable and that ui , uk are the two
admissible equilibria with the sets of corresponding nonzero coordinates given by
I1 = J (ui ) and I2 = J (uk).

Assume that the connection I1 �→ I2 exists in IG, that is for every j ∈ I2\I1 we have
r j (I1) > 0 and for every j ∈ I1\I2 we have r j (I2) < 0. Then the graph constructed
by Algorithm 19 contains the edge I1 �→ I2.

Proof Consider the system restricted to the variables in I1 ∪ I2, i.e. set ui = 0 for
i /∈ I1∪ I2. ClearlyAlgorithm19 produces the edge from J (ui ) = I1 to the community
corresponding to the node u∗ which is the GASS for the community I1 ∪ I2. We need
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to prove that this GASS is uk . Suppose that uk is not the GASS, i.e. u∗ 
= uk . Then in
the arbitrary neighbourhood of uk there exist points (in the interior of the cone C I1∪I2+ ,
strictly positive in the restricted variables) which are attracted to u∗. Since the matrix
B11 at the point uk is stable by Lemma 10 and remaining eigenvalues (that of B22) are
given by r j (I2) < 0 for j ∈ I1\I2 it follows that the spectrum of the Jacobi matrix at
uk satisfies

σ(B) ⊂ {λ ∈ C : Re λ < 0}.

In particular, B is hyperbolic and the local stable manifold of uk is the whole neighbor-
hood of this point. But, since there exists a point in any neighborhood of uk attracted
to u∗ 
= uk , the contradiction follows. ��
Corollary 24 Assume that A is Volterra–Lyapunov stable. Then, the IG is a subgraph
of the graph of connections. If, additionally, all invasion rates ri (J ) are nonzero for
i /∈ J for all admissible communities J ∈ E (i.e. all equilibria corresponding to
admissible communities are hyperbolic), then both graphs coincide.

Note that since Algorithm 15 does not need to find GASSes and solve LCPs,
the construction of IG is the way to find the graph of connections with the lower
computational effort.

Remark 25 We can summarize the obtained results as follows.

A is Volterra–Lyapunov stable ⇒
(Invasion Graph)(3)⊂ (IS of Algorithm19)(1)⊂ (Graph of connections).

ri (J ) 
= 0 for i /∈ J (all equilibria are hyperbolic) ⇒
(Graph of connections)(2)⊂ (Invasion Graph).

In the proof of Theorem 23 we have also shown that if A is Volterra–Lyapunov sta-
ble then the fact that σ(DF(u∗)) is hyperbolic (its spectrum does not intersect the
imaginary axis) is equivalent to the statement that ri (J ) 
= 0 for every i /∈ J . This
fact follows from Lemma 10. Note that Theorems 18 and 23 remain valid even for
nonhyperbolic case, i.e. if for some j /∈ I we have r j (I ) = 0 (in Theorem 18 we take
only those j ∈ K\I for which r j (I ) > 0 so, in the nonhyperbolic case, if r j (I ) = 0,
the species j will not be considered as the one which may succesfully invade the
community I , which may lead to omission of existing connections). Hence in the
nonhyperbolic case the inclusions (1) and (3) remain valid, but not necessarily the
inclusion (2). So without the hyperbolicity assumption, the IG is included in the graph
of connections, but not necessarily the otherwise.

We remark that every graph that we construct must always represent a substructure
of the global attractor, since all equilibria and their heteroclinic connections belong to
it. Moreover, if we assume that the global attractor consists only of the equilibria and
their connections, then the constructed structure is exactly the global attractor, which
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Fig. 2 The Invasion Graph for
the system (3)

is the case, for example, if the matrix A is symmetric, cf. Sect. 7.2. The following
example demonstrates that this does not always has to be the case.

Example 26 Consider the following system of three ODEs representing the May–
Leonard problem, cf. Chi et al. (1998), May and Leonard (1975).

u′
1 = u1(1 − u1 − 1.5u2 − 0.05u3),

u′
2 = u2(1 − 0.05u1 − u2 − 1.5u3), (3)

u′
3 = u3(1 − 1.5u1 − 0.05u2 − u3).

The matrix of the above system is Volterra–Lyapunov stable, cf. Kraaijevanger
(1991). The system has five equilibria: zero, three one species equilibria and one three
species equilibrium. The graph of connections (and, equivalently IG and IS) for the
above system is presented in Fig. 2. The graph does not represent the full dynamics of
the system because inside the global attractor there exists a solution which converges
forward in time to the three species equilibrium (represented by the node 123) and
backward in time to the heteroclinic cycle connecting the three nodes 1, 2, and 3.

Notably, in the above example the graph has a 3-cycle consisting of three
heteroclinic connections. We leave open the following question

Question 27 Assume that the matrix A is Volterra–Lyapunov stable and that all equi-
libria are hyperbolic. Can we assert that if the IG is acyclic, then the global attractor
consists only of the equilibria and their heteroclinic connections, and hence, this graph
represents the whole dynamics of the system?

5 Structural stability of invasion graphs

5.1 Local structural stability

If the system is Morse–Smale, then it is also structurally stable, i.e. C1 small perturba-
tion of its vector field produces a system whose global attractor has the same structure
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[see Bortolan et al. (2022, Theorem 2)]. In this section we show that, although the sys-
tem governed by (1) is not necessarily Morse–Smale, cf. Example 34, if all equilibria
are hyperbolic, the small perturbation of A and b produces a system with the same
graph of connections (and, if the global attractor consists only of the equilibria and
their connections, with the same global attractor structure). In the next result B(A, ε)

denotes the euclidean ball in R
n×n and B(b, ε) in the euclidean ball in R

n . Moreover,
denote by E(A, b) the set of admissible communities for the problem with matrix A
and vector b. For I ∈ E(A, b) and i /∈ I we will use the notation r A,b

i (I ) to denote
the invasion rate corresponding to A, b.

Theorem 28 Let A be a Volterra–Lyapunov stable matrix and let b ∈ R
n be such

that for all admissible communities I ∈ E(A, b) the corresponding equilibria are
hyperbolic. Then there exists ε > 0 such that for all matrices A ∈ B(A, ε) and all
vectors b ∈ B(b, ε) we have E(A, b) = E(A, b). Moreover for every I ∈ E(A, b) and
every i /∈ I we have

r A,b
i (I ) > 0 ⇒ r A,b

i (I ) > 0,

r A,b
i (I ) < 0 ⇒ r A,b

i (I ) < 0.

Hence, the edges in both Invasion Graphs for A, b and A, b are the same. This implies
that the graphs of connections for the problems with A, b and A, b coincide and the
problem governed by the matrix A and the vector b is structurally stable in the class
of Volterra–Lyapunov stable matrices.

Proof The fact that all equilibria are hyperbolic means that ri (I ) 
= 0 for every i /∈
I and every I ∈ E(A, b). Note that since the eigenvalues depend continuously on
the matrix, the set of Volterra–Lyapunov stable matrices is open and hence we can
choose ε such that every A ∈ B(A, ε) is Volterra–Lyapunov stable. Now, the fact that
I ∈ E(A, b) means that A(I )u∗(I ) = −b(I ) has a positive solution u∗(I ). From that
fact that the mapping (A, b) �→ u∗, which assigns to a nonsingular k × k matrix A
and vector b ∈ R

k the solution u∗ of the system Au∗ = −b, which is continuous, we
deduce that we can find ε > 0 such that all admissible communities remain admissible.

We prove that a nonadmissible community for (A, b) cannot produce an admissible
one upon sufficiently small perturbation.Assume that I ⊂ {1, . . . , n} is not admissible.
If at least one of the coordinates of the solution of the system A(I )u∗(I ) = −b(I ) is
negative, then this negativity is preserved upon small perturbation of (A, b). If all are
nonnegative, but at least one is zero, say u∗

j = 0, then

∑
i∈I ,i 
= j

aki u
∗
i + bk = 0 for every k ∈ I .

In particular

∑
i∈I\{ j}

a ji u
∗
i + b j = 0.
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Denote by I0 ⊂ I the (possibly empty) set of coordinates for which entries of u∗
are positive. Then I0 corresponds to the admissible community for (A, b). The last

equality means that r A,b
j (I0) = 0, which contradicts the assumption of hyperbolicity.

We have proved that E(A, b) = E(A, b).
The invasion rates ri (I ) are the continuous functions of the vector b, matrix A and

the equilibrium u∗ related to the admissible community I . This means that if ri (I ) is
nonzero for the system governed by (A, b), it remains nonzero, and does not change
sign, in a small neighbourhood of (A, b). This completes the proof. ��

5.2 The regions of structural stability.

In this section we fix the matrix A and we study the properties of the sets of vectors
b ∈ R

n for which the Invasion Graphs remain unchanged.

Theorem 29 Let A be a Volterra–Lyapunov stable matrix and let b ∈ R
n be such

that for all admissible communities I ∈ E(A, b) the corresponding equilibria are
hyperbolic. Then there exists the unique maximal open neighbourhood N of b in R

n

such that for every b ∈ N we have E(A, b) = E(A, b), all admissible equilibria
corresponding to A, b are hyperbolic, and the Invasion Graphs coincide.

Proof From Theorem 28 we know that there exists an open neighborhood of b such
that the properties required by the theorem are satisfied. Let us denote by N(b) the
family of all such neighbourhoods. It is nonempty. ThenN is the union of all elements
of N(b). ��

We continue by proving the lemma on convexity

Lemma 30 Let A be Volterra–Lyapunov stable. Suppose that b1, b2 ∈ R
n are such

that

• E(A, b1) = E(A, b2) = E ,
• for every I ∈ E and for every i /∈ I we have r A,b1

i (I ) 
= 0, r A,b2
i (I ) 
= 0, and

r A,b1
i (I ) > 0 ⇔ r A,b2

i (I ) > 0.

Then for every λ ∈ [0, 1], denoting bλ = λb1 + (1 − λ)b2, we have

• E(A, bλ) = E ,
• for every I ∈ E and for every i /∈ I we have r A,bλ

i (I ) 
= 0, and r A,b1
i (I ) > 0 ⇔

r A,bλ

i (I ) > 0.

Proof Assume that I ∈ E . Then A(I )u∗
1 = −b1(I ) and A(I )u∗

2 = −b2(I ). This
means that A(I )(λu∗

1 + (1 − λ)u∗
2) = −bλ(I ) and I is admissible for bλ. On the

other hand, assume that I is admissible for bλ, i.e. I ∈ E(A, bλ) but I /∈ E . Restrict
the system to those unknowns which correspond to the indices of I . The fact that I
is admissible for the problem with bλ means that this system has the strictly positive
equilibrium, i.e. the solution v of A(I )v = −bλ(I ) has all coordinates strictly positive,
and by Theorem 5 it has to be the GASS of the system with A(I ), bλ(I ), and the
solution of LC P(−A(I ),−bλ(I )). On the other hand, as I /∈ E , the solutions u∗

1 and
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u∗
2 of the problems LC P(−A(I ),−b1(I )) and LC P(−A(I ),−b2(I )), cannot have

all coordinates strictly positive, and, because the invasion schemes IS for b1(I ) and
b2(I ) coincide, the indices of zero and nonzero coordinates in both u∗

1 and u∗
2 are the

same. Then λu∗
1 + (1− λ)u∗

2 must solve LC P(−A(I ),−bλ(I )) and hence it must be
a GASS for the problem with bλ(I ), a contradiction with the fact that this GASS has
all coordinates strictly positive.

A straightforward calculation shows that for I ∈ E

r A,bλ

i (I ) = λr A,b1
i (I ) + (1 − λ)r A,b2

i (I ),

which is sufficient to complete the proof of the Lemma. ��

Remark 31 Note that, by Lemma 11 the assumption that all invasion rates ri (I ) are
nonzero for i /∈ I is equivalent to saying that the admissible equilibrium corresponding
to I is hyperbolic.

The next theorem states that the maximal neighbourhoods of Theorem 29 are con-
vex cones and they group all points with a given invasion scheme IS, i.e. the given
configuration of equilibria and signs of invasion rates.

Theorem 32 The maximal neighbourhood N of b given in Theorem 29 is an open and
convex cone. Moreover, if for some point b ∈ R

n with all admissible equilibria being
hyperbolic the invasion schemes for A, b and A, b are the same, then b ∈ N .

Proof We first prove the second assertion. Take b ∈ R
n satisfying the assumptions

of the theorem. By Lemma 30 the same assumptions are satisfied by every bλ ∈
{λb + (1 − λ)b : λ ∈ [0, 1]}. By Theorem 28 for each λ ∈ [0, 1] there exists an
open neighborhood of bλ on which the same assumptions also hold. The union of
these neighborhoods is an open neighborhood of b which must be contained inN and
contains b.

Now, convexity of N follows from Lemma 30. To prove that N is a cone it is
sufficient to see that A(I )(u∗) = −b(I ) ⇒ A(I )(αu∗) = −αb(I ) and r A,αb

i (I ) =
αr A,b

i (I ). ��

As a consequence of the above results we can represent the space R
n as a union

of finite number of disjoint open convex cones Nk , with each cone corresponding to
a given structure of the Invasion Graph, or equivalently, to a given IS. This IS is the
same for every b in the cone. Note that the number of cones is finite as the number of
possible invasion schemes is finite and any two vectors b which yield the same scheme
must belong to the same cone. The points of nonhyperbolicity (that is, vectors b where
at least one of the admissible equilibria is nonhyperbolic) constitute the residual set
C.

R
n =

L∑
k=1

Nk ∪ C.
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The following statement holds

b ∈ C ⇔ there exists I ⊂ {1, . . . , n} and i /∈ I ,

such that ri (I ) = 0 and u∗(I ) > 0, where A(I )u∗(I ) = −b(I ).

In other words, denoting by (A(I )−1)i j = ai j (I )−1 the entries of the inverse matrix
to A(I ).

b ∈ C ⇔ there exists I ⊂ {1, . . . , n} and i /∈ I , such that

A(I )−1b(I ) < 0 and bi −
∑
k∈I

∑
j∈I

ai j a jk(I )−1bk = 0.

This means that

C ⊂
⋃

I⊂{1,...,n}

⋃
i∈{1,...,n}\I

⎧⎨
⎩b ∈ R

n : bi −
∑
k∈I

∑
j∈I

ai j a jk(I )−1bk = 0

⎫⎬
⎭ ,

i.e. the set of points of nonhyperbolicity is a subset of the union of a finite number of
n − 1 dimensional hyperspaces in R

n . In particular, C is “small” compared to the sets
Nk .

6 Appendix A. The dynamical system generated by (1) is not
Morse–Smale

Webegin this short sectionwith a definition of aMorse–Smale system.Wedo not recall
here all the necessary concepts: we refer, for example, to Bortolan et al. (2022, Section
2.1) for details on all notions presented in this chapter. Note that related definition in
Bortolan et al. (2022) is more general: it allows for existence of periodic orbits. We
present its simplified version only for gradient-like systems.

Definition 33 Let X be a Banach space and let S(t) : X → X for t ≥ 0 be a C1

reversible semigroup with a global attractor A ⊂ X . We denote the set of equilibria
of {S(t)}t≥0 as E , i.e. E = {u ∈ X : S(t)u = u} for every t ≥ 0. The semigroup is
Morse–Smale if

• The global attractor consists of the equilibria E , and nonconstant trajectories γ :
R → X such that limt→−∞ γ (t) = u∗

1 and limt→∞ γ (t) = u∗
2 where u∗

1, u∗
2 ∈ E .

• The set E is finite and all equilibria in E are hyperbolic.
• If z ∈ A is a nonequilibrium point such that limt→−∞ S(t)z = u∗

1 and
limt→∞ S(t)z = u∗

2, then the unstable manifold of u∗
1 and stable manifold of

u∗
2 intersect transversally at every point z of intersection, that is the sum of their

tangent spaces at z span the whole space X : Tz(W u(u∗
1)) + Tz(W s(u∗

2)) = X .

TheLotka–Volterra system (1) is definedon the closedpositive coneC+. If a dynamical
system is defined on a manifold M , then the transversality condition has the form
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Fig. 3 Invasion graph for the
example given by (34) for an
ecological community with three
species. The GASS represents a
feasible community (all species
are present), u∗ =
(0.2633778, 0.1695335, 0.377100).
While the connections
{3} → {1, 3} and
{1, 3} → {1, 2, 3} are present in
the graph, there is no connection
{3} → {1, 2, 3}

Tz(W u(u∗
1)) + Tz(W s(u∗

2)) = Tz M , i.e. the tangent spaces of the stable and unstable
manifolds span the tangent space of the whole M . It is possible to generalize the
concept of Morse–Smale semigroups to manifolds with boundary, cf. Labarca and
Pacifico (1990), Prishlyak et al. (2023), Robinson (1980). However, instead of taking
this path, we extend the system to the whole R

n and we provide a simple example
that the resultant system is not necessarily Morse–Smale. Hence, while the structural
stability results are known to hold forMorse–Smale systems, cf., for example, Bortolan
et al. (2022), our Theorem 28 is a structural stability result (in positive cone) beyond
this class.

Example 34 Consider the system

u′
1 = u1(−u1 + 0.08u2 − 0.47u3 + 0.43),

u′
2 = u2(0.66u1 − u2 + 0.12u3 − 0.05),

u′
3 = u3(0.56u1 − 0.28u2 − u3 + 0.28).

(4)

Two of its admissible communities are {3} and {1, 3} with the corresponding equi-
libria u∗

1 = (0, 0, 0.28) and u∗
2 = (0.2362255, 0, 0.4122863). The matrix A, as it

is diagonally dominant, is Volterra–Lyapunov stable. The graph of connections is
presented in Fig. 3, and contains the connection {3} → {1, 3}. Both the unstable man-
ifold of {3} and the stable manifold of {1, 3} are contained in the {1, 3} plane. In fact
W u({3}) ⊂ W s({1, 3}), with W s({1, 3}) being two-dimensional, and hence the sum
of their tangent spaces cannot span the whole space.

Also, note that if we set u2 = 0 and restrict the system to u1, u3 variables only, for
the resulting two dimensional system

u′
1 = u1(−u1 − 0.47u3 + 0.43),

u′
3 = u3(0.56u1 − u3 + 0.28),

(5)
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the same intersection, which was non-transversal in the 3D problem, becomes
transversal, and the system is now Morse–Smale.

7 Appendix B. Questions and open problems

7.1 Wider classes of stable matrices

The first question that we pose is related with the fact that in Rohr et al. (2014) the
authors conjecture about stability of admissible equilibria for more general class of
matrices A - D-stable ones and stable ones. As our result on the graph of connections
relies on Theorem 5 which uses the logarithmic Lyapunov function valid only in the
class of Volterra–Lyapunov stable matrices A, it remains open to see if is holds in
those wider classes.

Question 35 Characterize the class of matrices for which the Invasion Graph (IG)
corresponds to the graph of connections. Is this class essentially bigger then Volterra–
Lyapunov stable ones? How does it relate to weaker notions of stable matrices such
as, for instance, D-stable ones?

7.2 Symmetric case

If the matrix A is symmetric then the following function, as proposed by MacArthur
MacArthur (1969), is Lyapunov:

V (u) = −
n∑

i=1

bi ui − 1

2

n∑
i, j=1

ai j ui u j .

Indeed, after calculations we get,

d(V (u(t)))

dt
= V ′(u)u′(t) = −

n∑
i=1

⎛
⎝bi +

n∑
j=1

ai j u j

⎞
⎠

2

ui . (6)

If we assume that A, together with all its principal minors are nonsingular, then the
problem (1) has the finite number of admissible equilibria which can all be explicitly
calculated and one can construct the IG with the vertexes being exactly the equilibria.
So for the case of symmetric and stable matrix A (for symmetric matrices stability and
Volterra–Lyapunov stability are the same), the IG exactly corresponds to the structure
of the global attractor. Again, the open question appears.

Question 36 Does the IG correspond to the structure of a global attractor for a not
necessarily stable but symmetric matrix A which, together with its all principal minors,
is nonsingular?

While we do not know how to answer this question we show that for symmetric
case the Lyapunov function V drops along every edge in the IG. While this fact does
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not guarantee the existence of the connection between the equilibria, this shows that
the criterium associated with the Lyapunov function V cannot exclude the edges in
IG.

Lemma 37 Let A be symmetric such that together with all its principal minors it is
nonsingular and let u1 and u2 be admissible equilibria of (1) which correspond to the
communities I1, I2. If there exists an edge I1 → I2 in IG then V (u1) > V (u2).

Proof We may assume without loss of generality that I1 ∪ I2 = R
n . Otherwise we

remove from the system the equationswhich correspond to the variables outside I1∪ I2.
We represent R

n = R
I1\I2 ∪ R

I1∩I2 ∪ R
I2\I1 , and we denote the projections on three

subspaces as 
1,
2,
3. Then, the matrix A of the system can be written as

A =
⎛
⎝

B C D
C� E F
D� F� G

⎞
⎠ .

Nowas u1 is equilibrium relatedwith I1, hence
3u1 = 0, B
1u1+C
2u1 = −
1b,
and C�
1u1 + E
2u1 = −
2b. Moreover, as the invasion rates at u1 must be
positive, it follows that D�
1u1 + F�
2u1 > −
3b. Similar analysis at u2 yields

1u2 = 0, E
2u2 + F
3u2 = −
2b, and F�
2u2 + G
3u2 = −
3b. Finally as
invasion rates at u2 are negative we have C
2u2 + D
3u2 < −
1b. It follows that

(
3u2)� D�
1u1 + (
3u2)�F�
2u1 > −(
3u2)�
3b,

(
1u1)�C
2u2 + (
1u1)� D
3u2 < −(
1u1)�
1b.

Combining the two above inequalities we deduce

(
1u1)�C
2u2 + (
1u1)�
1b < (
3u2)�F�
2u1 + (
3u2)�
3b.

But

(
2u2)�C�
1u1 + (
2u2)�E
2u1 = −(
2u2)�
2b,

(
2u1)�E
2u2 + (
2u1)�F
3u2 = −(
2u1)�
2b.

Hence

−(
2u2)�
2b − (
2u2)�E
2u1 + (
1u1)�
1b < −(
2u1)�
2b

−(
2u1)�E
2u2 + (
3u2)�
3b.

As E is symmetric this means that

−(u2)�b < −(u1)�b,

which exactly implies the assertion as at equilibrium V (u) = − 1
2u�b. ��
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