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Abstract
One-dimensional discrete-time population models, such as those that involve Logistic
or Ricker growth, can exhibit periodic and chaotic dynamics. Expanding the system
by one dimension to incorporate epidemiological interactions causes an interesting
complexity of new behaviors. Here, we examine a discrete-time two-dimensional
susceptible-infectious (SI) model with Ricker growth and show that the introduction
of infection can not only produce a distinctly different bifurcation structure than that
of the underlying disease-free system but also lead to counter-intuitive increases in
population size. We use numerical bifurcation analysis to determine the influence
of infection on the location and types of bifurcations. In addition, we examine the
appearance and extent of a phenomenon known as the ‘hydra effect,’ i.e., increases in
total population sizewhen factors, such asmortality, that act negatively on apopulation,
are increased. Previous work, primarily focused on dynamics at fixed points, showed
that the introduction of infection that reduces fecundity to the SI model can lead
to a so-called ‘infection-induced hydra effect.’ Our work shows that even in such a
simple two-dimensional SI model, the introduction of infection that alters fecundity
or mortality can produce dynamics can lead to the appearance of a hydra effect,
particularly when the disease-free population is at a cycle.
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1 Introduction

A distinct feature of discrete-time models is their capacity to produce complicated
dynamics in a single dimension (May 1974, 1987). The classic Ricker- (and logistic-)
growth models, for example, are capable of producing a single stable fixed population
size but also cyclic and chaotic behavior depending on the parameter values (May
1987; Anderson andMay 1979). The capacity for such a range of behavior is the result
of an overcompensatory growth term which exhibits peak per-capita reproduction at
intermediate population sizes thereby allowing the system to repeatedly overshoot
its equilibrium from above or below (Otto and Day 2007). In contrast, the saturating
(compensatory) Beverton–Holt and Maynard–Smith–Slatkin growth forms produce a
much simpler set of dynamics (Smith and Slatkin 1973; Bellows 1981;May et al. 1974;
Hughes 2020). Discrete models with overcompensatory growth have a long history in
the study of fisheries management as they capture features specific to the life history
of fish (Ricker 1954; Beverton and Holt 1993). For example, many fish reproduce
via seasonal spawning events in which reproductively mature individuals lay a large
number of eggs which hatch weeks or months later and undergo a multistage process
tomaturity (Cushing 1969; Reid andChaput 2012; US Fish andWildlife Service 2023;
State ofWashington 2023; U.S. Fish andWildlife Service 2023) and may be harvested
seasonally (National Oceanic and Atmospheric Administration Fisheries 2023).

Historically a population is said to exhibit a ‘hydra effect’ if the population grows
with increases in mortality (Abrams and Matsuda 2005; Sorenson and Cortez 2021;
Abrams 2009). This paradoxical behavior was first identified by Ricker in 1954 when
he used a discrete-time model to describe fishery populations (Ricker 1954; Abrams
2009). Since that time the hydra effect has been studied in a number of contexts using
continuous-time ordinary differential equation (ODE) models, such as in (Abrams
2009; Abrams and Quince 2005; Abrams 2015; Abrams and Cortez 2015; Abrams and
Matsuda 2005; Cortez and Yamamichi 2019; Cortez and Abrams 2016; Penczykowski
et al. 2022; Adhikary et al. 2021; Sorenson and Cortez 2021). A few of these have gone
beyond populationmodels to focus on epidemiological dynamics (Penczykowski et al.
2022; Adhikary et al. 2021). Studies of discrete-time systems are more limited and
most focus on population dynamics, many with harvesting (Cortez 2016; Cid et al.
2014; Franco and Peran 2013; Hilker and Liz 2013; Liz 2010, 2017; Liz and Ruiz-
Herrera 2012; Jaramillo et al. 2022). A common feature of many of these models
is overcompensatory growth, as the ‘hydra effect’ phenomenon is common when
overcompensatory growth is coupled to a temporal separation of reproduction and
mortality (Abrams 2009).

Expansion of one-dimensional population models through the introduction of
additional processes, such as infection, further increases the complexity of system
dynamics. Studieswith two-compartment Susceptible-Infectious (SI) andSusceptible-
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Infectious-Susceptible (SIS) models have shown that disease can shift the bifurcation
structure of a system and even introduce multi-stability (Castillo-Chavez and Yakubu
2001a, b; Castillo-Chavez and Yakabu 2002; Franke and Yakubu 2008; Xiang et al.
2021; Strube and Childs 2024). Increasing the dimension of a system also broadens
possibilities for a hydra effect. For example in 2016, Cortez and Abrams in their study
of discrete multispecies models (Cortez and Abrams 2016) generalized the definition
of a hydra effect as a phenomenon in which population size increases due to the alter-
ation of any parameter that directly reduces the fitness of a focal species. This was
in contrast to the original definition that focused only on population increases due to
changes in mortality (Abrams and Matsuda 2005). More recently, Abrams noted that
indirect hydra effects are also possible through species interactions (Abrams 2019).
That is, a mechanism which reduces the reproductive fitness of predators at an indi-
vidual level might indirectly increase the size of the predatory population by causing
an increase in a prey population.

Recently a second hydra-effect definition has been identified as a result of differing
sub-populations in an infectious disease model. Namely, an infection which reduces
reproductive fitness of infected individuals, either by increasing their mortality or
reducing their fecundity, can increase the total population size (relative to the size of
the corresponding disease-free system) (Jaramillo et al. 2022). Jaramillo et al. showed
that disease-induced mortality is insufficient to produce such an infection-induced
hydra effect from a stable fixed point of an SI system, but infection-induced reduction
in per-capita reproduction is capable of producing this phenomenon. Jaramillo et al.
(2022). Whether and how infection alters the total population size of an SI system
when the disease-free system exhibits cyclic or aperiodic behavior remained an open
question.

Here, we focus on a simple discrete-timemodel with Ricker growth, where the pop-
ulation is divided by disease status: susceptible and infectious. We consider scenarios
in which disease may alter not only mortality but also reproductive capacity. Our sys-
tem is identical to the form explored in Jaramillo et al. (2022) and is a simplification
of a more complicated model incorporating virus and infectious host transmission,
originally proposed to describe Salmon Anemia Virus (van den Driessche and Yakubu
2019; Yakubu 2020; Milliken and Pilyugin 2016). In these motivating models, dis-
ease transmission is assumed to be horizontal, which is in line with the current, albeit
debated, consensus that vertical transmission of Salmon Anemia Virus is either non-
existent or contributes minimally to the spread of disease (ISA 2007; Spickler 2011;
Nylund et al. 2019; Christiansen et al. 2021). An argument for the reduction in repro-
ductive output is based on the proposal that fish viruses which influence female health
may alter fecundity through the production of lower quality of eggs and reduced hatch-
ling survival (Kane-Sutton et al. 2010). Thus, in the SI model examined here, infection
alters the population in two keyways: reduction in fecundity through reduced contribu-
tion in the Ricker function and decrease in the infectious class due to disease-induced
mortality.

We find that the total population size exhibits counter-intuitive increases in response
to factors, such as increase inmortality or reduction in fecundity, which reduce individ-
ual fitness. Furthermore,wefind that the interplay between these two infection-induced
effects and the already complicated dynamics produced by overcompensatory growth
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result in significant infection-induced changes in the location and types of bifurcations
relative to the disease-free system. To examine these phenomena, we use numerical
bifurcation analysis to show this systemmay exhibit two types of hydra effect: a “clas-
sical" hydra effect in which the total population size grows in response to an increase in
a parameter which reduces individual fitness, and an "infection-induced" hydra effect
in which the with-disease population is larger than the corresponding disease-free
population for a specific set of model parameters. We analytically derive conditions
sufficient to produce a hydra effect out of an infection-endemic equilibrium using each
of these definitions. We show that the degree and category of hydra effect depends
on initial conditions such than population increases can occur in two distinct ways:
through continuous shifts in a bifurcation structure or through ‘jumps’ to a different
stable structure in regions of parameter space which exhibit multi-stability.

2 Model andmethods

2.1 Epidemiological models

We consider two distinct discrete-time systems with the general forms,

S̄t+1 = g(S̄t ) + (1 − d)S̄t ,

and

St+1 = g(St + w It ) + (1 − d)Stφ(It ),

It+1 = (1 − d)St (1 − φ(It )) + (1 − d)(1 − μ)It ,

where S (or S̄) refers to the susceptible population and I the infectious population.
In these systems, g(x) is the reproduction term, d and μ are natural- and disease-
induced probabilities of mortality in a given generation, respectively, and 1-φ(I ) is
the probability of infection in a given generation. The first system thus describes
growth of a population, S̄, as a function of natural reproduction and mortality in the
absenceof infection.The second systemexpands thismodel to include epidemiological
dynamics, i.e., infection of susceptible individuals and disease-induced mortality of
infected individuals (Fig. 1a).

We consider a scenario in which reproduction is of the Ricker form, g(x) = r xe−bx

with growth parameter r and density-dependence b; infection occurs via a Poisson
process, φ(I ) = e−β I at rate β (such that 1−φ(I ) is the probability of the occurrence
of at least one infection event); and disease influences the total population by disrupting
reproduction, w, and increasing mortality, μ. Thus the full form of the disease-free
system is given by

S̄t+1 = r S̄te
−b(S̄t ) + (1 − d)S̄t , (1)

the with-disease system by

St+1 = r(St + w It )e
−b(St+w It ) + (1 − d)Ste

−β It ,

It+1 = (1 − d)St
(
1 − e−β It

)
+ (1 − d)(1 − μ)It , (2)

123



Infection-induced increases to population size during cycles... Page 5 of 35    60 

and the total with-disease population by

Tt+1 = r(St + w It )e
−b(St+w It ) + (1 − d)St + (1 − d)(1 − μ)It . (3)

The Ricker-growth term is characterized as a type of overcompensatory growth that
is linear for small populations, attains a maximum, and then decays exponentially as
the population grows (Fig. 1b). This is in contrast to linear growth, which exhibits
constant growth for all population sizes, and compensatory growth, which asymptotes
to a maximum as population grows. Ricker growth can be tuned by two parameters:
r and b. The reproduction capacity r describes the maximum per-capita growth and
stretches the Ricker growth curve vertically. The factor b determines the extent of
density-dependence and, thus, the scale on which growth occurs. The smaller the
value of b, the larger the range of populations sizes with non-trivial reproduction, or
put another way, decreasing b increases the population size at which the maximum
per-capita reproduction occurs.

A key feature of discrete-timemodels is the implicit assumption that events occur in
a particular order (Bodine et al. 2012). In ourmodel, individuals reproducewith capac-
ity g(S + w I ) before experiencing natural mortality, and the offspring they produce
do not experience natural mortality until they are included in the population at the next
time step. Infection occurs, with probability 1 − φ(I ), to susceptible individuals that
survive the interval (with probability 1−d). Infected individuals, who survive natural
mortality, can be lost due to disease-induced mortality, μ. Individuals that become
infected are not infectious and do not succumb to disease-induced mortality until the
following generation. For clarity, we shift notation moving forward and discuss the
effect of reducing fecundity, defined by w̃ = 1− w, on the behavior of the system. In

Fig. 1 A discrete-time SI model with Ricker growth. a Schematic of the with-disease model. b Three
examples of the growth function, g(x)
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Table 1 Baseline model parameters

Parameter Description Baseline value

r Maximum per-capita growth per generation e4 ≈ 54.6

b Scaling parameter for density-dependent growth 0.1

d Probability of death due to natural causes 0.5

β Poisson constant for infection transmission 0.056

w Relative reproduction capacity of infected individuals 1

w̃ Fecundity reduction factor (w̃ = 1 − w) 0

μ Probability of death due to infection 0

Values for r , b, d, β from van den Driessche and Yakubu (2019)

this way, increases in eitherμ or w̃ reduce the individual fitness of infected individuals
and may induce a hydra-effect.

We use ‘disease-free system’ to refer to Eq. (1) and ‘with-disease’ system to refer
to System (2). It is important to note that these descriptors refer to the systems and
not the state of the system at a given moment of time. That is, the with-disease system
can experience infection extinction. Baseline parameters are described in Table 1 and
were chosen for consistency with previous work (van den Driessche and Yakubu 2019;
Jaramillo et al. 2022).

2.2 Simulationmethods

Simulation and analysis was conducted inMATLAB 2021b andMATLAB 2023a. The
disease-free systemwas simulatedwith the singleEq. (1)while thewith-disease system
was simulated with two-equation System (2). Details on construction of each figure
is described in Appendix A. Codes are available at https://github.com/laurenchilds/
SIdiscrete.

2.3 Hydra effect definitions

In our analysis we consider two distinct hydra effect definitions. In the first definition,
a population is said to exhibit a“classical” hydra-effect if the total population size
increases as a parameter reducing individual fitness is increased. In the second, a
population is said to exhibit an “infection-induced” hydra-effect if the total population
size of the with-disease system is greater than that of the corresponding disease-free
system for a fixed set of parameters.

2.3.1 Classical hydra effect for an SI system

The classical definition of a hydra effect was previously described by Cortez (2016)
for a single compartment describing each species. To derive a definition for our two-
compartment system, we rewrite the fixed point for the System (2) in the form
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S∗ = fS(S
∗(α), I ∗(α), α)

I ∗ = f I (S
∗(α), I ∗(α), α),

(4)

with emphasis on the dependence of the generic α, related to fitness.
We say that a classical hydra effect exists at a fixed point if

∂T ∗

∂α
= ∂S∗

∂α
+ ∂ I ∗

∂α
> 0, (5)

i.e., if an increase in α (reduction in individual fitness) results in an increase in the
total population size at a fixed point.

We say that a classical hydra-effect exists at a k-cycle if

1

k

k∑
i=1

∂T ∗
i

∂α
= 1

k

k∑
i=1

(
∂S∗

i

∂α
+ ∂ I ∗

i

∂α

)
> 0, (6)

where (S∗
i , I

∗
i ) is the i th fixed point in a k-order cycle of the with-disease system.

Note that for k-cycles the existence of a classical hydra effect is defined based on the
average population size over time. Periodic or chaotic regimesmay exhibit generation-
to-generation declines across some time intervals but if on average the population size
increases with respect to α the population is said to exhibit a classical hydra effect.

Here, we focus on α given by the fecundity reduction parameter (w̃) or the disease-
induced mortality parameter (μ).

2.3.2 Infection-induced hydra effect for an SI system

The second formulation of a hydra effect was previously defined by Jaramillo et al.
(2022). It is present if there exists a fixed point (S∗, I ∗) of System (2) such that

S∗ + I ∗ > S̄∗, (7)

where

S̄∗ = 1

b
ln

( r
d

)

is a fixed point of System (1).
For higher order behavior, an infection-induced hydra effect occurs if

1

k

k∑
i=1

(
S∗
i + I ∗

i

)
>

1

k̄

k̄∑
i=1

S̄∗
i , (8)

where (S∗
i , I ∗

i ) is the i th fixed point in a k-order cycle of the with-disease system and
S̄i

∗
is the i th fixed point in a k̄-order cycle of the disease-free system.
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Note we calculate an average population size of the with-disease and disease-free
system independently. That is k and k̄ need not be identical.

3 Analytical results

In this section we derive sufficient conditions for the existence of a classical hydra
effect and for an infection-induced hydra effect at a fixed point of System (2). All
proofs to Theorems and Lemmas are found in the Appendix B.

3.1 Classical hydra effect at a fixed point of an SI system

From the fixed point (S∗, I ∗) there is a hydra effect with increases in α if

∂T ∗

∂α
=

−
((

∂ f I
∂ I − 1

)
∂ fS
∂α

− ∂ fS
∂ I

∂ f I
∂α

− ∂ f I
∂S

∂ fS
∂α

+
(

∂ fS
∂S − 1

)
∂ f I
∂α

)

|J − I2|
∣∣∣∣
(S∗,I ∗)

> 0.

where J is the Jacobian of System (4). A derivation of this definition can be found in
Appendix B.6.

3.2 Sufficient conditions for the classical hydra effect with changes in mortality

Theorem 1 Given System (2) with fixed point T ∗, if ln
( r
d

)
< wbd

β(1−d)
and there is a

hydra effect when μ is the hydra effect parameter, i.e.,

∂T ∗

∂μ
> 0,

then there is also a hydra effect when w̃ is the hydra effect parameter, i.e.

∂T ∗

∂w̃
> 0.

The proof of Theorem 1 is found in Appendix B. To prove this, we use the existence
and uniqueness of the endemic equilibrium (Lemma 4, stated in Sect. 3.3 and proved
in Appendix B.5) as well as the following lemma.

Lemma 2 Considering System (2), the unique endemic equilibrium (S∗, I ∗) satisfies

S∗ + w I ∗ < S̄∗.

The proof of Lemma 2 is found in Appendix B.3.
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3.3 Sufficient conditions for infection-induced hydra effect

A sufficient set of conditions for the increase in total population size originating from
a fixed point in the disease-free system is found in Theorem 5. In order to derive
these conditions, we reformulate the fixed point of System (2) into a one-dimensional
system in Lemma 3.

Lemma 3 (One-dimensional equivalent system) A fixed point of the System (2) is
equivalent to a fixed point of the equation

ln (1 − Cz) = z
(
ln (A + Bz) − ln(1 + Dz) − D ln(1 − Cz)

)
, (9)

where

z := β I

bS
, A := d

r
, B := b(1 − ν)

βr
, C := b(1 − ν)

β(1 − d)
, D := bw

β
,

and ν := (1 − d)(1 − μ).

The proof of Lemma 3 is found in Appendix B.4.

Lemma 4 The endemic equilibrium (satisfying I ∗ > 0) exists and is unique.

The proof of Lemma 4 is found in Appendix B.5.

Theorem 5 (Hydra effect sufficient conditions) Given a fixed point (S∗, I ∗) for System
(2), which is equivalent to a fixed point z∗ for the Eq. (B1), sufficient conditions
to guarantee an increase in population size when infection is introduced (infection-
induced hydra effect) are

w < 1 − β

b
and d ≥ 1

2
.

We note that the existence of the hydra effect is independent of μ.

The proof of Theorem 5 is found in Appendix B.6.

4 Simulation results

In this system, disease acts on the population through two mechanisms which each
reduce individual fitness: it reduces the fecundity of the infected population by w

and increases the mortality of the infected population by μ. For clarity, we report the
influence of infection on fecundity using the fecundity reduction factor, w̃ = 1 − w.
This means that if w̃ = 0 (w = 1), infected individuals exhibit full reproductive
capacity, and if w̃ = 1 (w = 0), they do not reproduce. The parameter μ is the
probability of death due to disease. When μ = 0, the disease is never fatal; when
μ = 1, there is a 100% chance of disease-induced mortality in a given generation.
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Fig. 2 The influence of μ and w̃ on the bifurcation structure and total population size for (d, r) pairs
selected from the fixed-point regime of the disease-free system. All parameters at baseline values except:
d, r as indicated. For a–c, μ ∈ [0 : 0.001 : 1], w̃ ∈ [0 : 0.001 : 1]. Simulations were completed with
standard conditions except as follows: simulations with (d, r) = (0.52, 8.5) were completed with initial
conditions (S0, I0) = (150, 20) and 50,000 transient generations, simulations with (d, r) = (0.21, 260)
were completed with initial conditions (S0, I0) = (60, 20) and 10,000 transient generations. Points in a:
(d, r) = (0.52, 8.5), (0.52, 50), (0.21, 260), (0.35, 260)

When (μ, w̃) = (0, 0) the bifurcation structure (Fig. 2a) is identical to that of the
disease-free system. In this scenario, infectionmoves individuals into an infected class
which exhibits reproduction and mortality identical to that of the susceptible class.
Under this condition, the system exhibits a fixed-point for all mortality probabilities
(d) when the reproduction (r ) is low and for all per-capita reproduction (r ) when the
probability of mortality (d) is low. If r is increased above a threshold at r ≈ 7.0,
sufficiently large d can induce the presence of cycles, and if d is increased above
a threshold at d ≈ 0.285, sufficiently large r can induce the presence of cycles.
Additionally, we observe what appears to be chaotic behavior for some regions of

123



Infection-induced increases to population size during cycles... Page 11 of 35    60 

d, r parameter space, but do not distinguish chaotic behavior and > 16-cycles in our
analyses.

4.1 Capacity of infection to alter the total population depends on the level of
natural mortality and reproduction

We examine the long-time behaviors of a fixed-point in the total population dynamics
for a broad range of mortality (d) - reproduction (r ) parameter space when (μ, w̃) =
(0, 0) (Fig. 2a). In particular, the system exhibits fixed-point behavior at both (d, r) =
(0.52, 8.5) and at (d, r) = (0.21, 260) (Fig. 2a, bottom and far-left white dots).
However, the capacity of infection to alter the bifurcation structure of the systemdiffers
in these two cases.With intermediate mortality but low reproductive capacity, (d, r) =
(0.52, 8.5), the system does not exhibit any bifurcations in response to changes in μ

or w̃ (Fig. 2b). However, with low mortality and high reproductive capacity, (d, r) =
(0.21, 260), the system shows that sufficient increase of either the fecundity reduction
factor w̃ or the disease-induced mortality probability μ produces at least one period-
doubling bifurcation point and entry into a cyclic regime and likely chaos.

While infection does not alter the bifurcation structure of the system at intermediate
mortality and low reproductive capacity, (d, r) = (0.52, 8.5), examination of the total
population size across (μ, w̃) ∈ [0, 1]× [0, 1] shows that it does alter the equilibrium
total population size (Fig. 2c). In particular, increasing the disease-induced mortality,
μ, predictably reduces the total population size while reducing the fecundity of the
infected population actually increases the total population (Fig. 2d). This is because
the increased per-capita reproduction that results from a reduction in the reproducing
population is more than sufficient to compensate for the loss due to disease-induced
mortality. The reduction in population size with increases in disease-inducedmortality
at a fixed point is proven in Jaramillo et al. (2022).

Similarly, when (d, r) = (0.21, 260), a reduction in fecundity produces clear
increases in the total population size in the absence of disease inducedmortalityμ = 0
(Fig. 2e). An increase in mortality decreases the total population size on average in
the absence of effects on reproduction (w̃). These qualitative behaviors are consistent
with the (d, r) = (0.52, 8.5) case despite the fact that each parameter,μ and w̃, induce
a period doubling bifurcation in the with-disease system.

4.2 Infection-induced reduction in fecundity can induce a hydra effect

With the introduction of infection, we find that the total population of the with-disease
system often exceeds the total population of the disease-free system. Consider the total
population with (d, r) = (0.52, 8.5). Increasing the fecundity reduction factor w̃ in
the absence of disease-induced mortality, i.e. μ = 0, causes the total population size
to increase (Fig. 3a). In particular, while the disease-free system exhibits a constant
S̄ ≈ 27.94 individuals independent of w̃, which has no impact on the disease-free pop-
ulation, the total population of the with-disease system grows with increases in w̃ even
as its reproducing population declines (Fig. 3a). This is due to the overcompensatory
nature of the Ricker growth function (Fig. 3b). When w̃ = 1, the total population in
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Fig. 3 Influence of infection on reproduction via the fecundity reduction factor w̃. a Long-time total pop-
ulation counts for (d, r) = (0.52, 8.5) as w̃ varies with no disease-induced mortality, μ=0. All parameters
are at baseline values except: (d, r) = (0.52, 8.5) and w̃ ∈ [0 : 0.02 : 1]. Standard simulation conditions
with initial conditions (S0, I0) = (150, 20). b Ricker growth function, g(x) = r xe−bx with r = 8.5
and b = 0.1, as population size, x , changes. The blue triangle indicates the reproducing population size
(S + w I ≈ 24.77) and the red circle the total population (S + I ≈ 34.00) in the with-disease system when
w̃ = 1

the with-disease system is S + I ≈ 34.00 while the total reproducing population in
the with-disease system is S + w I ≈ 24.77. By reducing the size of the reproducing
population, the disease actually increases the per-capita reproduction by a factor of
∼ 2. This is consistent with analysis in Jaramillo et al. (2022), which showed that
there is no possibility of infection-induced hydra effect from a endemic equilibrium
without reductions to fecundity.

4.3 Appearance of infection-induced hydra effect depends on the natural
parameters for mortality and reproduction

The capacity of infection to induce a hydra effect depends on the value of the natural
parameters for mortality (d) and reproduction (r ). For moderate mortality but low
reproduction, (d, r) = (0.52, 8.5), a hydra effect is observed for all values of w̃

when μ = 0. For μ ∈ [0, 0.5], a hydra effect is possible provided w̃ is above a
threshold that increases with increasing μ (Fig. 4a). No hydra effect occurs for any
value of w̃ if μ is above a threshold of μ ≈ 0.5, because the infection dies out and
thus infection-induced hydra effect is not possible. In contrast, when reproduction
is higher, (d, r) = (0.52, 45), a hydra effect is observed for all w̃ and μ (Fig. 4b).
Our sufficient analytical conditions, found in Theorem 5, correspond to numerical
simulations (Fig. 4, area above the red line).

4.4 Sensitivity to initial conditions in the chaotic regions causes propagation of
error

To quantify the hydra effect we rely on the numerically determined average population
size. In regions with complicated dynamics this can be difficult due to numerical error.
For example, within the chaotic regions, we observe divergence between what should
be equivalent trajectories in the disease-free and with-disease systems. Mathemati-
cally, when there is no fecundity reduction (w̃ = 0) and no disease-induced mortality
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Fig. 4 Regions of (μ, w̃)-parameter space exhibiting any degree of hydra effect. Parameters are at baseline
values except d = 0.52, r as indicated, μ ∈ [0 : 0.001 : 1] and w ∈ [0 : 0.001 : 1]. Standard simulation
conditions combining ten sampled initial conditions: (S0, I0) = (365, 726), (485, 61), (241, 432), (674, 530),
(596, 956), (725, 298), (876, 167), (956, 658), (131, 873), and (64, 380). The area above red line indicates
the sufficient condition for the hydra effect in Theorem 5. Here, the condition falls at w̃ = β

b = 0.56, given
the existence of an endemic equilibrium

(μ = 0) the equation for the total with-disease population is equivalent to that of the
disease-free system, since Tt = St + It . That is, Eq. (3) reduces to

Tt+1 = rTte
−bTt + (1 − d)(Tt ).

However, due to sensitivity to initial conditions in the apparent chaotic regions, it is
possible for individual simulations to diverge over time due to the accumulation of
numerical error. For example, when (d, r) = (0.5, 200) and (μ, w̃) = (0, 0), the
total population dynamics of the with-disease system visibly diverges from that of
the disease-free system within 120 generations (Fig. 5, top). However, because the
total population in the system is bounded, the difference between the measured total
population sizes is also bounded.Visually this is apparentwithin 200 generations as the
absolute difference rapidly rises from numerical precision over the first generations,
but never exceeds 100 (Fig. 5, bottom). The average of the total population size of
the disease-free system and the with-disease system will be numerically very similar
if enough generations are averaged together. In practice, for (μ, w̃) = (0, 0), which
we know should have identical disease-free and with-disease total population size, we
find that averaging 2000 generations is sufficient to get averages within reasonable
agreement (See Appendix C).

4.5 Initial conditions affect the total population bifurcation structure and hydra
effect

Up to this point, results focused on a particular set of initial conditions: (S0, I0) =
(150, 20). However, the long-time behavior is, at times, sensitive to the choice of
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Fig. 5 Disease-free and with-disease system trajectories originating in the chaotic regime. Top: behavior
early in the simulation from generations 80–120. Middle: long-time behavior from generations 10,001–
10,041. Bottom: log-linear plot of absolute difference between the disease-free and with-disease system
trajectories. Parameters are at baseline values except: r = 200 and (μ, w̃) = (0, 0). Standard simulation
conditions with initial conditions (S0, I0) = (150, 20) for the with-disease system and S̄0 = 170 for the
disease-free system

initial conditions. To assess the potential variation based on initial conditions, we used
Latin hypercube sampling of initial conditions across ten uniform intervals for S0 ∈
[0, 1000] and I0 ∈ [0, 1000]. While simulations indicate a general consistency in the
presence of hydra effect trends independent of initial conditions across wide regions of
parameter space, there are parameter ranges inwhich initial conditions have significant
influence (Fig. 6). The importance of initial conditions ismost pronounced for small w̃,
where the system exhibits mild hydra effect (less than 5% increase in population size)
for most levels of disease-induced mortality, μ (Fig. 6, gray-scale). However these
regions where there is no hydra effect or only small increases in population size are
interrupted by regions of 2- and 4-fold increases in population size. The precise size
and location of these large increases are determined by the initial conditions (Fig. 6).
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Fig. 6 Infection-induced fold-change in total population with respect to μ and w̃ for four distinct pairs of
initial conditions. (a) Key for each panel: Large diagram, (μ, w̃) ∈ [0 : 0.001 : 1]×[0 : 0.001 : 1]; top small
diagram μ ∈ [0.6 : 0.001 : 0.8] and w̃ ∈ [0.3 : 0.001 : 0.5]; bottom small diagram μ ∈ [0.2 : 0.001 : 0.6]
and w̃ ∈ [0 : 0.001 : 0.4]. All parameters are at baseline values except r = 260, d = 0.35 and (μ, w̃) as
stated above. Standard simulation conditions are used but initial conditions are varied as listed

The observed jumps in total population size, despite only small shifts in parameters,
typically occur at that same point as sharp changes in the long-time behavior (Fig. 7),
i.e. changes in the bifurcation structure. Furthermore, these changes in bifurcation
structure show similar patterns when initial conditions are changed. As shown in
Strube and Childs (2024), the system exhibits multiple potential long-time behaviors
(bi- or multi-stability) for regions of parameter space. Which of these stable long-
time behaviors is realized depends on the initial conditions used for a simulation. As
the parameter space is large, we leave a full examination of initial conditions and
multi-stability to future work.
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Fig. 7 Infection-induced total population cycles for the with-disease system with respect to μ and w̃ for
four distinct pairs of initial conditions. aKey for each panel: Large diagram, (μ, w̃) ∈ [0 : 0.001 : 1]× [0 :
0.001 : 1]; top small diagram, μ ∈ [0.6 : 0.001 : 0.8] and w̃ ∈ [0.3 : 0.001 : 0.5]; bottom small diagram,
μ ∈ [0.2 : 0.001 : 0.6] and w̃ ∈ [0 : 0.001 : 0.4]. Colorbar: black indicates a reduction in population;
gray-scale indicates 0–5% increase in population over the disease-free system; color-scale indicates > 5%
increase in population, represented by fold-change. All parameters are at baseline values except r = 260,
d = 0.35 and (μ, w̃) as stated above. Standard simulation conditions are used but initial conditions are
varied as listed

4.6 The introduction of infection allows for hydra effects through a continuous
shift in bifurcation structure or via a jump between distinct structures

A close examination of our system shows both types of hydra effect (classical and
infection-induced) with the introduction of infection (Fig. 8). The appearance of these
increases in population size occur when the disease-free and with-disease systems
both show identical types of long term behavior and when they show distinct types of
long-time behavior. The latter may involve change along a single bifurcation structure
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or jumps between structureswhenmulti-stability is present. To illustrate, we fix natural
birth and mortality and vary a single disease parameter (μ or w̃) between 0 and 0.7.
We focus on parameter sets in which the disease-free system exhibits a two-cycle, but
also consider one example when the with-disease system bifurcates from a fixed point
to a two-cycle before exhibiting a hydra effect (parameter sets shown in Fig. 2a, three
upper white dots).

For (d, r) = (0.52, 50), and no reduction of fecundity with infection (w̃ = 0),
the with-disease system shows simple forms of classical and infection-induced hydra
effects (Fig. 8a). The classical hydra effect is evident by the slight increase in the total
population average as μ increases as a result of a infection-induced increase in the
amplitude of the two-cycle that favors the upper branch. The infection-induced hydra
effect is seen by the larger with-disease population size relative to the disease-free
population at a given level of disease-induced mortality (μ > 0).

At these same d and r values, when infection reduces fecundity, but does not
increasemortality (μ = 0), both types of hydra effect aremore obvious (Fig. 8b). Here,
infection shifts the cyclic behavior toward larger population sizes as w̃ is increased.
The classical hydra effect is seen by increases in population size, left-to-right and the
infection-induced hydra effect is seen by population increases bottom-to-top. Note that
in this scenario the with-disease system bifurcates such that the cycle-size diverges
from that of the disease-free system, such that k �= k̄ for the hydra effect definition in
Sect. 2.3.2).

We showed analytically that without reductions in fecundity, and starting from a
population endemic equilibrium, changes in μ are unable to produce a hydra effect
(Theorem 1) in our discrete SI system. However, if other stable population structures
exist, the introduction of infection can knock the population into the basin of attraction
of another stable structure, which has a larger average population size. We refer to this
shift between distinct stable long-time behaviors as “structure-jumping,” and can be
seen in Fig. 8c for (d, r) = (0.21, 260) near μ = 0.5.

This structure-jumping is even more apparent for large μ values when there is
no effect on fecundity, w̃ = 0 (Fig. 8d). In the absence of disease-induced mortal-
ity, μ = 0, or reductions in fecundity, we know the disease-free and with-disease
systems have identical population size, and thus, no hydra effect is possible. When
(d, r) = (0.35, 260) and disease-induced mortality increases from zero, the system
first undergoes a period doubling bifurcation near μ ≈ 0.179 from a two-cycle to a
four-cycle and again at μ ≈ 0.315 from a four-cycle to an eight-cycle. These bifur-
cations have minimal influence on the average population size. However, when μ

reaches a threshold near μ ≈ 0.337 the long-time behavior jumps to a three -cycle
before returning to what appears to be a continuation of the previous eight-cycle near
μ = 0.352. This structure undergoes additional period doubling en route to chaos as
μ increases. During this progression the system exhibits additional jumps between
structures, for example for μ approximately between 0.411 and 0.430 and again for μ

approximately between 0.461 and 0.528. When these shifts in structure occur, there
are clear differences in the average total population size of the disease-free and with-
disease systems and the system clearly exhibits an infection-induced hydra effect.

123



   60 Page 18 of 35 L. F. Strube et al.

Fig. 8 Examples of classical and infection-induced hydra effect. Classical and infection-induced hydra
effect from a a disease-free two-cycle as disease-induced mortality increases, b a disease-free two-cycle as
reduction in fecundity increases, c from a fixed point as disease-induced mortality increases, but only via
jumping between structures, and d a disease-free two-cycle as disease-induced mortality increases. Black
dots are long-time behavior of the disease-free system with the average population in a solid black line.
Colored red dots in a–d and colored circles in c are long-time behavior of the with-disease system with the
average population in a solid colored line. Standard simulation conditions with all parameters and initial
conditions at baseline except: a r = 50, d = 0.52, w̃ = 0, (S0, I0) = (150, 20); b r = 50, d = 0.52,μ = 0,
(S0, I0) = (150, 20); c r = 260, d = 0.21, w̃ = 0, (S0, I0) = (60, 20) in black, (S0, I0) = (180, 20) in
blue; d r = 260, d = 0.35, w̃ = 0, (S0, I0) = (956, 658). a, c, dwith μ ∈ [0, 0.7], and bwith w̃ ∈ [0, 0.7]

5 Discussion

Classically, a biological process which decreases the fitness of individuals but para-
doxically increases the total population size is said to induce a hydra effect (Abrams
2009; Abrams and Matsuda 2005) and is seen in a variety of systems, e.g., (Sorenson
and Cortez 2021; Cortez and Abrams 2016; Abrams 2009; Abrams and Cortez 2015;
Abrams 2002; Abrams et al. 2003). Jaramillo et al. (2022) introduced a new hydra-
effect definition, which they termed an infection-induced hydra effect, to describe
scenarios in which the introduction of infection is capable of increasing total popula-
tion size relative to the corresponding disease-free system, but without changes to any
specific parameters. They found that such a population size increase does not always
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require increased mortality, but may also be caused by a reduction in the fecundity
of infected individuals. In addition, multiple studies have shown that the addition of
infection to a discrete-time model with Ricker growth can introduce multi-stability in
the system (Castillo-Chavez and Yakubu 2001a, b; Castillo-Chavez and Yakabu 2002;
Franke and Yakubu 2008; Xiang et al. 2021; Strube and Childs 2024).

In this work, we extend examination of the two-dimensional SI model with Ricker-
growth by performing numerical bifurcation analysis and assessing the capacity of
infection to increase total population size. In particular, we focus on parameter regions
where the disease-free system exhibits complicated behavior such as cycles. We show
that infection can increase total population size both in regions where the same type
of long-time dynamics are seen for the disease-free and with-disease systems and
when different long-time dynamics occur. We provide a set of sufficient analytical
conditions for which the hydra effect is observed when the disease-free system is
in an endemic equilibrium, which is consistent with our numerical simulations. We
show that increases in disease-induced mortality or infection-induced reductions in
fecundity are capable of altering the bifurcation structure with long-time persistence
of infection.

Overall, we observe two distinct types of hydra effect in our SI system: ‘classical’
and ‘infection-induced’ (Fig. 8). In the classical case, we see increases in total pop-
ulation size with smooth changes to a parameter that tunes individual fitness. In the
infection-induced case, we see population increases relative to the disease-free system
without changes to any parameters.

For each of these two types of hydra effect, population increases can arise in two
settings. Population increases can occur when the disease-free and with-disease sys-
tems have qualitatively similar long-time behaviors (i.e., both are fixed points, both
are cyclic with the same cycle length, or both are chaotic) such that infection induces
an overall shift in the total population and results in an average with-disease popula-
tion size greater than the average disease-free population size. Population increases
can also occur when the disease-free system and with-disease system exhibit different
long-time behaviors. These behaviors may be part of the same bifurcation structure
or from two distinct bifurcation structures, where we observe a ‘jump’ into a fun-
damentally distinct long-time behavior regime such that the average total population
increases. This requires the presence of bi- or multi-stability in the system, such that
multiple long-time behaviors are possible. When a qualitatively different behavior
occurs, e.g., low-dimensional cycle vs chaotic behavior, the total population size can
be drastically different.

When the disease-free system is in a stable fixed point, our novel analytic calcula-
tions, consistent with those of Jaramillo et al., show that infection-induced increases in
population are not possiblewith increases inmortality unless there are also decreases to
the fecundity of infected individuals. However, in contrast to Jaramillo et al., we show
that a hydra effect can occur from a fixed point in the disease-free system if increases
in a fitness parameter causes a jump between bifurcation structures (Fig. 8c). We
also show that changes to disease-induced mortality are sufficient to produce hydra
effects from regions of parameter space which produce cyclic or chaotic behavior in
the disease-free system. The key feature here is the bifurcation to a cycle of order two
or higher, such that enhanced mortality of the infected class can alter the fecundity
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across the full length of the cycle. For example, disease-inducedmortality can increase
population size from a two-cycle because it lowers the population sufficiently in one
generation such that the population size for the growth term in the second generation
more than compensates.

One challenge to quantifying the degree of the change in total population size
(hydra effect) is the sensitivity of the system to initial conditions in chaotic regions
of parameter space. For example, when (μ, w̃) = (0, 0), we know mathematically
that the total population dynamics of the with-disease system should be identical to
that of the disease-free system. However, simulations show that individual trajectories
can diverge within 200 generations (Fig. 5). Therefore, we select a threshold at 5%
above the disease-free total population size, such that no hydra effect is reported for
r ∈ [0, 320] and d ∈ [0, 1] in the (μ, w̃) = (0, 0) using tractable simulation times
(SeeAppendixC). For clarity, we highlight increases in total population size below this
threshold, which could be numerical error, by depicting them in gray-scale and larger
increases in total population size, in which there is true hydra effect, in a color-scale.

While the degree of hydra effect is independent of initial conditions for large por-
tions of (μ, w̃) parameter space at fixed r and d values, there are regions where the
degree of hydra effect is strongly dependent on initial conditions. Comparison of these
regions to corresponding heat maps of long-time cyclic behavior suggest that these
switches are the result of transitions between two (or multiple) alternative long-time
behaviors. In this case, the initial condition determines into which basin of attraction
the simulation falls. This is supported by systematic variation of a parameter with
identical initial conditions, which show clear parameter-induced transitions between
long-time behavior structures (Fig. 8).

Discrete-time systems are known to produce complex behaviors at low dimen-
sions (May 1974), but the simple expansion through introduction of infection to a
two-dimensional SI system broadens the complexity of dynamics, introducing the
appearance of multiple stable structures and a range of behaviors that lead to counter-
intuitive changes in total population size. Fundamentally, the observation of these
phenomena depend on the overcompensatory nature of the growth term, which poten-
tially leads to increases in population fecundity as a result of decreases in population
size. Our work extends understanding of these phenomena, by showing the capacity
of infection to produce distinct qualitative long-time behaviors, through both classical
and infection-induced hydra effect, which may depend on initial conditions. Thus, this
insight provides a means of understanding the complicated behaviors of discrete-time
models to a deeper degree.

Acknowledgements The authors thank Michael Cortez, John Guckenheimer, Steven Strogatz, Stephen
Ellner and the Ecotheory group for helpful discussions.

Author Contributions LMC conceived the study and oversaw project management. LFS and LMC devel-
oped the code. LFS performed the numerical simulations. LFS and LMC performed the data analysis.
SE performed the mathematical analysis. LFS and LMC drafted the manuscript. All authors revised the
manuscript and approved the version to be submitted.

Funding This work was supported by NSF Grants # 1853495 and # 2029262.

123



Infection-induced increases to population size during cycles... Page 21 of 35    60 

Data Availability Statement The MATLAB codes to generate all necessary simulated data are available on
GitHub at https://github.com/laurenchilds/SIdiscrete.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose and no
Conflict of interest to declare that are relevant to the content of this article.

Code availability The MATLAB codes are available on GitHub at https://github.com/laurenchilds/
SIdiscrete.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Detailed simulationmethods

Our results are depicted with four distinct figure types. The first three, (1) simula-
tion trajectories (Fig. 5) described in Appendix A.1, (2) long-time behavior (Figs. 3,
8) described in Appendix A.2, and (3) cycle heat maps (Figs. 2, 7) describe in
Appendix A.3, are analogous to the simulations, one-, and two-parameter bifurcation
diagrams of continuous systems, with one important caveat: the continuation methods
used for continuous bifurcation diagrams trace out the behavior of a system across all
possible initial conditions. In contrast, our figures are constructed via simulation. Thus
they depict the long-time behavior that results from a single set of initial conditions.
The fourth type of figure, described in Appendix A.4, considers the change in total
population size between the disease-free and with-disease systems (Figs. 4, 6).

A.1 Simulation trajectories

Long-time simulations were conducted using a specified set of model parameters and
initial conditions by updating System (2) for 10,048 generations. The first 10,000
generations were discarded as transients and the final 48 generations were assumed to
be representative of the long-time behavior of the system. See Appendix A.2 for an
explanation of the choice of 48 generations.

A.2 Summary of long-time behavior

Scatter plots depict the long-time behavior of a discrete-time system with respect to a
chosen parameter as it varies (Fig. 8). Data for the diagrams are collected via a series
of simulations in which the value of one parameter is varied across the series while all
others, including initial conditions, are held constant. The system was simulated for
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10,048 generations and the first 10,000 generations were discarded as transient. The
observed population counts during the remaining 48 generations form the data for the
figure. Forty-eight generations was chosen to allow for three realizations of each value
in a 16-cycle trajectory.

A.3 Heat maps depicting cyclic behavior

Each cell in the heat maps of cyclic behavior depicts the quantity of distinct points in
the long-time behavior of a simulation trajectory for a fixed set of model parameters
and initial conditions (Figs. 2, 7). The data is obtained from a series of long-time
simulations using a technique identical to that Appendix A.2. After each simulation,
the quantity of unique points in the long-time behavior of the system is determined
using the unique function in MATLAB after first rounding the data points to seven
decimal places. Rounding to seven decimal places was chosen to numerically match
points between the disease-free and with-disease systems when (μ, w̃) = (0, 0) and
we know the total populations should be equivalent. Trajectories with more than 16
distinct points in their long-time behavior are binned into a single 17+ category that
contains both higher-order cycles and presumably aperiodic or chaotic behavior.

A.4 Hydra effect diagrams

To measure the capacity of disease to induce a hydra effect in our system, we first
calculated the average population size (as described inAppendixA.5). The systemwas
classified as exhibiting hydra effect if the total population of the with-disease system
was greater than the corresponding disease-free system. Due to potential numerical
errors, particularly in chaotic regions, we show 0–5% increase in population size in
gray-scale and greater than 5% increase in color-scale. The 5% threshold was chosen
as it was sufficient to avoid spurious detection of the hydra effect in equivalent with-
disease anddisease-free systems, i.e. for (μ, w̃) = (0, 0),whenusing 2000generations
to calculate the population averages. This spurious behavior arises out of the sensitivity
to initial conditions in the chaotic regions (see Appendix A.5) and can be reduced by
increasing the quantity of time points used in the average curve calculations (Fig. 9).
While we did observe a further decrease in the differences between averages when
increasing the number of points averaged, there were diminishing returns. Thus, 2,000
generations was chosen as a compromise between a sufficient accuracy and reasonable
computational time.

A.5 Average curves

The red and blue average curves in each long-time behavior scatter plot (Fig. 8) were
constructed using a series of long-time simulations similar to that in Appendix A.2,
except that the systemwas simulated for 12,000 generations rather that 10,048. For the
average curves, the first 10,000 generations were discarded as transient, and the final
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2000 generations retained. The data from the 2000 retained generations corresponding
to each parameter value were then averaged.

When (μ, w̃) = (0, 0), the total population of the disease-free and with-disease
systems are mathematically identical. However, in the chaotic regions, there is sen-
sitivity to initial conditions such that trajectories of the equivalent with-disease and
disease-free systems separate (Fig. 5). Increasing the number of points considered in
the average reduces the difference in the average total population size between the
disease-free and with-disease systems (Fig. 9). As mentioned above in Appendix A.3,
the choice of averaging 2,000 generations was a compromise between accuracy and
computation time. Furthermore, we choose to show hydra effect below 5% in gray-
scale because the 5% threshold provides complete accuracy of the known lack of
hydra effect in the (μ, w̃) = (0, 0) case with our choice of averaging across 2000
generations (Fig. 10).

Appendix B: Justification of analytical results

Here, we provide support for analytical results presented.

B.1 Derivation of classical hydra effect from a fixed point

The classical definition of a hydra-effect for a single compartment model is

∂T ∗

∂α
> 0

for a parameter α which decreases individual fitness and T ∗ being a fixed point.
For a two-compartment model with fixed point (S∗, I ∗), consider System (4), where

S∗ and I ∗ are implicit functions of a parameter α. Taking the derivative of the system
with respect to α, we find

(
∂S∗
∂α
∂ I ∗
∂α

)
=

(
∂ fS
∂S

∂ fS
∂ I

∂ f I
∂S

∂ f I
∂ I

) ∣∣∣∣
(S∗,I ∗)

(
∂S∗
∂α
∂ I ∗
∂α

)
+
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∂ f I
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)
+

(
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) ∣∣∣∣
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,

where J is the Jacobian. Rearranging and solving for ∂S∗
∂α

and ∂ I ∗
∂α

, we find

(
∂S∗
∂α
∂ I ∗
∂α

)
= −(J − I2)−1

∣∣∣∣
(S∗,I ∗)

(
∂ fS
∂α
∂ f I
∂α

) ∣∣∣∣
(S∗,I ∗)

= −1

|J − I2|

(
∂ f I
∂ I − 1 − ∂ fS

∂ I
− ∂ f I

∂S
∂ fS
∂S − 1

) ∣∣∣∣
(S∗,I ∗)

(
∂ fS
∂α
∂ f I
∂α

) ∣∣∣∣
(S∗,I ∗)

123



   60 Page 24 of 35 L. F. Strube et al.

= −1

|J − I2|

⎛
⎝
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.

Thus, System (4) exhibits a classical hydra effect with respect to a parameter α if

∂T ∗

∂α
=

−
((

∂ f I
∂ I − 1

)
∂ fS
∂α

− ∂ fS
∂ I

∂ f I
∂α
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+
(

∂ fS
∂S − 1

)
∂ f I
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)
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∣∣∣∣
(S∗,I ∗)

> 0.

B.2 Restatement and proof of Theorem 1

Theorem (Restatement of Theorem 1)Given System 2with fixed point T ∗, if ln
( r
d

)
<

wbd
β(1−d)

and there is a hydra effect when μ is the hydra effect parameter, i.e.,

∂T ∗

∂μ
> 0,

then there is also a hydra effect when w̃ is the hydra effect parameter, i.e.

∂T ∗

∂w̃
> 0.

Proof of Theorem 1 Let f ∗
S = fS(S∗, I ∗) and f ∗

I = f I (S∗, I∗) represent a fixed point
solution of System (4) and let J̄ represent the modified version of the Jacobian given
by

J̄ = J − I2 =
(

∂ f ∗
S

∂S − 1
∂ f ∗

S
∂ I

∂ f ∗
I

∂S
∂ f ∗

I
∂ I − 1

)
=

(
J11 − 1 J12
J21 J22 − 1,

)

where

J11 = (
r − br

(
S∗ + w I ∗)) e−b(S∗+w I ∗) + (1 − d) e−β I ∗

J12 = (
rw − brw

(
S∗ + w I ∗)) e−b(S∗+w I ∗) − β (1 − d) S∗e−β I ∗

J21 = (1 − d)
(
1 − e−β I ∗)

J22 = (1 − d)(1 − μ) + β(1 − d)S∗e−β I ∗
.

Recall that w = 1 − w̃.

Hydra effect with μ From our definition of hydra effect, if μ is the hydra effect
parameter, the hydra effect is present at a fixed point if and only if

−1∣∣J̄∣∣
(

−∂ f ∗
S

∂ I
+

(
∂ f ∗

S

∂S
− 1

))
∂ f ∗

I

∂μ
> 0,
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since
∂ f ∗

S
∂μ

= 0, which simplifies to

1∣∣J̄∣∣
(

−∂ f ∗
S

∂ I
+ ∂ f ∗

S

∂S
− 1

)
> 0,

as
∂ f ∗

I
∂μ

< 0.
We first focus on the sign of the non-determinant part of our hydra effect condition

with the parameter μ, i.e,

∂ f ∗
S

∂S
− 1 − ∂ f ∗

S

∂ I
= J11 − 1 − J12.

To show that this term is always negative, we show that J11 − 1 < J12. Combining
terms and using Lemma 2 (the proof for Lemma 2 in found in Appendix B.3) as well
as our condition in Theorem 1, i.e. ln

( r
d

)
< wbd

β(1−d)
, we find

J11 − J12 − 1 = w̃
(
r − br(S∗ + w I ∗)

)
e−b(S∗+w I ∗) + w̃(1 − d)e−β I ∗

+ w(1 − d)e−β I ∗ + β(1 − d)S∗e−β I ∗ − 1

< w̃ + w(1 − d) + β

b
(1 − d) ln

( r
d

)
− 1

< w̃ + w(1 − d) + wd − 1

= 0.

As J11 − J12 − 1 < 0, the sign of this term in the hydra effect condition is negative,
and presence of the hydra effect is determined by the sign of the determinant of J̄,
such that hydra effect is determined by

1∣∣J̄∣∣ < 0.

Thus, follows that there is a hydra effect if and only if J̄ has negative determinant.
Thus, we next focus on the sign of J̄ and thus the signs of the elements of J̄.

Note that J21 ≥ 0 as d ∈ [0, 1] and I ∗ ≥ 0.
Next, we show that J11 − 1 < 0 by showing J11 < 1. To this end, we divide both

sides of the first equation in System (2) evaluated at the fixed point by S∗ to obtain

1 = re−b(S∗+w I ∗) + rw
I ∗

S∗ e
−b(S∗+w I ∗) + (1 − d)e−β I ∗

and rearrange to get

1 − rw
I ∗

S∗ e
−b(S∗+w I ∗) = re−b(S∗+w I ∗) + (1 − d)e−β I ∗

.
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The right hand side appears in J11, thus

J11 = re−b(S∗+w I ∗) − br
(
S∗ + w I ∗) e−b(S∗+w I ∗) + (1 − d) e−β I ∗

,

= 1 − rw
I ∗

S∗ e
−b(S∗+w I ∗) − br

(
S∗ + w I ∗) e−b(S∗+w I ∗),

< 1,

because at the endemic equilibrium, S∗ > 0 and I ∗ > 0, thus I ∗
S∗ > 0 and S∗ +w I ∗ >

0, and all parameters are positive. Thus, J11 − 1 < 0.
Given the condition in Theorem 1, it follows that ln

( r
d

)
< bd

β(1−d)
, and using

Lemma 2, then

J22 < 1 − d + (1 − d)(βS∗)e−β I ∗

< 1 − d + (1 − d)
β

b
ln

( r
d

)
,

< 1,

meaning that J22 − 1 < 0.
We do not have an explicit bound on J12 for guaranteeing J̄ has negative determinant

and thus for the presence of the hydra effect. However, it follows that there is a hydra
effect if and only if J̄ has negative determinant.

Hydra effect with w̃ From our definition of hydra effect, if w̃ is the hydra effect
parameter, the hydra effect is present at a fixed point if and only if

−1∣∣J̄∣∣
((

∂ f ∗
I

∂ I
− 1

)
− ∂ f ∗

I

∂S

)
∂ f ∗

S

∂w̃
> 0,

as
∂ f ∗

I
∂w̃

= 0. This can be rewritten in terms of the elements of J̄ as

−1∣∣J̄∣∣ (J22 − 1 − J21)
∂ f ∗

S

∂w̃
> 0.

As we previously showed J22 − 1 < 0 and J21 > 0, J22 − 1 − J21 < 0, and the
condition simplifies to

1∣∣J̄∣∣
∂ f ∗

S

∂w̃
> 0.

We consider two cases, depending on the sign of
∂ f ∗

S
∂w̃

.
In the first case, assume that b(S∗ + (1 − w̃)I ∗) < 1 as from the first equation in

System (2), we know that
∂ f ∗

S
∂w̃

< 0 if and only if

b(S∗ + (1 − w̃)I ∗) < 1.
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Then, if w̃ is the hydra effect parameter, the hydra effect is present if and only if

1∣∣J̄∣∣ < 0.

In this case, we do not have an explicit bound on J12 for guaranteeing J̄ has negative
determinant and thus for the presence of the hydra effect. However, it follows that
there is a hydra effect if and only if J̄ has negative determinant. As this is the same
condition for the hydra effect with μ as the parameter, if there is a hydra effect for w̃,
there is also a hydra effect with μ under the conditions in Theorem 1 with ∂ fS

∂w̃
< 0.

For the second case, we assume b(S∗ + w I ∗) > 1, which implies that ∂ fS
∂w̃

> 0.
Thus, there is a hydra effect when w̃ is the hydra effect parameter if and only if

1∣∣J̄∣∣ > 0.

We note that b(S∗ + w I ∗) > 1 yields J12 < 0, so J̄ has positive determinant.
Therefore, there is a hydra effect when w̃ is the hydra effect parameter, but no hydra
effect when μ is the hydra effect parameter, and the statement in Theorem 1 follows.

�	
Examining the conditions for which |J − I2| < 0 (where is the Jacobian of Sys-

tem (4) evaluated at the fixed point) we note that given our condition in Theorem 1, a
necessary condition for the hydra effect (regardless of whetherμ or w̃ are hydra effect
parameters) is J12 > 0. Moreover, a sufficient condition is J22 + J21, J11 + J21 < 1.

B.3 Restatement and proof of Lemma 2

Lemma (Restatement of Lemma 2)Considering System (2), the unique endemic equi-
librium (S∗, I ∗) satisfies

S∗ + w I ∗ < S̄∗.

Proof of Lemma 2 As we are considering Ricker growth, let f (x) = re−bx . Since f
is monotonically decreasing, it is sufficient to show that d = f (S̄) < f (S∗ + w I ∗).
Recall from system 1 that d = f (S̄) by

d S̄∗ = g(S̄∗) = r S̄∗e−bS̄∗ = S̄∗ f (S̄∗).

To this end, we add together the two equations in system (2), which yields that

T ∗ = (S∗ + w I ∗) f (S∗ + w I ∗) + (1 − d)S∗ + (1 − d)(1 − μ)I ∗,
= (S∗ + w I ∗) f (S∗ + w I ∗) + (1 − d)T ∗ − μ(1 − d)I ∗,
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and

dT ∗ = f (S̄)T ∗ = (S∗ + w I ∗) f (S∗ + w I ∗) − μ(1 − d)I ∗,
< (S∗ + w I ∗) f (S∗ + w I ∗).

Since T ∗ ≥ S∗ + w I ∗, we must have that f (S̄) < f (S∗ + w I ∗), and S∗ + w I ∗ < S̄.
�	

B.4 Restatement and proof of Lemma 3

Lemma (Restatement of Lemma 3) A fixed point of the System (2) is equivalent to a
fixed point of the equation

ln (1 − Cz) = z
(
ln (A + Bz) − ln(1 + Dz) − D ln(1 − Cz)

)
, (B1)

where

z := β I

bS
, A := d

r
, B := b(1 − ν)

βr
, C := b(1 − ν)

β(1 − d)
, D := bw

β
,

and ν := (1 − d)(1 − μ).

Proof of Lemma 3 From our original System (2) consider the simplification where

x := bS,

y := β I ,

which gives

xt+1 = r

(
xt + bw

β
yt

)
e
−

(
xt+ bw

β
yt

)
+ (1 − d)xte

−yt ,

yt+1 = β(1 − d)

b
xt

(
1 − e−yt

) + (1 − d)(1 − μ)yt , (B2)

Fixed points of System (2), which are equivalent to fixed points of System (B2),
must satisfy

x∗ = r

(
x∗ + bw

β
y∗

)
e
−

(
x∗+ bw

β
y∗

)
+ (1 − d)x∗e−y∗

,

y∗ = β(1 − d)

b
x∗ (

1 − e−y∗) + (1 − d)(1 − μ)y∗, (B3)
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which, by dividing both equations by x∗ and setting z := y∗
x∗ simplifies to

e−x∗−Dy∗ = A + Bz

1 + Dz
,

e−y∗ = 1 − Cz, (B4)

where A, B, C , D, and ν are defined in the statement of Lemma 3.
Taking the logarithm of both sides and dividing the first equation by the second

gives

1 + Dz

z
= ln

(
A + Bz

1 + Dz

)
ln−1(1 − Cz),

which can be rewritten as

ln (1 − Cz) = z
(
ln (A + Bz) − ln(1 + Dz) − D ln(1 − Cz)

)
.

�	

B.5 Restatement and proof of Lemma 4

Lemma (Restatement of Lemma 4) The endemic equilibrium (satisfying I ∗ > 0)
exists and is unique.

Proof of Lemma 4 We first note that (0, 0) is always a solution for (B2). Another
disease-free equilibrium is given by (0,− ln (d/r)). We now analyze the solutions
of the system (B4) for endemic equilibria, noting that each solution uniquely deter-
mines x∗, y∗ in (B2).

We begin with the case w̃ = 0. Here, we always have a solution z = 0. We next
observe that the function f (z) := ln(1 − Cz) is strictly concave in (0, 1/C) forC > 0,
while the function g0(z) := z ln(A + Bz) is strictly convex in (0,∞) for A, B > 0.
In particular, f (z) = g0(z) cannot have more than two solutions. We can show that
the second (endemic) solution for f (z) = g0(z) exists if and only if

A < e−C . (B5)

In particular, if A < e−C , we have f ′(0) > g′
0(0), and since f (1/C) = −∞ and

g0(1/C) > −∞, the two graphs have to intersect for some z ∈ (0, 1/C). On the other
hand, if A ≥ e−C , then it follows from f ′′ < 0, g′′

0 > 0 on [0, 1/C) that f ′(z) < g′
0(z)

for all z ∈ (0, 1/C), and so f (z) < g0(z) as well. Thus the two graphs intersect only
at 0.
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The same argument shows that the condition (B5) persists for w̃ > 0 as well,
provided the function

gw̃(z) := z (ln (A + Bz) − ln (1 + w̃z) − w̃ ln(1 − Cz))

is strictly convex in (0, 1/C). This is true for allC ≥ 3, for example, which is sufficient
for our purposes. �	

B.6 Restatement and proof of Theorem 5

Theorem (Restatement of Theorem 5) Given a fixed point (S∗, I ∗) for System (2),
which is equivalent to afixedpoint z∗ for theEq. (B1), sufficient conditions to guarantee
an increase in population size when infection is introduced (infection-induced hydra
effect) are

w < 1 − β

b
and d ≥ 1

2
.

We note that the existence of the hydra effect is independent of μ.

Proof of Theorem 5 To begin, consider the simplified System (B4), which assumes the
existence of an endemic equilibrium. Raise the second equation to power b

β
(1 − w)

and then multiply together the left hand sides and right hand sides of these equations
to obtain

e−x∗−Dy∗ · e− b
β
(1−w)y∗ = A + Bz

1 + Dz
(1 − Cz)

b
β
(1−w)

,

which simplifies to

e−x∗− b
β
y∗ = A + Bz

1 + Dz
(1 − Cz)

b
β
(1−w)

. (B6)

Notice that the left hand side is equivalent to e−b(S∗+I ∗).
Recall, that we want conditions for which the endemic equilibrium is larger than

the disease-free equilibrium, which is given by System (B4) when y∗ = β I ∗ = 0.
This reduces to

e−x̄∗ = A,

where x̄ = bS̄, refers to the solution to the disease-free system.
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Thus, we want the right hand side of Eq. (B6) to be smaller than e−x̄∗ = A, which
would imply−bS∗−bI ∗ < −bS̄∗ and, thus S̄∗ < S∗+ I ∗. This represents an increase
in total population size with infection, or hydra effect. Thus, we want

e−b(S∗+I ∗) = e−x∗− b
β
y∗ = A + Bz

1 + Dz
(1 − Cz)

b
β
(1−w)

< A.

Focusing on the right most inequality, this is equivalent to

(
1 + B

A
z

)
(1 − Cz)

b
β
(1−w)

< 1 + Dz.

For this inequality to hold, it is sufficient to have b
β
(1 − w) > 1 and B

A ≤ C , because

(
1 + B

A
z

)
(1 − Cz)

b
β
(1−w)

< (1 + Cz) (1 − Cz)
b
β
(1−w)

,

< (1 + Cz)
(1 − Cz)

(1 − Cz)
(1 − Cz)

b
β
(1−w)

,

<
(
1 − C2z2

)
(1 − Cz)

b
β
(1−w)−1

,

< 1,< 1 + Dz.

The first condition, b
β
(1 − w) > 1, simplifies to w < 1 − β

b . The second condition,
B
A ≤ C , simplifies to d ≥ 1 − d. As d ∈ [0, 1], this implies d ≥ 1

2 . �	

Appendix C: Supplemental results

See Appendix Figs. 9 and 10.
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Fig. 9 Sensitivity to initial conditions in chaotic regimes creates differences in average population size. Top
row: 10,000 transients and 1000 generations averaged.Middle row: 10,000 transients and 2000 generations
averaged. Bottom row: 10,000 transients and 5000 generations averaged. Left column: Average total popu-
lation size of the disease-free system (red dots) and the with-disease system (blue circles). Right column:
Absolute difference between average populations of the disease-free and with-disease systems. Baseline
parameters except r = 175. Standard simulation conditions with (S0, I0) = (150, 20) (Color figure online)
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Fig. 10 Numerical error induced apparent increase in population size when systems are mathematically
equivalent. a Length of long-time population cycles of System (1) and b population size increase with
respect to the parameters d and r for (μ, w̃) = (0, 0) with all other parameters at baseline values except:
d ∈ [0 : 0.001 : 1], r ∈ [0 : 0.5 : 320]. For a, colorbar: number of unique points in a cycle. For b,
colorbar: black indicates a reduction in population; gray-scale indicates 0–5% increase in population over
the disease-free system; color-scale indicates > 5% increase in population, represented by fold-change.
Standard simulation conditions with (S0, I0) = (150, 20) (Color figure online)
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