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Abstract
We design a linear chain trick algorithm for dynamical systems for which we have
oscillatory time histories in the distributed time delay. We make use of this algo-
rithmic framework to analyse memory effects in disease evolution in a population.
The modelling is based on a susceptible-infected-recovered SIR—model and on a
susceptible-exposed-infected-recovered SEIR—model through a kernel that dampens
the activity based on the recent history of infectious individuals. This corresponds
to adaptive behavior in the population or through governmental non-pharmaceutical
interventions.We use the linear chain trick to show that such amodel may bewritten in
a Markovian way, and we analyze the stability of the system. We find that the adaptive
behavior gives rise to either a stable equilibrium point or a stable limit cycle for a
close to constant number of susceptibles, i.e. locally in time. We also show that the
attack rate for this model is lower than it would be without the dampening, although
the adaptive behavior disappears as time goes to infinity and the number of infected
goes to zero.
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1 Introduction

Memory effects are an important part of disease modeling (Roddam 2001; Sofonea
et al. 2021; Liao et al. 2022; Espinoza et al. 2022; Ali et al. 2022; Spitzer et al. 2022;
Dönges et al. 2022). Non-pharmaceutical interventions and individuals adapting their
behavior in response to the news both fall under this category, and the challenge
when implementing these in models is the non-local interaction in time, i.e., that the
information about number of infected is delayed.

In this paper, we apply kernel methods from animal population dynamics to
epidemiological models as the susceptible-infected-recovered SIR - model and the
susceptible-exposed-infected-recovered SEIR - model. These models allow analytical
calculation of equilibrium points and their respective stability properties. We follow a
modeling tradition which is common in theoretical ecology based on a dynamical sys-
tems approach with a distributed time delay incorporated, see Murray (2002), Murray
(2001), Roos (2014) and Cushing (2013) and the references therein. A notable feature
is that the distributed time delay has the significant advantage of being Markovian.
Especially the criterion for an outbreak, local stability in time (i.e., for approximately
constant number of susceptibles), and the attack rate are of interest. It is known that
using non-pharmaceutical interventions such as lockdowns allows control of the sys-
tem (Bisiacco andPillonetto 2021), butwehere show that stability comes automatically
from adaptive behavior.

First, we investigate the properties of an SEIR-model with added feedback on the
activity based on the recent history of the number of infected. Second, we discuss the
physiological of these memory effects. Technical details can be found in the appen-
dices.

2 SEIR-model withmemory effects and its basic properties

Let us start with the standard stratified SEIR model (Ross 1916; Bastin 2012; Weiss
2013; Li 2018; Martcheva 2015; Arino et al. 2005) with n groups in full generality,
where S, E, I , R : (0,∞) → R

n . Here S denotes the number of susceptible, E the
number of exposed, I the number of infectious and R denotes the number of recovered
individuals. These functions depend on time t ∈ (0,∞). The coordinates of S, E, I , R
counts the group members in the stratification, which may result from a segmentation
of the population according to age, occupation, education and others. In addition we
may include spatial segmentation into countries, provinces, regions, cities and towns
of the population. This gives us the following model
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Ṡ = − diag(S)β I

Ė = diag(S)β I − ηE

İ = ηE − γ I

Ṙ = γ I

(1)

where diag(S) denotes a diagonalmatrixwith the elements of S on the diagonal and the
dot denotes differentiation with respect to time t , see for instance Arino et al in Arino
et al. (2005). The parameter β is the disease transmission rate and γ is the recovery
rate. The SEIR model in (1) is scaled to fractions of the total initial population Np

such that

S + E + I + R = ν (2)
n∑

j

ν j = 1 (3)

where ν ∈ (0, 1)n is the fraction of the total population in group j . The population
of susceptible at time t equals SN (t) = NpS(t), similarly for the exposed EN (t) =
NpE(t), the infectious IN (t) = Np I (t), and for the recovered RN (t) = NpR(t). Sub-
script N in SN , EN , IN , and RN refers to the actual number of susceptible, exposed,
infected and recovered. We will later look at special cases to simplify certain calcula-
tions.

The contact matrix β ∈ (0,∞)n×n holds the rate of interactions between different
groups. Such stratification could be ages (interactions between young and old), physi-
cal location (different cities or countries), or species (such as mosquitoes and humans)
(Bastin 2012; Li 2018; Martcheva 2015). To study the effects of adaptive behaviour,
we promote the contact matrix β to be a function of time and infection numbers in the
following way:

β jk(t) = (β0) jk −
n∑

m=1

t∫

−∞
α jkm(t − τ)Im(τ )dτ. (4)

That is, an integration kernel consisting of a linear series of the functions αk , where
αk is proportional to a product of u(k−1)e−σu with u = t − τ and an oscillating
harmonic part. The first term is considered independent of time, and the second term
is responsible for memory effects in the dynamics such as adaptive behavior. The
3-tensor kernel α may in general be very complicated as long as it satisfies

∞∫

0

|(α) jkm(t)|dt < ∞, m = 1, 2, . . . , M . (5)

The kernel will typically decrease as u increases and otherwise the overall shape of β

can be chosen to best represent the given data, e.g., whether it goes to 0 at the origin,
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which determines whether the feedback is immediate. In mathematical terms, we have
a lot of freedom to choose a family of functions for the kernel.

We shall consider a kernel with an oscillating part for modelling e.g. seasonal
variations or weekly variations due to shifts in behaviour between work and leisure
time in the weekends.We use a kernel previously investigated by Ponosov et al. (2004)
but now adding an oscillating term as follows

αk(u) = ck
σ

(k − 1)!u
k−1e−σu

[
1

2
+ (εk + iμk)e

iωu
]

+ cc where u = t − s .

(6)

The cc stands for complex conjugation of the preceding terms. We have here sup-
pressed the matrix indices for readability, but all parameters can easily be given more
indices if needed. We will also focus on a non-stratified model in this paper.

Note that we can consider a kernel with explicit time dependence αT (t, t − τ) as
long as it is of the form αT (t, t − τ) = c(t)α̃T (t − τ). This will allow c(t) to be pulled
outside the integral and handled as a part of the rest of the differential equations. This
is useful, either when looking at seasonal changes (Chowell et al. 2015; Viboud et al.
2016; Chowell et al. 2016) or sub-exponential growth (Brauer 2019). It makes sense to
do this in conjunction with a time-dependent β0. To include oscillations in the kernel,
depending on the delay time u=t-s, may seem less obvious. But the oscillations in the
kernel depending on u could arise from people, who adjust their behavior today on
their experience same time last year or same day last week. An example could be risky
behavior due to gathering last weekend and in the current weekend people wish to
behave less risky by staying home. From a mathematical point of view it is of interest
that the linear chain trick can be extended to the case of an oscillating kernel as in Eq.
(6). Furthermore, such oscillating kernels appear in physics and here we can mention
the delayed Raman response in nonlinear optical fibers (Dudley and Taylor 2010).

The parameters σ ∈ (R+)n×n are positive real numbers, and the positive integers
k takes the values k = 1, 2, . . . N with N ∈ N+. Furthermore, ck, ω, εk, μk ∈ R

n×n

and n ∈ N.

2.1 Rewriting the integral kernel as a set of ODEs

In order to solve Eq. (1) numerically using Eq. (6) we apply the linear chain trick trans-
forming the integro-differential equation into a set of ordinary differential equations.
This transformation implies two advantages. First, the system of integro-differential
equations in (1) can be solved numerically using ordinary differential equation solvers
without invoking numerical methods for finding the integral parts. Secondly, stability
analysis of equilibrium points for (1) can be conducted using methods from ordinary
differential equations. We start by writing

αk(u) = Gk
0(u) + Gk

1(u) + Gk
2(u) , (7)
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where we have introduced

Gk
0(u) = ckσ

(k − 1)!u
k−1e−σu

Gk
1(u) = ck(εk + iμk)σ

(k − 1)! uk−1e(−σ+iω)u

Gk
2 =

(
Gk

1

)
= ck(εk − iμk)σ

(k − 1)! uk−1e(−σ−iω)u (8)

From the Eq. (4) we observe that we need to calculate integrals of the form

zk(t) =
t∫

−∞
αk(t − s)I (s)ds = z(0)k (t) + z(1)k (t) + z(2)k (t) , (9)

where

z(0)k (t) =
t∫

−∞
Gk

0(t − s)I (s)ds , z(1)k (t) =
t∫

−∞
Gk

1(t − s)I (s)ds ,

z(2)k (t) = z(2)k (t) , (10)

and the bar indicates the complex conjugate.
Applying the linear chain trick as presented in Ponosov et al. (2004) we can find

differential equations for z( j)k (t), j = 0, 1, 2, by differentiating the integrals in (10).
The integrals in the delay differential Eq. (4) can thus be replaced by a set of differential
equations for z( j)k (t), using the particular form for αk in (6). Differentiating z

(0)
k (t) we

get

dz(0)k (t)

dt
= Gk

0(0)I (t) +
t∫

−∞

dGk
0(t − s)

dt
I (s)ds . (11)

For k = 1 we have from Eq. (8) that G1
0(u) = c1σe−σu and accordingly G1

0(0) =
c1σ and G1

0(u) → 0 for u → ∞. For k = 2, 3, . . . , N we have that Gk
0(0) = 0 and

Gk
0(u) → 0 for u → ∞. We can easily differentiate Gk

0 in (8) with respect to t and

use the definition of z(0)k (t) in (10) to obtain the differential equations for z(0)1 (t) and

z(0)k (t), for k = 2, 3, . . . , N

dz(0)1 (t)

dt
= c1σ I (t) − σ z(0)1 (t)

dz(0)k (t)

dt
= ck

ck−1
z(0)k−1(t) − σ z(0)k (t) for k = 2, 3, . . . , N .

(12)
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We now continue by deriving a differential equation for z(1)k (t) following the pro-

cedure for z(0)k (t). We have

dz(1)k (t)

dt
= Gk

1(0)I (t) +
t∫

−∞

dGk
1(t − s)

dt
I (s)ds . (13)

From Eq. (8) using k = 1 we have G1
1(u) = σc1(ε1 + iμ1)e(−σ+iω)u and

thus G1
1(0) = σc1(ε1 + iμ1) and G1

1(u) → 0 for u → ∞. Furthermore, for
k = 2, 3, . . . , N we have Gk

1(0) = 0 and Gk
1(u) → 0 for u → ∞. We differen-

tiate Gk
1 in (8) with respect to t and use the definition of z(1)k (t) in (10) to obtain the

differential equations governing z(1)k (t), for k = 1, 2, 3, . . . , N

dz(1)1 (t)

dt
= σc1(ε1 + iμ1)I (t) + (−σ + iω) z(1)1 (t)

dz(1)k (t)

dt
= σ

ck(εk + iμk)

ck−1(εk−1 + iμk−1)
z(1)k−1(t) + (−σ + iω) z(1)k (t)

for k = 2, 3, . . . , N .

(14)

Differential equations for z(2)k (t), k = 1, 2, . . . , N , are easily obtained from noting

that z(2)k (t) = z(1)k (t) and accordingly we obtain

dz(2)1 (t)

dt
= σc1(ε1 − iμ1)I (t) + (−σ − iω) z13(t)

dz(2)k (t)

dt
= σ z(2)k−1(t) + (−σ − iω) z(2)k (t) for k = 2, 3, . . . , N .

(15)

Collecting the above, our aim is to solve the system of differential equations in (12),
(14) and (15). Initial conditions are specified for S, I and R. The initial conditions for
zk j , k = 1, 2, . . . , N , and j = 1, 2, 3, must also be specified. We have

z(0)k (0) =
0∫

−∞
Gk

0(−s)I (s)ds

z(1)k (0) =
0∫

−∞
Gk

1(−s)I (s)ds

z(2)k (0) =
0∫

−∞
Gk

2(−s)I (s)ds

(16)
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In these expressions we need to specify I (s) for s ∈ (−∞; 0], which is typically
very difficult in realistic systems. Though this is of course also a problem if one wants
to determine the initial conditions for I in an SEIR-model without adaptive behaviour.
In both cases, fitting infection data to a polynomial is tenable (https://covid19.ssi.dk/
analyser-og-prognoser/modelberegninger). In our simulations, we assume that I (s) <

0 for s ∈ (−∞; 0], simplifying this problem.

2.2 Numerics

For illustration, we restrict ourselves to the simpler form of the kernel

α(u) = c0
2
ue−σ t

(
1 + (ε + iμ)eiωu

)
+ cc. (17)

That is, Eq. (8) for k = 2. For this specific kernel (17), the linear chain trick has the
following form. We express it in the following real functions

β0
R(t) = c0

2
e(−σ+iω)t + cc, β0

I (t) = i
c0
2
e(−σ+iω)t + cc

β1
R(t) = c0

2
te(−σ+iω)t + cc, β1

I (t) = i
c0
2
te(−σ+iω)t + cc

u(0)(t) =
M∑

m=1

t∫

−∞
β0
R(t − τ)Im(τ )dτ, v(0)(t) =

M∑

m=1

t∫

−∞
β0
I (t − τ)Im(τ )dτ

u(1)(t) =
M∑

m=1

t∫

−∞
β1
R(t − τ)Im(τ )dτ, v(1)(t) =

M∑

m=1

t∫

−∞
β1
I (t − τ)Im(τ )dτ

βH (t) = c0e
−σ t , β̂(t) =

M∑

m=1

t∫

−∞
βH (t − τ)Im(τ )dτ.

(18)

We will later set n = 1, but as some results are obtainable for general n, we keep it
for now. The following differential equation for β in Eq. (4) is

β̇ jk = −
n∑

m=1

⎛

⎝
=0︷︸︸︷

α(0) Im(t) +
t∫

−∞
∂tα(t − τ)Im(τ )dτ

⎞

⎠ + cc

= −c0
2

n∑

m=1

t∫

−∞
e−σ(t−τ)

[(
1 + (ε + iμ)eiω(t−τ)

)
(1 − σ t)

+iωt(ε + iμ)eiω(t−τ)
]
Im(τ )dτ + cc

= −σ
(
β jk − (β0) jk

) − β̂ − ω(ε − μ)u(1) − ω(ε + μ)v(1) (19)
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and similarly for the helper functions we get

˙̂β = c0 (1 + ε)

n∑

m=1

Im − σ β̂

u̇(1) = u(0) − σu(1) + ωv(1)

v̇(1) = v(0) − σv(1) − ωu(1)

u̇(0) = c0 (1 + ε)

n∑

m=1

Im − σu(0) + ωv(0)

v̇(0) = c0 (1 + ε)

n∑

m=1

Im − σv(0) − ωu(0)

(20)

This gives us a set of differential equations that describes our system

Ṡ = − diag(S)β I

Ė = diag(S)β I − ηE

İ = ηE − γ I

Ṙ = γ I

β̇ = − σ (β − (β0)) − β̂ − ω(ε − μ)u(1) − ω(ε + μ)v(1)

˙̂β = c0 (1 + ε)

n∑

m=1

Im − σ β̂

u̇(1) = u(0) − σu(1) + ωv(1)

v̇(1) = v(0) − σv(1) − ωu(1)

u̇(0) = c0 (1 + ε)

n∑

m=1

Im − σu(0) + ωv(0)

v̇(0) = c0 (1 + ε)

n∑

m=1

Im − σv(0) − ωu(0)

(21)

with the initial conditions β = β0 and β̂ = u(1) = v(1) = u(0) = v(0) = 0. That is,
we assume there has been no infection before t = 0.

Numerical results illustrating the effect of the delay are shown in Fig. 1, using the
parameter values in Table 1. We consider the scalar case of the dependent variables S,
E , I and R corresponding to n = 1.

2.3 Equilibrium points and stability

The results for t → ∞ are of course still determined by depletion of susceptibles, but
as long as the number of susceptibles is assumed to be roughly constant, the memory

123
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Fig. 1 Plots of SEIR-model with adaptive behaviour. Parameter values are taken from Table 1 and using
n = 1, that is we consider S, E , I and R to be scalars. Top left:The classical variables S, E , I , and R.Bottom
left: The auxiliary variables from Eq. (18) that pertain to the contact rate. Note that β stays positive for all
times. Top right: Plot of the integral kernel from Eq. (17) used in the simulation. Bottom right: Comparison
of the I -state for an SEIR-model with the same time parameters, but with and without adaptive behaviour.
(The one without adaptive behaviour simply has c0 = 0

effects have interesting consequences, such as stability of the number of infections
on short time scales. This explains why a contact number around 1 is observed more
often in real-world systems than a traditional exponential model would suggest. We
investigate these in detail with the example kernel in Eq. (17).

Leaving out the recovered state R through normalization and assuming approxi-
mately constant number of susceptibles S, the Jacobian is

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂E j ∂I j ∂β jm ∂β̂ ∂u(1) ∂v(1) ∂u(0) ∂v(0)

Ėk −η Skβk j S j Im 0 0 0 0 0
İk η −γ 0 0 0 0 0 0

β̇kn 0 0 −σδ jkδmn −1 −ω(ε − μ) −ω(ε + μ) 0 0
˙̂β 0 c0 (1 + ε) 0 −σ 0 0 0 0

u̇(1) 0 0 0 0 −σ ω 1 0
v̇(1) 0 0 0 0 −ω −σ 0 1
u̇(0) 0 c0 (1 + ε) 0 0 0 0 −σ ω

v̇(0) 0 c0 (1 + ε) 0 0 0 0 −ω −σ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(22)
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Table 1 Parameter values used in Fig. 1

η = 0.25 d−1 c0 = 1.3 d−1 λR = 0.4 d−1 ε = 1.5

γ = 0.3 d−1 β0 = 1.4 d−1 λI = 0.5 d−1 μ = −0.1

The time unit is one day denoted d. These parameters are chosen to be illustrative rather than realistic

Note that u, v, and β̂ do not need indices, but β and β0 do because wemay want n > 1.

2.3.1 Disease free

Let us start with the trivial disease-free equilibrium point

E∗
j = I ∗

j = β̂∗
jk = (u(1))∗ = (v(1))∗ = (u(0))∗ = (v(0))∗ = 0

β∗ = β0
(23)

The Jacobian (22) reduces to

JDF =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−η Sk(β0)k j 0 0 0 0 0 0
η −γ 0 0 0 0 0 0
0 0 −σδ jkδmn −1 −ω(ε − μ) −ω(ε + μ) 0 0
0 c0 (1 + ε) 0 −σ 0 0 0 0
0 0 0 0 −σ ω 1 0
0 0 0 0 −ω −σ 0 1
0 c0 (1 + ε) 0 0 0 0 −σ ω

0 c0 (1 + ε) 0 0 0 0 −ω −σ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(24)

Note that all blocks but S j (β0) jk are proportional to the identity matrix, so we may
diagonalize that block on its own and relate the eigenvalues xSβ0 of diag(S)β0 to those
of JDF . The largest eigenvalue (i.e. the one that potentially can be positive) is

EVmax =
−η − γ +

√
η2 − 2ηγ + γ 2 + 4ηxSβ0

2
(25)

So the condition is xSβ0 < γ for the disease-free equilibrium point to be stable. This
corresponds to a reproduction number

RND = Sβ0

γ
(26)

above 1 in a normal SEIR-model. This is significant, because it shows that feedback of
the kind (17) cannot change whether or not there will be an outbreak, only the severity
of it.
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2.3.2 Equilibrium point during outbreak

It turns out that there is also an equilibrium point during an outbreak

β̂∗ = c0 (1 + ε)

σ

M∑

m=1

I ∗
m

(u(0))∗ = c0 (σ + ω) (1 + ε)

σ 2 + ω2

(
M∑

m=1

I ∗
m

)

(v(0))∗ = c0 (σ − ω) (1 + ε)

σ 2 + ω2

(
M∑

m=1

I ∗
m

)

(u(1))∗ = σ(u(0))∗ + ω(v(0))∗

σ 2 + ω2 = c0 (1 + ε)
(
σ 2 − ω2 + 2σω

)
(
σ 2 + ω2

)2

(
M∑

m=1

I ∗
m

)

(v(1))∗ = σ(v(0))∗ − ω(u(0))∗

σ 2 + ω2 = c0 (1 + ε)
(
σ 2 − ω2 − 2σω

)
(
σ 2 + ω2

)2

(
M∑

m=1

I ∗
m

)

β∗ = β0 − β̂∗ + ω(ε − μ)(u(1)) + ω(ε + μ)(v(1))

σ

E∗ = γ

η
I ∗

β0 I
∗ = diag (S)−1 γ I ∗ + c0 (1 + ε)

(
1

σ 2 + 2
ω

σ

ε
(
σ 2 − ω2

) − 2σωμ
(
σ 2 + ω2

)2

)

(
M∑

m=1

I ∗
m

)
I ∗

(27)

The last condition on I is very difficult to solve in general, especially because the

quantity
n∑

m=
I ∗
m is not invariant under diagonalization of β0. We therefore continue

with a single group (i.e., n = 1) to see what properties can be divined in this case.
This reduces the equilibrium point equations to

I ∗ = β0 − γ /S

c0 (1 + ε)

(
1
σ 2 + 2ω

σ

ε(σ 2−ω2)−2σωμ

(σ 2+ω2)
2

)

β̂∗ = c0 (1 + ε)

σ
I ∗

E∗ = γ

η
I ∗

(u(0))∗ = c0 (1 + ε) (σ + ω)

σ 2 + ω2 I ∗

123
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(v(0))∗ = c0 (1 + ε) (σ − ω)

σ 2 + ω2 I ∗

(u(1))∗ = c0 (1 + ε)
(
σ 2 − ω2 + 2σω

)
(
σ 2 + ω2

)2 I ∗

(v(1))∗ = c0 (1 + ε)
(
σ 2 − ω2 − 2σω

)
(
σ 2 + ω2

)2 I ∗

β∗ = γ

S
(28)

We require I > 0, which means that the non-damped reproduction number has to
be larger than 1, corresponding to an ongoing epidemic. (By non-damped we mean
c0 = 0 where there is no feedback.) It is clear that below this point, we transition to the
disease-free equilibrium point. This assumes that the denominator in I ∗ is positive.
Note that negative denominator does not make physical sense, as we then get more
infected when the contact rate is lowered.

We also implicitly assume that I ∗ � S. Otherwise the change in susceptibles will
play a role in the dynamics.

For the sake of stability analysis, we start by looking at a simplified case where
ω = 0, and then treat the full version numerically. First we take the case ω = 0. As
discussed above, this is a very physiologically relevant case. For simplicity, we also
set ε = μ = 0 as these may otherwise simply be absorbed in c0. Here the equilibrium
point for M = 1 is

I ∗ = σ 2

c0S
(RND − 1) γ

E∗ = γ

η
I ∗

β∗ = γ

S

β̂∗ = (u(0))∗ = (v(0))∗ = σ

S
(RND − 1) γ

(u(1))∗ = (u(0))∗/σ
(v(1))∗ = (v(0))∗/σ

(29)

Note an important, but perhaps unsurprising feature here. As c0 ∼ σ 2 for a normalized
version of the kernel in (17), the stable level of infection I depends only on the integral
of the kernel. So epidemic non-pharmaceutical interventions may be spread out over
a period of time, or they may be strict and fast. It gives the same level of infection.

The variables u(0), v(0), u(1), and v(1) drop out of the dynamics, and the relevant
part of the Jacobian (22) therefore reduces to
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Jω=0 =

⎛

⎜⎜⎝

−η γ σ 2

c0
(RND − 1) γ 0

η −γ 0 0
0 0 −σ −1
0 c0 0 −σ

⎞

⎟⎟⎠ . (30)

We will use the Routh-Hurwitz theorem to determine the stability of the system,
specifically the formulation from Nordbø et al. (2007). The characteristic polynomial
for the Jacobian is

P J
ω=0(x) = x4 + a1x

3 + a2x
2 + a3x + a4. (31)

where

a1 = η + γ + 2σ

a2 = 2σ(η + γ + σ)

a3 = σ 2(η + γ )

a4 = ησ 2 (RND − 1) γ

(32)

These are all positive, because RND = β0S/γ ≥ 1. Using the definitions fromNordbø
et al. (2007)

D1 = a1 D2 =
(
a1 a3
1 a2

)
D3 =

⎛

⎝
a1 a3 0
1 a2 a4
0 a1 a3

⎞

⎠ D4 =

⎛

⎜⎜⎝

a1 a3 0 0
1 a2 a4 0
0 a1 a3 0
0 1 a2 a4

⎞

⎟⎟⎠ .

(33)

From the condition det(D4) > 0 we find

1 <
S(0)β0

γ
= RND

<
ηγ (η + γ )2 + 2(η + γ )(η2 + 4ηγ + γ 2)σ + 4(η2 + 3ηγ + γ 2)σ 2 + 2(η + γ )σ 3

ηγ (η + γ + 2σ)2
.

(34)

There is also a root of det(D3) at this point, but as sign(a1) = sign(a3), there is still a
Hopf bifurcation when this criterion is not satisfied (Nordbø et al. 2007).

Note an interesting property of Eq. (34). The stability of the equilibrium point is
independent of c0, and the interpretation seems to be the following: As long as the
feedback is non-zero, it cannot change the stability of the equilibrium point, only the
position. A sign change would give rise to an equilibrium point at negative I , which in
turn would change the sign of the integral in Eq. (4). This is of course purely formal as
I < 0 is unphysical. It is merely to explain the absence of c0 in the stability condition.
Numerics shows that the transition is between a stable equilibrium point and a stable
limit cycle, see Fig. 2, left column.
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Fig. 2 Phase space and stability forω and β0 using n = 1.We keep S constant to illustrate the local stability
in time. We choose three set of parameters that are unstable, critical, and unstable for ω = 0, using Eq.
(34), and then vary ω to analyse changes in stability. The parameters are γ = η = 1/3.5, c0 = 5.5, σ =
0.5, S = 0.8, ε = μ = 0.5 for all the configurations and β0 = 1.319, 1.519, 1.719 for the stable,
critical, and unstable configurations respectively (top, middle, and bottom row respectively), corresponding
to non-damped generation numbers of 3.70, 4.25, and 4.81 respectively. The initial conditions are chosen
according to the equilibrium point from Eq. (28), but with I varied to show convergence of different paths.
We have omitted runs that exit the interval E + I ∈ [0, 1] as they are unphysical. These typically display
large oscillations. We also use max(β, 0) instead of β in the RHS of Eq. 21. We see that ω does indeed
allow changes in stability, but mostly around the critical point

2.3.3 Numerical stability analysis of full model

We start by choosing parameters just above, below, and at the critical point in Eq. (34)
for ω = 0. This shows the transition is between a stable point and a stable limit cycle.
When increasing ω, the limit cycles increase radius to the point where the I -state exits
the physical interval [0, 1]. See Fig. 2.

We then investigate the effects of varying ε and μ for both the stable and unstable
configurations. It turns out that the important transitions here happen at μ = 0 and
ε = 0. See “Appendix A”.

2.4 Physiological bounds on the parameters

In order to make realistic examples, let us briefly take a look at physiological scope of
each parameter. Since we assume vanishing change in S in the section, we must first
and foremost require S + E + I ≤ 1 ⇒ I ∗(1+ γ

η
) ≤ 1− S. This gives conditions on

the feedback parameters through

β0 − γ /S

c0 (1 + ε)

(
1
σ 2 + 2ω

σ

ε(σ 2−ω2)−2σωμ

(σ 2+ω2)
2

) ≤ S

1 + γ /η
(35)
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Fig. 3 Connection between the initial non-damped reproduction number RND,0 and the attack rate R(∞)

for the kernel (17) using n = 1. The black line indicates RND,0 = − ln(1−R(∞))
R(∞)

, which is the relation for no
dampening. The red point are generated by uniformly sampling parameters in the intervals η, γ ∈ [0.1, 1],
β0 ∈ [γ, 2], and c0 ∈ [0.1, 5], σ ∈ [0.1, 1], ω ∈ [0, 1], μ, ε ∈ [−0.4, 0.4], so the kernel is always positive.
We see that all points lie to the right of the black line, indicating a lower attack rate than one would expect
from a non-damped system (c0 = 0)

for the general case and

σ 2
(
β0 − γ

S

)

c0
≤ S

1 + γ /η
(36)

for ε = μ = ω = 0. These are necessary conditions, but unfortunately not sufficient
ones if the trajectories of E and I go above 1 − S on their way to the equilibrium
point. This may even be the case if I (0) < I ∗, see Fig. 2.

Note that γ and η are typically equilibrium by the nature of the disease, though
γ can be artificially lowered by testing the population and putting positive cases in
isolation. In terms of physical size, both σ and ω have units of inverse time and it
is unrealistic to have feedback that reacts faster than a day, unless the population
have access to their own tests and report the results immediately (and accurately). We
therefore consider σ, ω < 1 days−1.

We also require β ≥ 0 at all times. A rough estimate can be obtained through Eqs.
(4) and (17), where we for simplicity assume ε = μ = ω = 0.
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t∫

−∞
α(t − τ)I (τ )dτ ≤ (1 − S)

t∫

−∞
α(t − τ)dτ

= (1 − S)

∞∫

0

α(u)du = (1 − S)
c0
σ 2 ≤ β0 (37)

If the Eq. (21) are implemented as they stand, it is difficult to satisfy Eqs. (35) and (37)
at the same time, because we only control c0 and σ . However, as non-pharmaceutical
interventions hardly are implemented to satisfy Eq. (37), we replace β by max(0, β)

by hand on the RHS of Eq. (21). The numerics show that the trajectory still converges
to either a stable limit cycle or a stable equilibrium point, see Fig. 2.

2.5 Attack rate

A different interesting question to ask is the effects of the feedback on the attack rate,
i.e. R(∞). Note that at the end of the epidemic, the I -state is almost empty, and it is
therefore tempting to think that the feedback does not affect the attack rate. This turns
out not to be the case, as can be seen from the following. Start with the fraction of the
S- and R-equations in the non-stratified model

dS

dR
= − Sβ

γ
= − Sβ0

γ
+ S

γ

t∫

−∞
α(t − τ)I (τ )dτ

∫
dS

S
= −

∫
β0

γ
dR + 1

γ

∫ t∫

−∞
α(t − τ)I (τ )dτdR

ln

(
S(∞)

S(−∞)

)
= −β0

γ
(R(∞)−R(−∞))− 1

γ

∫ t∫

−∞
α(t−τ)I (τ )dτdR (38)

If we assume S(−∞) ≈ 1 and R(−∞) ≈ 0, the first terms simplify. Reapplying
dR = γ I dt and shifting the τ -integral, we can rewrite the last term as

ln (1 − R(∞)) = −β0

γ
R(∞) −

∞∫

−∞

0∫

−∞
I (t)α(−τ)I (τ + t)dτdt

= −RND,0R(∞) −
∞∫

−∞

∞∫

0

I (t)α(τ)I (t − τ)dτdt (39)
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where RND,0 denotes the initial non-damped reproduction number. (As β(t = 0) =
β0, we could also just call this the initial reproduction number.) While the second term
is a complicated integral to handle in general, we can draw some conclusions from
it. As long as α(τ) ≥ 0, which is the case for our kernel when ε cos (arctan(μ/ε)) +
μ sin (arctan(μ/ε)) ≥ −1, we can be certain that the integrand is non-negative too.
This means that attack rate for a given initial reproduction number will be lower than
one would expect for a standard SEIR-model. See Fig. 3 for a numerical check of this.
A more general, but less transparent calculation for a stratified model (n > 1) can be
found in “Appendix B”.

3 Physiological interpretation of memory effects

While it is clear that non-pharmaceutical interventions as well as a population reading
about high rates of infection in the news and therefore changing their behavior are
obvious examples ofmemory effects,wewould like to briefly discuss the physiological
interpretation in more details.

If we start with ω = 0, we only have a dampening from the kernel in Eq. (17). So
whenever the recent number of infectious has been high, the activity decreases. The
behavioral part is not limited to individual choice. Governmental non-pharmaceutical
interventions, such as local lockdownsor extra tests in areaswith high rates of infection,
of course restrict activity based on recent history of infection, but it may also come
from increased focus in the media leading to more cautious behavior. It may also
come naturally, i.e. without testing the population, from the acquired immunity. If the
option of moving from S to R is included, a lingering but waning immunity would
take the same kernel form, where infectiousness diminishes for some time. Note that
self-isolation does not take this form as it is immediate in time, i.e. the individual
isolates based on their own illness, not the previous illness of the population.

The interpretation ofω > 0 should be seenmore exclusively as behavioral. It allows
for a momentary increase in activity based on a previous wave of infection. Unless
the disease weakens individuals and makes secondary infection more likely, this will
not happen naturally. However, after a period of either lockdown or self-isolation,
humans may be inclined to compensate socially, and thus a wave of infection may be
followed by first a period of lower activity and then one of higher. In other words, as
we are more social than logical beings, an oscillatory kernel may be very relevant for
description of adaptive behavior.

Transmission of a disease may also vary over one week due to different social
behaviour inworkdays as opposed toweekends. In this case the period of the oscillating
disease transmission is 7 days.

4 Conclusion

We have implemented a feedback mechanism in epidemic models and illustrated its
properties. This is useful for modelling adaptive behaviour and non-pharmaceutical
interventions, which are both central in epidemic control.
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The feedback dampening cannot prevent an outbreak from happening, as the sta-
bility of the disease-free equilibrium point does not depend on the kernel. Instead, the
feedback can create equilibrium points locally in time as well as decrease the attack
rate, so the severity of the outbreak can be contained.

The existence of a stable equilibrium point on short timescales is noteworthy,
because it explains how the effective generation number of many countries during
the COVID19-pandemic stayed consistently close to 1, which is impossible in normal
SIR-type models without fine-tuning.

We have also shown that the feedback affects the attack rate R(∞). This is impor-
tant, because it shows that non-pharmaceutical interventions reduce the number of
people that need to be infected on long time scales, instead of simply postponing the
time of infection, which would otherwise be reasonable to assume.
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Appendix A: Numerical stability analysis for amplitude of oscillations

The effects of varying ε and μ for the kernel (17) depend on whether a stable or
unstable point is considered for ω = 0. Heuristically, it seems that the oscillations are
able to break the stability of the equilibrium point, but not introduce it. It also seems
that period doubling is possible for sufficiently large negative . See Fig. 4 for a stable
configuration and Fig. 5 for an unstable one.
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Appendix B: Stratified attack rate

When extending to a stratified model, we must first decide what we mean by an attack
rate. In the following,wewill think of it as a vector. That is, the attack rate in each group
is considered separately, so moving recovered from one group to another constitutes
a different attack rate, even if the sum of infected is invariant.

Let us start with a time-independent β, i.e. with no memory effects. The integral
version of a general model is 1

Ṡ j (t) = −C j (t) = −S j (t)
∑

k

β jk

t∫

−∞
Ck(τ )nk(t − τ)dτ. (B1)

Here C j (t) is the number of new infections in group j at time t and nk(t) is the
infection curve for a single individual in group k. We in this sense make very few
assumptions about the model other than that C has to be local in time. Note that we
have explicitly separated β from n(t), such that n(t) can remain the same over the
course of the epidemic, even when considering time-dependent β later.

We move S j (t) to the other side and integrate over t

log

[
S j (∞)

S j (−∞)

]
= −

∑

k

β jk

∞∫

−∞

t∫

−∞
Ck(τ )nk(t − τ)dτdt . (B2)

We can decouple the integrals

log

[
S j (∞)

S j (−∞)

]
= −

∑

k

β jk

∞∫

−∞
Ck(t)dt

∞∫

0

nk(τ )dτ. (B3)

We identify
∞∫

−∞
Ck(t)dt = Sk(∞) − Sk(−∞) and the next-generation matrix A jk =

∞∫

0
β jknk(t)dt . Rewriting S j (−∞) ≈ S j (∞) + R j (∞) = ν j , and we are left with

log

(
1 − R j (∞)

ν j

)
= −

∑

k

A jk Rk(∞). (B4)

So having the same next-generation matrix is definitely a sufficient condition for the
same attack rate, but any A that gives the same solution to the Eq. (B4) will give the
same attack rate. In a sense, R(∞) is a kind of pseudo-eigenvector of A, though this
is of course a much more difficult problem because of the non-linearity. (Note that

1 We assume we are not the first to derive the attack rate for a stratified model, but as we have not found it
in the literature, we include the calculation here.
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expansion of the logarithm to obtain a linear system is non-nonsensical. As R j (∞) is
typically close to ν j , we would be expanding around a singularity.)

When adding time-dependence of the kind (4), we get

Ṡ j (t) := −C j (t) = −S j (t)
∑

k

(β0) jk

t∫

−∞
Ck(τ )nk(t − τ)dτ

− S j (t)
∑

k

∑

m

t∫

−∞
Ck(τ )nk(t − τ)

τ∫

−∞
(α) jkm(τ − τ ′)Im(τ ′)dτ ′dτ . (B5)

We make the same rewriting while integrating over t

log

[
S j (∞)

S j (−∞)

]
= −

∑

k

(β0) jk

∞∫

−∞

t∫

−∞
Ck(τ )nk(t − τ)dτdt

−
∑

k

∑

m

∞∫

−∞

t∫

−∞
Ck(τ )nk(t − τ)

τ∫

−∞
(α) jkm(τ − τ ′)Im(τ ′)dτ ′dτdt . (B6)

The time-independent part becomes the same as in Eq. (B3)

log

(
1 − R j (∞)

ν j

)
= −

∑

k

A(0)
jk Rk(∞)

−
∑

k

∑

m

∞∫

−∞

t∫

−∞
Ck(τ )nk(t − τ)

τ∫

−∞
(α) jkm(τ − τ ′)Im(τ ′)dτ ′dτdt . (B7)

where A(0)
jk =

∞∫

0
(β0) jknk(t)dt is the non-damped next generation matrix. As in Eq.

(39), the integral is not possible to solve in general, but it is strictly non-negative for
α(t) ≥ 0. The equivalent argument is a lot less transparent because of the complicated
nature of the relation (B4), but the principle seems analogous, and we would therefore
expect the attack rate to decrease for non-zero feedback.
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