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Abstract
We consider a population organised hierarchically with respect to size in such a way
that the growth rate of each individual depends only on the presence of larger indi-
viduals. As a concrete example one might think of a forest, in which the incidence
of light on a tree (and hence how fast it grows) is affected by shading by taller trees.
The classic formulation of a model for such a size-structured population employs a
first order quasi-linear partial differential equation equipped with a non-local boun-
dary condition. However, the model can also be formulated as a delay equation, more
specifically a scalar renewal equation, for the population birth rate. After discussing
the well-posedness of the delay formulation, we analyse how many stationary birth
rates the equation can have in terms of the functional parameters of the model. In
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particular we show that, under reasonable and rather general assumptions, only one
stationary birth rate can exist besides the trivial one (associated to the state in which
there are no individuals and the population birth rate is zero). We give conditions for
this non-trivial stationary birth rate to exist and analyse its stability using the prin-
ciple of linearised stability for delay equations. Finally, we relate the results to the
alternative, partial differential equation formulation of the model.

Keywords Physiologically structured population · Delay formulation · Stability

Mathematics Subject Classification 92D25 · 35L04 · 34K30

1 Introduction

In terms of numbers, the dynamics of a population is generated by mortality and
reproduction. In structured populationmodels (Webb 1985;Metz andDiekmann 1986;
Magal and Ruan 2008; Düll 2022), individuals are characterized by variables such as
age, size or other (physiological) characteristics. In that case, development/maturation
needs to be modelled too (a trivial task in the case of age, but certainly not in general!).

As explained in detail in Diekmann et al. (2001), density dependence is most easily
incorporated in a two step procedure: i) first introduce the environmental condition via
the requirement that individuals are independent from one another when this condition
is prescribed as a function of time; ii) next model feedback by specifying how, at any
particular time, the environmental condition is influenced by the population size and
composition. In the inspiring book (de Roos and Persson 2013) detailed ecological
motivation is presented for including in this feedback loop the impact of density
dependence on development and maturation.

Here our aim is to investigate in the context of a toy model the consequences of
density dependence that only affects development directly (fertility is affected indi-
rectly, since it depends on the developmental stage of the individual). We do so for
a one-dimensional i-state (i.e., the variable capturing the relevant differences among
individuals ‘lives’ on the real line), so for an i-state space that comes equipped with
an order relation. In fact we shall assume that the presence of ‘larger’ individuals has
a negative impact on the growth rate of ‘smaller’ individuals (as a motivating example
one might think of trees and shading, with the i-state interpreted as ‘height’; but please
note that we ignore spatial structure and that, consequently, the model is but a carica-
ture). For the incorporation of space into physiologically structured populationmodels
see (Webb 2008). For an alternative approach to hierarchically structured models see
(Thieme 1986).

The organisation of the paper is as follows. In Sect. 2 we first present the classic
PDE formulation of the model. Then we present biological assumptions underlying
the model and deduce a scalar nonlinear renewal equation for the population birth rate
(the so called delay formulation). In Sect. 3 a dynamical systems framework for the
renewal equation is outlined. InSect. 4wegive conditions guaranteeing the existence of
a non-zero stationary birth rate. In Sect. 5 we apply the principle of linearised stability
for delay equations (Diekmann and Gyllenberg 2012) to prove that, for a certain
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two-parameter family of fertility functions, such a stationary birth rate (whenever it
exists) is locally asymptotically stable. We also show that, under natural hypotheses
on the ingredients, the zero stationary birth rate is a global attractor when it is the only
stationary birth rate.

InAppendixA a technical result needed in Sect. 5 is shown. InAppendix B themore
classical formulation of the model, taking the form of a first order PDE involving non-
local functionals, is studied. In particular we show that the conditions guaranteeing
the existence of stationary population densities (with respect to height) coincide with
the conditions guaranteeing non-trivial stationary birth rates in the delay formulation.
This makes sense since both formulations model the same phenomena (although they
are independently derived from biological assumptions). Such a phenomenological
relation between the two formulations suggests that the stability results for the delay
formulation can be translated to the PDE formulation (as indeed is done in Barril et al.
(2022)). Although this issue is not addressed rigorously in the present paper, some
comments are included in the concluding remarks section.

2 Two different formulations of a structured populationmodel

The classical formulation of the model we study here is derived by imposing a conser-
vation law that leads to the (non-local, quasi-linear and first-order) partial differential
equation:

∂

∂t
u(x, t) + ∂

∂x
(g(E(x, t))u(x, t)) + μu(x, t) = 0,

g(E(xm, t))u(xm, t) =
∫ ∞

xm
β(y)u(y, t) dy,

E(x, t) =
∫ ∞

x
u(y, t) dy.

(1)

Ourmotivation to study the specificmodel above is to understandwhether the evolution
(the interpretation of x and u is explained below) of a tree population can be explained
by taking into account only competition for light through a hierarchical structure
affecting individual growth, assuming that resources (such as water, space, etc.) are
readily available. Indeed, we assume that the growth rate g of an individual of height
x does not depend on x directly, but only indirectly, as it depends on the amount of
light the individual receives per unit of time. We assume that the latter, in turn, is
fully determined by the number E(x, t) of individuals that are taller than x (we call E
an interaction variable, since it mediates how the environmental condition, here light
intensity, is influenced by the extant population). We assume that the per capita death
rate μ and the per capita reproduction rate β only depend on the height x . In fact we
assume that μ is constant, i.e., independent of x , while β is a non-decreasing function
of x . We assume that all individuals are born with the minimal height xm and that
g is positive (we do not impose an upper bound on height). The assumptions that μ

and β do not depend on the environment E allows us to derive fairly explicit stability
criteria, as we will show later on.
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In (1) the second equation stands for the flux of newborns, offspring of individuals
of any size y which have a size specific per capita fertility (obviously nonnegative)
denoted by β. Notice that the fertility is indeed indirectly affected by negative density
dependence since a larger value of the environmental variable leads to a smaller size
achieved by the individuals. From a dynamical point of view solutions of (1) can be
seen as orbits t �→ u(·, t) in the space of integrable functions with respect to height,
i.e. in L1(xm,∞).

Amore generalmodel,whenbothμ andβ are functions of size x , and the (somewhat
more general) environmental interaction variable

E(x, t) = α

∫ x

0
u(y, t) dy +

∫ M

x
u(y, t) dy, α ∈ [0, 1],

(but with finite maximal size M) was studied in Cushing (1994), Ackleh and Deng
(2005), Ackleh and Ito (2005) and Farkas and Hagen (2010), and a very general
model incorporating distributed recruitment in Calsina and Saldaña (2006). In Kraev
(2001) the well-posedness of the above problem was proven by rewriting the system
in terms of characteristic coordinates. We note that the focus in Ackleh and Deng
(2005); Ackleh and Ito (2005) was on numerical approximation of solutions of the
hierarchical model. On the other hand, in Farkas and Hagen (2010) the authors derived
a formal linearisation of the model and studied regularity properties of the governing
linear semigroup. A characteristic equationwas also deduced for the special case when
neither the growth rate g nor the mortality rate μ depend on the interaction variable
E (β on the other hand does). Note however that the linearisation and stability results
established in Farkas and Hagen (2010) were completely formal, as the Principle of
Linearised Stability has not been established for the PDE formulation (1). This is the
main reason why in the current work we employ a different formulation of the model.

Specifically, to derive a delay formulation of the model, we assume (as in the case
of the PDE) that individuals are fully characterized by a variable x , taking values in
R+. In general, x is called i-state but here, for clarity, we call it ‘height’, the point
being that we motivate our assumptions about interaction in terms of competition
for light (this phenomenon is also addressed mathematically in Kraev (2001), Zavala
et al. (2007) and Magal and Zhang (2012), among others). We assume that a density
function u = u(x, t) exists such that the integral of u with respect to the first variable
over an interval gives the number of individuals with size within this interval at time
t . This allows us to write

E(x, t) =
∫ ∞

x
u(s, t)ds, (2)

so that the height of an individual evolves according to

X ′(t) = g(E(X(t), t)). (3)
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Let B(t) denote the population birth rate at time t . Then B equals the influx at xm ,
which originates from reproduction by the extant population:

B(t) =
∫ ∞

0
β(y)u(y, t)dy. (4)

Let n(t, ·) denote the age density. We do not need to write a PDE and solve it in order
to conclude that

n(t, a) = B(t − a)e−μa . (5)

This allows us to rewrite (4) as

B(t) =
∫ ∞

0
β(S(a, t))B(t − a)e−μada, (6)

with S(a, t) specifying the height of an individual having age a at time t (and hence
being born at time t − a).

We refer to section III.4 of Metz and Diekmann (1986), entitled “Integration along
characteristics, transformation of variables, and the followingof cohorts through time”,
for general considerations about switching between size- and age-densities. Here the
situation is relatively simple, since individuals taller than you are exactly those that
are older than you, i.e., were born earlier than you. Or, in a formula

E(x, t) =
∫ ∞

τ

B(t − α)e−μαdα, (7)

when x = S(τ, t). (For intricacies arising when individuals of different age can have
the same size see (Thieme 1988).)

Next note that an individual that was born at time t − a has age τ at time t − a+ τ .
The height y = y(τ ) := S(τ, t − a + τ) of such an individual evolves according to

dy

dτ
(τ ) = g(E(y(τ ), t − a + τ))

= g(E(S(τ, t − a + τ), t − a + τ))

= g

(∫ ∞

τ

B(t − a + τ − α)e−μαdα

)
.

(8)

Noting that y(0) = xm we obtain by integration that

S(a, t) = y(a)

= xm +
∫ a

0
g

(∫ ∞

τ

B(t − a + τ − α)e−μαdα

)
dτ.

(9)
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Inserting (9) into (6) we obtain

B(t) =
∫ ∞

0
β

(
xm +

∫ a

0
g

(∫ ∞

τ

e−μαBt (τ − a − α)dα

)
dτ

)
e−μa Bt (−a) da,

(10)

where

Bt (θ) := B(t + θ). (11)

Notice that (10) can also be written as

B(t) =
∫ ∞

0
β

(
xm +

∫ a

0
g

(
e−μ(τ−a)

∫ ∞

a
e−μs Bt (−s)ds

)
dτ

)
e−μa Bt (−a) da.

(12)

3 The dynamical systems framework

Equation (12) provides the delay formulation of the model, which we are going to
study here. In the delay formulation the state variable is the population birth rate
history Bt := B(t +·), instead of the population density u(·, t) with respect to height.
Specifically, one can consider the state space (of the weighted birth rate histories)

X = L1
ρ(−∞, 0) :=

{
φ ∈ L1

loc(−∞, 0) : ||φ||X =
∫ 0

−∞
eρs |φ(s)|ds < ∞

}
,

for some ρ > 0 (so X contains, in particular, constant functions, and therefore the
possible steady states) and the delay equation B(t) = F(Bt )withF : X → R defined
by

F(φ) =
∫ ∞

0
β

(
xm +

∫ a

0
g

(
e−μ(τ−a)

∫ ∞

a
e−μsφ(−s) ds

)
dτ

)
e−μaφ(−a) da.

(13)

We denote by X+ the standard positive cone of X .
As discussed in Diekmann and Gyllenberg (2007) and Diekmann and Gyllenberg

(2012), the delay equation B(t) = F(Bt ), togetherwith an initial history B0 = φ ∈ X ,
can be interpreted as an abstract Cauchy problem with a semilinear structure:

⎧⎨
⎩

d

dt
ϕ(t) = Aϕ(t) + F(ϕ(t))δ0

ϕ(0) = φ ∈ X
, (14)

where A is the generator of the linear semigroupdefined as TA(t)φ := φ(t+·)1−(t+·).
Notice that the mapping t �→ TA(t)φ tells us how the population birth rate history
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would evolve without considering birth (and growth and mortality), since all these
processes are summarised in the F function. This setting makes it possible to analyse
the well posedness of the problem and some dynamical properties by means of a gen-
eralised variation of constants equation. The standard variation of constants equation
cannot be applied in a straightforward manner (as in Pazy (1983)) since the semilinear
term of the problem (namely φ �→ F(φ)δ0) does not take values inX , but in the space
of measures.

Here the theory included in the references mentioned above (Diekmann and Gyl-
lenberg 2007, 2012) applies provided that F is continuously differentiable, which
is stated in the following theorem, and proved in Appendix A. We assume that g is
smoothly extended to the whole of R, implying that the right hand side of (13) is
defined on the whole Banach spaceX (so even for non positive φ). Of course negative
birth rates do not have biological meaning, but they allow us to work on the whole
space (recall that the positive cone of L1 has empty interior).

Theorem 1 Assume that g : R → R and β : R+ → R have a bounded and globally
Lipschitzian first derivative. Also assume that g is bounded and positive and that β is
non-negative. Then the map F : X → R defined in (13) is continuously differentiable
with bounded derivative provided that ρ < μ/5.

Theorem 2 Existence and uniquenessUnder the hypotheses of the previous theorem,
for any φ ∈ X , there exists a unique B ∈ L1

loc(R) such that B(t) = φ(t) for t < 0
and B(t) satisfies (12) for t ≥ 0. Moreover, B belongs to the positive cone X+ of
L1
loc(R) whenever ϕ ∈ X+.

Proof It is an immediate consequence of Theorem 1 (notice that a bounded deriva-
tive implies global Lipschitz continuity), Theorem 3.15 in Diekmann and Gyllenberg
(2012) (which implies the equivalence between (12) and (14)) and Theorem 2.2 in
Diekmann and Gyllenberg (2012) (which implies the existence and uniqueness of
mild solutions of (14) and the generation of a nonlinear semigroup �(t;φ) satisfying
�(t;φ) = Bt ). The facts that the linear semigroups in Theorem 2.2 of Diekmann and
Gyllenberg (2012) are positive and F maps the positive cone of X to R

+ imply that
B belongs to the positive cone whenever φ ∈ X+. �	

Let B ∈ R be a stationary population birth rate, i.e. B satisfies B = F(B̄) where
B̄ ∈ X is defined by B̄(θ) = B for (almost) all θ ∈ (−∞, 0). The following theorem
determines the local stability of B̄ in terms of properties of DF(B̄). Since DF(B̄)

is a bounded linear operator from X to R, the Riesz Representation Theorem implies
that DF(B̄) can be written as

DF(B̄)φ =
∫ ∞

0
k(s)φ(−s)ds =: 〈k, φ〉

with k an element of the dual space of X , represented by

X ′ = L∞
ρ (0,∞) :=

{
f ∈ L∞(0,∞) : || f ||X ′ = sup

s∈(0,∞)

eρs | f (s)| < ∞
}

.
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Theorem 3 (Theorem3.15 inDiekmann andGyllenberg (2012))Under the hypotheses
of Theorem 1, let B̄ ∈ X be a stationary state of (12) and let k ∈ X ′ represent DF(B̄).
Consider the characteristic equation

0 = 1 − k̂(λ), (15)

where k̂ is the Laplace transform of k (i.e. k̂(λ) = ∫ ∞
0 e−λsk(s)ds).

(a) If all roots of the characteristic equation (15) have negative real part, then the
stationary state B̄ is locally asymptotically stable.

(b) If there exists at least one root with positive real part, then the steady state B̄ is
unstable.

4 Existence and characterization of steady states

A stationary solution of the problem can be found by simply assuming that B in (12) is
independent of t . Of course there is a trivial stationary solution B = 0 that corresponds
to the absence of individuals. When dealing with non-trivial stationary solutions of
(12), we make the following abuse of notation to ease readability: we use B̄ to denote
a constant function in X and B̄ ∈ R as the image it takes (so that we let the context
tell whether B̄ refers to the constant function or to the value it takes). With this in
mind, and taking into account (12), it follows that a non-trivial equilibrium B̄ ∈ X is
a constant function whose image is a non-zero solution of

1 =
∫ ∞

0
β

(
xm +

∫ a

0
g

(
B
e−μτ

μ

)
dτ

)
e−μa da =: R(B). (16)

Under natural hypotheses concerning β and g, which essentially amount to assuming
that larger sizes correspond to larger fertilities, thatmore competition (more individuals
higher in the hierarchy than the one we are observing) means slower growth, and that
the first generation progeny of an individual is finite (more precisely, that R(0) < ∞),
we readily obtain the following theorem.

Theorem 4 Under the hypotheses of Theorem1 and the assumptions that β is a strictly
increasing function on [xm,∞), and that g is a strictly decreasing function on [0,∞),
there exists a non-trivial equilibrium of (12) if and only if

R0 := R(0) =
∫ ∞

0
β
(
xm + g(0)a

)
e−μa da > 1 and

∫ ∞

0
β
(
xm + g(∞)a

)
e−μa da < 1,

and there is at most one such non-trivial equilibrium.

Proof The hypotheses imply that R is a well defined continuous and strictly decreasing
function on [0,∞). A double application of the Lebesgue dominated convergence
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theorem then gives

lim
R→∞ R(B) =

∫ ∞

0
β

(
xm +

∫ a

0
lim
B→∞ g

(
B
e−μτ

μ

)
dτ

)
e−μada

=
∫ ∞

0
β (xm + g(∞)a) e−μa da.

�	
Remark 1 As usual, R0 can be interpreted as the so-called basic reproduction number,
i.e., the expected number of offspring individuals will produce during their lifetime in
a virgin environment, i.e., when there are no individuals older/larger than themselves
in the population.

4.1 Age and size equilibrium profiles

The age density of a steady state is given by n̄(a) = B̄e−μa (see (5)). Let us now set

S̄(a) = xm +
∫ a

0
g

(∫ ∞

τ

B̄e−μαdα

)
dτ = xm +

∫ a

0
g

(
B̄
e−μτ

μ

)
dτ, (17)

which is the size of an individual of age a at the nontrivial equilibrium, see (9). The
density ū(x) with respect to size of the same population distribution can then be
computed by taking into account the equality

∫ α2

α1

n̄(a) da =
∫ S̄(α2)

S̄(α1)

n̄
(
S̄−1(x)

)
S̄′(S̄−1(x)

) dx =
∫ S̄(α2)

S̄(α1)

ū(x) dx,

which follows from the change of variable x = S̄(a) and the interpretation of n̄ and
ū. Thus, we find

ū(x) = n̄
(
S̄−1(x)

)
S̄′(S̄−1(x)

) = B̄e−μS̄−1(x)

g
(
B̄ e−μS̄−1(x)

μ

) , (18)

which is an alternative expression to (B3).

5 Stability of steady states

The linearisation of (10) around the origin is simply (see A2 in Appendix A),

y(t) = DF(0)yt =
∫ ∞

0
β
(
xm + g(0)a

)
e−μa y(t − a) da =:

∫ ∞

0
k(a)yt (−a) da

(19)
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(as indeed one can understand by using only the interpretation: it describes the linear
population model corresponding to the virgin environment E = 0).

Theorem 5 Under the hypotheses of Theorem 1, the trivial equilibrium is (locally)
exponentially stable if R0 < 1, and it is unstable if R0 > 1.

Proof Clearly the kernel k ∈ L∞
ρ (0,∞) corresponds to the Riesz representation of

DF(0). Then, according to Theorem 3, the stability of the steady state is determined
by the sign of the real part of the zeroes of the characteristic equation k̂(λ) = 1,where
k̂ stands for the Laplace transform of k. k̂(λ) is defined (at least) for Re(λ) > −ρ.

Moreover, since the kernel k is positive, k̂ is for real λ a decreasing function with limit
0 at infinity. Hence there is at most one real solution λ̂ of the characteristic equation,
which indeed exists and is positive if k̂(0) = R0 > 1. So then the trivial equilibrium
is unstable.
When k̂(0) = R0 < 1, if there is a real root, it is negative. Moreover, if a non-real λ

is a root of the characteristic equation, then 1 = k̂(λ) = Re(k̂(λ)) < k̂(Reλ), which
implies, by the fact that k̂ tends to 0, that there is a real root λ̂ larger than Re(λ). As
such a real root is necessarily negative, the trivial equilibrium is locally exponentially
stable. �	
Theorem 6 If R0 < 1 and the hypotheses of Theorem 4 hold, then all solutions of (19)
tend exponentially to 0 as t → ∞.

Proof For a given solution let us write (cf. (9))

S(a, t) = xm +
∫ a

0
g

(∫ ∞

τ

e−μαBt (τ − a − α) dα

)
dτ,

the size at time t of an individual of age a. From (10) we can write

B(t) =
∫ ∞

0
β(S(a, t))e−μa B(t − a) da

=
∫ 0

−∞
β(S(t − s, t))e−μ(t−s)B(s) ds +

∫ t

0
β(S(t − s, t))e−μ(t−s)B(s) ds

=: f (t) +
∫ t

0
β(S(t − s, t))e−μ(t−s)B(s) ds

≤ f (t) +
∫ t

0
β(xm + g(0)(t − s))e−μ(t−s)B(s) ds.

(20)

The kernel k(a) = β(xm + g(0)a)e−μa of the linear Volterra integral equation

y(t) = f (t) +
∫ t

0
k(t − s)y(s) ds (21)

has a nonnegative resolvent r (meaning that r(t) = k(t) +
∫ t

0
k(t − s)r(s) ds and

y(t) = f (t) +
∫ t

0
r(t − s) f (s) ds) (see Theorem 2.3.4 in Gripenberg et al. (1990)).
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Then by a generalized Grönwall lemma, one obtains B(t) ≤ y(t) where y(t) is the
solution of (21).

Indeed, using the usual notation for convolution, (20) can bewritten as B ≤ f +k∗B
and so B = f − g + k ∗ B for g = f + k ∗ B − B ≥ 0. Then we have

B= f − g + r ∗ ( f − g) = f + r ∗ f − (g + r ∗ g)= y − (g + r ∗ g) ⇒ B≤ y,

since r and g are non-negative (cf. Theorem 9.8.2 in Gripenberg et al. (1990)). The
claim follows since y(t) tends exponentially to 0 when R0 < 1 by Theorem 3.12 in
Diekmann and Gyllenberg (2012) and the final part of the proof of Theorem 5. �	

Let us recall the notation

S̄(a) = xm +
∫ a

0
g

(
B̄
e−μτ

μ

)
dτ, (22)

for the size of an individual of age a at the non-trivial equilibrium.
Let us now compute the linearisation of (10) around the nontrivial equilibrium B̄

using (22). For this we set B(t) = B̄ + y(t) and write (formally)

B̄ + y(t)

=
∫ ∞

0

(
β
(
S̄(a)

) + β ′(S̄(a)
) ∫ a

0
g′

(
B̄
e−μτ

μ

)

×
∫ ∞

τ

e−μα yt (−a + τ − α)dαdτ + o(yt )

)
e−μa

(
B̄ + yt (−a)

)
da,

(23)

which, using the steady state condition (16) and neglecting higher order terms, leads
to

y(t) = DF(B̄)yt =
∫ ∞

0
β
(
S̄(a)

)
e−μa y(t − a) da

+
∫ ∞

0
β ′(S̄(a)

)
e−μa

( ∫ a

0
B̄g′

(
B̄
e−μτ

μ

)∫ ∞

τ

e−μα y(t − a + τ − α) dαdτ

)
da

=
∫ ∞

0
β
(
S̄(a)

)
e−μa y(t − a) da

+
∫ ∞

0
β ′(S̄(a)

)
e−μa

(∫ a

0
B̄g′

(
B̄
e−μτ

μ

)
e−μ(τ−a)

∫ ∞

a
e−μσ y(t − σ)dσ dτ

)
da.

(24)

Remark 2 See Appendix A for a rigorous derivation of (24). There,F is written essen-
tially as the composition of simpler functions and then the chain rule is applied.
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Changing the order of integration, the expression within parentheses inside the last
integral in (24) can be rewritten as:

∫ a

0
B̄g′

(
B̄
e−μτ

μ

)∫ ∞

a
e−μ(−a+τ+σ)y(t − σ) dσ dτ

=
∫ ∞

a

∫ a

0
B̄g′

(
B̄
e−μτ

μ

)
e−μτdτe−μ(σ−a)y(t − σ) dσ

=
∫ ∞

a

(
g

(
B̄

μ

)
− g

(
B̄
e−μa

μ

))
e−μ(σ−a)y(t − σ) dσ.

(25)

Thus, changing the integration order again, the second term on the right hand side of
(24) reads

∫ ∞

0

∫ σ

0
β ′(S̄(a))

[
g

(
B̄

μ

)
− g

(
B̄
e−μa

μ

)]
da e−μσ y(t − σ) dσ.

Hence, (24) is of the form y(t) =
∫ ∞

0
k(a)y(t − a) da with the kernel

k(a) = β
(
S̄(a)

)
e−μa + e−μa

∫ a

0
β ′(S̄(α))

[
g

(
B̄

μ

)
− g

(
B̄e−μα

μ

)]
dα.

Since

∫ a

0
β ′(S̄(α))g

(
B̄e−μα

μ

)
dα =

∫ a

0
β ′(S̄(α))S̄′(α) dα

= β(S̄(a)) − β(S̄(0)) = β(S̄(a)) − β(xm),

,

the kernel k simplifies to

k(a) = β(xm)e−μa + g

(
B̄

μ

)
e−μa

∫ a

0
β ′(S̄(α)) dα,

which leads to the characteristic equation

1 = k̂(λ) = β(xm)

λ + μ
+ 1

λ + μ
g

(
B̄

μ

)∫ ∞

0
β ′(S̄(a))e−(λ+μ)a da. (26)

Without the loss of generality, we will assume in the rest of this section that the
minimum size is xm = 0. This (technical) assumption makes the notation simpler.

5.1 Sufficient conditions for stability of the non-trivial steady state

In this section we focus on the situation described in Theorem4, with both inequalities
satisfied, so the situation in which a unique non-trivial steady state exists. Our aim
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is to formulate additional conditions on g and β that guarantee that all roots of the
characteristic equation have negative real part, allowing us to conclude from Theo-
rem 3(a) that the non-trivial steady state is asymptotically stable. The strategy is to
first consider a piecewise linear β for which we can verify explicitly that all roots are
in the (open) left half plane. Next we use Rouché’s Theorem to show that for a large
class of smooth perturbations of the piecewise linear β the property ‘no roots in the
(closed) right half plane’ is preserved. As already indicated, we fix g but consider β

as a variable. Therefore the steady state value B̄ (the solution of R(B) = 1) depends
on β and we shall use the notation B̄(β). To simplify the exposition we assume that

lim
z→∞ g(z) = 0, (27)

which implies that the second inequality in Theorem 4 holds if β(0) = 0 (recall that
xm = 0).

Let us first assume that the per capita fertility is given by

β0(s) := β00 max{0, s − xA}, (28)

where xA ≥ 0 is the adult size at which individuals start to reproduce. Note that β0
is not C1 for xA > 0. We believe that F defined by (13) is nevertheless C1, since β0
is continuous. We refrain from an attempt to prove this, as such involves, no doubt,
many technicalities.

First we compute (via integration by parts)

R0 = R(0) =
∫ ∞

0
β0

(∫ a

0
g(0)dτ

)
e−μada =

∫ ∞

0
β00 max{0, g(0)a − xA}e−μada

=β00

∫ ∞
xA
g(0)

(g(0)a − xA)e−μada = β00g(0)

μ2 e− μxA
g(0) .

Recall that a non-trivial steady state exists if and only if R0 > 1. So we assume in the
rest of the subsection that β00 and xA are such that this assumption holds.

Assume that the function g is strictly decreasing. Define ā by

∫ ā

0
g

(
B̄(β0)e−μτ

μ

)
dτ = xA, (29)

i.e., ā is the age at which individuals begin to reproduce given the environmental
condition associated to the equilibrium.
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We have from (16) and with xm = 0 that

1 = R(B̄(β0)) =
∫ ∞

0
β0

(∫ a

0
g

(
B̄(β0)e−μτ

μ

)
dτ

)
e−μa da

= β00

∫ ∞

0
max

{
0,

∫ a

0
g

(
B̄(β0)e−μτ

μ

)
dτ − xA

}
e−μada

= β00

∫ ∞

ā

(∫ a

0
g

(
B̄(β0)e−μτ

μ

)
dτ −

∫ ā

0
g

(
B̄(β0)e−μτ

μ

)
dτ

)
e−μada

= β00

∫ ∞

ā

(∫ a

ā
g

(
B̄(β0)e−μτ

μ

)
dτ

)
e−μada

= β00

∫ ∞

ā

(∫ ∞

τ

e−μada

)
g

(
B̄(β0)e−μτ

μ

)
dτ

= β00

∫ ∞

ā

e−μτ

μ
g

(
B̄(β0)e−μτ

μ

)
dτ = β00

μ2

∫ e−μā

0
g

(
B̄(β0)

μ
ζ

)
dζ.

(30)

Next we note that the characteristic equation (26) reduces to

1 = β00

g
(
B̄(β0)

μ

)

λ + μ

∫ ∞

ā
e−(λ+μ)ada = β00

g
(
B̄(β0)

μ

)

(λ + μ)2
e−(λ+μ)ā, (31)

which, in the special case xA = 0 (or, equivalently, ā = 0) allows to identify the (two)
roots as

λ = −μ ±
√

β00g

(
B̄(β0)

μ

)
= μ

⎛
⎜⎜⎝−1 ±

√√√√
R0

g
(
B̄(β0)

μ

)

g(0)

⎞
⎟⎟⎠ . (32)

So, under this assumption, we are able to explicitly formulate the characteristic equa-
tion and even to explicitly compute its roots. From the condition for the existence of
a nontrivial equilibrium (16) and (30) with ā = 0, we have

1 = R(B̄(β0)) = β00

μ2

∫ 1

0
g

(
B̄(β0)

μ
ζ

)
dζ >

β00

μ2 min
ζ∈[0,1] g

(
B̄(β0)

μ
ζ

)

= β00

μ2 g

(
B̄(β0)

μ

)
, (33)

which implies that both eigenvalues in (32) are negative. Hence, Theorem 3 ensures
that under these hypotheses (in particular that xA = 0), the nontrivial steady state is
locally asymptotically stable.
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Next we consider the case when ā > 0, i.e. xA > 0. Note that in this more general
case, similarly to (33), we obtain the following estimate.

1 = R(B̄(β0)) = β00

μ2

∫ e−μā

0
g

(
B̄(β0)

μ
ζ

)
dζ >

β00

μ2 e
−μā g

(
B̄(β0)

μ

)
. (34)

Recall that in this case β0 is not continuously differentiable. However, for any fixed
value of β00 and xA the roots of the characteristic equation have negative real parts,
see the proof of Theorem 8.

Hence the idea is to consider smooth fertility functions close enough (see Theorem8
below) to β0, and apply Theorem 3 to establish local asymptotic stability of the non-
trivial steady state.

Let us define

R(β, B) =
∫ ∞

0
β

(∫ a

0
g

(
Be−μτ

μ

)
dτ

)
e−μada, (35)

and let us restrict to fertility functions such that R(β, 0) > 1. In this case there exists
(a stationary birth rate) B̄(β) > 0, such that R(β, B̄(β)) = 1.

Lemma 7 Let b1 ≥ β00. Let g and β satisfy the hypotheses of Theorems 1 and 4, let
g′(s) be strictly negative, assume that lim

z→∞ g(z) = 0 and β(0) = 0, ‖β ′‖∞ ≤ b1.

Then, there exists a positive constant C, only depending on g, μ, β00, xA and b1, such
that

|B̄(β) − B̄(β0)| ≤ C ||β − β0||∞. (36)

Proof We first obtain an upper bound on B̄(β). Let us define β1(s) = b1s and let
B̃ be such that R(β1, B̃) = 1. Notice that the existence of B̃ is guaranteed because
R(β1, 0) > R(β0, 0) > 1. We then have

R(β1, B̃) = 1 = R(β, B̄(β)) ≤ R(β1, B̄(β)),

since R is increasing with respect to its first argument (understanding that β ≤ β1 if
β(s) ≤ β1(s) for all s ≥ 0). Also note that B̄(β)) ≤ B̃ because R is decreasing with
respect to its second argument.

Let us define ã such that
∫ ã

0
g

(
B̃e−μτ

μ

)
dτ = xA. Since g is decreasing, we have

∫ ã

0
g

(
B̄(β)e−μτ

μ

)
dτ ≥ xA. (37)

Now we can write

0 = R(β, B̄(β)) − R(β0, B̄(β)) + R(β0, B̄(β)) − R(β0, B̄(β0))

= R(β − β0, B̄(β)) + R(β0, B̄(β)) − R(β0, B̄(β0)).
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Hence we have

1

μ
||β − β0||∞ ≥ |R(β − β0, B̄(β))| = |R(β0, B̄(β)) − R(β0, B̄(β0))|

= β00

∣∣∣∣
∫ ∞

0

(
max

{
0,

∫ a

0
g

(
B̄(β)e−μτ

μ

)
dτ − xA

}

−max

{
0,

∫ a

0
g

(
B̄(β0)e−μτ

μ

)
dτ − xA

})
e−μada

∣∣∣∣
≥ β00

∫ ∞

ã

∫ a

0

∣∣∣∣g
(
B̄(β)e−μτ

μ

)
− g

(
B̄(β0)e−μτ

μ

)∣∣∣∣ dτe−μada,

where we used (37) and that the sign of g
(
B̄(β)e−μτ

μ

)
− g

(
B̄(β0)e−μτ

μ

)
only depends

on the sign of B̄(β) − B̄(β0) due to the monotonicity of g.
So we have (using 1

μ3 e
−μã − 1

3μ3 e
−2μã ≥ 1

2μ3 e
−μã)

1

μ
||β − β0||∞ ≥ β00 min

s∈[0,B̃/μ]
|g′(s)|

∫ ∞

ã

(∫ a

0

e−μτ

μ
dτ

)
e−μada |B̄(β) − B̄(β0)|

≥ β00
e−μã

2μ3 min
s∈[0,B̃/μ]

|g′(s)| |B̄(β) − B̄(β0)|,

and the claim follows immediately. �	
We can now state

Theorem 8 Let b1 ≥ β00. Let g and β satisfy the hypotheses of Theorems 1 and 4, let
g′(s) be strictly negative, assume that lim

z→∞ g(z) = 0 and β(0) = 0, ‖β ′‖∞ ≤ b1. Let

ā be defined implicitly through (29). Define

r := 2g(0)b1
μ

and M := μ2

r2

(
1 − β00

μ2 g

(
B̄(β0)

μ

)
e−āμ

)
> 0, (38)

where positivity of M follows from (34). Moreover, assume that

g(0)

μ2 ||β ′ − β ′
0||∞ + β00

μ3 e
−μā ||g′||∞C ||β − β0||∞ < M, (39)

withC given by Lemma 7. Then, the unique positive stationary birth rate of the renewal
equation (12), with fertility function β, is locally asymptotically stable.

Proof We denote the right hand side of (26) minus 1 by f (λ, β). Note that f (·, β)

is a holomorphic function of λ for Re(λ) > −μ, which depends on the functional
parameter β. Note that f (λ, β0) equals the right hand side of (31) minus 1.
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From (26) we have, for any zero λ of f (λ, β) and of f (λ, β0), such that Re(λ) >

−μ/2 the following uniform bound

|λ + μ| ≤ g(0)b1

∫ ∞

0
e−(Re(λ)+μ)ada = g(0)b1

Re(λ) + μ
<

2g(0)b1
μ

= r .

Therefore, all possible zeroes of f (λ, β) and of f (λ, β0), with non-negative real
part, belong to the (compact) disk segment

U := {λ ∈ C : |λ + μ| ≤ r , Re(λ) ≥ 0}.

On the other hand, | f (λ, β0)| > M on U where M is defined in (38) (so in particular
f (λ, β0) has no zero with non-negative real part). Indeed, using the triangle inequality,
we have

| f (λ, β0)| =
∣∣∣∣∣∣1 − β00

g
(
B̄(β0)

μ

)

(λ + μ)2
e−(λ+μ)ā

∣∣∣∣∣∣ = 1

|λ + μ|2
∣∣∣∣(λ + μ)2 − β00g

(
B̄(β0)

μ

)
e−ā(λ+μ)

∣∣∣∣

≥ 1

|λ + μ|2
∣∣∣∣Im(λ)2 + (Re(λ) + μ)2 − β00g

(
B̄(β0)

μ

)
e−ā(Re(λ)+μ)

∣∣∣∣ .

Noting that for Re(λ) ≥ 0, from (34) we have

(Re(λ) + μ)2 − β00g

(
B̄(β0)

μ

)
e−ā(Re(λ)+μ) ≥ 0,

we conclude that there is no need for the absolute value bars around the second factor
at the right hand side, and we obtain that

| f (λ, β0)| ≥ μ2

r2

(
1 − β00

μ2 g

(
B̄(β0)

μ

)
e−āμ

)
= M .

Then, Rouché’s theorem ensures that any holomorphic function h such that |h(λ) −
f (λ, β0)| < M on the boundary of U , does not vanish on U , because f (λ, β0) does
not vanish on U . As a consequence, all zeros of f (λ, β) will have negative real part
whenever | f (λ, β)− f (λ, β0)| < M on the boundary ofU , which implies the stability
of the non-trivial steady state corresponding to β (by Theorem 3). To this end note
that one can show that | f (λ, β) − f (λ, β0)| is bounded above by the left hand side
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of (39). Indeed, using Lemma7, and denoting by H the Heaviside step function, we
have for Re(λ) ≥ 0

| f (λ, β) − f (λ, β0)|

=
∣∣∣∣ 1

λ + μ

∫ ∞
0

g

(
B̄(β)

μ

) (
β ′(S̄(a;β)) − β00H(a − ā)

)
e−(λ+μ)ada

+ 1

λ + μ

∫ ∞
0

(
g

(
B̄(β)

μ

)
− g

(
B̄(β0)

μ

))
β00H(a − ā)e−(λ+μ)ada

∣∣∣∣
≤ g(0)

μ

∫ ∞
0

|β ′(S̄(a;β)) − β00H(a − ā)|e−μada + β00

μ2 e−μā
∣∣∣∣g

(
B̄(β)

μ

)
− g

(
B̄(β0)

μ

)∣∣∣∣
≤ g(0)

μ2 ||β ′ − β ′
0|| + β00

μ3 e−μā ||g′||∞|B̄(β) − B̄(β0)|

≤ g(0)

μ2 ||β ′ − β ′
0|| + β00

μ3 e−μā ||g′||∞C ||β − β0||∞.

Therefore, if β satisfies (39), the positive stationary birth rate is locally asymptotically
stable. �	
Remark 3 Assumption (39) can be replaced by a more explicit one using the proof of
Lemma 7 (i.e. using the definitions of B̃ and ã):

g(0)

μ2 ||β ′ − β ′
0||∞ + 2

μ
eμ(ã−ā) ||g′||∞

min
s∈[0,B̃/μ]

|g′(s)| ||β − β0||∞ < M .

5.2 Semi-explicit expression for a particular case

In this sectio we assume that the per capita fertility is proportional to the size, that
is β(s) = β0s (i.e., xA = 0). In addition we consider that the individual growth rate
is of the form g(z) = g0

1+z/z0
where g0 > 0 and z0 > 0 (recall that z represents

the environment that an individual experiences, which is given by the number of
individuals that are larger than it).

In this situation, (30) gives

R(B) = β0

μ2

∫ 1

0

g0

1 + B
μ

ζ
z0

dζ = β0g0
μ2

ln (1 + B/(μz0))

B/(μz0)
= R0

ln (1 + B/(μz0))

B/(μz0)
.

Therefore, the birth rate at the nontrivial equilibrium (which necessarily exists if
R0 > 1 as discussed in Sect. 4) is the unique positive solution B̄ of the equation
ln(1+B/(μz0))

B/(μz0)
= 1

R0
. This allows an explicit expression for B̄ in terms of the Lambert

function W−1 as

B̄ = μz0

(
−R0W−1

(
− exp(−1/R0)

R0

)
− 1

)
. (40)
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Indeed, take z = −(1 + B/(μz0))/R0 < −1/R0 in the preceding equation, which
gives zez = −(1/R0)e−1/R0 . Then the (only) solution to this equation is the Lambert
function W−1 (i.e., the inverse function of the (monotonously decreasing) function
f (z) = zez restricted to the interval (−∞,−1)) evaluated at −(1/R0)e−1/R0 .
More interestingly, an explicit expression can also be obtained for the density with

respect to size in the steady state. Indeed, (22) gives in this case,

S̄(a) =
∫ a

0

g0

1 + B̄e−μτ

μz0

dτ = g0
μ

ln

(
μz0eμa + B̄

μz0 + B̄

)
, (41)

which leads to

S̄−1(x) = 1

μ
ln

(
(μz0 + B̄)e

μ
g0

x − B̄

μz0

)

and to

S̄′(S̄−1(x)
) = g0

(μz0 + B̄) exp
(

μ
g0
x
)

− B̄

(μz0 + B̄) exp
(

μ
g0
x
) .

By (18) we finally obtain

ū(x) = B̄ exp(−μS̄−1(x))

S̄′(S̄−1(x)
) =

μz0 B̄(μz0 + B̄) exp
(

μ
g0
x
)

g0
( (

μz0 + B̄
)
exp

(
μ
g0
x
)

− B̄
)2 . (42)

Moreover, an easy integrationgives the following expression for the populationnumber
above an individual of size x

∫ ∞

x
ū(s)ds = B̄z0

(μz0 + B̄)e
μ
g0

x − B̄
. (43)

6 Concluding remarks

The principle of linearised stability (PLS for short), widely used in the theory of ODEs,
says that the stability of a stationary state is determined by the stability properties of
the linearised system. This principle has also been proved to hold in dynamical systems
of infinite dimension with a “semilinear” structure (namely semilinear PDEs and DE,
see (Henry 1981; Pazy 1983; Diekmann et al. 1995)) via the variation of constants
formula. In this article we used the PLS to analyse rigorously the local stability of
stationary birth rates of (12). As a consequence of such an analysis we found that
for reasonable and rather general biological functional responses (see the hypotheses
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of Theorem 8), the non-trivial stationary birth rate of (12) is locally asymptotically
stable.

The PLS, as stated above, cannot be applied to the PDE formulation presented
in Appendix B. The reason is that, as explained in detail in Barril et al. (2022), the
nonlinear semigroup associated to (1) is not differentiable, and hence it cannot be
linearised. This does not mean, however, that, if the PDE system (1) is linearised
“formally” around a stationary distribution ū, the stability of ū cannot be determined
from the stability of the linearised system. In fact we expect that such is possible, but
a proof, as far as we know, is still missing.

As explained in Barril et al. (2022), a way to prove this result would be to estab-
lish an “equivalence” between orbits of the delay formulation (in the state space of
weighted birth rate histories, i.e. X ) and orbits of the PDE formulation (in the state
space of integrable functions of height, i.e. L1(xm,∞)). By an “equivalence” we
specifically mean to find a continuous function LPDE

DE : X → L1(xm,∞) mapping
orbits in X to orbits in L1(xm,∞) and vice-versa (i.e. an analogous continuous func-
tion LDE

PDE : L1(xm,∞) → X ), so that stability results can be translated from one
formulation to the other. In Barril et al. (2022) we found that for these functions to
exist, one needed to work in a (exponentially) weighted space of integrable functions
of height, L1

w(xm,∞), where the proper value of w depended on the weight ρ chosen
for X (working with the unweighted space L1(xm,∞) was possible if ρ was chosen
to be equal to the mortality rate μ, since that implied w = 0). In fact, in that paper the
phase spaces for both the PDE and the DE included a component with information
on the environmental condition. These additional components allowed to establish a
surjective function (with the desired properties mentioned above) mapping states from
the delay formulation to states of the PDE formulation (and vice-versa by taking a
pseudoinverse of that function). As we are about to see, the analogous function asso-
ciated to the (simpler) phase spaces used in this paper fails to be surjective (precluding
any attempt of extending the results of Barril et al. (2022) to the present work).

Natural candidates for LPDE
DE and LDE

PDE may be obtained using the biological inter-
pretation of the functions involved in (12) and (1). Indeed, take φ ∈ X a birth rate
history and u0 ∈ L1(xm,∞) a ‘corresponding’ population height-distribution and
define

X(τ ;φ) := S(−τ, 0;φ) = xm +
∫ −τ

0
g

(∫ ∞

σ

φ(τ + σ − α)e−μαdα

)
dσ

= xm +
∫ −τ

0
g

(∫ τ

−∞
φ(θ)e−μ(τ+σ−θ)dθ

)
dσ

(44)

for τ ∈ (−∞, 0] (i.e. the size at time 0 of an individual born at τ given the birth rate
history φ, see (9)) and T (x;φ), for x ∈ [xm,∞), as the inverse of X(·;φ) (which
exists if g is bounded and decreasing and gives the time at birth of an individual with
size x at time 0 given the birth rate history φ). Then we have

∫ x

xm
u0(x)dx =

∫ 0

T (x;φ)

φ(θ)eμθdθ (45)
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because being younger means being smaller, and hence the individuals smaller than x
must coincide with those born after T (x;φ) that have survived. Then, differentiation
with respect to x gives

u0(x) = −φ(T (x;φ))eμT (x;φ)T ′(x;φ), (46)

which gives a natural candidate for LPDE
DE . Similarly, by rewriting (45) as

∫ X(τ ;φ)

xm
u0(x)dx =

∫ 0

τ

φ(θ)eμθdθ,

differentiation with respect to τ gives

u0(X(τ ;φ))X ′(τ ;φ) = −φ(τ)eμτ . (47)

Unlike (46), the above equation is problematic in that it does not give an explicit
formula for φ in terms of u0. It turns out that the above equation does not define
implicitly φ ∈ X for each u0 ∈ L1(xm,∞) (which is equivalent to say that LPDE

DE
defined through (46) is not surjective). To see this choose, as a counterexample,μ = 0,
g(E) = 1− E for E < 1/2 (it doesn’t matter what g does for E ≥ 1/2, besides being
decreasing) and u0(x) = 1 for x ∈ (xm, xm + 1) and 0 otherwise. Then formula (44)

simplifies to X(τ ;φ) = xm − τg

(∫ τ

−∞
φ(θ)dθ

)
and equation (47) implies

φ(τ) =
g

(∫ τ

−∞
φ(θ)dθ

)

1 − τg′
(∫ τ

−∞
φ(θ)dθ

) ,

if X(τ ;φ) < 1 and φ(τ) = 0 otherwise. This forces the support of φ to be (−1, 0),
so that X(τ ;φ) < xm + 1 for τ ∈ (−1, 0), and thus φ solves (47) only if it satisfies

φ(τ) =
1 −

∫ τ

−1
φ(θ)dθ

1 + τ

as long as
∫ τ

−1
φ(θ)dθ < 1/2. Since the right hand side of this equation has a non-

integrable singularity for τ ↓ −1, this relation contradicts that φ ∈ X . The fact that
equation (47) fails to define a birth rate history in X as a function of u0 means that
there are reasonable population densities with respect to size (such as the indicator
function used in the example) that cannot be obtained by prescribing an integrable
birth rate history.

As already mentioned, this situation deviates from what we had in Barril et al.
(2022), where an explicit formula for LDE

PDE was derived thanks to the additional envi-
ronmental variable that was considered as part of the phase space (and somehow
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provided more room to play with). Since the scalar renewal equation presented in
Sect. 2 was obtained precisely by expressing the environmental variable in terms of
the birth rate history (and thus restricting the set of admissible environmental histo-
ries), a way to overcome this difficulty would be to work with an extended version
of the delay formulation in which the environmental history is a proper element of
the phase space (and thus there is also a delay equation for it). In addition, such an
extended versionwould allowus to analysemore general environmental feedbacks. For
instance environmental feedbacks of the form E(x, t) = ∫ ∞

x α(y)u(y, t)dy (compare
with (2)), where the impact of larger individuals depends on their size. Such situations
cannot be formulated in terms of only a renewal equation for the birth rate. Indeed,
since the environmental history is needed to give the size individuals will have in the
future, the environmental condition felt by an individual is no longer determined only
by the individuals born before him but it depends also on the environmental history
itself. The drawback of an extended formulation is that then the environmental history
t �→ E(·, t) takes values in an infinite dimensional space, which makes the analysis
of the differentiability (analogue of Theorem 1) much more involved (the theory to
deal with these cases is developed in Diekmann and Gyllenberg (2007)).

What could be the implications of such a non-equivalence between the two formu-
lations, and specifically of the fact that there are population densities that cannot be
obtained naturally from a birth rate history? It seems that the non-equivalence does
not imply differences in the number of stationary states and attractors in general found
in each formulation. In fact we expect a one-to-one correspondence between orbits
in the ω-limit sets of the two formulations (such a correspondence would be a conse-
quence of the relation between solutions of the RE and solutions of the PDE given in
Sect. B.1 of Appendix B). What might be affected by the non-equivalence is the sta-
bility behaviour of the corresponding ω-limit sets. A priori (with what we have shown
in this paper) we cannot rule out the possibility that a stationary population density
of the PDE formulation is unstable, while the corresponding stationary birth rate of
the delay formulation is stable. The reason is that there are states arbitrarily close to
such a stationary population density that cannot be related to any birth history from
a neighbourhood of the stationary birth rate. Further work is needed to rule out this
kind of discrepancy between the two formulations (or, alternatively, to give a specific
example where the discrepancy takes place, although we doubt that such an example
exists).
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Appendix A Differentiability

Theorem 9 (Theorem1) Assume that g and β have a bounded and globally Lips-
chitzian first derivative (with common constant 2C). Also assume that g is bounded,
positive and bounded away from 0. Then the map F : X → R defined in (13) is
continuously differentiable with bounded derivative provided that the parameter ρ in
the definition of X satisfies ρ < μ/5.

Proof First notice that the hypotheses imply the following estimate for any z ≥ 0 and
h > −z:

|g(z + h) − g(z) − g′(z)h|
=

∣∣∣∫ z+h
z g′(s)ds − g′(z)h

∣∣∣ =
∣∣∣∫ z+h

z |g′(s) − g′(z)| ds
∣∣∣ ≤ 2C

∣∣∣∫ z+h
z |z − s|ds

∣∣∣ = Ch2,

(A1)

and analogously for β.
The statement of the theorem amounts to showing that

φ → (F̃(φ))(a) = e−μa β

(
xm +

∫ a

0
g
(
e−μ(τ−a)

∫ ∞

a
e−μsφ(−s)ds

)
dτ

)

is a continuously differentiable map from the positive cone of the Banach space

X =
{
φ ∈ L1

loc(−∞, 0) : ||φ||X :=
∫ 0

−∞
eρs |φ(s)|ds < ∞

}

to its dual identified with the Banach space

X ′ = {
f ∈ L∞

loc(0,∞) : || f ||X ′ := ess supa∈[0,∞) e
ρa | f (a)| < ∞}

with the duality product 〈 f , φ〉 = ∫ ∞
0 f (a)φ(−a)da.

Indeed, we can write F(φ) = 〈F̃(φ), φ〉, and a rather general and straightforward
argument gives, assuming differentiability of F̃,

DF(φ)ψ = 〈F̃(φ), ψ〉 + 〈 DF̃(φ)ψ, φ〉. (A2)

In particular, for φ = 0, we have DF(0)ψ = 〈F̃(0), ψ〉.
Next we define three intermediate spaces of real valued continuous functions:

Y =
{
P ∈ C(T ) : ||P||Y := sup

(τ,a)∈T
e−ρa |P(τ, a)| < ∞

}
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where T = {(τ, a) ∈ R
2 : 0 ≤ τ ≤ a < ∞},

Z =
{

v ∈ C(T ) : ||v||Z := sup
(τ,a)∈T

e−ρ1a |v(τ, a)| < ∞
}

with ρ1 > 0 to be chosen later,

W =
{
S ∈ C([0,∞)) : ||S||W := sup

a∈[0,∞)

e−ρ2a |S(a)| < ∞
}

with ρ2 > 0 to be chosen later; and four maps:

L1 : X → Y defined by (L1φ)(τ, a) = e−μ(τ−a)

∫ ∞

a
e−μsφ(−s)ds,

G : Y → Z defined by G(P) = g ◦ P,

L2 : Z → W defined by (L2v)(a) = xm +
∫ a

0
v(τ, a)dτ

and

B : W+ → X ′ defined by B(S)(a) = e−μa (β ◦ S)(a),

(W+ meaning the positive cone of W ) in such a way that (at least formally) F̃ =
B ◦ L2 ◦ G ◦ L1. Then the claim will follow from the chain rule provided we prove
that the four maps are well defined and continuously differentiable with bounded
derivative.

Step 1. L1 is bounded linear provided that ρ ≤ μ.
We have

sup
(τ,a)∈T

e−ρa
∣∣∣∣e−μ(τ−a)

∫ ∞

a
e−μsφ(−s)ds

∣∣∣∣ = sup
(τ,a)∈T

e−ρa
∣∣∣∣e−μ(τ−a)

∫ −a

−∞
eμsφ(s)ds

∣∣∣∣

≤ sup
a≥0

∫ −a

−∞
e(μ−ρ)(a+s)eρs |φ(s)|ds ≤

∫ 0

−∞
eρs |φ(s)|ds,

since (μ − ρ)(a + s) ≤ 0 in the last but one integral. Thus, ||L1φ||Y ≤ ||φ||X .

Step 2. G is continuously differentiable with bounded derivative provided that
2ρ ≤ ρ1.
G is well defined because g is bounded and continuous.
Let P ∈ Y and Q ∈ Y such that ||Q||Y = 1, which implies |Q(τ, a)| ≤ eρa .

We start by proving that Q → g′(P(·))Q(·) defines a bounded linear map Y → Z
with norm bounded independently of P:

sup
||Q||Y=1

∣∣∣∣g′(P(·))Q(·)∣∣∣∣Z = sup
||Q||Y=1

sup
z∈T

e−ρ1a
∣∣g′(P(z))Q(z)

∣∣
≤ ∣∣∣∣g′∣∣∣∣∞ sup

z∈T
e−ρa |Q(z)| = ∣∣∣∣g′∣∣∣∣∞ .
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Moreover, we can write, setting z = (τ, a), and using (A1),

e−ρ1a |g(P(z) + εQ(z)) − g(P(z)) − g′(P(z))εQ(z)| ≤ Cε2e−ρ1a |Q(z)|2
≤ Cε2e(2ρ−ρ1)a ≤ Cε2,

i.e.,

∣∣∣∣G(P + εQ) − G(P) − g′(P(·))εQ(·)∣∣∣∣Z ≤ Cε2.

Therefore, (DG(P)Q)(z) := g′(P(z))Q(z) is the Fréchet derivative of G at the point
P , its norm is uniformly bounded by

∣∣∣∣g′∣∣∣∣∞; and it is (uniformly) continuous: for
Q ∈ Y with norm 1 we have

||DG(P1)Q − DG(P2)Q||Z = sup
z∈T

e−ρ1a
∣∣(g′(P1(z)) − g′(P2(z))

)
Q(z)

∣∣
≤ 2C sup

z∈T
e−ρ1a |P1(z) − P2(z)| |Q(z)| ≤ 2C sup

a≥0
e(−ρ1+2ρ)a ||P1 − P2||Y

≤ 2C ||P1 − P2||Y .

Step 3. L2 is a positive continuous affine map provided that 0 < ρ1 < ρ2.
It suffices to see,

||L2v − xm ||W = sup
a∈[0,∞)

e−ρ2a
∣∣∣∣
∫ a

0
v(τ, a)dτ

∣∣∣∣
≤ sup

a∈[0,∞)

e−ρ2a
∫ a

0
eρ1a ||v||Z dτ = sup

a∈[0,∞)

ae(−ρ2+ρ1)a ||v||Z ≤ 1

e(ρ2 − ρ1)
||v||Z .

Step 4. B is continuously differentiable with bounded derivative provided that
ρ + 2ρ2 ≤ μ.
First notice that the assumptions on β imply that there exist positive constants C1
and C2 such that β(s) ≤ C1 + C2s. Thus B is well defined: for S ∈ W+, since
|S(a)| ≤ eρ2a ||S||W ,

eρa |e−μaβ(S(a))| ≤ e(ρ−μ)a(C1 + C2|S(a)|)
≤ e(ρ−μ)a(C1 + C2e

2ρ2a ||S||W ) ≤ C1 + C2||S||W .

As in Step 2, let us prove that R → e−μ·β ′(S(·))R(·) defines a bounded linear map
W → X ′ with norm bounded independently of S:

sup
||R||W=1

∣∣∣∣e−μ·β ′(S(·))R(·)∣∣∣∣X ′ = sup
||R||W=1

sup
a≥0

eρa
∣∣e−μaβ ′(S(a))R(a)

∣∣

≤ sup
a≥0

e(ρ+ρ2−μ)a
∣∣∣∣β ′∣∣∣∣∞ ≤ ∣∣∣∣β ′∣∣∣∣∞ .

Let us now proceed to show that B is differentiable: Let S ∈ W+ and R ∈ W with
normequal to 1,which implies |R(a)| < eρ2a . Then, for ε small enough, S+εR ∈ W+.
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Then we can write, using the β-variant of (A1),

eρa
∣∣e−μaβ(S(a) + εR(a)) − e−μaβ(S(a)) − e−μaβ ′(S(a))εR(a)

∣∣
≤ Cε2e(ρ−μ+2ρ2)a ≤ Cε2,

proving that
(
DB(S)R

)
(a) := e−μaβ ′(S(a))R(a) is the Fréchet derivative of B at the

point S, with norm uniformly bounded by
∣∣∣∣β ′∣∣∣∣∞

We also show that the derivative is continuous as in Step 2. Let R ∈ W with norm
equal to 1. We have

||DB(S1)R − DB(S2)R||X ′ = sup
a∈[0,∞)

e(ρ−μ)a
∣∣(β ′(S1(a)) − β ′(S2(a))

)
R(a)

∣∣
≤2C sup

a∈[0,∞)

e(ρ−μ)a |S1(a) − S2(a)| |R(a)|

≤2C sup
a≥0

e(ρ−μ+2ρ2)a ||S1 − S2||W ≤ 2C ||S1 − S2||W .

Finally, given any ρ ∈ (
0, μ

5

)
we can take ρ1 = 2ρ (fulfilling the assumption of Step

2) and ρ2 = μ−ρ
2 > 2ρ (fulfilling the assumption of Step 3 and that of Step 4 since

then 2ρ2 + ρ = μ) to conclude the proof. �	

As a consequence, the chain rule gives, taking into account that L1 is linear and L2
is affine,

DF̃(φ)ψ = D(B ◦ L2 ◦ G ◦ L1)(φ)ψ = DB(L2G(L1φ)) (L2 − xm) DG(L1φ)L1ψ.

Since we are interested in linearisation around steady states, we can restrict to evalu-
ation of the differential on constant functions B̄. So, we compute, sequentially:

L1ψ (τ, a) = e−μ(τ−a)

∫ ∞

a
e−μsψ(−s)ds,

L1 B̄ (τ, a) = B̄e−μτ /μ,

DG(L1 B̄)L1ψ (τ, a) = g′(B̄e−μτ /μ)e−μ(τ−a)

∫ ∞

a
e−μsψ(−s)ds,

(L2 − xm) DG(L1 B̄)L1ψ (τ, a) =
∫ a

0
g′(B̄e−μτ /μ)e−μ(τ−a)

∫ ∞

a
e−μsψ(−s)ds dτ

=: h(a),

and, also,

L2 G(L1 B̄) = xm +
∫ a

0
g(B̄e−μτ /μ)dτ(= S̄(a)),
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where, in the last equality we assumed, furthermore, that B̄ is not only a constant
function, but a steady state (see (22)). Therefore,

DF̃(B̄)ψ = DB(L2G(L1 B̄)) (L2 − xm) DG(L1 B̄)L1 ψ(a)

= DB(L2 G(L1 B̄))h(a) = e−μaβ ′(S̄(a))h(a)

= e−μaβ ′(S̄(a))

∫ a

0
g′(B̄e−μτ /μ)e−μ(τ−a)

∫ ∞

a
e−μsψ(−s)ds dτ.

Finally, we will have,

〈 DF̃(B̄)ψ, B̄〉 =
∫ ∞

0
e−μaβ ′(S̄(a))

∫ a

0
g′(B̄e−μτ /μ)e−μ(τ−a)

∫ ∞

a
e−μsψ(−s)ds dτ B̄da,

which, together with (A2), gives (24).

Appendix B The PDE formulation

In this appendix we include a series of results showing that the PDE formulation is
tightly related to the delay formulation (as it should be since both models are built
from a description of the same biological processes). In Sect. B.1 we show that one
can solve the PDE problem by solving a scalar RE (with integration from 0 to t) for
the population birth rate B and that the large time limiting form of this equation is
exactly (10). In Sect. B.2 we show that the condition characterising the existence of
non-trivial steady states of (1) coincides with (16) (in addition a formula for the non-
trivial stationary population size-density is given). Finally in Sect. B.3 we show that
the formal linearisation of system (1) leads to the characteristic equation (26).

B.1 Solution of the PDE in terms of a renewal equation

The solution of (1) can be written as the sum of two terms: the first considers the
individuals born between 0 and t and the second considers the individuals that already
exist at time 0, i.e. those reflected in the initial population density u0(x).

First notice that at time 0,

Ē(ξ) =
∫ ∞

ξ

u0(η)dη

gives the number of individuals with size larger than ξ , while at time τ

Ẽ(τ ) =
(∫ τ

0
B(σ )eμσdσ +

∫ ∞

0
u0(η)dη

)
e−μτ
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gives the number of individuals with size larger than xm . Since mortality is constant
the number of individuals in this cohort decreases exponentially with rate μ as time
increases. As a consequence, the size at time t of an individual with size ξ at time 0 is

X(t, 0, ξ) = ξ +
∫ t

0
g(Ē(ξ)e−μσ )dσ

and the size at time t of an individual born at time τ > 0 with 0 < τ < t is

X(t, τ, xm) = xm +
∫ t−τ

0
g
(
Ẽ(τ )e−μσ

)
dσ.

So the birth rate has to satisfy the renewal equation

B(t) = Bdsc(t) + Bfnd(t)

where

Bdsc(t) =
∫ t

0
β(X(t, τ, xm))B(τ )e−μ(t−τ)dτ

is the birth rate associated to the descendants of the founder population and

Bfnd(t) =
∫ t

0
β(X(t, 0, ξ))u0(ξ)dξ e−μt

is the known birth rate associated to the founder population. Oncewe solve the renewal
equation constructively, we can obtain an explicit expression for the (weak) solution
of the PDE by integrating along characteristics.

Note that Bfnd(t) tends to 0 exponentially as t → ∞. By changing τ to a with
t − τ = a we can rewrite

Bdsc(t) =
∫ t

0
β(X(t, t − a, xm))B(t − a)e−μada.

Now note that

X(t, t − a, xm) = xm +
∫ a

0
g(Ẽ(t − a)e−μτ )dτ

and

Ẽ(t − a) =
∫ t−a

0
B(η)eμηdη e−μ(t−a) +

∫ ∞

0
u0(η)dη e−μ(t−a)

where the second summand at the right hand side tends exponentially to 0 as t → ∞.
Since this term represents the founder population that remains at time t , let us refer to
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it as Pfnd(t). Next, by using the transformation η = t − s we have

Ẽ(t − a) =
∫ t

a
B(t − s)e−μ(s−a)ds + Pfnd(t) = eμa

∫ t

a
B(t − s)e−μsds + Pfnd(t).

Now note that, by ignoring Bfnd(t) and Pfnd(t) and by replacing the upper integration
boundary t in the last integral by ∞, we obtain (12).

B.2 Existence and characterization of non-trivial steady states

To establish criteria for the existence of non-trivial steady states ū in the PDE formu-
lation is apparently more complex than what we had to do for the delay formulation
in Sect. 4.

Let us first concentrate on the ordinary differential equation which arises from
the first and the third equations in (1) when one assumes that ū only depends on x .
This leads to the following second order ordinary differential equation for E(x) :=∫ ∞
x ū(s)ds,

d

dx

(
g(E(x))E ′(x)

) + μE ′(x) = 0,

or, equivalently, to

g(E(x))E ′(x) + μE(x) = C,

for some constant C . Since E(x) tends to 0 when x tends to ∞, C has to coin-
cide with (minus) the flux of individuals leaving the system at infinity: C =
limx→∞ g(E(x))E ′(x) = −g(0) limx→∞ ū(x) and so it has to be 0 (since other-
wise limx→∞ ū(x) = −C/g(0) �= 0 and ū would not be integrable). Therefore we
look for solutions of the differential equation

dE

dx
(x) = −μ

E(x)

g(E(x))

with initial condition E(xm) = N (the total population size) and such that
limx→∞ E(x) = 0. Equivalently,

∫ N

E(x)

g(z)

z
dz = μ(x − xm).

If G is a primitive of g(z)/z, the previous equation reads

G(N ) − G(E(x)) = μ(x − xm),

which, can be rewritten as

E(x) = G−1 (G(N ) − μ(x − xm)) .
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It follows that

ū(x) = − d

dx

(
G−1 (G(N ) − μ(x − xm))

)

= μ

G ′ (G−1 (G(N ) − μ(x − xm))
) = μ

G−1 (G(N ) − μ(x − xm))

g
(
G−1 (G(N ) − μ(x − xm))

) .
(B3)

Since ū(xm) = μN
g(N )

we have

g(E(xm))ū(xm) = g(N )ū(xm) = μN .

Therefore, using the boundary condition, a non-trivial steady state (given by (B3))
does exist if and only if a positive number N exists such that

N =
∫ ∞

xm
β(x)

G−1 (G(N ) − μ(x − xm))

g
(
G−1 (G(N ) − μ(x − xm))

)dx . (B4)

This turns out to be equivalent to (16) with N = B/μ. Indeed, we can write

R(B) =
∫ ∞

0
β

(
xm +

∫ a

0
g

(
B
e−μτ

μ

)
dτ

)
e−μa da

=
∫ ∞

0
β

(
xm +

∫ N

Ne−μa

g (z)

μz
dz

)
e−μa da

=
∫ ∞

0
β

(
xm + G(N ) − G(Ne−μa)

μ

)
e−μa da

= 1

N

∫ ∞

xm
β(x)

G−1(G(N ) − μ(x − xm))

g
(
G−1(G(N ) − μ(x − xm)

)dx,

where in the second equality we performed the change of variables z = B e−μτ

μ
, and in

the fourth one, the change of variables x = xm + G(N )−G(Ne−μa)
μ

. See Sect. 5.2 where
a particular case is developed and where an explicit expression for a primitive G is
available.

B.3 Linearisation in the PDE formulation

The (formal) linearisation of the PDE (1) around the steady state u∗ is very economical
as it simply reads (note that g′ below stands for the derivative of g with respect to its
argument E)

vt (x, t) +
(
g(E∗(x))v(x, t) + g′(E∗(x))u∗(x)

∫ ∞

x
v(y, t) dy

)
x

= − μv(x, t),

g(E∗(xm))v(xm, t) + g′(E∗(xm))u∗(xm)

∫ ∞

xm
v(x, t) dx =

∫ ∞

xm
β(x)v(x, t) dx .

(B5)
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Substituting v(x, t) = eλt V (x) into (B5) we have

(
g(E∗(x))V (x) + g′(E∗(x))u∗(x)

∫ ∞

x
V (y) dy

)
x

= − (λ + μ)V (x),

g(E∗(xm))V (xm) + g′(E∗(xm))u∗(xm)

∫ ∞

xm
V (x) dx =

∫ ∞

xm
β(x)V (x) dx .

(B6)

Therefore, λ ∈ C is an eigenvalue, if and only (B6) admits a solution V �≡ 0. We also
note that although the size domain is unbounded, it can be shown, using certain prop-
erties of the governing linear semigroup, that the part of the spectrum of the semigroup
generator in the half plane {z ∈ C |Re(z) > −μ} contains only eigenvalues, see e.g.
(Farkas and Hagen 2010, Sect.4.) for more details, and therefore (linear) stability can
indeed be characterized by the leading eigenvalue of the semigroup generator.

For the trivial steady state u∗ ≡ 0 the left hand side of (B6) has only local terms
and therefore easily leads to the characteristic equation

g(0) =
∫ ∞

xm
β(x)e− λ+μ

g(0) (x−xm )dx,

which is exactly what one gets by inserting y(t) = eλt into (19) andmaking the change
of variables x = xm +g(0)a. Therefore, the stability of u∗ ≡ 0 is characterized by the
net reproductionnumber (R evaluated at the zero steady state, or the virgin environment
as we previously referred to), as expected. That is, if

R(0) = (R0 =)

∫ ∞

xm

β(x)

g(0)
e− μ

g(0) (x−xm ) dx > 1,

then u∗ ≡ 0 is unstable; while R(0) < 1 implies that the trivial steady state is
asymptotically stable.

To deduce the characteristic equation we integrate the first equation of (B6) from
x to ∞, to obtain

g(E∗(x))V (x) + g′(E∗(x))u∗(x)
∫ ∞

x
V (y) dy = (λ + μ)

∫ ∞

x
V (y) dy. (B7)

Substituting x = xm into (B7) and combining it with the second equation in (B6)
yields

(λ + μ)

∫ ∞

xm
V (x) dx =

∫ ∞

xm
β(x)V (x) dx . (B8)

Note that λ ∈ C is an eigenvalue if and only if (B7)–(B8) admits a solution V �≡ 0.
To see for which λ this is possible let us introduce

H(x) :=
∫ ∞

x
V (y) dy (B9)

123



66 Page 32 of 34 C. Barril et al.

as unknown so that (B7) boils down to the differential equation

−g(E∗(x))H ′(x) + g′(E∗(x))u∗(x)H(x) = (λ + μ)H(x),

whose solution is

H(x) = H(xm) exp

(∫ x

xm

g′(E∗(r))u∗(r) − (λ + μ)

g(E∗(r))
dr

)
= H(xm)π(x, λ),

(B10)

where we defined

π(x, λ) := exp

(∫ x

xm

g′(E∗(r))u∗(r) − (λ + μ)

g(E∗(r))
dr

)
, λ ∈ C, x ∈ [xm,∞).

(B11)

Then, substitution of (B10) into (B8) via (B9) yields the characteristic equation

(λ + μ) = −
∫ ∞

xm
β(x)

∂

∂ x
π(x, λ) dx . (B12)

This equation can be rewritten (assuming that β is differentiable) as

(λ + μ) = −β(∞)π(∞, λ) + β(xm) +
∫ ∞

xm
β ′(x)π(x, λ) dx . (B13)

Next note that since E ′∗(x) = −u∗(x) we have

π(x, λ) = exp

(∫ x

xm

g′(E∗(r))u∗(r) − (λ + μ)

g(E∗(r))
dr

)

= exp

(
−
∫ x

xm

λ + μ

g(E∗(r)
dr

)
exp

(
−
∫ x

xm

d
d r (g(E∗(r))
g(E∗(r))

dr

)

= exp

(
−
∫ x

xm

λ + μ

g(E∗(r)
dr

)
g(E∗(xm))

g(E∗(x))
.

Then, if μ > sup
x≥xm

{
g′(E∗(x))u∗(x)

}
(for example if g′ ≤ 0) one has π(∞, λ) = 0

for every λ ∈ C, and the characteristic equation reduces to

λ + μ = β(xm) +
∫ ∞

xm
β ′(x) exp

(
−
∫ x

xm

λ + μ

g(E∗(r)
dr

)
g(E∗(xm))

g(E∗(x))
dx . (B14)
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Now let us rewrite equation (B14) such that the integration variable is age a, which
will show that it is the characteristic equation (26) in disguise. Using that we have

da

dx
(x) = 1

g(E∗(x))
, S̄(a) =

∫ a

0
g

(
B̄
e−μτ

μ

)
dτ = �−1(a) = x,

�(x) :=
∫ x

0

1

g(E∗(r))
dr , E∗(x) = B̄

e−μ�(x)

μ
,

equation (B14) can be rewritten as

λ + μ = β(xm) + g

(
B̄

μ

)∫ ∞

0
β ′(S̄(a))e−(λ+μ)a da,

which is identical to the characteristic equation (26) that was deduced from the delay
formulation.
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