
Journal of Mathematical Biology (2024) 88:53
https://doi.org/10.1007/s00285-024-02078-9 Mathematical Biology

The effects of spatially-constrained treatment regions upon
amodel of wombat mange

Ivy J. Hindle1 · Lawrence K. Forbes2 · Stephen J. Walters2 · Scott Carver3

Received: 19 September 2023 / Revised: 2 March 2024 / Accepted: 6 March 2024 /
Published online: 2 April 2024
© The Author(s) 2024

Abstract
The use of therapeutic agents is a critical option to manage wildlife disease, but their
implementation is usually spatially constrained.We seek to expand knowledge around
the effectiveness of management of environmentally-transmitted Sarcoptes scabiei on
a host population, by studying the effect of a spatially constrained treatment regime
on disease dynamics in the bare-nosed wombat Vombatus ursinus. A host population
of wombats is modelled using a system of non-linear partial differential equations, a
spatially-varying treatment regime is applied to this population and the dynamics are
studied over a period of several years. Treatment could result in mite decrease within
the treatment region, extending to a lesser degree outside, with significant increases
in wombat population. However, the benefits of targeted treatment regions within an
environment are shown to be dependent on conditions at the start (endemic vs. dis-
ease free), as well as on the locations of these special regions (centre of the wombat
population or against a geographical boundary). This research demonstrates the impor-
tance of understanding the state of the environment and populations before treatment
commences, the effects of re-treatment schedules within the treatment region, and the
transient large-scale changes in mite numbers that can be brought about by sudden
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changes to the environment. It also demonstrates that, with good knowledge of the
host-pathogen dynamics and the spatial terrain, it is possible to achieve substantial
reduction in mite numbers within the target region, with increases in wombat numbers
throughout the environment.

Keywords Sarcoptic mange · Wombats · Spatial variation · Treatment ·
Mathematical model · Terrain knowledge

Mathematics Subject Classification 92D30 · 92D25 · 65M70

1 Introduction

The effective management of infectious pathogens in free-ranging animals has many
complex challenges, such as the identification of diseased individuals or the removal
or targeted treatment of diseased individuals (Wobeser 2002). An option for disease
management is the use of therapeutic agents, such as anti-parasitic drugs (Martin et al.
2019; Skerratt 2003; Death et al. 2011); however, the delivery of therapeutic agents
to free-ranging hosts is challenging in nature. Consequently, treatment programs in
wildlife are often spatially restricted to confined areas of specified sub-populations
(Martin et al. 2019).Understanding howeffective spatially restricted treatment regimes
actually are, for host populations, is therefore valuable for in situ disease management
practice.

The parasitic mite Sarcoptes scabiei, causing the disease sarcoptic mange, is one of
themost host-generalist ofmammalian parasites (Astorga et al. 2018). This parasite has
been documented to infect approximately one hundred and fifty mammalian species
across the globe (Pence and Ueckermann 2002), and continues to have an expanding
host species range (Tompkins et al. 2015; Martin et al. 2018b). The mite burrows
into the host’s skin, leading to a range of pathological outcomes, including pruritus,
alopecia, secondary bacterial infections and emaciation (Arlian and Morgan 2017;
Astorga et al. 2018). It is both an animal welfare issue and occasional conservation
issue, causing epizootics and host population declines (Pence and Ueckermann 2002).
Known as scabies when infecting a human host, it is also among the thirty most
prevalent human diseases (estimated point prevalence two hundred million people)
(World Health Organisation 2020) and is considered a Neglected Tropical Disease by
the World Health Organisation (Karimkhani et al. 2017).

Sarcoptic mange is the most important disease impacting the bare-nosed wombat
(Vombatus ursinus) (Martin et al. 2018a), with an estimated mortality rate of 100%
for untreated individuals (Martin et al. 2018a; Skerratt 2003). The parasite is believed
to have been introduced to Australia by European colonists and their domestic ani-
mals (Skerratt et al. 1998; Fraser et al. 2016). Wombat populations that are exposed
to mange experience a variety of population outcomes, including both epizootics with
population decline and endemic disease with relatively stable populations (Driessen
et al. 2021; Skerratt et al. 1998; Martin et al. 2018a). Transmission of S. scabiei is
understood to be environmental via burrows (Skerratt et al. 1998), between which
solitary wombats move every 4–10 days, sharing asynchronously. In situ attempts at
disease management in wombats is relatively common at the individual level (Sker-
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ratt 2003), and there is increasing interest about pathogen management at population
scales. For example, a recent population scale treatment attempt during an epizootic
showed short-term pathogenmanagement was achievable (Martin et al. 2019). In most
instances, population scale S. scabiei management attempts in wombats will be spa-
tially restricted, so understanding how this restriction impacts spatial disease dynamics
can inform management interventions.

In this study, we seek to characterize the effects of a realistic treatment regime on a
population of bare-nosed wombats suffering from endemic S. scabiei infection. This
treatment will be spatially confined to a sub-region of the host range.We aim to expand
upon the spatio-temporally varying model proposed by Hindle et al. (2022), by intro-
ducing treatment for disease and exploring the long-term dynamics introduced by a
short-term, spatially restricted treatment plan. A common treatment regime for wom-
bats focusses on the repeated delivery of treatment [(e.g. at least 1ml of moxidectin
per 10kg of animal weight (Martin et al. 2019)] over a defined period (e.g. weekly
for 12 weeks), which may be targeted at infected individuals or indiscriminately at
a population scale. This treatment is applied topically to the wombat, usually via a
burrow flap (Martin et al. 2019). We focus on indiscriminate treatment at a population
scale [consistent with Martin et al. (2019)]. Two differing sub-regions are considered,
one situated at the centre of the host population range, and the other at one corner,
with the intention of discovering if one or the other results in a sustained reduction
in mite population density and an improved outcome for the wombats.

The wombat–mite model and the governing partial differential equations that
describe it are introduced in Sect. 2. The steady-state populations possible in this
model, for uniform treatment, are briefly reviewed in Sect. 3 and follow the develop-
ments in Beeton et al. (2019). It is found that up to four steady states are possible,
although one of these is non-physical since it would involve negative populations; the
remaining three consist of a total-extinction state, amite-free state and an endemic state
in which infectedwombats andmites co-exist. Driving the system toward themite-free
state is an obvious intention of this study. We briefly consider a linearization of the
governing equations in Sect. 4, because the governing equations in Sect. 2 are nonlin-
ear and so can only be solved approximately with the aid of computers. This linearized
solution therefore provides an important check on the accuracy of the computationally
obtained nonlinear results. Nevertheless, the linearized solution has severe restrictions,
since it is only valid when populations remain close to their assumed steady-state val-
ues, and so numerical solutions are needed for the fully nonlinear model outlined in
Sect. 2, and our method for generating such solutions is discussed in Sect. 5. Results
of this work are presented in Sect. 6; we first compare the linearized solution with the
nonlinear computational results, and then investigate the effects of treatment regimes.
Some final remarks in Sect. 7 conclude the paper.

2 The wombat–mite model

Aconceptualmodel illustrating thewombat–mite systemand its dynamics is illustrated
in Fig. 1, with rate parameters for the system described in Table 1. These parameters
will be assumed to be those used for the results in Sect. 6, unless indicated in the text.
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Fig. 1 A modified version of the model developed in Hindle et al. (2022). Here the transmission method
is environmental (indirect) and the population of the mites is modelled explicitly, to represent this indirect
transmission. In this diagram, S represents the sub-population of susceptible wombats, IL are asymptomatic
carriers of the disease, IH are symptomatic infectedwombats, F represents the proportion of fomites existing
in the environment, and R are the treated wombats. The quantity r is the treatment rate, kR is the relapse
rate at which treated wombats re-enter the susceptible group, b is the birth rate of wombats, μ is the death
rate without infection of wombats, μL is the death rate due to asymptomatic infection, μH is the death
rate due to symptomatic infection, β is the rate at which susceptible wombats are infected, γ is the rate at
which asymptomatic wombats become symptomatic, f is the rate that infected wombats drop fomites into
the environment and μF is the rate that fomites within the environment die

We create a system of nonlinear equations in two spatial dimensions and time,
expanding upon the work of Hindle et al. (2022). The governing partial differential
equations (PDEs) describing this system are:

∂S

∂t
= σ∇2S + bN (1 − N ) − βSF

1 + F
− (μ + r)S + kR R (1)

∂ IL
∂t

= σ∇2 IL + βSF

1 + F
− (μ + γ + μL + r)IL (2)

∂ IH
∂t

= σ∇2 IH + γ IL − (μ + μH + r)IH (3)

∂R

∂t
= σ∇2R + (S + IL + IH ) r − (μ + kR)R (4)

∂F

∂t
= (IL + IH ) f − μF F . (5)
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Table 1 Rate parameters for the PDE (see Eqs. (1)–(5) and Fig. 1) describing transmission of S. scabiei
among wombats

Parameter Symbol Values Source

Wombat spatial
diffusion rate

σ 1/(1.5 × 365 × 0.5 × 0.5) Banks et al. (2002)

Wombat birth rate b 1/(3 × 365) Beeton et al. (2019), Martin
et al. (2019) and Triggs
(2009)

Non-linear disease
spread rate

β 0.01 Tamura et al. (2021)

Wombat death rate μ 1/(15 × 365) Triggs (2009)

Disease progression
rate

γ 1/30 Skerratt (2003) and Martin
et al. (2019)

Exposed wombat
death rate

μL 1/60 Martin et al. (2019)

Infected wombat
death rate

μH 1/60 Martin et al. (2019)

Mite drop rate f 1/5 Beeton et al. (2019)

Mite death rate μF 1/19 Arlian et al. (1984) and
Browne et al. (2021)

Treatment rate r 0.9/7 Martin et al. (2019)

Treatment relapse rate kR 1/7 Beeton et al. (2019)

All rates are in days, and the wombat spatial diffusion rate is in km/day

Here, the quantities r and f are rate constants, as indicated in Fig. 1. The ∇2

operator used in the above equations is the two dimensional Laplacian operator

∇2 ≡ ∂2

∂x2
+ ∂2

∂ y2

and represents the movement of wombats throughout the system. This movement is
thus modelled as a diffusion process, with wombats spreading throughout the region
as time progresses, governed by the spreading parameter σ in Table 1.

The governing equations (1)–(5) describe themovement of the wombat populations
within the spatial region as well as their change over time. The wombat population is
split into four sub-populations, following conventional SEIRmodels of disease spread
(Kermack and McKendrick 1927). Thus the total wombat population is N , and we
postulate

N = S + IL + IH + R, (6)

in which S denotes the sub-population of wombats that are susceptible to, but not yet
infected by S. scabiei. In addition, IL represents the wombats that are infected by the
disease, but are carrying a sufficiently low population of mites that they would not be
seen as being infected in a standard field study; in an SEIR model, our sub-population
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IL would thus correspond to the “exposed” group. The sub-population IH represents
those wombats carrying a high mite load and so show symptoms of the disease, and R
is the “recovered” group that have been treated and are therefore temporarily immune
from immediate further infection by S. scabiei. Finally, the population index of the
fomites is labelled F and represents the mites existing on a host body, surviving within
the bedding chamber of wombat burrows (Martin et al. 2018a; Beeton et al. 2019).
This population is modelled as a proxy for indirect environmental transmission of
sarcoptic mange in wombat populations.

The transmission terms in Eqs. (1), (2) at which the susceptible wombats enter the
lightly-infected class are modelled with the frequency-dependent rate βF/(1 + F).
This is a self-limiting infection term, such that F/(1 + F) → 1 as F → ∞, and is
consistent with current understanding ofmange transmission amongwombats (Beeton
et al. 2019; Martin et al. 2019; Tamura et al. 2021). The function is intended to reflect
the environmental–transmission nature of S. scabiei in wombat populations, where
an individual’s probability of exposure is related more to contact with contaminated
burrow environments, rather than a direct encounter with another infected animal.
Consequently, exposure occurs largely independently of wombat population density.

To approximate the physical conditions withinwhich thewombats live, we consider
a barrier around our spatial region of interest. For simplicity, this will be assumed to
be a rectangular domain −L < x < L , −B < y < B, and the borders of this
region will be supposed to prevent any wombat movement through them, although
movement along the barrier will be allowed. These physical conditions that are being
modelled can be considered to be a reserve that has been fenced in, or an area with
natural barriers surrounding it, such as oceans, rivers, hills or dense forest. This reflects
the actual situation for the wombats living at Narawntapu National Park (NNP), as
detailed by Martin et al. (2018a). On the idealized rectangular boundaries considered
in the presentmodel, these restrictions are representedmathematically by the boundary
conditions

∂S

∂x
= ∂ IL

∂x
= ∂ IH

∂x
= ∂R

∂x
= 0 on x = ±L (7)

and

∂S

∂ y
= ∂ IL

∂ y
= ∂ IH

∂ y
= ∂R

∂ y
= 0 on y = ±B. (8)

In order to complete the mathematical model of this situation, it is necessary to
impose appropriate initial conditions. In this paper, we will consider conditions under
which the system starts at one of its possible steady-state configurations (see Sect. 3),
but mites are added into some portion of the physical-space domain. Furthermore, we
wish to allow the possibility that our treatment ratemay be a function both of space and
time, so that r ≡ r(x, y, t). This must be taken into account in the numerical solution
technique (see Sect. 5), and physically represents the fact that treatment may only be
offered over some fraction of the total region available to the wombats, and that the
treatment is only able to be provided over short times. This reflects the actual treatment
regime attempted for the wombats living in Narawntapu National Park, documented in
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Martin et al. (2019), in which treatment stations (burrow flaps) were refilled weekly;
this treatment ran for 12 weeks in total, and the therapeutic agent (moxidectin) was
observed to drop exponentially in efficacy as each week passed, since the insecticide
was degraded by ultraviolet light. We discuss the results obtained with this present
model, for short bursts of treatment applied periodically to the system, in Sect. 6.2.

Some comments are required, too, concerning the reasoning behind the parameter
values assumed in this current model, as outlined in Table 1. Firstly, thewombat spatial
diffusion rate σ is largely due to females relocating after successfully rearing a joey,
and they move approximately half a kilometre away (Banks et al. 2002). The wombat
birth rate b is one joey per female per 1.5 years, and the death rate μ is based on a
wombat lifespan of 15 years. The transmission rate β is consistent with that assumed
by Beeton et al. (2019), and the disease progression rate γ is based on a 30 day
window before symptoms become clinically visible (IL moves to IH ). The death rate
μH associated with mange is 60 days when showing clinical signs, and thus infection
to mortality is about 90 days. The mite drop rate f is consistent with Beeton et al.
(2019). To estimate a constant value for the treatment rate r , it was assumed that within
the treatment region, 90% of the theoretical maximum treatment was delivered each
7 days (Martin et al. 2019). The treatment relapse rate kR is based on the treatment on
a wombat lasting 7 days before the animal could return to the susceptible class and
potentially be re-infected by S. scabiei (Beeton et al. 2019; Martin et al. 2019), and the
environmental mite death rateμF is for optimal environmental conditions, amounting
to 19 days based on laboratory studies (Arlian et al. 1984; Browne et al. 2021).

3 The steady-state populations

The governing system of equations (1)–(5) in Sect. 2 allows several equilibrium pop-
ulation states to exist, in situations where the treatment rate r is constant across the
entire solution domain. These were discussed briefly by Beeton et al. (2019). For com-
pleteness, and in view of their importance in the present model, they will be discussed
briefly in this section.

Steady-state populations occur when the sub-populations S, IL , IH , R and the mite
density F are independent of spatial variables x and y and time t . The treatment rate r ,
too, must be assumed to be constant. Then all the derivatives in (1)–(5) are set to zero,
leaving a system of five nonlinear algebraic equations for the equilibrium populations(
Seq , IL,eq , IH ,eq , Req , Feq

)
.

It then follows at once from (3) that

IL,eq = θH

γ
IH ,eq (9)

and (5) similarly yields

Feq = f

μF

(
θH + γ

γ

)
IH ,eq ≡ ζH IH ,eq . (10)
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In these two expressions, and elsewhere in this paper, it is convenient to define the
intermediate constants

θL = μ + μL + r

θH = μ + μH + r . (11)

We have also created the constant

ζH = f (θH + γ )

μFγ
. (12)

The steady-state form of Eq. (2) is simply

βSeq Feq = (θL + γ )
(
1 + Feq

)
IL,eq

and when (9), (10) are used in this expression, we obtain

βγ ζH Seq IH ,eq = θH (θL + γ )
(
1 + ζH IH ,eq

)
IH ,eq .

This equation presents two possible solutions; either

IH ,eq = 0 (13)

or else

Seq = θH (θL + γ )

βγ

(
1

ζH
+ IH ,eq

)
. (14)

These two options are now studied using the remaining steady-state equations.
The simple choice in (13) is substituted into the steady-state forms of Eqs. (1) and

(4), where they are easily seen to reveal two equilibrium solutions. The first of these
is the total extinction case

(
Seq , IL,eq , IH ,eq , Req , Feq

) = (0, 0, 0, 0, 0) (15)

with total wombat population Neq = 0. The second equilibrium solution from this
choice is seen to be

IL,eq = IH ,eq = F = 0;
Seq = b − μ

bK
; Req = r(b − μ)

(μ + kR) bK
; Neq = b − μ

b
. (16)

Here, we have defined a further intermediate constant

K = μ + kR + r

μ + kR
(17)
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to simplify the notation. This second equilibrium (16) is surely the steady-state out-
come to be desired, since it represents a situation in which the wombats live their lives
free from mites.

The other choice (14) can give rise to circumstances in which both wombats and
mites co-exist. It therefore needs to be explored, although the algebra is a little tedious.
The steady-state (derivative-free) forms of the model equations (2), (3), (5) give

Seq = M (
1 + ζH IH ,eq

) ; IL,eq = θH

γ
IH ,eq;

Feq = ζH IH ,eq; Req = r

μ + kR

(M + Z IH ,eq
)

(18)

and it follows from (6) that the total wombat number can be expressed as

N = K
(M + Z IH ,eq

)
. (19)

In Eqs. (18) and (19) we have defined further intermediate constants

M = θH (θL + γ )

βγ ζH
; Z = β (θH + γ ) + θH (θL + γ )

βγ
(20)

and also made use of the constants defined in (11) and (12). These expressions (18)
and (19) are substituted into the steady-state form of (1), and it is convenient to define
a new quantity

ξ = M + Z IH ,eq (21)

which may be shown to satisfy the equation

bK 2ξ2 + Tξ − M
γZ (θHμL + γμH ) = 0. (22)

Here, we have defined

T = −bK − kRr

μ + kR
+ ζHM

Z (β + μ + r) (23)

and the constant K is as given in (17).
Since (22) is simply a quadratic equation, its two solutions can be written at once

in the form

ξ = 1

2bK 2

[

−T ±
√

T2 + 4bK 2 M
γZ (θHμL + γμH )

]

. (24)

It is clear that both the solutions in (24) are real, and that the plus sign results in a
positive value for ξ and the negative sign always gives ξ negative. Once ξ has thus
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been determined, the equilibrium population IH ,eq is recovered from the expression
(21), after which all the other populations can be obtained from (18) and (19).

The minus sign option in the solution (24) always gives ξ < 0 and therefore
always results in negative values for the sub-population IH ,eq in (21). Consequently,
this solution has no biological significance and can be discarded. However, the other
solution, obtained from the choice of the plus sign in (24), is able to give positive
and biologically relevant values for all the populations in this model, for appropriate
choices of the parameters. This shows that a steady state is indeed possible, in which
mites are endemic in the system.The aimof our treatment regime in such circumstances
is to effect a movement from this endemic steady state to the mite-free state given in
(16).

Figure 2 shows how some steady-state populations are affected by the treatment
rate r (here assumed constant over the entire domain). We show the recovered sub-
population R of wombats, the population density F of mites and the total wombat
population N in parts (a), (b) and (c) respectively. On the left of each figure, the mite
death rate has been set to the value μF = 1/19 ≈ 0.0526 given in Table 1, and
the diagrams on the right have used the smaller value μF = 0.005 as a comparison.
The solid line (blue online) represents the total extinction equilibrium (15) and the
other (black) solid line corresponds to the mite-free equilibrium (16). The two dashed
lines come from the solution (24), and these represent the two endemic states. The
formula with the minus sign in (24) gives negative mite and wombat populations, as
discussed above, and these have no biological meaning, although for completeness we
have nevertheless drawn those unphysical negative populations in Fig. 2. We observe,
too, that for the steady-state populations obtained with μF = 1/19 ≈ 0.0526 on the
left-hand side, the positive sign in the solution (24) gives an endemic equilibrium in
which the recovered population R and total population N are both above the carrying
capacity N = 1, when the treatment rate r is sufficiently large; however, such an
unphysical situation would not occur, since in those cases the mite population F has
fallen below zero. Instead, the solution would revert to the mite-free equilibrium (16)
for these larger treatment rates, exactly as desired. In addition, it is interesting to note
that this “plus” endemic equilibrium, under our parameter values and for the case
μF = 1/19 ≈ 0.0526, is highly sensitive (unstable) to the introduction of even small
amounts of treatment.

The smaller mite death-rate μF = 0.005 on the right-hand side of each diagram in
Fig. 2 is almost certainly unphysical, since it would represent free mites living in the
environment for 200 days, and this has not been encountered in our observations. In
spite of the fact that it is therefore not of biological interest, it has nevertheless been
included here so as to illustrate the mathematical dynamics possible in a model such
as this. When μF = 0.005 with treatment rates in about the interval 0 < r < 0.1, it is
clear that one of three possible steady states could occur. The populations could fall to
extinction (15), and the mite-free population (16) is at least a mathematically possible
outcome; the stable state, however, is the endemic one indicated by the (red) dashed
line, in which mites and wombats co-exist in this interval of treatment rates r . This
corresponds to the “plus” sign in (24), which the linearized solution of the next Sect. 4
shows to be the stable one for 0 < r < 0.1. It is interesting to observe, too, that the
mite population F actually first increases with increasing treatment rate r , as shown
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Fig. 2 Equilibrium steady-state: a recovered sub-population R, b fomite population F and c total wombat
population N , obtained using the parameters in Table 1. Results are shown for the mite death rate μF =
1/19 ≈ 0.0526 given in the Table, and also for the smaller value μF = 0.005 discussed in the text
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with the (red) dashed line in part (b) for mite death rate μ = 0.005. This somewhat
paradoxical situation comes about because, with low treatment rates r , the number
of wombats increases slightly, making more hosts available for mite infestation. In
particular, the numbers IL and IH of exposed and infected wombats increase, and it
follows from (5) that the growth rate of mites increases even as the wombat numbers
start to recover. Eventually, however, as the treatment rate r is increased still further,
the mite numbers do fall away below zero, at which point the mite-free equilibrium
(16) becomes the state that is achieved.

4 A linearized approximation

In this section,wedevelop an approximation to the full systemofEqs. (1)–(5) presented
in Sect. 2, based on an assumption that the populations never stray far from (one
of) their equilibrium values calculated in Sect. 3. This will give rise to a system of
linear partial differential equations, which will be solved essentially exactly, although
computer evaluation of the final solution will still be required. The reason for creating
and solving this approximate model is primarily to serve as an important check on the
accuracy of the numerical solutions to the full nonlinear model (1)–(5) that are needed
later in the paper. Thus the linearized solution of this section is a necessary component
in the proper analysis of our nonlinear model; nevertheless, it is quite limited in its
scope, because it is only able to assess the behaviour of the system close to one of its
equilibria.

It will be supposed here that a steady-state situation has been achieved, in which the
populations of the fomites, as well as each of the sub-populations of the wombats, has
reached equilibrium, as in Sect. 3. This equilibrium state is then disturbed, and here, it
will be assumed that the perturbation remains small in comparison to the equilibrium
population sizes. The size of this disturbance is estimated by some dimensionless
parameter ε that measures the change in a population from its equilibrium value.
Each population S(x, y, t) and so on is then represented mathematically as a small
perturbation to its equilibrium level, so that, overall

S(x, y, t) = Seq + εS1(x, y, t) + O(ε2)

IL(x, y, t) = IL,eq + ε IL1(x, y, t) + O(ε2)

IH (x, y, t) = IH ,eq + ε IH1(x, y, t) + O(ε2)

R(x, y, t) = Req + εR1(x, y, t) + O(ε2)

F(x, y, t) = Feq + εF1(x, y, t) + O(ε2). (25)

The task is now to find each of the perturbation functions S1(x, y, t) and so on in
this expansion. If S1 grows larger as time increases, then the solution S moves further
away from its equilibrium population Seq and as a result, that equilibrium is unstable.
If, however, S1 decreases with time, then the solution S approaches its equilibrium
value Seq which consequently is stable.
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These perturbed expressions in the representation (25) are substituted into the fully
nonlinear system (1)–(5) and only terms of the first power in ε are retained. This
process is described by Hindle et al. (2022, Appendix A) and, after some algebra,
yields

∂S1
∂t

= σ∇2S1 + bN1
(
1 − 2Neq

) − βFeq S1
1 + Feq

− βSeq F1
(
1 + Feq

)2 − (μ + r)S1 + kR R1

∂ IL1
∂t

= σ∇2 IL1 + βFeq S1
1 + Feq

+ βSeq F1
(
1 + Feq

)2 − (θL + γ ) IL1

∂ IH1

∂t
= σ∇2 IH1 + γ IL1 − θH IH1

∂R1

∂t
= σ∇2R1 + (S1 + IL1 + IH1) r − (μ + kR) R1

∂F1
∂t

= (IL1 + IH1) f − μF F1 (26)

in which we have made use of the two constants in (11).
Since these Eq. (26) are to be solved in the rectangular domain −L < x < L ,

−B < y < B, subject to Neumann boundary conditions of the form in (7), (8), their
solutions are sought in the Fourier-series forms

S1(x, y, t) =
∞∑

m=0

∞∑

n=0

SLm,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)

IL1(x, y, t) =
∞∑

m=0

∞∑

n=0

EL
m,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)

IH1(x, y, t) =
∞∑

m=0

∞∑

n=0

HL
m,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)

R1(x, y, t) =
∞∑

m=0

∞∑

n=0

RL
m,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)

F1(x, y, t) =
∞∑

m=0

∞∑

n=0

FL
m,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)
. (27)

The aim is now to calculate the time-dependent Fourier coefficients SLm,n(t), and so
on, for this linearized approximation.

The assumed forms (27) for the solution are substituted into the linearized equations
(26). Each equation is then multiplied by a typical basis function

cos (kπ(x − L)/(2L)) cos (�π(y − B)/(2B)) , (28)

for integers k = 0, 1, 2, . . . , � = 0, 1, 2, . . . , and integrated over the rectangular
solution domain, making use of the orthogonality of the trigonometric functions.
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Since the partial differential equations are linear and have constant coefficients, each
Fourier mode (k, �) de-couples from all the others, and after some algebra, the Fourier-
analyzed partial differential equations (26) yield a system of five ordinary differential
equations of the form

dVL
k,�

dt
= Jk,�VL

k,� (29)

independently for each mode (k, �). The system involves the (5 × 1) vector

VL
k,� = [

SLk,�(t); EL
k,�(t); HL

k,�(t); RL
k,�(t); FL

k,�(t)
]T (30)

which consists of all the time-dependent Fourier coefficients that have been defined
in the assumed solution (27). It also involves the (5 × 5) Jacobian matrix

Jk,� =

⎡

⎢⎢
⎢⎢
⎣

−Ak,� �eq �eq �eq + kR −Qeq

Peq −Bk,� 0 0 Qeq

0 γ −Ck,� 0 0
r r r −Dk,� 0
0 f f 0 −μF

⎤

⎥⎥
⎥⎥
⎦

(31)

in which, for ease of display, we have introduced seven additional intermediate con-
stants. These are

�eq = b
(
1 − 2Neq

) ; Peq = βFeq
1 + Feq

; Qeq = βSeq
(
1 + Feq

)2 (32)

and

Ak,� = σ2
k,� − �eq + Peq + μ + r

Bk,� = σ2
k,� + θL + γ

Ck,� = σ2
k,� + θH

Dk,� = σ2
k,� + μ + kR . (33)

The extra constant

2
k,� =

(
kπ

2L

)2

+
(

�π

2B

)2

(34)

used in (33) is an effective squared total wavenumber for the (k, �) Fourier mode.
The solution of the vector differential equation (29) can be written down at once.

It is

VL
k,�(t) =

5∑

q=1

C(q)
k,� exp

[
λ

(q)
k,�t

]
v(q)
k,� (35)
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in which λ
(q)
k,� and v(q)

k,� are the five eigenvalues and their corresponding eigenvectors,
for the Jacobian matrix Jk,� in (31), at each of the Fourier modes (k, �). The five

constants C(q)
k,� , q = 1, . . . , 5, are so far arbitrary, but their values are determined from

the initial values of the Fourier coefficients SLk,�(0) and so on in the vector VL
k,�(0)

in (30). If, for each Fourier mode (k, �), these initial values are given, then the five
constants are found by solving the matrix equation

Qk,�Ck,� = VL
k,�(0) (36)

for the vector

Ck,� =
[
C(1)
k,�; . . . ; C(5)

k,�

]T
.

The (5 × 5) matrix

Qk,� =
[
v(1)
k,�; . . . ; v(5)

k,�

]

in the initial condition (36) is made up of the five eigenvectors of the Jacobian matrix
(31).

In principle, this analysis now gives the full linearized solution in some neigh-
bourhood of one of the equilibrium points in Sect. 3. All that is required to evaluate
the solution is to specify the initial condition VL

k,�(0) in (30), for each Fourier mode.

The eigenvalues λ
(q)
k,� then determine whether the equilibrium state is stable and small

perturbations to equilibrium conditions die away with time, or unstable such that the
linearized solution grows exponentially with time.

Calculating these eigenvalues for general parameter values is, however, extremely
difficult. Consequently, it is often not possible to give precise conditions under which
the three feasible steady states (15), (16), and (24) with the plus sign chosen, are
stable or unstable. In those cases, the eigenvalues and eigenvectors must be evaluated
numerically, and the solutions (35) then obtained for Fouriermodes k, � = 0, 1, 2, . . . .
Finally, the linearized population distributions are evaluated approximately from the
Fourier series (27).

In spite of these difficulties, however, it turns out that some important analytical
information is nevertheless able to be obtained about the stability of these steady
states. Firstly, the (5 × 5) Jacobian matrix Jk,� in (31) simplifies very considerably
when applied to the total extinction steady state (15), and its eigenvalues can, in fact,
be calculated in closed form. After some algebra, they turn out to be

λ
(1)
k,� = −μF ; λ

(2)
k,� = −Bk,�; λ

(3)
k,� = −Ck,�;

λ
(4)
k,� = −σ2

k,� + (b − μ) ; λ
(5)
k,� = −σ2

k,� − (μ + kR + r) . (37)

The auxiliary constants in these expressions are as defined in (33) and (34). Now for
high modes, in which integers k and � are arbitrarily large, these eigenvalues (37) are
all real and negative, and so the high Fourier modes are all stable. The critical case is
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the zeroth mode k = � = 0 corresponding to a spatially uniform disturbance, when
the fourth eigenvalue in the system (37) becomes

λ
(4)
0,0 = (b − μ) .

This is positive when birth rate b exceeds the death rate μ, so this zeroth mode is
unstable. Consequently, the total extinction steady state (15) is unstable.

Themite-free steady state (16) is obviously the desired equilibrium configuration in
this model, and so it is important to know under what conditions the linearized solution
would predict it to be stable. Unfortunately, this information seems too difficult to
obtain exactly, for general parameter values. However, some important information
about its stability can be derived analytically in the special case when the additional
death rates for the lightly and heavily infected wombats are equal, μL = μH . In this
case, it follows from (11) that θL = θH . Then the eigenvalues of the Jacobian matrix
(31) evaluated for the mite-free case (16) can, in fact, be calculated exactly. A similar
situation was encountered by Beeton et al. (2019). After considerable algebra,1 the
five eigenvalues of (31) for the mite-free state with μL = μH are found to be

λ
(1)
k,� = −σ2

k,� − γ − θH

λ
(2)
k,� = −σ2

k,� − (b − μ)

λ
(3)
k,� = −σ2

k,� − μ − kR − r

λ
(4,5)
k,� = 1

2

{

− (
Ck,� + μF

) ±
√

(
Ck,� + μF

)2 − 4

[
μFCk,� − f β(b − μ)

bK

]}

.

(38)

For b > μ, the first three eigenvalues in (38) are all negative and the remaining two
eigenvalues λ

(4,5)
k,� are both real. This mite-free equilibrium, with μL = μH is stable

if and only if all these eigenvalues are negative, and this is guaranteed if

μFCk,� − f β(b − μ)

bK
> 0

for all spatial Fourier modes k, � = 0, 1, 2, . . . . This inequality is trivially true for high
modes k and �, but again, the zeroth modes k = � = 0 pose the greatest challenge.
Setting both k and � to zero in this inequality and rearranging then gives the stability
result

Theorem 1 If the death rates are equal across the two infected classes IL and IH , that
is, μL = μH , the mite-free steady state (16) is stable if and only if

μF >
f β (b − μ) (μ + kR)

b (μ + kR + r) (μ + μH + r)
. (39)

1 Also checked using the computer symbolic-manipulation programme mathematica.
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Fig. 3 Region of stability for themite-free equilibrium, as predicted by the linearized solution forμL = μH
and parameter values taken from Table 1

This condition (39) was found also by Beeton et al. (2019) for the purely time-
dependent model. Although this stability condition (39) is only strictly true for
μL = μH , we anticipate that it will give at least an approximate guide to the stability of
this key mite-free state more generally, and so the region of stability predicted by (39)
is shown in Fig. 3 for parameter values taken from Table 1. When stability condition
(39) does not hold, then the endemic state (24) will become the stable situation.

To determine stability of all the equilibrium states more generally, including cases
when Theorem 1 does not apply, the linearized solution and its eigenvalues must be
determined numerically, and this is now briefly outlined. To fix ideas, let us suppose
that all the populations are at their steady-state values

(
Seq , IL,eq , IH ,eq , Req , Neq

)
.

Then, at the initial time t = 0, mites are suddenly introduced over some rectangular
region within the overall domain; let us suppose that the centre of this mite-infested
region is (x, y) = (xC , yC ) and the region has size 2xR by 2yR . Therefore the region
newly infested with mites lies over the rectangle xC − xR < x < xC + xR , yC − yR <

y < yC + yR and to ensure this lies wholly within our overall domain, we impose
conditions xR − L < xC < L − xR and yR − B < yC < B − yR . For simplicity,
we will assume that the mite population within the infected rectangular region has the
constant value ε. Consequently, the initial condition on the mites is

F(x, y, 0) = Feq +
{

ε, inside rectangle

0, outside rectangle.
(40)
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(We observe that Eq. (40) now serves to define the small parameter ε.) This condition
may now be used to determine the initial values FL

m,n(0) of the Fourier series for the
mite numbers, in the expression (27). This series representation is subject to Fourier
analysis, by multiplying by the basis functions (28) and integrating over the entire
domain −L < x < L , −B < y < B. A somewhat lengthy calculation yields

FL
0,0(0) =

( xR
L

) ( yR
B

)

FL
0,�(0) = 4

�π

( xR
L

)
cos

(
�π (B − yC )

2B

)
sin

(
�π yR
2B

)
, � > 0 (41)

for the m = 0 modes, along with

FL
k,0(0) = 4

kπ

( yR
B

)
cos

(
kπ (L − xC )

2L

)
sin

(
kπxR
2L

)
k > 0 (42)

for the modes with n = 0. Finally, the general case gives

FL
k,�(0) = 16

k�π2 cos

(
kπ (L−xC )

2L

)
sin

(
kπxR
2L

)
cos

(
�π (B−yC )

2B

)
sin

(
�π yR
2B

)

for k = 1, 2, 3, . . . , � = 1, 2, 3, . . . . (43)

Because the solution is starting from an equilibrium population that has been per-
turbed by the introduction of mites at t = 0, the initial vector VL

k,� in (30) becomes
simply

VL
k,� = [

0; 0; 0; 0; FL
k,�(0)

]T
. (44)

Furthermore, because the approximate system in this Section is linear (with constant
coefficients), then each Fourier mode (k, �) acts completely independently of all the
other modes, as discussed above. Consequently, at each separate mode (k, �), the
(5 × 1) matrix equation (36) can be solved for the five constants in the vector Ck,�

using the initial conditions (44), with values for FL
k,�(0) taken from whichever of the

expressions (41)–(43) is appropriate for the Fourier mode under consideration. The
solution (27) can now be evaluated at any desired time, using the formula (35) for its
time-dependent Fourier coefficients.

In practice, we choose to smooth the discontinuous initial condition (40), since it is
well known that Fourier series of the type (27) cannot converge near a discontinuity;
instead, the reconstructed function contains undesirable oscillations in that vicinity.
This is known as the Gibbs phenomenon (Kreyszig 2011, page 515), and can be a
particular problem in population models in which a population drops to zero, since
spurious small oscillations might then produce negative population values instead of
exactly zero, and this of course is unphysical. To avoid this, we use Lanczos smoothing
(see Duchon 1979). To illustrate this for a single independent variable x , consider a
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periodic function f (x) over −L < x < L represented spectrally as

f (x) =
∞∑

m=0

Am cos (mπ(x − L)/(2L)) .

If f (x) has a discontinuity at some point xD ∈ (−L, L), this series will produce
oscillations near xD according to the Gibbs phenomenon. To avoid this, the Fourier
coefficients Am are replaced with new coefficients

Am = Am
sin (σLm)

σLm
.

This replaces the original discontinuous function f (x) with a new function which can
be shown to be the average of f (x) over a moving window (x − σL , x + σL) centred
at the point x . For appropriate choices of the Lanczos parameter σL , the new function
so produced closely approximates the original function except that the discontinuity
is replaced by a rapidly-varying smooth change without overshoot. In practice, we
choose the Lanczos parameter to be about σL ≈ 0.05.

5 Numerical solution of nonlinear problem

We now seek a numerical solution to the full system (1)–(5) of nonlinear partial
differential equations in Sect. 2, that can describe large-amplitude deviations from the
equilibrium populations discussed in Sect. 3. Wemake use of a spectral method, based
on insights gained from the linearized solution (25), (27) in Sect. 4, and now seek a
numerical solution to the nonlinear equations in the truncated Fourier-series form

S(x, y, t) =
M∑

m=0

N∑

n=0

Sm,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)

IL(x, y, t) =
M∑

m=0

N∑

n=0

Em,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)

IH (x, y, t) =
M∑

m=0

N∑

n=0

Hm,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)

R(x, y, t) =
M∑

m=0

N∑

n=0

Rm,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)

F(x, y, t) =
M∑

m=0

N∑

n=0

Fm,n(t) cos

(
mπ(x − L)

2L

)
cos

(
nπ(y − B)

2B

)
(45)

In this representation, the integersM and N should be taken as large as possible. These
forms are chosen to satisfy the boundary conditions (7) and (8) identically.
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The aim of the numerical solution approach is to find the sets of Fourier coefficients
Sm,n(t), . . . , Fm,n(t) in the representation (45). To do this, these Fourier series are
substituted into the full nonlinear set (1)–(5), then multiplied by the same sets of
basis functions (28) that were used for the linearized solution in Sect. 4. In this case,
however, the integers in these basis functions only take values k = 0, 1, 2, . . . , M ,
� = 0, 1, 2, . . . , N , since the series in the representations (45) are truncated to total
orders M and N . The resulting equations are now integrated over the solution domain
−L < x < L , −B < y < B as before, making use of the orthogonality of the cosine
functions.

Unlike the linearized solution of Sect. 4, where all the Fourier modes de-coupled
and so could be treated independently of each other, the nonlinearity of the full system
of equations causes each Fourier coefficient to be affected by all the others in the
system. In addition, here we also want to allow the treatment rate r to be a function
r(x, y, t) of both position and time. Consequently, the Fourier decomposition of the
system (1)–(5) now gives rise to a large coupled nonlinear system, which we present
here for completeness. The susceptible sub-population yields

dSk,�(t)

dt
= 1

δk,�LB

∫ B

−B

∫ L

−L

[
bN (1 − N ) − βSF

1 + F
− r S

]

× cos

(
kπ(x − L)

2L

)
cos

(
�π(y − B)

2B

)
dx dy

−σ2
k,�Sk,�(t) − μSk,�(t) + kR Rk,�(t) (46)

and the lightly infected (“exposed”) group results in the system of ordinary differential
equations

dEk,�(t)

dt
= 1

δk,�LB

∫ B

−B

∫ L

−L

[
βSF

1 + F
− r IL

]

× cos

(
kπ(x − L)

2L

)
cos

(
�π(y − B)

2B

)
dx dy

−σ2
k,�Ek,�(t) − (μ + γ + μL) Ek,�(t). (47)

Theheavily infected sub-populationofwombats ismodelled by (3),which after Fourier
analysis gives rise to

dHk,�(t)

dt
= − 1

δk,�LB

∫ B

−B

∫ L

−L
r IH cos

(
kπ(x − L)

2L

)
cos

(
�π(y − B)

2B

)
dx dy

−σ2
k,�Hk,�(t) + γ Ek,�(t) − (μ + μH ) Hk,�(t)

and the equation for the recovered wombats yields a further system of differential
equations
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dRk,�(t)

dt
= 1

δk,�LB

∫ B

−B

∫ L

−L
r [S + IL + IH ]

× cos

(
kπ(x − L)

2L

)
cos

(
�π(y − B)

2B

)
dx dy

−σ2
k,�Rk,�(t) − (μ + kR) Rk,�(t). (48)

The final partial differential equation (5) for the mite population results in the system

dFk,�(t)

dt
= f

[
Ek,�(t) + Hk,�(t)

] − μF Fk,�(t). (49)

These equations apply to all the Fouriermodes k = 0, 1, 2, . . . , M , � = 0, 1, 2, . . . , N
in the truncated series representation (45).

The constants 2
k,� appearing in the system (46)–(49) are the same as those in (34)

used in the linearized solution of Sect. 4. For convenience of notation, we have also
defined constants

δk,� =
⎧
⎨

⎩

4, if k = 0 and � = 0
2, if either k = 0 or � = 0
1, if k �= 0 and � �= 0

(50)

in this governing system of equations for the Fourier coefficients.
These relations (46)–(49) constitute a system of 5(M+1)(N+1) coupled nonlinear

ordinary differential equations for the sets of coefficients Sk,�, Ek,�, Hk,�, Rk,� and
Fk,� for k = 0, 1, 2, . . . , M and � = 0, 1, 2, . . . , N . We use the numerical integration
routine ode45 provided in the programming language matlab to integrate these
equations forward in time, starting from appropriate initial conditions, which are cho-
sen tomimic those used for the linearized solution in Sect. 4. That is, all the coefficients
Sk,�(0) and so on are set to zero at time t = 0, so that the solution starts from a chosen
equilibrium state, except for the coefficients Fk,�(0) for the initial number density of
mites. These are chosen to be the same as for the linearized solution, and are given
by (41)–(43), so as to generate the initial rectangular deposition of mites described by
(40), although in practice we again smooth this discontinuous initial mite distribution
using the Lanczos filter, as discussed at the end of Sect. 4. Once these coefficients
Sk,�(t) and so on have been determined, by integration of the system (46)–(49), the
populations of wombats and mites are then reconstructed from their Fourier-series
representations (45).

6 Presentation of results

6.1 Comparison of linearized and nonlinear solutions

Webegin this presentation of results by checking the agreement between the numer-
ical algorithm of Sect. 5 with the exact solution for the linearized problem in Sect. 4.
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Fig. 4 A comparison of results obtained from the linearized solution of Sect. 4 with those obtained using
the algorithm in Sect. 5 for the nonlinear problem. The parameters are all as given in Table 1. This figure
illustrates the mite numbers F at the initial time t = 0 and five subsequent times t = 10, 20, 30, 40 and
50, on the centre-plane y = 0. Linearized results are shown with solid (blue online) curves and numerical
nonlinear results are drawn with dashed (red) lines (color figure online)

To do this, we take the parameters in the model to be those given in Table 1; the solu-
tion is started at the mite-free equilibrium (16), except that mites are added according
to the initial condition (40) with maximum mite numbers ε = 0.2. For simplicity,
the rectangle over which the mites are initially introduced into the system is centred
at the origin, (xC , yC ) = (0, 0), with half-lengths xR = 1 and yR = 1 kilometres.
(Lanczos smoothing is then applied to the initial mites distribution, as described at
the end of Sect. 4). This is a case in which good agreement between the linearized
solution (Sect. 4) and the full nonlinear results (Sect. 5) is to be expected, as the mite
population diffuses and dies, and the system returns to its mite-free state (16).

Figure 4 shows a centre-line profile of the mite population as a function of distance
x , for the initial time t = 0 and a further five times t = 10, 20, . . . , 50 days. These
profiles were taken from the linearized solution (27) and the numerical nonlinear
solution (45) by evaluating those expressions on the plane y = 0. At initial time
t = 0, the centre-line profile for the mites consists simply of ε = 0.2 mites over the
interval −1 < x < 1, but no mites otherwise, according to the initial condition (40),
and this appears in the first diagram at the left of the figure. The nonlinear results
presented in this diagram have all been obtained using (M, N ) = (101, 101) Fourier
coefficients in the truncated series (45), and five times that number of numerical mesh
points were used in the physical (x, y) space. This is done so as to ensure that the
numerical evaluations of the integrals in the formulae (46)–(48) are all performed to
sufficient accuracy. In Fig. 4, the linearized solution is shown with solid lines (blue
online) and the nonlinear results are drawn using (red) dashed lines.

The agreement between the linearized and nonlinear solutions for this case is
excellent. For the five sample times t = 10, . . . , 50 illustrated in Fig. 4, there is no dis-
cernible difference between the two sets of results visible in the figure. This agreement
continues to hold at later times than shown here, and has been checked carefully. This
is an important step in the verification of the nonlinear solution algorithm in Sect. 5,

123



The effects of spatially-constrained treatment regions… Page 23 of 41 53

Fig. 5 A comparison of results obtained from the linearized solution of Sect. 4 with those obtained using
the algorithm in Sect. 5 for the nonlinear problem. The parameters are as given in Table 1, except that
μF = 0.005 and r = 0.05. This figure illustrates: a the mite numbers F , and b the total wombat numbers
N at the initial time t = 0 and five subsequent times t = 200, 400, 600, 800 and 1000, on the centre-plane
y = 0. The linearized solution is drawn with solid (blue) lines and the nonlinear results with dashed (red)
lines (color figure online)

and it gives confidence in our spectral method for solving the full nonlinear equations
(1)–(5). For this example, the total wombat number started at the equilibrium value
Neq = 0.8 in (16) and stayed very close to that value throughout, and so has not been
presented here.

In Fig. 5, we continue this comparison of the predictions of the approximate
linearized theory (from Sect. 4) with the numerical solution of the fully nonlinear
equations (using the scheme in Sect. 5). In this example, however, we now choose
parameter values for which the linearized solution indicates that the “plus” steady
state should be the stable one, and accordingly we choose this “plus” state (24) as the
initial condition, except that the system is again also perturbed by adding a patch of
mites over the same rectangular region −1 < x < 1, −1 < y < 1 centred at the
origin, as for Fig. 4. Again we assume initial disturbance magnitude ε = 0.2 for the
mite numbers in the rectangle.

For the example presented inFig. 5, themite death rate has been set at the (admittedly
unrealistic) smaller value μF = 0.005, so as to explore the dynamical behaviour
possible in this system. The treatment rate is also reduced significantly to r = 0.05.
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It can be seen from the diagrams on the right-hand side of Fig. 2 that, at this treatment
rate r = 0.05, it is to be expected that the endemic equilibrium (24)—with the “plus”
sign chosen for the square-root term—will now become the stable steady state, rather
than the mite-free case (16). This is indeed confirmed by the linearized solution of
Sect. 4 and the stability diagram Fig. 3 . This would be a less desirable situation from
the biological point of view, even if it were achievable, since now both the wombats
and the mites would survive in the environment, under these changed conditions.

The mite population F on the centreline y = 0 is shown in Fig. 5a and the total
wombat numbers N are displayed in part (b). In each figure, the first diagram on
the left gives the situation at the initial time t = 0. Thus the total wombat numbers
in part (b) are calculated from the endemic equilibrium (24) for the “plus” branch,
giving Neq = 0.3121. The steady-state mite numbers with treatment rate r = 0.05
are calculated to be Feq = 0.3337 and this likewise serves as the initial mite number
density, except over the interval −1 < x < 1 where additional mite numbers ε = 0.2
have been added, to give F = 0.5337 in that interval. This perturbed initial situation
is shown in Fig. 5a. As expected, the perturbation to the mite numbers decays away as
time proceeds, although the decay rate is clearlymuch slower than that shown in Fig. 4,
and amuch longer time interval is required, in order to see this effect. Thus, Fig. 5 gives
mite and wombat numbers at the five later times t = 200, 400, . . . , 1000. Eventually,
the mite numbers return to their steady-state value Feq = 0.3337 across the entire
spatial domain and the wombat sub-populations also return slowly to their equilibrium
values. It will be seen fromFig. 5 that, while there is generally good agreement between
the linearized solution (sketched with solid lines) and the nonlinear solution (drawn
with dashed lines), the agreement between them is not as precise as was the case
in Fig. 4. This is not a numerical error on the part of the nonlinear solution, since
convergence of the Fourier series in the representation (45) has been monitored very
carefully; the results in Fig. 5 have been generated with (M, N ) = (61, 61), (81, 81)
and (101, 101) modes, and are indistinguishable from each other. Rather, the slight
discrepancies between the linearized approximation and the nonlinear results, near the
maxima or minima of the curves shown in Fig. 5, are an indication of the effects of
nonlinearity on the spatial profiles, near these crests or troughs.

So far, the linearized solution from Sect. 4 has given a reasonably good indication
of the behaviour of the fully nonlinear wombat–mite system. This is because we
have only used initial conditions that consist of a moderate perturbation to a stable
equilibrium state; as time evolves, the perturbations die away and the system returns
to equilibrium. This has given us an important check on the reliability of the nonlinear
solution algorithm in Sect. 5.

In Fig. 6, however, this situation now changes radically. The parameter values used
in this case are exactly the same as for Fig. 5; but the initial condition has been changed
to become a perturbation of the mite-free equilibrium (16), rather than of the (stable)
equilibrium (24), for the “plus” case. Consequently, the linearized solution now fails
after a relatively short time. This is because linearization is only valid when all the
populations remain close to an equilibrium state, as indicated in the expression (25).
Linearized solutions are very limited in the behaviours they can exhibit, since, as (35)
indicates, they can only either decay exponentially in time (to a stable equilibrium)
or else grow exponentially (if the nearby equilibrium is unstable). In Fig. 6, the initial
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Fig. 6 A comparison of results obtained from the linearized solution of Sect. 4 with those obtained using
the algorithm in Sect. 5 for the nonlinear problem. The parameters are as given in Table 1, except that
μF = 0.005 and r = 0.05. This figure illustrates: a the mite numbers F , and b the total wombat numbers
N at times t = 120 and t = 480, 960, 1440, 1920 and 2400 days, on the centre-plane y = 0. The initial
condition consisted of a perturbation ε = 0.2 to the mite-free state (16). The linearized solution (dashed,
red lines) soon fails, but the nonlinear solution (solid, blue lines) evidently makes a transition to the endemic
“plus” steady state (color figure online)

condition consisted of a perturbation to the mite-free equilibrium, which is unstable
for these parameter values; as a result, the only behaviour the linearized solution can
develop is for it to increase without bound as time evolves. This is evident in Fig. 6,
where there is moderate agreement with the nonlinear solution at the earliest time
t = 120 shown, but by time t = 480 the linearized solution is predicting an unrealistic
explosion in mite numbers. We do not show the linearized solution for later times,
since it ceases to be of any further value.

By contrast, the nonlinear solution in Fig. 6 reveals some interesting behaviour, of
a fundamentally nonlinear nature. At the initial time t = 0, the mite population is
zero throughout the entire region, with the exception of the rectangle −1 < x < 1,
−1 < y < 1, where it has the perturbed value ε = 0.2. By the earliest time t =
120 shown in Fig. 6, the number of mites in this inner rectangle has grown slightly,
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Fig. 7 Some spatial patterns for selected times t = 120, 960 and 2400, for the same case illustrated in
Fig. 6. This figure illustrates: a the mite numbers F , and b the total wombat numbers N

as is evident in Fig. 6a. The (nonlinear) solution then grows much larger, and by
day number t = 960 in part (a), it has reached an approximate maximum of about
F = 1.5 at the centre of the region. After that time, the peak mite numbers begin to
decrease; furthermore, the spatial pattern begins to diminish as the mite population
distributes itself more and more uniformly across the environment, here represented
by the rectangle −L < x < L , −B < y < B, with L = B = 5 kilometres. The
mite population in Fig. 6 is evidently making a transition from the initial perturbed
mite-free state (16) to the stable endemic “plus” equilibrium state (24), although it
makes a very large amplitude excursion as it does so. The effect on the total wombat
numbers in Fig. 6b is consistent with that interpretation of these results, since initially
those numbers started at the mite-free value Neq = 0.8 given in (16), but by the last
time t = 2400 shown, they were evidently approaching the “plus” equilibrium value
Neq = 0.3121 calculated from (24).

To illustrate further the role that spatial variability can have in the distribution of
mites and wombats, we present in Fig. 7 some spatial patterns at the three selected
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times t = 120, 960 and 2400, for the same case as considered in Fig. 6. At the earliest
time t = 120, the situation is still moderately close to the initial condition obtained
from the mite-free equilibrium (16); thus the initial mite numbers are effectively still
zero over the environment, except roughly within the rectangle into which they were
introduced with mite density F = ε = 0.2. The total wombat population N in part (b)
is still close to the initial mite-free value Neq = 0.8, although there is a small decrease
in wombats within the rectangular region into which the mites were introduced.

The second time t = 960 in Fig. 7 corresponds roughly to the moment at which
mite numbers reach their maximum at the centre of the region, as shown in Fig. 6.
Nevertheless, although mite numbers have risen to about F = 1.5 at the centre of
the region, at time t = 960, they are nevertheless still almost zero at the corners
(x, y) = (±5,±5), as is evident at that time in Fig. 7a. The total wombat numbers in
the centre of the region, shown in part (b), have decreased from N = 0.8 to about 0.6.
After this time the mite numbers decrease slowly, but the wombat numbers become
more uniform in space, and decrease very significantly to the point that, by t = 2400
days, they are approaching the endemic steady-state value Neq = 0.3121.

6.2 Variable treatment rate—nonlinear results

For the example run shown in Figs. 6 and 7, the choice of parameters in the model
ensured that the endemic “plus” equilibrium state (24) was the stable one. This means
that, as time progresses, the populations within the environment eventually converge
to that state. The nonlinear numerical method of Sect. 5 is capable of tracking those
changes through time and space, even when the populations make a transition from
one equilibrium state to another, as in the example shown. However, as with many
dynamical systems of this type, the populations here may experience transitory large-
amplitude excursions in which the populations are very far from any of the equilibrium
states in Sect. 3, as they make the transition from their initial configuration to their
eventual state. This was seen at about time t = 960 in Figs. 6 and 7, for example. It
is easy to imagine that, in the field, a wildlife manager may notice the development
of spatial regions in which mite concentration becomes large, as in Fig. 6a, and may
decide to intervene. Forwombats inNarawntapuNational Park (NNP) inTasmania, this
intervention is accomplished using an insecticide that is introduced onto the wombat
skin by means of flaps at the entrances of their underground burrows, as documented
by Martin et al. (2019). This treatment runs for about 12 weeks. It is probably not
possible, in most cases, to treat the entire environment in this manner, and so the
wildlife manager would quite reasonably focus resources on that portion where mite
numbers are at their greatest. In this Section, we therefore seek to model how such a
strategy alters mite and wombat numbers.

To implement an intervention strategy of this type within our mathematical model,
it is now necessary to allow the treatment rate r to become a (known) function of both
space and time. We do this here by postulating a spatio-temporal function of the type

r(x, y, t) = rA + (rT − rA) fT (t)gT (x, y). (51)
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Here, the constant rA represents a constant “ambient” treatment rate that is applied to
the whole environment, perhaps by spraying with a mite growth-retarding hormone,
for example. The additional function fT (t)gT (x, y) is the extra treatment applied at
specific times to targeted sub-regions in space. Since this is only applied over a sub-
region within the overall domain, we model the spatial component of the treatment
function as

gT (x, y) =
{
1, inside rectangle RT

0, outside rectangle RT
(52)

similarly to the form (40) used for the initial condition. Here, the symbolRT denotes
some treatment region, and for simplicity we choose it to be the rectangular region
|x − x0| < xT ; |y − y0| < yT with centre (x0, y0) and area 4xT yT .

The choice μF = 0.005 for the mite death rate used in Figs. 6 and 7 is not bio-
logically reasonable, as observed above, since it would imply that free mites could
survive for 200 days, and that is far longer than actually observed. This choice was
made only to illustrate the dynamics that can be achieved by a model of this type,
since it is possible that related models in slightly altered circumstances might also
encounter such behaviour, but in biologically achievable situations [for example, the
fungal pathogen causing Bat White Nose syndrome is long lived in the environment
(Hoyt et al. 2021)]. For the remainder of this paper, we now focus on parameter values
specifically relevant to wombat–mite interactions. These are summarized in Table 1.

Figure 8 shows a case in which the system is started from the mite-free equilibrium
(16), butwith an initial injection ofmites over the unit square at the centre of the region,
of perturbation magnitude ε = 0.2. To ensure the accuracy of the results, the numbers
of Fourier modes used were (M, N ) = (121, 121), with five times those numbers of
mesh points. Here, however, a single treatment has also been applied at the centre of
the physical region where the mite concentration is highest, perhaps mimicking the
behaviour of a wildlife manager in the region. The treatment here has been applied
over the 50-day interval 200 < t < 250, and over the square region −1 < x < 1,
−1 < y < 1 in the centre of the wombat environment. Thus the treatment zoneRT in
(52) has parameters (x0, y0) = (0, 0)with xT = yT = 1. The model parameters are as
given in Table 1. In addition, it is assumed in Fig. 8 that there is no ambient treatment
over the general environment, so that rA = 0, and the rate within the treatment region
has been chosen to be rT = 0.9/7 = 0.1286, as in Table 1. The solid (blue) lines in
Fig. 8a, b show, respectively, the number F of mites and the total wombat population
N on the centre-plane y = 0, in the case in which this single dose of treatment has
been applied, at the six different times indicated on the Figure and in its caption. Also
shown in these two diagrams, for comparison, is the case when no treatment at all has
been applied, so that r = 0 throughout the entire environment. These untreated results
are sketched with (purple) chain-dot lines.

Without any treatment, r = 0, Fig. 2 shows that the “plus” endemic state, with
Feq = 0.0324 and Neq = 0.4663, is the stable steady-state situation for μF =
1/19 (the prevalence of observable mange in the wombat population for this case is
IH ,eq/Neq = 1.2 percent). Thus, although the results were started from a perturbation
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Fig. 8 Comparison of treated case (solid line—blue online) with untreated case (chain-dot line—purple
online). Results obtained from the algorithm in Sect. 5 for the nonlinear problem. The parameters are as
given in Table 1, except that there is assumed to be no ambient treatment, so that rA = 0. There is then a
single treatment (at the rate r = 0.9/7 given in Table 1), over the time interval 200 < t < 250, in the square
−1 < x, y < 1 centred at the origin. This figure illustrates: a the mite numbers F , and b the total wombat
numbers N , at times t = 120 and t = 240, 720, 1320, 1920 and 2400 days, on the centre-plane y = 0. The
initial condition consisted of a perturbation ε = 0.2 to the mite-free state (16) (color figure online)

to the mite-free equilibrium (16), the solution eventually makes a transition to the
“plus” endemic state (24). The linearized solution of Sect. 4 is therefore not capable of
following this transition between steady states (similar to the situation in Fig. 6), but
the nonlinear method of Sect. 5 is able to cope with this strongly nonlinear effect, and
the results are shown in Fig. 8 for both the completely untreated case r = 0 as well as
the situation involving the single treatment over the time interval 200 < t < 250.

The use of a single treatment at the centre of the region evidently does not have a
great effect on either mite numbers or overall wombat survivability. This is clear from
Fig. 8, since after sufficient time has passed, there is almost no difference between
the populations with treatment (blue, solid lines) and those without (purple, chain-dot
lines). Nevertheless, at the second time t = 240 shown in part (a), the treatment has
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Fig. 9 A graph of the switching function fT (t) described in the text, that allows the treatment to be applied
occasionally. Here, treatment is switched on at time t = 200 days and off again at t = 250 days. This
treatment regime is repeated every 250 days

clearly had a strong, short-term effect, since the peak in themites for the untreated case
is replaced by an inverted trough in the case with treatment. It is interesting to observe
that, since the solution has been started from an initial condition near the unstable
zero-mites equilibrium (16), mite numbers begin to grow exponentially at early times,
just as predicted by the linearized solution in Sect. 4, before eventually undergoing
nonlinear saturation at about F = 0.2 at the time t = 720, and then making the
transition to the “plus” endemic state for which F = 0.0324.

In an attempt to bring about a significant reduction in mite numbers F , repeated
treatments over the same treatment region RT have been investigated, as detailed in
(51). This has been achieved in this study by choosing the time-dependent component
fT (t) in (51) to be a switching function that activates at time t = 200 days and
switches off after 50 days at time t = 250, as in Fig. 8; however, it now reactivates
every 250 days after this time. This creates the time-dependent switching function
fT (t) illustrated in Fig. 9 over the total time period 0 < t < 2400 considered here.
The results of applying this repeated treatment are illustrated in Fig. 10. Here, the

parameters are all the same as in Fig. 8, and the treatment region is chosen to be
the same square patch −1 < x, y < 1 located around the centre of the wombat
environment. The ambient treatment rate is again rA = 0 and the targeted treatment
rate is rT = 0.9/7 over the treatment patch. Now, however, that treatment is repeated
periodically in time, as outlined in the schedule shown in Fig. 9. Accuracy was ensured
by choosing M, N = 121, 121 Fourier coefficients in the numerical solution.

It is evident from Fig. 10 that the repeated treatment does indeed reduce the peak
mite numbers over the approximate time interval 240 < t < 1320 during which
the solution is making its nonlinear transition from the mite-free state (16) to the
“plus” endemic state (24). The repeated treatments have resulted in the formation of
a “dimple” in the centre-line mite profile F(x, 0, t) in part (a), focussed at the origin.
In addition, the overall wombat numbers in part (b) remain slightly above those for
the untreated case. However, after sufficient time has passed, only slight advantages
remain from the repeated treatment over the centre of the environment.
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Fig. 10 Comparison of treated case (solid line—blue online) with untreated case (chain-dot line—purple
online). The parameters are the same as for Fig. 8. This figure illustrates: a the mite numbers F , and b
the total wombat numbers N at times t = 120 and t = 240, 720, 1320, 1920 and 2400 days, on the
centre-plane y = 0. The initial condition consisted of a perturbation to the mite-free state (16). Multiple
treatment occurred over a square centred at the origin (x, y) = (0, 0) of the environment, lasting 50 days
and repeating every 250 days. There was no ambient treatment, so that rA = 0 with special rate rT = 0.9/7
over the target region (color figure online)

Figure 11 illustrates further the way in which the repeated treatment over the rect-
angular target region −1 < x, y < 1 has resulted in a dent near the centre of the mite
profile. Results are shown at the three times t = 120, t = 720 and t = 2400 days, and
the indented mites profile is clearly evident at the second time t = 720 in Fig. 11a.
Evidently, the repeated application of treatment with the rate rT = 0.9/7 = 0.1286
(taken from Table 1) over the centrally-located square region −1 < x, y < 1 has
resulted in a substantial reduction in mite numbers over this special targeted portion
of the environment for times about 720 days. Nevertheless, the long-term benefit of
this treatment is fairly minor. This is a disappointing outcome, and suggests that an
alternative treatment strategy should be investigated instead.
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Fig. 11 Some spatial patterns for selected times t = 120, 720 and 2400, for the same case illustrated
in Fig. 10 with multiple treatment periods. This figure illustrates: a the mite numbers F , and b The total
wombat numbers N for the treated case. There was no ambient treatment (rA = 0) and the treatment rate
was rT = 0.9/7 over the central target region

6.3 Variable treatment rate at a corner

In this model, we have assumed that there is no movement across the boundaries
of the spatial environment. For simplicity, we assumed a rectangular environment
−L < x < L , −B < y < B, and the impermeability of these borders was expressed
by the boundary conditions (7), (8). These boundaries might physically correspond to
rivers, for example, that the wombats are not free to cross. This suggests that it might
be possible to protect a group of wombats by moving the targeted treatment zone away
from the centre, where the original group of mites was dropped at the initial time t = 0
and where mite numbers are consequently greatest, and re-locating it to a corner of
the environment.
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Fig. 12 Some spatial patterns for selected times t = 120, 720 and 2400, for the same (treated) case illustrated
in Fig. 10 with multiple treatment periods. There was no ambient treatment (rA = 0) and the treatment rate
rT = 0.9/7was applied over the square corner region indicated with (red) solid lines. This figure illustrates:
a the mite numbers F , and b the total wombat numbers N (color figure online)

Accordingly, we consider in Fig. 12 a situation in which the target region has been
moved into one corner of the environment. In the notation of condition (52), we have
chosen a target region RT with centre (x0, y0) = (4, 4) and xT = yT = 1; this is a
square 3 < x < 5, 3 < y < 5 nestled into a corner of the environment, with two sides
protected from wombat movement by the conditions (7), (8). To aid understanding,
this region is sketched at the bottom of each diagram using a heavy solid line (red
online). Figure12a shows the mite numbers F over the entire environment at the three
times t = 120, 720 and 2400 days, and the total wombat numbers N are illustrated in
part (b) at those same times. These results were generated using (M, N ) = (121, 121)
Fourier coefficients.

It can be seen, particularly from the last diagram at time t = 2400 in part (a),
that mite numbers have been very substantially reduced over the target region, even
although there is not much change over the rest of the environment. The total wombat
numbers shown in part (b) also rise slightly in that region.
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Fig. 13 Some spatial patterns for selected times t = 120, 720 and 2400, for the same (treated) case illustrated
in Fig. 10 with multiple treatment periods. There was no ambient treatment (rA = 0) and the treatment rate
rT = 0.9/7 was applied over a larger square corner region, indicated with (red) solid lines. This figure
illustrates: a the mite numbers F , and b the total wombat numbers N (color figure online)

Figure 13 continues this investigation of the effect of the special target region being
located at a corner of the environment, with two sides prevented from the effects of
wombat migration. Here, the situation is the same as for Fig. 12, except that the size of
the corner target region has been increased to the square 0 < x < 5, 0 < y < 5 which
now occupies one quarter of the environment region. This square is sketchedwith solid
lines (red online) at the bottom of each diagram. Repeated treatment is given over this
region as in Fig. 12, following the schedule outlined in Fig. 9. As previously, there is no
ambient treatment, so that rA = 0, and the treatment rate is rT = 0.9/7 = 0.1286 in
the targeted region. To ensure high numerical accuracy, (M, N ) = (121, 121) Fourier
coefficients are used in the spectral solution method (45). Sustained reductions in mite
numbers, and corresponding increases in total wombat populations, are achievable in
the protected target zone; by contrast, when the target zone was centrally located, it
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Fig. 14 Some spatial patterns for selected times t = 120, 720 and 2400, with multiple treatment periods
applied in the same larger corner region as in Fig. 13. Here, however, there is an ambient treatment rate
rA = 0.01 across the entire region, with the treatment rate rT = 0.9/7 from Table 1 used in the target
region (indicated with red solid lines). This figure illustrates: a the mite numbers F , and b the total wombat
numbers N (color figure online)

was not found possible to maintain the reductions in mite numbers that were achieved
at early times, to the same extent.

Finally, we consider the same case as in Fig. 13, except that, now, some ambient
treatment over the entire region is supposed to be present, at the low rate rA = 0.01.The
results are displayed in Fig. 14. From Figs. 2 and 3 , the “plus” endemic state is still the
stable steady state, and this has been confirmed from the linearized solution in Sect. 4.
This equilibrium has fomite number density F (+)

eq = 0.0060 and total wombat number

N (+)
eq = 0.7622, as calculated from (18) and (19). As previously, the calculations are

started from the zero-mites steady state (16) for which Neq = 0.8, perturbed by the
injection of a patch of mites of population size ε = 0.2. The solutions in Fig. 14 were
computed with (M, N ) = (121, 121) Fourier coefficients.
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From the last image at time t = 2400 in Fig. 14a, it is clear that the primary aim
of protecting the wombats in the corner target region (indicated on each diagram) has
essentially been accomplished. The mite number density F remains very low over
that region, over a sustained period of time. Furthermore, from Fig. 14b, the total
wombat population N continues to remain closer to the mite-free equilibrium value
Feq = 0.8, rather than falling to the endemic equilibrium value N (+)

eq = 0.7622. This
is a potentially encouraging outcome for wombat survival.

7 Discussion

Sarcoptes scabiei causes a significant disease burden, on both humanity
(World Health Organisation 2020) and a variety of mammalian species across the
globe (Astorga et al. 2018). Research addressing management of mange is therefore
of value for mitigating this burden. Here, we have sought to explore a bare-nosed
wombat population living with endemic mange, and how that population responds to
a standard treatment course (Martin et al. 2019) in a restricted treatment area.

The model systemwe have investigated here predicts three biologically meaningful
steady-state configurations. The first is a total extinction state (15), in which the pop-
ulations of both the mites and the wombats all become zero. This would represent a
disastrous outcome for wombat conservation in that area, and must be avoided. Fortu-
nately, we have shown in Sect. 4 that this extinction steady-state possibility is unstable,
so that, even if wombat populations become gravely low, the dynamical behaviour of
this system will not inevitably drive them to extinction. The second possible steady
state is a mite-free configuration. This is surely the most desirable outcome, since the
mites are all eliminated and only the wombats remain. An important consideration,
then, is to determine under what conditions this mite-free state is stable, which from
a practical point of view would imply that if mites were to be introduced, they would
eventually all die out. In general this important question can only be answered numer-
ically; however, when the two death rates μL and μH are equal, we have managed to
derive, in Theorem 1, a condition which is both necessary and sufficient for the sta-
bility of this most desirable steady state. That condition (39) is illustrated graphically
in Fig. 3. There is also a third endemic steady state in which both wombats and mites
coexist. This is clearly a less desirable outcome, since wombats would suffer the ill
effects of mange. (Mathematically, there is also a fourth steady state, but it involves
negative populations, and so makes no biological sense).

A linearized approximation to these governing equations was derived in Sect. 4, and
the behaviour of its solutions was analyzed. It provides a check on the reliability of
computer codes that are devised to solve the governing equations, and it is also used
to assess the stability of the equilibrium states. Importantly, there are situations in
which small changes to background conditions, as expressed through the parameters
in the model, can bring about large-scale qualitative changes to the outcomes for the
wombats. In particular, Figs. 2 and 3 indicate that mite-free steady states are possible
with appropriate treatment rates, if the treatment can be made to cover the entire
environment. By contrast, results such as those in Fig. 11 make clear the fact that,
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in general, treatment is unlikely to be greatly effective when it only reaches some
fraction of the wombat habitat. In practice, it is difficult in the field to know how
successful disease management has been, since it is usually difficult to locate all the
wombat burrows, or to be certain how efficiently the burrow flaps are working, and so
on. At present, there are limited robust field studies that document the management
of S. scabiei in wombat populations, outside of the study undertaken by Martin et al.
(2019).

The linearized solution of Sect. 4 confirmed the veracity of the non-linear results,
in circumstances where a population remained reasonably close to an assumed equi-
librium state. However, the linearized solution is not capable of predicting a transition
from one equilibrium state to another, since it is predicated on the idea that popu-
lations consist of a small perturbation to a given equilibrium situation. Under such
circumstances, linearization fails after sufficient time has elapsed, since linearized
solutions can either only decay or grow exponentially. Nevertheless, they are reason-
ably accurate even in unstable circumstances at early times, and our linearized solution
in Sect. 4 was able to confirm our nonlinear result in unstable situations such as that
illustrated in Fig. 6, too, but only at very early times. Later, however, the linearized
solution continues to increase exponentially in size, so violating the conditions under
which linearization itself is valid. The nonlinear solution, on the other hand, retains
its validity at these later times; the solution becomes saturated by nonlinear effects,
and at least in some instances, it transitions toward a different equilibrium state.

The behaviour of the nonlinear solution with time can be very difficult to predict,
even if it ultimately tends to one of the known equilibrium states in Sect. 3. Its time-
dependent behaviour is often sensitively dependent on initial conditions, and this has
been illustrated here. The nonlinear solution can undergo large-amplitude excursions,
with explosive growth of mite numbers in the shorter term. This was seen in the test
case illustrated in Fig. 6, and confirmed with parameters relevant to wombat–mite
interactions in Figs. 10, 11, 12 and 13. This could have important ramifications for
how biological systems react to sudden changes in their environment, for example.
In some circumstances it may be a vital consideration, and is deserving of careful
attention in systems such as that studied here; nevertheless, the inherent nonlinearity
of the system makes such behaviour very difficult to quantify.

In cases where the naturally-occurring (stable) situation is one in which both wom-
bats and mites co-exist endemically in the environment, even with a low level of
ambient treatment against mites, we have investigated situations in which additional
higher levels of treatment are applied, but only to certain limited regions in space.
The aim, of course, is to reduce mite numbers and boost wombat survivability, at least
in those special targeted regions. We have demonstrated, however, that while there is
indeed some shorter-term reduction in mite number density in those target regions, the
overall spatio-temporal behaviour of the system is somewhat more subtle and nuanced
than perhaps expected.

When the targeted treatment region is located centrally within the mite-infested
region, the benefits of aggressive treatment within that region, even over repeated time
intervals, are rather mixed. Although there is an initial reduction in mite numbers,
this becomes considerably less pronounced at later times; furthermore, the increase in
overall wombat numbers is almost negligible. However, our calculations have demon-
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strated that, when it is possible to take advantage of naturally-occurring borders or
boundaries within the environment, such as rivers that the wombats are not able to
cross, then considerably better outcomes may be possible by locating the targeted
treatment region judiciously next to these features. In that case, we have shown that
it is possible to achieve almost zero mite numbers within those target regions, and
particularly when even a quite low level of ambient treatment is possible throughout
the whole region. Furthermore, it is possible to achieve long-term wombat numbers
that remain slightly abovewhat would be expected from the equilibrium analysis alone
(as in Sect. 3), and this was illustrated in Fig. 14. Our model has assumed the wombat
habitat to be a perfect rectangle, and although this is highly unlikely to be true in the
field, the local reductions in mite numbers we were able to achieve in Fig. 14, near one
corner of the region, should be able to be observed in practice. This is because our
result is local to a corner and does not rely on changes far away, so that a naturally-
occurring similar corner with real impermeable boundaries offers the likelihood of
major benefits to wombats in that region.

In this paper, we have modelled wombat (and burrow) distribution as relatively
uniform across our simulated spatial environment, so as to limit variables in our model
and to support tractable mathematical analysis of the problem. However, wombats are
known to have habitat preferences in where they distribute their burrows, and this
could be a topic for further research, perhaps even using individual based models.
Our field research suggests that wombats generally have fairly fixed and stable home
ranges, so our model is likely to represent a reasonable approximation.

There is clearly scope for future work to investigate further strategies to protect
wombat populations, based on the location and timing of the treatment regime. Ideally,
the entire problem might even be thought of as an optimal control system that is
aimed at maximizing wombat numbers, using the treatment function r(x, y, t) as
the control variable. This would, however, be an enormously ambitious theoretical
undertaking that would also make high demands on computer resources, rendering
it currently infeasible. Nevertheless, with the careful use of a simulation tool similar
to that developed in this paper, combined with detailed knowledge of the terrain and
the location of wombats within it provided by dedicated operators in the field, long-
term protection of wombat populations from the most severe effects of infestation by
sarcoptic mange may be achievable.

Supplementary information

Highly efficient vectorized code has been developed for the implementation of the
nonlinear algorithm presented in Sect. 5 and is presented in Supplementary Material.
Further numerical details concerning this code are given in the “Appendix A”.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00285-024-02078-9.
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Appendix A: Vectorized nonlinear algorithm

Evaluation of the spatio-temporal functions S(x, y, t), and so on, in the representation
(45) at a fixed time t is performed in parallel in the program matlab at mesh points(
xp, yq

)
, p = 1, . . . , NP , q = 1, . . . , NQ by creating the doubly-subscripted arrays

CX
m,p = cos

(
mπ(xp − L)

2L

)
; CY

n,q = cos

(
nπ(yq − B)

2B

)
(A1)

of sizes (M × NP ) and
(
N × NQ

)
, in which M and N are the numbers of Fourier

coefficients used in the representations (45). With the Fourier coefficients Sm,n(t)
stored in a matrix S, the variable S

(
xp, yq ; t

)
at each time t is obtained in a matrix of

size
(
NP × NQ

)
by means of the single matrix operation

S
(
xp, yq ; t

) ≡ (CX)T SCY,

and similarly for the other variables in (45).
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In addition, each of the expressions in the ordinary differential equations (46)–(48)
involves integrals of the form

Jk,�(t) =
∫ B

−B

∫ L

−L
f (x, y; t) cos

(
kπ(x − L)

2L

)
cos

(
�π(y − B)

2B

)
dx dy

at each time t . To evaluate this expression, numerical quadrature approximates this in
the form

Jk,�(t) ≡
NP∑

p=1

NQ∑

q=1

wX
p wY

q f
(
xp, yq ; t

)
CX
k,pC

Y
�,q (A2)

in which the expressions defined above in (A1) have been used. Here, the two vectors
wX

p and wY
q contain the weight constants for the quadrature rule of choice, and are of

sizes (NP × 1) and
(
NQ × 1

)
, respectively.

The double sums in (A2) are likewise evaluated with matrix arithmetic, resulting
in a very major reduction in the computing time required. The key to this technique is
to define doubly-subscripted elements

DX
m,p = wX

p C
X
m,p; DY

n,q = wY
q C

Y
n,q (A3)

of sizes (M × NP ) and
(
N × NQ

)
, respectively, using the expressions in (A1). Now

an (M × N ) matrix J can be computed, that contains as its elements the integrals Jk,�
in the Fourier-transformed space with k = 1, . . . , M and � = 1, . . . , N , using matrix
algebra to give

J = DXF (DY)T .

In this expression, the
(
NP × NQ

)
matrix F contains the quantities f

(
xp, yq ; t

)
at

a fixed time t . Importantly, the matrices in (A1) and (A3) are stored once, and not
recalculated.
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