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Abstract
We present a mathematical model of an experiment in which cells are cultured within
a gel, which in turn floats freely within a liquid nutrient medium. Traction forces
exerted by the cells on the gel cause it to contract over time, giving a measure of the
strength of these forces. Building upon our previous work (Reoch et al. in J Math Biol
84(5):31, 2022), we exploit the fact that the gels used frequently have a thin geometry
to obtain a reduced model for the behaviour of a thin, two-dimensional cell-seeded
gel. We find that steady-state solutions of the reduced model require the cell density
and volume fraction of polymer in the gel to be spatially uniform, while the gel height
may vary spatially. If we further assume that all three of these variables are initially
spatially uniform, this continues for all time and the thin film model can be further
reduced to solving a single, non-linear ODE for gel height as a function of time. The
thin film model is further investigated for both spatially-uniform and varying initial
conditions, using a combination of analytical techniques and numerical simulations.
We show that a number of qualitatively different behaviours are possible, depending
on the composition of the gel (i.e., the chemical potentials) and the strength of the
cell traction forces. However, unlike in the earlier one-dimensional model, we do not
observe cases where the gel oscillates between swelling and contraction. For the case
of initially uniform cell and gel density, our model predicts that the relative change in
the gels’ height and length are equal, which justifies an assumption previously used in
thework of Stevenson et al. (Biophys J 99(1):19–28, 2010). Conversely, however, even
for non-uniform initial conditions, we do not observe cases where the length of the gel
changes whilst its height remains constant, which have been reported in another model
of osmotic swelling by Trinschek et al. (AIMSMater Sci 3(3):1138–1159, 2016; Phys
Rev Lett 119:078003, 2017).
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1 Introduction

Tissues in vivo consist of cells living within an extracellular matrix (ECM) comprising
a complex network of proteins, glycoproteins, and polysaccharides that surrounds and
supports cells within tissues. The ECM provides structural support, forming a scaffold
that holds cells together and provides a framework for tissue organisation. It also helps
to regulate cell behaviour and tissue function. For example, the ECMcontains adhesive
proteins, such as fibronectin and laminin, which allow cells to attach to the matrix.
This adhesion is essential for cell anchoring and migration, influencing processes like
wound healing and tissue regeneration. The ECMacts as a reservoir for growth factors,
cytokines, and other signalingmolecules. Thesemolecules are storedwithin thematrix
and can be released in response to specific stimuli, influencing nearby cells. It also
contributes to the mechanical properties of tissues, such as elasticity, stiffness, and
tensile strength (Rozario andDeSimone2010;Frantz et al. 2010;Humphrey et al. 2014;
Dolega et al. 2021). During tissue development and morphogenesis, the ECM guides
cell migration, and tissue architecture and shape. It provides spatial cues that direct cell
movements and influences the formation of complex tissue structures (Dyson et al.
2016). Importantly, the interactions between cells and the ECM are reciprocal: the
ECM is dynamically regulated and can undergo remodeling and degradation by the
cells e.g., through the secretion of enzymes called matrix metalloproteinases (MMPs).
This process is crucial for tissue repair, regeneration, and remodeling after injury or
during normal physiological processes.

In order to recreate a more in vivo-like cellular environment in vitro, cells are often
cultured within a gel that emulates (to some degree) the ECM. Collagen, a structural
protein that constitutes a major component of the ECM in many animal tissues, is
commonly utilized in laboratory studies for this purpose. However, a diverse range
of other natural (e.g., Matrigel) or synthetic (e.g., poly(lactic acid)) gels are also
employed (Wade and Burdick 2012). Improved understanding of the mechanics of
such gels, and of the interactions between cells and the gel, will yield deeper insight
into tissue development and functionality. One well-known experiment used to study
and quantify how cells remodel the extracellular matrix is the collagen gel contraction
assay (Moon and Tranquillo 1993; Barocas et al. 1995). In this assay, cells are cultured
within a gel made of collagen, which in turn floats within a bath of nutrient medium.
As the cells exert force, they compress the collagen fibres, leading to a reduction in the
size of the gel over a period of hours or days. Whilst other gel geometries have been
used (e.g., microspheres (Moon and Tranquillo 1993)), a thin disc shape is common,
due to ease of fabrication (Vernon and Gooden 2002; Stevenson et al. 2010). Whilst it
is expected that cell-induced compaction leads to a reduction in both the diameter and
height of the collagen disc, typically the extent of contraction is assessed bymeasuring
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only the diameter or the area of the disc (Vernon and Gooden 2002; Stevenson et al.
2010).

In an earlier paper, we developed a model for cell-induced gel compaction incorpo-
rating osmotically-driven movement of solvent in or out of the gel (Reoch et al. 2022).
This model treats the gel as a two-phase fluid, consisting of polymer and solution,
based on previous work (Keener et al. 2011b, a; Mori et al. 2013). However, it addi-
tionally includes an equation for the cell density, with the cells exerting a body force
on the polymer; mechanical changes in the gel due to this body force were assumed to
occur on a short timescale compared with that of cell proliferation and death, so that
proliferation and death were neglected. This is reasonable where mechanical changes
occur over hours and cell proliferation and death occurs over days. The resulting sys-
tem of equations was then investigated in a one-dimensional geometry (Reoch et al.
2022). Motivated by the thin geometry commonly used in experiments, in this paper
we investigate the behaviour of two-dimensional thin films of gel floating freely in a
bath of solvent. We study the 2D Cartesian coordinate system for simplicity of mod-
elling and to facilitate comparison with the 1D Cartesian model presented in earlier
work. We continue to neglect cell proliferation and death, assuming the timescale of
these process to be much longer than remodelling of the gel under the influence of cell
forces. Our two aims are: firstly, to understand the mechanics of the gel in the thin film
geometry; and secondly, to compare the emergent behaviours in this system to those in
the 1D case. Once more, we hypothesise that the balance between chemical potentials
and cell traction stress will be crucial in determining the equilibrium outcome for the
gel. To our knowledge, such a model considering the interacting effects of cell traction
and osmotic pressure in the thin film geometry has not previously been presented.

Thin film complex fluid models have been employed in a range of biological appli-
cations, including modelling cell crawling (Oliver et al. 2005; King and Oliver 2005)),
pattern formation in cell aggregation (Green et al. 2017), and osmotically-driven
biofilm growth (Trinschek et al. 2016, 2017). In each case, as in the prototype problem
of stretching a thin filmof viscous fluid studied byHowell (1996), the small aspect ratio
of the film (the ratio of its vertical to horizontal length scales) is exploited to reduce
the two-dimensional mass and momentum balance equations to a one-dimensional
system at leading order. However, we note that, compared to single-phase fluid mod-
els, the two-phase fluid models often require additional assumptions about the relative
sizes of some of the parameters in the problem, in order to obtain a one-dimensional
reduction. For example, in Green et al. (2017) the parameters describing drag and cell
chemotactic effects relative to viscosity were assumed to be large. The chemotaxis
scaling encodes the assumption that this is the main driver of cell movement, while
the drag scaling couples together the movement of cell and culture medium phases.
These scalings were crucial for a non-trivial leading order model to be derived. We
make similar assumptions in the model reduction presented here.

This paper is organised as follows. In Sect. 2 we present and nondimensionalise
the two-dimensional governing equations and boundary conditions of our model. By
exploiting the thin geometry of the film, in Sect. 3 we reduce this model to a system of
one-dimensional equations for the leading-order polymer volume fraction andvelocity,
cell density, film height and film length. Conditions for steady state solutions are then
presented in Sect. 4. In Sect. 5, we show that when the initial conditions are spatially
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Fig. 1 Thin film domain � = �g ∪ �s . �g is the gel region with θp > 0, θs > 0 and cell density n ≥ 0.
�s is the region of pure solvent surrounding the gel wherein θp = n = 0 and θs = 1. The gel is symmetric
about the x-axis and y-axis, and the ratio of gel height to length is small

uniform, the thin film model can be further reduced to a single ordinary differential
equation for the film height as a function of time, and present numerical solutions
in this case. In Sect. 7, we consider the behaviour of small spatial perturbations to
the initial conditions, before undertaking numerical simulations of the full spatially-
varying thin film model in Sect. 8. The paper concludes in Sect. 9 with a discussion of
our main results, and suggestions for future work.

2 Mathematical model

We consider a thin layer of gel consisting of polymer and solvent, which is seeded
with cells, and floats freely within a bath of solvent. The set-up is illustrated in Fig. 1.
The gel domain is denoted by �g , and the surrounding pure solvent domain by �s .
We adopt a two-dimensional, Cartesian geometry, with spatial coordinates x = (x, y).
The gel is assumed to be symmetric about y = 0 and x = 0, with free boundaries at
y = ±h(x, t) such that the gel height is 2h(x, t), as well as vertical free boundaries
at each end x = ±L(t) giving a gel length of 2L(t). The centre-line of the gel is fixed
at y = 0. This allows us to restrict our attention to the region 0 ≤ y ≤ h, 0 ≤ x ≤ L .
We assume that all quantities are continuous and differentiable across x = 0 and
y = 0. Terms in the external solvent region �s will henceforth be denoted with the
superscript e; all other terms refer to quantities in the gel region�g . The thin gel layer
is characterised by a small aspect ratio ε, that is, a small vertical length scale relative
to the horizontal length scale (a fact we will exploit in Sect. 3).

Our mathematical model is the same as presented in Reoch et al. (2022) and Reoch
(2020), though we briefly recapitulate the equations here for completeness. We let the
volume fractions of the polymer and solvent be θp and θs , respectively, and assume
that their mass densities are equal. The cells are assumed to occupy negligible volume,
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and their density (number per unit volume) is denoted by n. (As explained in Reoch
et al. (2022), this latter assumption is based on information from the experimental
papers by Iordan et al. (2010) and Moon and Tranquillo (1993) which suggest the
volume fraction of the cells when seeded is often O(0.01) or lower.) We assume there
are no voids within the gel, so that

θp + θs = 1. (2.1)

The velocities of the polymer and solvent are denoted by

v p = (vp, wp), vs = (vs, ws), (2.2)

respectively, where vp is the polymer velocity in the horizontal direction and wp is
the polymer velocity in the vertical direction, and similarly for the solvent. Cells are
assumed tomove by advection with the polymer, and by randommotion with diffusion
coefficient D. Cell proliferation and death are taken to be negligible. Conservation of
mass for the polymer, solvent and cells then gives:

∂θp

∂t
+ ∂

∂x
(θpvp) + ∂

∂ y
(θpwp) = 0, (2.3a)

∂θs

∂t
+ ∂

∂x
(θsvs) + ∂

∂ y
(θsws) = 0, (2.3b)

∂n

∂t
+ ∂

∂x
(nvp) + ∂

∂ y
(nwp) = D

(
∂2n

∂x2
+ ∂2n

∂ y2

)
. (2.3c)

Adding equations (2.3a) and (2.3b) and using the no-voids condition θp + θs = 1
gives

∂

∂x

(
θpvp + θsvs

) + ∂

∂ y

(
θpwp + θsws

) = 0. (2.4)

Wemodel both the polymer and the solvent phases asfluidswith a commonpressure,
P . The polymer is treated as a viscous fluid, where the viscous stress is encapsulated
by the stress tensor σ p, related to the rate of strain tensor ep by

σ p = 2ηpep + κp I∇ · v p, ep = 1

2

(
∇v p + ∇v p

T
)

,

where the constants ηi and κi , i = p, s, are the dynamic and bulk viscosities, and I is
the identity tensor. Whilst similar assumptions are made for the solvent in Reoch et al.
(2022), here, for simplicity, we take the solvent viscosities ηs and κs to be zero as in
Green et al. (2017), which implies that the solvent stress tensor σ s = 0. As in Keener
et al. (2011b) and Reoch et al. (2022), we assume that the forces exerted on the two
phases come from inter-phase drag (which is proportional to the product of the volume
fractions of the two phases), chemical potential gradients and cell-generated forces
(which are exerted only on the polymer). We denote the (constant) drag coefficient
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by ξ , the chemical potentials for the polymer and solvent by μp(θp) and μs(θp),
respectively, and the cell force potential by G(n). Conservation of momentum for the
polymer and solvent phases then gives

∇ · (θpσ p) − θp∇μp − θp∇P + ∇(θpG) = ξθpθs(v p − vs), (2.5)

−θs∇μs − θs∇P = −ξθpθs(v p − vs). (2.6)

For the chemical potentials, we use the same forms as Keener et al. (2011b) and
Reoch et al. (2022). These are:

μp(θp) = f + θs
∂ f

∂θp
, μs(θp) = f − θp

∂ f

∂θp
, (2.7)

where f (θp) is the free energy per unit volume of gel. In turn, the free energy function
is given by

f (θp) = kBT
νm

(
θp

N
log(θp) + θs log(θs) + χθpθs + μ0

pθp + μ0
s θs

)
, (2.8)

where kB is the Boltzmann constant, T is temperature, νm is the characteristic volume
of a monomer in our system, N is the chain length of the polymer, χ is the Flory
interaction parameter and the constantsμ0

p andμ0
s are dimensionless quantities known

as the standard free energies of the polymer and solvent respectively. The logarithmic
terms in the function describe the entropy of mixing polymer and solvent; these terms
always encourage swelling in the gel. The latter terms involving χ , μ0

p and μ0
s can

increase the tendency for the gel to swell or contract depending on the signs of these
parameters. The χ term describes the energy of mixing, while the terms involving μ0

p

and μ0
s describe the interaction energy in a pure polymer or solvent state respectively

(Rubinstein and Colby 2003).
Likewise, following Reoch et al. (2022), for the cell potential we set

G(n) = τ0n2

1 + λn2
. (2.9)

The form of this function is similar to that used in earlier works, such as Murray
(2001), Moon and Tranquillo (1993), but differs by having a factor of n2 rather than
n in the numerator. This ensures that ∂G/∂n > 0 for all n, which implies that the cell
traction force,∇G = G ′(n)∇n, is directed up gradients of cell density. The parameter
τ0 ≥ 0 provides a measure for the strength of cell traction forces, and λ ≥ 0 is a
contact inhibition parameter, which reduces the force exerted by cells as they become
more densely packed.

Taking the sum of equations (2.6) and (2.5) and using the relation θp∇μp =
−θs∇μs (which can be derived from (2.7)) we can express equation (2.5) in the
form

∇ · (θpσ p) − ∇P + ∇(θpG) = 0. (2.10)
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Equations (2.6) and (2.10) are used as our momentum balance equations hereafter.

2.1 Boundary and initial conditions

Our model consists of equations (2.1), (2.3), (2.6) and (2.10), which require suitable
boundary and initial conditions. These will now be specified.

Firstly, we consider the motion of the free boundaries at y = h(x, t) and x = L(t),
which is given by the standard kinematic conditions

wp = ∂h

∂t
+ vp

∂h

∂x
at y = h, (2.11)

vp = dL

dt
at x = L. (2.12)

These conditions imply that polymer ‘particles’ on the gel’s surface must always
remain there. We further assume continuity of stress across these free boundaries,
hence

θpσ p · n̂ + [θpG − P]n̂ = 0, (2.13)

where the square bracket notation indicates the jump across the boundary. Note that
our assumption that the viscosity of the solvent is negligible implies zero tangential
stress. Following Mori et al. (2013) we assume that the solvent flux across the gel
boundary satisfies

Rθs(vs − v p) · n̂ = (
n̂ · σ e

s · n̂) − (
n̂ · σ s · n̂) + [P + μs], (2.14)

where, as before noted, the superscript e indicates a quantity in the solvent domain
external to the gel. This condition describes how the difference in pressure, chemical
potential, and solvent stress across the interface drives fluid flow into or out from the
gel, at a rate dependent on the resistance R ≥ 0 of the boundary (an increase in R
implies the boundary is less permeable to solvent flow).

Evaluating the force balance equation (2.6) in the solvent domain �s , we find that
the external pressure Pe is at most a function of time, i.e. Pe = Pe(t); we also note
that μe

s = f (0), where f (0) is constant.
For the cells, the assumed symmetry of the system about x = 0 implies

∂n

∂x
= 0 at x = 0. (2.15)

We impose no-flux cell boundary conditions on y = h and x = L , which implies

∇n · n̂ = 0, (2.16)

where n̂ is the unit outward-pointing normal. We assume that the centre of the gel at
(0, 0) is stationary. The assumed symmetries of the domain about x = 0 and y = 0
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imply that vp must be an odd function of x and an even function of y. They similarly
imply that wp is an even function of x and odd function of y. We assume that all the
velocities are differentiable throughout the domain. Hence we have:

vp(0, y, t) = 0,
∂vp

∂ y

∣∣∣∣
y=0

= 0, (2.17)

wp(x, 0, t) = 0,
∂wp

∂x

∣∣∣∣
x=0

= 0. (2.18)

Note that these conditions similarly hold for vs and ws and their derivatives, although
they will not be required for solving the model equations.

Initial conditions are required for θp, n, h, and L . We note that those for θp, n and
h must satisfy the assumed symmetries of the gel about x = 0 and y = 0. A variety of
suitable functional forms are considered in subsequent sections. A table summarising
the notation used in this paper is given in Appendix A.

2.2 Nondimensionalisation and scaling

We now re-scale and nondimensionalise our system to facilitate simplification and
analysis. We let L = L(0) be our length scale, N be a characteristic cell density
which we choose to be the average cell density at t = 0, and set the time scale to
be the ratio of polymer viscosity ηp to the free energy scale kBT /νm . We let H be
the height scale, and set this as the average height at t = 0. Thus, the aspect ratio is
defined as ε = H/L. We then nondimensionalise the independent variables as follows
(where tildes denote dimensionless quantities)

x = Lx̃, y = εLỹ, t = ηpνm

kBT
t̃,

with the dependent variables and functions being nondimensionalised thus:

n = N ñ, L(t) = LL̃(t̃), h = εLh̃ = Hh̃, vp = LkBT
ηpνm

ṽp, vs = LkBT
ηpνm

ṽs,

wp = εLkBT
ηpνm

w̃p, ws = εLkBT
ηpνm

w̃s, P = kBT
ε2νm

P̃, μs = kBT
ε2νm

μ̃s .

The forms of equations (2.1), (2.3a) and (2.3b) are unchanged upon re-scaling,
whilst equation (2.3c) becomes

∂ ñ

∂ t̃
+ ∂

∂ x̃
(ñṽp) + ∂

∂ ỹ
(ñw̃p) = D̃

∂2ñ

∂ x̃2
+ D̃

ε2

∂2ñ

∂ ỹ2
, (2.19)

where we have introduced the dimensionless diffusion coefficient,

D̃ = ηpνm

L2kBT
D. (2.20)

123



A two-phase thin-film model... Page 9 of 42    61 

Themomentum balance equations (2.6) and (2.10) (in the x and y directions respec-
tively) now take the form

θs
∂μ̃s

∂ x̃
+ θs

∂ P̃

∂ x̃
− ξ̃ θpθs(ṽp − ṽs) = 0, (2.21a)

θs
∂μ̃s

∂ ỹ
+ θs

∂ P̃

∂ ỹ
− ε2ξ̃ θpθs(w̃p − w̃s) = 0, (2.21b)

−∂ P̃

∂ x̃
+ ∂

∂ x̃

(
θp

τ̃0ñ2

1 + λ̃ñ2

)
+ ∂

∂ ỹ

(
θp

∂ṽp

∂ ỹ

)

+ε2
{

∂

∂ x̃

(
2θp

∂ṽp

∂ x̃
+ κ̃pθp

(
∂ṽp

∂ x̃
+ ∂w̃p

∂ ỹ

))
+ ∂

∂ ỹ

(
θp

∂w̃p

∂ x̃

)}
= 0,

(2.22a)

− 1

ε2

{
∂ P̃

∂ ỹ
− ∂

∂ ỹ

(
θp

τ̃0ñ2

1 + λ̃ñ2

)}
+ ε2

{
∂

∂ x̃

(
θp

∂w̃p

∂ x̃

)}

+ ∂

∂ ỹ

(
2θp

∂w̃p

∂ ỹ
+ κ̃pθp

(
∂ṽp

∂ x̃
+ ∂w̃p

∂ ỹ

))
+ ∂

∂ x̃

(
θp

∂ṽp

∂ ỹ

)
= 0, (2.22b)

where we have defined the dimensionless parameters

κ̃p = κp

ηp
, ξ̃ = ε2L2ξ

ηp
, τ̃0 = ε2νmN 2τ0

kBT
, λ̃ = N 2λ. (2.23)

Note that ξ̃ and τ̃0 are taken to beO(1). This reflects our assumptions that the unscaled
drag and cell traction parameters are large.

We now likewise nondimensionalise the boundary conditions. We begin by noting
that the kinematic boundary conditions (2.11) and (2.12) are unchanged in form after
being re-scaled. On y = h, the stress conditions (2.13) (in the normal and tangential
directions, respectively) and the solvent flux condition (2.14) now become:

− ε2
{
2θp

∂ṽp

∂ x̃
+ κ̃pθp

(
∂ṽp

∂ x̃
+ ∂w̃p

∂ ỹ

)}
∂ h̃

∂ x̃
+ ε2θp

∂w̃p

∂ x̃

−
(
P̃� − θp

τ̃0ñ2

1 + λ̃ñ2

)
∂ h̃

∂ x̃
+ θp

∂ṽp

∂ ỹ
= 0, (2.24)

− ε2θp
∂w̃p

∂ x̃

∂ h̃

∂ x̃
− θp

∂ṽp

∂ ỹ

∂ h̃

∂ x̃
+ 2θp

∂w̃p

∂ ỹ
+ κ̃pθp

(
∂ṽp

∂ x̃
+ ∂w̃p

∂ ỹ

)

− 1

ε2

(
P̃� − θp

τ̃0ñ2

1 + λ̃ñ2

)
= 0, (2.25)
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− R̃θs(ṽs − ṽp)
∂ h̃

∂ x̃

1√
ε2 ∂ h̃

∂ x̃

2 + 1

+ R̃θs(w̃s − w̃p)
1√

ε2 ∂ h̃
∂ x̃

2 + 1

= P̃� + μ̃s�,

(2.26)

where the non-dimensional resistance parameter is defined as

R̃ = ε3LR
ηp

, (2.27)

and we have introduced the notation P� = P − Pe and μs� = μs − μe
s . As with the

drag and cell traction parameters (ξ̃ and τ̃0 respectively) above, the scaled resistance
parameter is taken to be O(1), indicating that resistance is significant.

At at x̃ = L̃ , the stress and flux conditions (2.13) and (2.14) equivalent to those
above become

2θp
∂ṽp

∂ x̃
+ κ̃pθp

(
∂ṽp

∂ x̃
+ ∂w̃p

∂ ỹ

)
− 1

ε2

(
P̃� − θp

τ̃0ñ2

1 + λ̃ñ2

)
= 0, (2.28)

ε2θp
∂w̃p

∂ x̃
+ θp

∂ṽp

∂ ỹ
= 0, (2.29)

R̃θs(ṽs − ṽp) = ε(P̃� + μ̃s�). (2.30)

Rescaling the no-flux boundary condition (2.16) at ỹ = h̃ gives

−ε2 D̃
∂ ñ

∂ x̃

∂ h̃

∂ x̃
+ D̃

∂ ñ

∂ ỹ
= 0, (2.31)

whilst at x̃ = L̃ it becomes

D̃
∂ ñ

∂ x̃
= 0. (2.32)

The symmetry conditions on the velocities, (2.17) and (2.18), retain the same forms
after nondimensionalisation.

In order to simplify our notation, we henceforth drop tildes from dimensionless
quantities.

3 Thin film approximation

Wenow assume that ε � 1 and exploit this fact to obtain a simplified, one-dimensional
version of our model equations. We begin by expanding our variables in powers of ε:

θp = θp0 + εθp1 + ε2θp2 + · · · , n = n0 + εn1 + ε2n2 + · · · ,

h = h0 + εh1 + ε2h2 + · · · ,
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and similarly for θs , vp, vs , wp, ws , P and L . We then substitute these expansions
into our model equations. Unlike previous work discussed in Sect. 1, we expand our
variables here in powers of ε instead of ε2. This is due to theO(ε) term which appears
in interface condition (2.30) after themodel is re-scaled. Aswewill see, theO(ε) terms
do not contribute to the leading order model we derive below, but they are included
here for completeness.

3.1 The y-independence of the leading order dependent variables

We begin by showing that the leading order cell density n0, pressure P0, polymer
fraction θp0 and polymer axial velocity vp0 do not depend on y. This facilitates the
derivation of simplified mass and momentum equations, as we will demonstrate sub-
sequently.

Taking equation (2.19) at O(ε−2), we find

D
∂2n0
∂ y2

= 0. (3.1)

At leading order, the no-flux boundary condition (2.31) gives D∂n0/∂ y = 0 at y = h0.
Integrating (3.1) and applying this no-flux boundary condition, we have

D
∂n0
∂ y

= 0, (3.2)

and so n0 = n0(x, t). (Note that we have assumed D �= 0 to derive this result.) We
remark that, for our thin-film model to be consistent, this result implies we can only
impose initial conditions for n which are independent of y.

Considering (2.22b) at O(ε−2), we have

∂
0

∂ y
= 0, (3.3)

where we have defined
0 = P0−θp0G0, noting thatG0 = G(n0(x, t)). This implies
that


0 = 
0(x, t). (3.4)

From interface condition (2.25), at y = h0,

P0 − Pe
0 (t) − θp0G0 = 0. (3.5)

We have found that Pe
0 (t) and higher order equivalent terms do not feature in the final

system of equations; therefore, without loss of generality, we now set Pe = 0, and as
such, P� = P for each order of ε. Accordingly, applying (3.5), we find


0 = 0 	⇒ P0 = θp0G0. (3.6)
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We note that this result holds for all y and, accordingly, throughout the gel.
At O(1), equation (2.21b) yields

θs0
∂

∂ y

(
μs0 + θp0G0

) = 0, (3.7)

where μs0 = μs(θp0); therefore,

θs0

(
∂μs0

∂θp
+ G0

)
∂θp0

∂ y
= 0. (3.8)

Now, for (3.8) to hold, we must have that ∂θp0/∂ y = 0 or that ∂μs0/∂θp = −G0.
Given thatG0 is independent of y and thatμs0 = μs(θp0), both these conditions imply
that we must have

θp0 = θp0(x, t), (3.9)

i.e. at leading order, θp0 is independent of y, and accordingly,μs0 is as well. Similarly,
we have now found that P0 = P0(x, t) by equation (3.6). As noted for n0 above, for
equation (3.9) to be true at all times, it must also hold for the initial polymer fraction
θI (x, y), i.e. our initial condition must satisfy ∂θI (x, y)/∂ y = 0.

Using our definition for
0 together with equation (2.22a) at leading order, we have

−∂
0

∂x
+ ∂

∂ y

(
θp0

∂vp0

∂ y

)
= 0. (3.10)

Noting from (3.6) that 
0 = 0, (3.10) becomes

∂

∂ y

(
θp0

∂vp0

∂ y

)
= 0 	⇒ θp0

∂vp0

∂ y
= F1(x, t). (3.11)

From boundary condition (2.24) at O (1),

θp0
∂vp0

∂ y
= 0 at y = h0, (3.12)

and thus F1(x, t) = 0. Accordingly,

θp0
∂vp0

∂ y
= 0, 	⇒ vp0 = vp0(x, t), (3.13)

i.e. our leading order polymer axial velocity is independent of y.
From equation (2.21a) at leading order,

vs0 = vp0 − 1

ξθp0

(
∂μs0

∂x
+ ∂

∂x

(
θp0G0

))
. (3.14)
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Therefore, we also have leading order solvent axial velocity vs0 = vs0(x, t).
We now follow the same process to show, in Appendix B, that the O(ε) terms in

cell density n1, pressure P1, polymer fraction θp1 , and polymer axial velocity vp1 are
also independent of y. This simplifies later steps in our derivation of a leading-order
model.

3.2 Derivation of thin filmmass balance equations

Having now established that θp0 and vp0 are independent of y, the mass conservation
equation (2.3a) at leading order can be integrated with respect to y to give:

θp0wp0 = −
(

∂θp0

∂t
+ ∂

∂x
(θp0vp0)

)
y, (3.15)

(where we have used the fact thatwp0 = 0 at y = 0 to determine the arbitrary function
of x and t arising from the integration). The kinematic boundary condition at y = h0
states that

wp0 = ∂h0
∂t

+ vp0
∂h0
∂x

. (3.16)

Setting y = h0 in equation (3.15), and using (3.16) then yields

∂

∂t

(
θp0h0

) + ∂

∂x

(
θp0vp0h0

) = 0. (3.17)

This equation describes the mass conservation of polymer over the depth of the thin
film.

Similarly, integrating the solvent conservation of mass equation (2.3b) from y = 0
to y = h0, and noting that ws0 |y=0 = 0 gives

θs0ws0

∣∣∣∣
y=h0

= −y

(
∂θs0

∂t
+ ∂

∂x

(
θs0vs0

)) ∣∣∣∣
h0

0
= −h0

(
∂θs0

∂t
+ ∂

∂x

(
θs0vs0

))
.

(3.18)

From interface condition (2.26) at leading order, we also have

θs0ws0

∣∣∣∣
y=h0

= 1

R
(
μs0 − μe

s0 + θp0G0
) + θs0(vs0 − vp0)

∂h0
∂x

+ θs0wp0

∣∣∣∣
y=h0

.

(3.19)

Using (3.19) and the kinematic boundary condition (3.16) for wp0 at y = h0, we
obtain

∂

∂t

(
θs0h0

) + ∂

∂x

{
θs0h0

(
vp0 − 1

ξθp0

(
∂μs0

∂x
+ ∂

∂x
(θp0G0)

))}
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= − 1

R
(
μs0 − μe

s0 + θp0G0
)
, (3.20)

where we have substituted for vs0 using equation (3.14). Equation (3.20) describes the
advection of solvent within the gel. By taking linear combinations of equations (3.20)
and (3.17), we can obtain the following equations for h0 and θp0 :

∂h0
∂t

+ ∂

∂x

(
h0vp0 − h0θs0

ξθp0

(
∂μs0

∂x
+ ∂

∂x
(θp0G0)

))
= − 1

R
(
μs0 − μe

s0 + θp0G0
)
, (3.21)

∂θp0

∂t
+ vp0

∂θp0

∂x
+ θp0

h0

∂

∂x

(
h0θs0
ξθp0

(
∂μs0

∂x
+ ∂

∂x
(θp0G0)

))
= θp0

Rh0

(
μs0 − μe

s0 + θp0G0
)
.

(3.22)

In order to derive an expression for n0, we evaluate equation (2.19) at O(1). This
gives

∂n0
∂t

+ ∂

∂x
(n0vp0) + ∂

∂ y
(n0wp0) = D

∂2n0
∂x2

+ D
∂2n2
∂ y2

, (3.23)

which we express in the following form, noting that all terms on the right-hand side
are independent of y:

D
∂2n2
∂ y2

= ∂n0
∂t

+ ∂

∂x
(n0vp0) + n0

∂wp0

∂ y
− D

∂2n0
∂x2

. (3.24)

After integrating between y = 0 and y = h0, we have

D
∂n2
∂ y

∣∣∣∣
h0

0
=

(
∂n0
∂t

+ ∂

∂x
(n0vp0) + n0

∂wp0

∂ y
− D

∂2n0
∂x2

)
h0. (3.25)

We note that ∂n2/∂ y = 0 at y = 0 from the symmetry condition (2.15). From the
no-flux boundary condition (2.31) at y = h0, we find that at O(ε2),

D
∂n2
∂ y

= D
∂n0
∂x

∂h0
∂x

. (3.26)

On substituting in these expressions and rearranging, equation (3.25) becomes

(
∂n0
∂t

+ ∂

∂x
(n0vp0) + n0

∂wp0

∂ y

)
h0 − D

∂

∂x

(
h0

∂n0
∂x

)
= 0. (3.27)

Given that h0 > 0 in the gel, we divide by h0 and use (3.15) to substitute for wp0 ,
obtaining the mass conservation equation for n0,

∂n0
∂t

+ ∂

∂x
(n0vp0) − n0

θp0

∂θp0

∂t
− n0

θp0

∂

∂x

(
θp0vp0

) − D

h0

∂

∂x

(
h0

∂n0
∂x

)
= 0. (3.28)
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3.3 Derivation of an equation for vp0

Having derived equations for the polymer volume fraction, cell density and the height
of the film, we now close our system of leading-order thin-film equations by finding
an expression for vp0 .

At O(ε2) equation (2.22a) gives

∂

∂x

(
2θp0

∂vp0

∂x
+ κpθp0

(
∂vp0

∂x
+ ∂wp0

∂ y

))
− ∂
2

∂x

+ ∂

∂ y

(
θp0

∂wp0

∂x

)
+ ∂

∂ y

(
θp0

∂vp2

∂ y

)
= 0, (3.29)

where 
2 = P2 − θp0G2 − θp2G0 − θp1G1.
Next, we integrate equation (3.29) with respect to y from y = 0 to y = h0 to obtain

h0
∂

∂x

(
2θp0

∂vp0

∂x

)
+ h0

∂

∂x

(
κpθp0

∂vp0

∂x

)
+

∫ h0

0

(
∂

∂x

(
κpθp0

∂wp0

∂ y
− 
2

))
dy

= −
[
θp0

∂wp0

∂x
+ θp0

∂vp2

∂ y

]h0
0

. (3.30)

At y = h0, the boundary condition (2.24) at O
(
ε2

)
supplies

θp0
∂wp0

∂x
+ θp0

∂vp2

∂ y
=

(
2θp0

∂vp0

∂x
+ κpθp0

(
∂vp0

∂x
+ ∂wp0

∂ y

)
− 
2

)
∂h0
∂x

.

(3.31)

Further, by symmetry at y = 0, we have wp0(x, 0, t) = 0, and so ∂wp0/∂x = 0
at y = 0. We also have that vp2 is an even function of y about y = 0, and thus
∂vp2/∂ y = 0 at y = 0. Therefore, from equation (3.30),

h0
∂

∂x

(
2θp0

∂vp0

∂x

)
+ h0

∂

∂x

(
κpθp0

∂vp0

∂x

)
+

∫ h0

0

∂

∂x

(
κpθp0

∂wp0

∂ y
− 
2

)
dy

= −
(
2θp0

∂vp0

∂x
+ κpθp0

(
∂vp0

∂x
+ ∂wp0

∂ y

∣∣∣∣
y=h0

)
− 
2

∣∣∣∣
y=h0

)
∂h0
∂x

. (3.32)

Applying Leibniz’ integral rule in equation (3.32), after a little algebra we obtain

∂

∂x

(
2θp0

∂vp0

∂x
h0 + κpθp0

∂vp0

∂x
h0

)
+ ∂

∂x

∫ h0

0

(
κpθp0

∂wp0

∂ y
− 
2

)
dy = 0.

(3.33)
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Our next step is to eliminate the 
2 term in (3.33). To do this, we consider (2.22b)
at O(1), finding

∂

∂ y

(
2θp0

∂wp0

∂ y
+ κpθp0

∂vp0

∂x
+ κpθp0

∂wp0

∂ y

)
− ∂
2

∂ y
= 0,

	⇒ 2θp0
∂wp0

∂ y
+ κpθp0

∂vp0

∂x
+ κpθp0

∂wp0

∂ y
− 
2 = F3(x, t), (3.34)

where F3(x, t) is an arbitrary function. AtO(1), boundary condition (2.25) on y = h0
states that

2θp0
∂wp0

∂ y
+ κpθp0

∂vp0

∂x
+ κpθp0

∂wp0

∂ y
− 
2 = 0. (3.35)

Therefore, we find F3(x, t) = 0, and from (3.34),


2 = (2 + κp)θp0
∂wp0

∂ y
+ κpθp0

∂vp0

∂x
. (3.36)

We can now simplify the integral term in (3.33). After substituting in the expression
for
2 above andnoting that the resulting integrand is independent of y, equation (3.33)
becomes

∂

∂x

(
2θp0

∂vp0

∂x
h0 − 2θp0

∂wp0

∂ y
h0

)
= 0. (3.37)

Now, using equation (3.15) to substitute for thewp0 term, and integrating with respect
to x , we find

2h0

(
2θp0

∂vp0

∂x
+ ∂θp0

∂t
+ vp0

∂θp0

∂x

)
= F4(y, t). (3.38)

Since the left-hand side of this expression is independent of y, we must have F4 =
F4(t). On substituting from equations (3.15) and (3.36) into equation (3.38) we obtain

h0

(
2θp0

∂vp0

∂x
− 
2 + κpθp0

(
∂vp0

∂x
+ ∂wp0

∂ y

))
= F4(t). (3.39)

The interface condition (2.28) at x = L0 then supplies

2θp0
∂vp0

∂x
+ κpθp0

(
∂vp0

∂x
+ ∂wp0

∂ y

)
− 
2 = 0. (3.40)

Thus, we find F4 = 0, and equation (3.38) simplifies to

2θp0
∂vp0

∂x
+ ∂θp0

∂t
+ vp0

∂θp0

∂x
= 0, (3.41)
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which gives a leading order expression for the polymer axial velocity vp0 . We have
thus obtained a closed system of equations for h0, θp0 , n0 and vp0 - namely, (3.21),
(3.22), (3.28) and (3.41) - which constitutes our simplified thin-film model.

Finally, we note from the leading order interface condition (2.30) at x = L0 that
vs0 = vp0 . Substituting this into (3.14), we find, at x = L0,

∂μs0

∂x
= − ∂

∂x

(
θp0G0

)
. (3.42)

We also have no cell flux at x = L0, therefore ∂n0/∂x = 0, and we can express
equation (3.42) as

(
∂μs0

∂θp0
+ G0

)
∂θp0

∂x
= 0; (3.43)

this indicates that at x = L0 we must have ∂θp0/∂x = 0. For consistency, we will
always use initial conditions such that this boundary condition is satisfied.We note that
physically this may not always be true; this may lead to more complicated scenarios
(such as the existence of boundary layers) which we do not address here.

3.4 Summary of thin filmmodel equations

Given the length of the calculations in the preceding section, for convenience we now
summarise the system of thin filmmodel equationswhichwe consider in the remaining
sections of this paper. This comprises (3.22) for θp, (3.21) for h, (3.28) for n and
(3.41) for vp. (Note that henceforth, we drop the zero subscript denoting leading order
quantities to reduce notational clutter.) We eliminate ∂θp0/∂t from equation (3.41)
using (3.22), and after a little algebra, our system becomes:

∂θp

∂t
+ ∂

∂x

(
θpvp

) + θp
∂vp

∂x
= 0, (3.44a)

∂h

∂t
+ ∂

∂x

(
hvp

) − 2h
∂vp

∂x
= 0, (3.44b)

∂n

∂t
+ ∂

∂x

(
nvp

) + n
∂vp

∂x
− D

h

∂

∂x

(
h

∂n

∂x

)
= 0, (3.44c)

2h
∂vp

∂x
− ∂

∂x

{
θsh

ξθp

(
∂μs

∂x
+ ∂

∂x

(
θpG

))}
+ 1

R
(
μs − μe

s + θpG
) = 0. (3.44d)

The above system is subject to the boundary conditions

∂θp

∂x
= 0 at x = 0, L(t), (3.45a)

∂n

∂x
= 0 at x = 0, L(t), (3.45b)

∂h

∂x
= 0 at x = 0, (3.45c)
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vp = 0 at x = 0, (3.45d)
.

L = vp|x=L(t), (3.45e)

and initial conditions

θp(x, 0) = θI (x), n(x, 0) = nI (x), h(x, 0) = hI (x), L(0) = 1. (3.46)

Note that we take the initial condition θI (x) to be differentiable and to satisfy
∂θI (0)/∂x = 0, so that for all time, ∂θp/∂x |x=0 = 0. We similarly take the initial
height hI (x) to be differentiable and satisfy ∂hI /∂x |x=0 = 0, so that ∂h/∂x |x=0 = 0
for all time (required by the symmetry of the problem). Finally, we note that equation
(3.43) implies ∂θp/∂x |x=L(t) = 0, so our initial conditions must satisfy:

∂θI

∂x

∣∣∣∣
x=0

= ∂θI

∂x

∣∣∣∣
x=L(t)

= 0,
∂hI

∂x

∣∣∣∣
x=0

= 0. (3.47)

4 Steady state conditions

We now consider the steady state solutions of our thin film model (3.44). We being by
returning briefly to the conservative form of the polymer advection equation (3.17).
At equilibrium, this supplies

∂

∂x

(
θphvp

) = 0, ⇒ θphvp = 0, (4.1)

where we have integrated with respect to x and applied the zero velocity boundary
condition at x = 0. Given θp > 0 and h > 0 within the gel, this means that we must
have vp = 0 at equilibrium. Since L̇ = vp|x=L(t), we have L = L∗ (a constant). Then,
from equation (3.14), we have

vs = − 1

ξθp

∂

∂x

(
μs + θpG

)
. (4.2)

We note that since vp = 0, and vs = 0 at x = 0 by symmetry, we require vs = 0
throughout the gel, as there will otherwise be motion of the solution relative to the
polymer, and θp will vary in time. Hence, the right-hand side of (4.2) must be zero
at a steady state. Using these pieces of information, equation (6.1d) implies that we
must have

μs − μe
s + θpG = 0. (4.3)

We now turn to the cell advection–diffusion equation (6.1c), which reduces to

D

h

∂

∂x

(
h

∂n

∂x

)
= 0. (4.4)
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Assuming D > 0, integrating (4.4) and applying the no-flux boundary condition
(6.2b), we find,

h
∂n

∂x
= 0; (4.5)

given h > 0, this indicates that, at equilibrium,

∂n

∂x
= 0, (4.6)

and accordingly, n must be spatially uniform.
Using the fact that G = G(n), equation (4.3) now gives

∂

∂x

(
μs + θpG

) =
(

∂μs

∂θp
+ G

)
∂θp

∂x
= 0, (4.7)

and therefore, we must have

∂θp

∂x
= 0. (4.8)

Therefore, necessary and sufficient conditions for equilibrium in the thin film are
spatially uniform values θp = θ∗ and n = n∗ that satisfy (4.3). We note that there
are no restrictions on h, i.e. the height can be non-uniform in space at the gel’s steady
state. The equilibrium conditions (4.3) match those for a one-dimensional gel with
D �= 0, as presented in (Reoch et al. 2022). Therefore, any equilibrium solution for
θp and n in the 1D Cartesian model with D > 0, is an equilibrium of the thin film
model.

5 Reducedmodel for uniform initial conditions

Given spatially uniform initial conditions for θp, n and h, we now show that we can
simplify the thin film system of equations (3.44) and boundary conditions (3.45) to an
even simpler form. In this case, our model reduces to an ODE for h as a function of
time, with the other variables specified in terms of h.

We begin by setting the initial conditions to be

h|t=0 = 1, θp|t=0 = θI , n|t=0 = 1, L|t=0 = 1, (5.1)

where we have scaled h and n on the initial height and cell density respectively. Noting
that for uniform initial conditions, the free energy and cell force are also initially
uniform in x , this means that the velocity equation (6.1d) at initial time is

∂vp

∂x

∣∣∣∣
t=0

= − 1

2Rh

(
μs − μe

s + θpG
)
. (5.2)
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Given that the terms on the right hand side are all initially independent of x , the initial
velocity is

vp|t=0 = − 1

2Rh

(
μs − μe

s + θpG
)
x, (5.3)

where we have used the condition vp = 0 at x = 0.We can then verify from equations
(3.44a), (3.44b) and (3.44c) that θp, h and n are initially independent of x . By making
the ansatz that vp is linear in x , and θp, h and n are functions of time only, on
substituting into (3.44a), (3.44b) and (3.44c) we arrive at the system of ODEs:

dh

dt
= − 1

2R
(
μs − μe

s + θpG
)
, (5.4a)

vp(x, t) = − 1

2Rh

(
μs − μe

s + θpG
)
x = x

h

dh

dt
, (5.4b)

dθp

dt
= θp

Rh

(
μs − μe

s + θpG
) = −2θp

h

dh

dt
, (5.4c)

dn

dt
= n

Rh

(
μs − μe

s + θpG
) = −2n

h

dh

dt
. (5.4d)

The kinematic condition gives

dL

dt
= vp|x=L = L

h

dh

dt
. (5.5)

On applying the initial conditions, we can find θp, vp, n and L in terms of h as:

θp(t) = θI

h2
, (5.6a)

n(t) = 1

h2
, (5.6b)

L(t) = h, (5.6c)

vp(x, t) = x

h

dh

dt
. (5.6d)

Having found solutions θp and n as functions of h, we can also express the chemical
potential μs(θp) and cell force function G(n) as functions of h, and accordingly,
reduce our model to the following single ODE for h(T ),

dh

dt
= − 1

2R
(
μs(θp) − μe

s + θpG(n)
)
, (5.7)

From this reduced model, we can draw a number of conclusions about how the
gel behaves under spatially uniform initial conditions. Firstly, that if there is no initial
spatial variation in the volume fractions, cell density and gel height, the gel will remain
uniform in space for all time.We see that the length of the gel is equal to its height as it
evolves, therefore any time-variation in the free boundaries of the gel will occur in the
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same manner both length-wise and height-wise. We also see that the polymer fraction
and cell density are inversely proportional to the squared height, scaled by the initial
conditions. Finally, the reduced model is independent of drag; with no dependence on
the x-coordinate, there is no relative motion between the polymer and solvent as the
gel evolves and so no shearing takes place.

The entire system is driven by the balance between the solvent chemical potential
μs and the cell potential θpG inside the gel with the external chemical potential μe

s . If
these forces are in balance, the system is in equilibrium, as expected. For the height to
be increasing, and accordingly, the gel to be swelling, we require thatμe

s is greater than
the sum of θpG and μs ; the opposite holds for the gel to contract. The gel equilibrates
when these forces are in balance, that is

μs(θp) − μe
s + θpG(n) = 0, (5.8)

the same condition as derived in Sect. 4 above.
The rate at which the gel evolves is determined by equation (5.7). Accordingly,

increasing the resistance of the interface R slows the rate of change of h and the rest
of the system. Similarly, larger values of parameters such as the mixing energy χ

and cell traction τ0 appearing in μs and G respectively will increase the rate of gel
evolution.

5.1 Numerical simulations of the reducedmodel

We solve the reduced model described by equations (5.6) and (5.7) using the inbuilt
MATLAB ODE solver ode15s which is designed to handle stiff systems. For a gel
without cells, we can see either swelling or contraction take place, depending on the
chemical potentials in the system. Figure 2a demonstrates swelling induced by osmotic
pressure (with mixing parameter χ = 0.75), while, conversely, Fig. 2b shows a case
where the gel contracts (with mixing increased to χ = 1.5, promoting separation
between the polymer and solvent). The equilibria reached here, θ∗ = 0.45 for the
swelling case and θ∗ = 0.86 for the contracting case, are, of course, the same as found
for the equivalent initial conditions and parameters in the 1D Cartesian version of the
model (Reoch et al. 2022; Reoch 2020).

Introducing cells into this system can precipitate a switch to contraction in a gel
that would otherwise swell. Note that this is due to the traction forces exerted by the
cells; the spatial uniformity of the cell population means that diffusion plays no role
in the evolution of the system. We take the same parameter values as in the swelling
gel above (Fig. 2a) and introduce a cell population (nI = 1, τ0 = 1). In Fig. 3a, we
see that this gel now contracts due to the presence of cells, reaching a steady state
with a significant reduction in height and length. This highlights that in this thin film
geometry, given sufficient traction stress (τ0 = 1), the presence of cells can outweigh
the osmotic swelling pressure created by chemical potentials in a gel. Reducing the
traction parameter to τ0 = 0.1 (Fig. 3b), we see that the presence of cells does not
necessitate contraction; rather it is evident that, due to aweak cell contribution, osmotic
pressure is still the dominant driver of the gel’s behaviour, and the thin film still swells
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Fig. 2 Time evolution of a cell-free thin gel with uniform initial conditions; θp is shown in blue, and h in
maroon, with h = L . Common parameters θI = 0.6, nI = 0, hI = 1, N = 100, R = 1. With χ = 0.75
(Fig. 2a) the gel swells uniformly across its domain to the equilibrium (θ∗, h∗, L∗) = (0.45, 1.16, 1.16).
With χ = 1.5 (Fig. 2b) the gel contracts to the equilibrium (θ∗, h∗, L∗) = (0.86, 0.84, 0.84)

to an equilibrium. The equilibrium values of polymer and cell density again match
those found for the 1D case for the same initial conditions and parameters (Reoch
et al. 2022; Reoch 2020).

Increasing the resistance parameter R slows the evolution of the gel and hence
increases the time taken to reach a steady state; however, it does not affect the eventual
equilibrium reached. Figure 3c shows the effect of increasing the resistance parameter
from R = 1 to R = 5, which increases the time taken for the gel to reach its steady
state approximately five-fold, from T ≈ 2 to T ≈ 10. This relation betweenR and T
is expected, given that the solution for h in equation (5.7) is of the form F(T /R).

For both the contracting and expanding examples here, the gel remains spatially
uniform throughout its evolution to steady state. The height and length are necessarily
equal by (5.6c), indicating that the gel grows in a uniform ratio horizontally and verti-
cally. Next, we will explore whether this remains the case when the gel is constructed
with non-uniform initial conditions.

6 Transformation to a 1D fixed domain

In order to facilitate the analysis and numerical solution of our model in spatially-
varying cases, we transform to a fixed domain using the coordinate transformation
t = T , x = L0(T )X . The equations (3.44) then become:

∂θp

∂T
− X

.

L

L

∂θp

∂X
+ 1

L

∂

∂X

(
θpvp

) + θp

L

∂vp

∂X
= 0, (6.1a)

∂h

∂T
− X

.

L

L

∂h

∂X
+ 1

L

∂

∂X

(
hvp

) − 2h

L

∂vp

∂X
= 0, (6.1b)

∂n

∂T
− X

.

L

L

∂n

∂X
+ 1

L

∂

∂X

(
nvp

) + n

L

∂vp

∂X
− D

L2h

∂

∂X

(
h

∂n

∂X

)
= 0, (6.1c)
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Fig. 3 Time evolution of a thin cell-gel system with uniform initial conditions. In Fig. 3a and b, θp is shown
by the solid blue curve, h = L is the solidmaroon line, and n is the dotted purple line, for common parameter
values θI = 0.6, nI = 1, hI = 1, χ = 0.75, N = 100, R = 1, λ = 1. With τ0 = 1 (Fig. 3a) the gel
contracts to the equilibrium (θ∗, n∗, h∗, L∗) = (0.86, 1.44, 0.83, 0.83) due to the presence of cells. With
τ0 = 0.1 (Fig. 3b) the gel swells to a steady state due to osmoticpressure counteracting weak cell traction,
(θ∗, n∗, h∗, L∗) = (0.54, 0.91, 1.05, 1.05). Figure 3c compares the effect of the size of the resistance
parameter on the evolution of the gel height; R = 1 is shown by the light blue dotted line, R = 5 by the
maroon dashed line, parameter values otherwise as for Fig. 3a

2h

L

∂vp

∂X
− 1

L2

∂

∂X

{
θsh

ξθp

(
∂μs

∂X
+ ∂

∂X

(
θpG

))}
+ 1

R
(
μs − μe

s + θpG
) = 0.

(6.1d)

subject to boundary conditions

∂θp0

∂X
= 0 at X = 0, 1, (6.2a)

∂n0
∂X

= 0 at X = 0, 1, (6.2b)

∂h0
∂X

= 0 at X = 0, (6.2c)

vp0 = 0 at X = 0, (6.2d)
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.

L0 = vp0 |X=1, (6.2e)

and initial conditions

θp(X , 0) = θI (X), n(X , 0) = nI (X), h(X , 0) = hI (X), L(0) = 1. (6.3)

Note that our assumptions regarding the symmetries, etc. of the initial conditions
(3.47) now become:

∂θI

∂X

∣∣∣∣
X=0

= ∂θI

∂X

∣∣∣∣
X=1

= 0,
∂hI

∂X

∣∣∣∣
X=0

= 0. (6.4)

7 Small time evolution of spatially perturbed uniform equilibria

We begin our investigation of the behaviour of the model with non-uniform initial
conditions by considering the short time behaviour when equilibrium initial condi-
tions are subject to spatial perturbations. This analysis will provide insight into the
stability of equilibria: unstable equilibria will see an increase in the amplitude of the
perturbations, while for stable equilibria, the amplitude of the perturbations will decay.
As seen in Sect. 4, all equilibria have spatially uniform polymer fraction (θp) and cell
density (n) but they need not have spatially uniform film height (h). However, in this
section we restrict our attention to equilibria with spatially uniform h, to facilitate
finding analytic solutions and, hence, simplify our analysis.

We denote the dimensionless equilibrium values by asterisks, L∗, θ∗, n∗, h∗, v∗
(where v∗ = 0). The equilibrium values of h, n and L are used as the characteristic
values to scale these variables; this means that h∗ = n∗ = L∗ = 1. We introduce a
short timescale, T̂ , such that T = δT̂ where δ � 1, and expand our solutions as power
series in δ:

L(T̂ ) = L0 + δL1(T̂ ) + δ2L2(T̂ ) + ...,

vp(X , T̂ ) = v0(X) + δv1(X , T̂ ) + δ2v2(X , T̂ ) + ..., (7.1)

with expansions for θp, h and n similar to that for vp. We take the spatial perturbations
to have an amplitude ε, where δ � ε � 1. (Note that the amplitude ε is distinct from
the aspect ratio ε exploited in Sect. 3.) We then take the series (7.1), etc., and expand
each of the terms L j , v j , θ j , h j n j , j = 1, 2, . . . in powers of ε, for example,

L j = L j0 + εL j1 + ε2L j2 + . . . ,

v j = v j0 + εv j1 + ε2v j2 + . . . .

We take the initial conditions to be

L0 = 1, (7.2a)

v0 = v00+εv01(X) + ε2v02(X) + ..., (7.2b)
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θ0 = θ∗ + εθ01(X), (7.2c)

n0 = 1 + εn01(X), (7.2d)

h0 = 1 + εh01(X). (7.2e)

Note that we set L0 = L∗ = 1, i.e. we do not perturb the initial length of the
gel from its equilibrium value. Since our initial conditions are equilibria, we have
v00 = 0, with higher order terms of v0 determined through analysis of the momentum
balance equation (6.1d). We set θ01 = cos(γ X), n01 = N01 cos(γ X), and take h01 =
−H01 cos(γ X), where N01 and H01 are constants that areO(1). (Given that we expect
h to change in the opposite way to θp and n, we have taken h01 to have the opposite
sign to that of n01 and θ01 without loss of generality.) As required, θ0, n0 and h0 satisfy
the symmetry boundary conditions (6.2a), (6.2b) and (6.2c) at X = 0 for any choice of
γ . The no-flux boundary conditions (6.2a) and (6.2b) at X = 1 require that γ = Zπ

for some positive integer Z . Finally, we wish to ensure that, for any choices of the
constants H01 and N01, the masses of polymer and cells under the perturbed initial
conditions are, to O(ε), equal to the masses for the unperturbed initial conditions
(which are θ∗ for the polymer and 1 for the cell density). Integrating θ0h0L0 across
the spatial domain 0 ≤ X ≤ 1, we have

θ∗ =
∫ 1

0
(θ0h0L0)dX = θ∗ + ε

1

γ
sin(γ ) − ε

θ∗H01

γ
sin(γ ) + O(ε2).

Since sin(γ ) = 0 for all valid choices of γ , we see that mass is conserved to O(ε),
regardless of our choice of H01. On evaluating the integral of n0h0L0, we find that we
are similarly free to set N01 to any O(1) value.

To find v01, we use equation (6.1d) at O(ε), obtaining the expression

∂v01

∂X
= (1 − θ∗)

2ξθ∗
∂

∂X

(
−θ∗ f ′′(θ∗)∂θ01

∂X
+ τ0

1 + λ

∂θ01

∂X
+ θ∗ 2τ0

(1 + λ)2

∂n01
∂X

)

− 1

2R

(
−θ∗ f ′′(θ∗)θ01 + τ0

1 + λ
θ01 + θ∗ 2τ0

(1 + λ)2
n01

)
. (7.3)

After substituting for θ01 and n01, this simplifies to

∂v01

∂X
=

(
(1 − θ∗)
2ξθ∗ γ 2 + 1

2R

)
z cos(γ X), (7.4)

where

z = θ∗ f ′′(θ∗) − τ0

1 + λ
− θ∗ 2τ0N01

(1 + λ)2
. (7.5)

We therefore have the solution

v01 =
(

(1 − θ∗)
2ξθ∗ γ + 1

2Rγ

)
z sin(γ X). (7.6)
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Solving the mass conservation equations (6.1b), (6.1c) at O(δ), we find that θ10 =
n10 = h10 = 0, as these terms depend on v00 = 0. The kinematic boundary condition
(6.2e) for L similarly gives L10 = 0.

We therefore consider the mass conservation equations at O(δε). From equation
(6.1b), we find

∂h11

∂ T̂
= ∂v01

∂X
⇒ h11 = ∂v01

∂X
T̂ .

Similarly, we find from equations (6.1a) and (6.1c) respectively that

θ11 = −2θ∗ ∂v01

∂X
T̂ , n11 =

(
−2

∂v01

∂X
+ D

∂2n01
∂X2

)
T̂ .

Finally, from the kinematic boundary condition at O(δε), we find that L11 =
v01|X=1 = 0. Thus, we have the small time analytic solutions

θp(X , T̂ ) = θ∗ +
[
1 − zθ∗δT̂

(
(1 − θ∗)

ξθ∗ γ 2 + 1

R

)]
ε cos(γ X) + O(δ2), (7.7a)

n(X , T̂ ) = 1 +
[
1 + δT̂ Dγ 2 − zδT̂

N01

(
(1 − θ∗)

ξθ∗ γ 2 + 1

R

)]
εN01 cos(γ X) + O(δ2),

(7.7b)

h(X , T̂ ) = 1 −
[
1 − zδT̂

2H01

(
(1 − θ∗)

ξθ∗ γ 2 + 1

R

)]
εH01 cos(γ X) + O(δ2), (7.7c)

L(T̂ ) = 1 + O(δ2). (7.7d)

We note that these solutions satisfy the no-flux boundary conditions at X = 1.
The behaviour of the amplitudes of the perturbations can be determined by consid-

ering the square-bracketed terms in equations (7.7). We see that the growth or decay of
the perturbations of θp and h is governed by the sign of z. For z > 0, the magnitudes
of the spatial perturbations are decreasing in time, and accordingly, the local spatial
variations decay. For z < 0 on the other hand, the amplitudes of the polymer fraction
and height perturbations grow, indicating that the equilibrium is unstable. The cell
density (7.7b) follows this same behaviour, although the presence of diffusion can
be stabilising, depending on the balance of parameters. The stability conditions for
spatially uniform equilibria of the thin film model, including the value of z, are thus
equivalent to those presented in Reoch et al. (2022) for the one-dimensional case; we
refer readers to the stability diagrams there given and do not give similar figures here.

8 Thin film numerics

We now present our numerical scheme to solve the thin film equations (6.1) in the
spatially non-uniform case. We being by re-writing the equations for θp and h in
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conservative form by defining the quantities Q(X , T ) = θph and W (X , T ) = θsh =
(1 − θp)h, and noting the following relations:

h = Q + W , θp = Q

Q + W
, θs = W

Q + W
.

We then transform the chemical potential μs into a function of Q and W . Equations
(6.1a), (6.1b) and (6.1d) can then be expressed respectively as:

∂Q

∂T
− X

L̇

L

∂Q

∂X
+ 1

L

∂

∂X

(
Qvp

) = 0, (8.1a)

∂W

∂T
− X

L̇

L

∂W

∂X
+ 1

L

∂

∂X

(
Wvp

) − 2(Q + W )

L

∂vp

∂X
= 0, (8.1b)

2(Q + W )

L

∂vp

∂X
− 1

L2

∂

∂X
(V1(Q,W , n)) + V2(Q,W , n) = 0, (8.1c)

where

V1(Q,W , n) = 1

ξ

(
2χW − (Q + W ) − W

N

(
1 + W

Q

))
∂

∂X

(
Q

Q + W

)

+ τ0

ξ

W (Q + W )

Q

∂

∂X

(
Qn2

(Q + W )(1 + λn2)

)
, (8.2a)

V2(Q,W , n) = 1

R

(
log

(
W

W + Q

)
+

(
1 − 1

N
+ τ0n2

1 + λn2

)
Q

Q + W
+ χ

(
Q

Q + W

)2
)

.

(8.2b)

The cell advection–diffusion equation remains as given in equation (6.1c). Hence, our
numerical code solves the system given by (8.1a) - (8.1c) together with (6.1c).

For this, we implement a finite difference scheme in MATLAB which discretises
the system of equations using a uniform spatial grid between X = 0 and X = 1.
The force balance equation (8.1c) is first-order in velocity vp, and therefore we use
a cumulative trapezoidal scheme to numerically integrate the expression across the
spatial domain and update the velocity at each new time step. Central differencing
is used for spatial derivatives in (8.1c), except for the derivatives of (8.2a) at the
endpoints of the domain, where one-sided differences are used. A Crank-Nicolson
method is used to solve equations (8.1a), (8.1b) and (6.1c). The end time is chosen to
be large enough that the gel reaches a steady state or θp approaches 0 or 1 (in which
case our model breaks down).

We find that this scheme conserves mass effectively. Using a time step dT between
10−6 and 10−5 and spatial step dX = 0.025 in the simulations which follow, the
worst-case change in mass between initial time and end time for the cell density
or polymer fraction was 2.69 × 10−5%. To check our numerical scheme, we com-
pared the full numerical solution with the small time solution detailed in Sect. 7,
and also compared the solution obtained with this code for uniform initial condi-
tions with the ODE solution from Sect. 5.1, finding good agreement in each case
(results not shown). While our numerical scheme has performed well over a wide
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Table 1 Dimensionless
parameter values which remain
fixed for all simulations

Term Symbol Value used

Polymer chain length N 100

Initial average polymer fraction θ̄I 0.6

Polymer bulk viscosity κp 0

Solvent bulk viscosity κs 0

Contact inhibition parameter λ 1

Polymer standard free energy μ0
p 0

Solvent standard free energy μ0
s 0

Cell traction coefficient τ0 1

Table 2 Dimensionless
parameters which vary between
simulations

Term Symbol Values

Initial average cell density n̄ I 0, 1

Cell diffusion coefficient D 0, 1

Mixing parameter χ 0.4, 0.75

Interface resistance R 0.4, 1, 4

Drag coefficient ξ 0.2, 1, 4

range of parameter choices and initial conditions, we note that some instability and
non-convergence has been encountered for particular parameter combinations where
the gel evolution is rapid, e.g. with large values of τ0 or χ . We do not consider such
cases here.

Throughout the simulations presented in this section, we keep certain parameters
fixed and study the effects of changing others between simulations. The fixed param-
eters and their values are given in Table 1. The values used for the parameters and
initial conditions which are varied between examples are presented in Table 2. We
note that the initial conditions for θp, n and h will have spatially varying components
included on occasion in the simulations which follow; accordingly, we scale the initial
conditions for height and cell density using the average initial value for each, such that
the mean values h̄ I = ∫ 1

0 hI (X)dX = 1 and n̄ I = ∫ 1
0 nI (X)dX = 1 or 0 depending

on the presence or absence of cells. Similarly, when spatial perturbations are added to
θp, these are such that θ̄I = ∫ 1

0 θI (X)dX .

8.1 Non-uniform initial conditions

We now consider spatially varying initial conditions in one or more of the polymer
fraction, cell density and height. We analyse the gel behaviours emerging in different
cases, in particular evaluatingwhether spatial non-uniformities persist or are smoothed
out as the gel evolves over time, and whether perturbing different dependent variables
results in different impacts on the final outcome.
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8.1.1 Spatially varying initial polymer, cell-free gel

Wefirst consider a cell-free gelwith a non-uniform initial polymer distribution.We take
the initial condition θI = 0.6+0.02 cos(πX), noting that θI satisfies the boundary con-
ditions ∂θp/∂X = 0 at X = 0, 1, and that the initialmass of polymer in the gel remains
0.6 under this initial condition. This resembles a gel where the polymer fraction is ini-
tially slightly larger around the centre of the thin film at X = 0. We will firstly discuss
the equilibriumoutcomes for the gel, then describe how the variables change over time.

We see in this environment that spatially varying steady states can be found without
the presence of cells. Figure 4a displays the time evolution of θp(X , T ) at X = 0, 1,
while Fig. 4b shows the time evolution of h(X , T ) at X = 0, 1 as well as L(T ).We see
that the gel height h evolves to a non-uniform equilibrium here. The mixing parameter
χ = 0.75 is at a value that promotes mixing between the polymer and solvent. This
drives an osmotic pressure gradient, causing the gel to swell to an equilibrium state,
with solvent flowing into the gel. The polymer fraction converges to a spatially uni-
form value as it evolves, reaching a steady state where θ∗ = 0.45. Meanwhile, we see
that non-uniformities develop in the gel height; these spatial variations persist at equi-
librium where the mean equilibrium value h̄∗ = 1.16 and the amplitude Ah∗ = 0.019,
where Ah∗ = (h∗

max − h∗
min)/2. The amplitude Ah∗ is of a similar magnitude to the

amplitude of the initial polymer fraction. The gel length at equilibrium L∗ = 1.16 is
equal to the mean equilibrium value of the height h̄∗.

Figures 4c and d show the spatial distributions of θp and h respectively across the
gel length at increasing points in time. As seen in Fig. 4c, the initial non-uniformity in
the polymer distribution quickly smooths out so that θp is uniform across the spatial
domain. Meanwhile, Fig. 4d demonstrates that sinusoidal variations matching the
shape of those in the initial polymer arise in the gel height. These variations persist
over time, resulting in varying height at the gel’s steady state.

In response to the osmotic pressure gradient here driven by the free energy, we see
more solvent enter the gel over early time (e.g. T = 0 to T = 0.5) in the regions of
higher polymer fractions near X = 0, resulting in these areas of the gel becoming
locally thicker. This is seen in the gel height increasing to a greater degree close to
X = 0 since more solvent is entering the gel in that region. Conversely, we see θp
increase near X = 1 over this time period, i.e. there is some localised contraction in
the gel due to the initial presence of more solvent in this region. This corresponds to
decreases in h seen at corresponding times. By T = 1, the gel swells across the spatial
domain, with a uniform polymer profile developing as solvent continues to enter the
gel more rapidly in areas of greater polymer concentration. The height continues to
increase as the gel swells, maintaining its non-uniform distribution. These variations
that develop and persist in h correspond to local variations in mass across the spatial
domain that exist from the initial non-uniformity in θI . Accordingly, while the fraction
of polymer is constant by the time the gel equilibrates, the mass of polymer per unit
length θ∗h∗(X) varies in space.

In Sect. 4, we found that ∂θp/∂X = 0 is a necessary condition for equilibrium in the
thinfilm.Weseehere that the polymer is redistributed evenly such that there is a balance
in chemical potential from gel to solvent and within the gel itself. The extra mass at
different points in space (coming from the spatially varying height) enables a constant

123



   61 Page 30 of 42 J. R. Reoch et al.

Fig. 4 Time evolution of a cell-free gel with non-uniform initial polymer fraction θI = 0.6+0.02 cos(πX),
and parameters nI = 0, hI = 1, χ = 0.75, ξ = 1, R = 1, expanding to equilibrium (θ∗, h̄∗, L∗) =
(0.45, 1.16, 1.16). Figure 4a shows θp versus time T at X = 0 (solid blue curve) and X = 1 (dashed red
curve); the curves are identical to graphical accuracy. Figure 4b shows h versus T at X = 0 (dashed light
blue curve) and X = 1 (dotted maroon curve), along with L(T ) as the solid gold curve. Figure 4c and d
show curves θp versus X and h versus X , respectively, at times T = 0, 0.1, 0.2, 0.5, 1, 2, 8, 120, with time
increasing in the direction of the black arrow. The polymer fraction evens out to a uniform equilibrium as
the gel swells (Fig. 4a and c). Spatial variations develop in the height in response to the initial non-uniform
polymer distribution and persist to equilibrium (Fig. 4b and d)

polymer fraction to be maintained at equilibrium. We note that this model does not
consider surface tension. With surface tension present, we might expect the variations
in height to smooth over time as well; however, in its absence, there is no force driving
the surface to flatten out and we see the non-uniformities persist at equilibrium.

We see the same qualitative outcome for the gel when taking non-uniform hI with
uniform θI , i.e. at the resulting steady state, h∗ will vary in space while θ∗ is uniform
(results not shown). As seen in the previous example, the variations in mass across the
spatial domain allow for a uniform polymer fraction to be maintained at equilibrium.

8.1.2 Spatially varying initial polymer, cell-gel system

We now take the system presented in Sect. 8.1.1 and introduce a cell population where
nI = 1 and τ0 = 1. We maintain the non-uniform initial condition for polymer,
θI = 0.6 + 0.02 cos(πX). Figure 5 displays this system’s evolution. While the gel
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Fig. 5 Time evolution of a cell-gel system with non-uniform initial polymer fraction θI = 0.6 +
0.02 cos(πX), and parameters nI = 1, hI = 1, χ = 0.75, ξ = 1, R = 1, τ0 = 1, D = 1, contract-
ing to equilibrium (θ∗, n∗, h̄∗, L∗) = (0.86, 1.44, 0.83, 0.83). Figure 5a shows that spatial variations in
the polymer profile decay quickly over time, whilst in Fig. 5b small spatial variations briefly emerge
in the cell density, but dissipate before the gel equilibrates. By contrast, in Fig. 5c spatial variations
which emerge in the gel height increase in magnitude throughout to equilibrium. Profiles are plotted at
T = 0, 0.1, 0.2, 0.5, 0.8, 1.2, 1.6, 3, with time increasing in the direction of the black arrow

was previously seen to swell, the introduction of cells switches the gel’s behaviour
to contraction, with the forces the cells generate outweighing the chemical potential
gradient. The gel reaches a steady state where θ∗ = 0.86, n∗ = 1.44, h̄∗ = 0.83,
L∗ = 0.83. We note that this is the same equilibrium in θ∗ and n∗ as obtained using
the same parameter values in our one-dimensional model (Reoch et al. 2022).

As in Sect. 8.1.1, the non-uniformity in θp evens out over time, with h developing
spatial variations that remain present at equilibrium; Fig. 5a and c show how the spatial
profiles of θp and h respectively change over time. Meanwhile, variations also appear
in the cell density n while the gel contracts; the cell density increases more around
X = 1 in response to the smaller initial polymer fraction there. However, as time
progresses, the variation in n decays due to the presence of diffusion (see Fig. 5b).

8.1.3 Spatially varying initial cell density, cell-gel system

We now take the initial cell density to be spatially varying, such that nI = 1 +
0.02 cos(πX), with a uniform initial polymer fraction θI = 0.6. Small spatial varia-
tions arise in both the polymer fraction and height here as the gel evolves (see Fig. 6).
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Fig. 6 Time evolution of a cell-gel system with non-uniform initial cell density nI = 1 + 0.02 cos(πX),
and parameters θI = 0.6, hI = 1, χ = 0.75, ξ = 1, R = 1, τ0 = 1, D = 1, contract-
ing to equilibrium (θ∗, n∗, h̄∗, L∗) = (0.86, 1.44, 0.83, 0.83). Spatial variations briefly emerge in the
polymer fraction (Fig. 6a) and the gel height (Fig. 6c), which dissipate before the gel equilibrates,
whilst spatial variations in the cell density decay quickly over time (Fig. 6b). Profiles are plotted at
T = 0, 0.06, 0.1, 0.2, 0.5, 0.8, 1.2, 3, with time increasing in the direction of the black arrow

The non-uniform cell distribution, shown in Fig. 6b, leads to greater forces initially
being applied in the negative X -direction; this cell traction induces spatial gradients
in the polymer profile and, accordingly, the height, as more solvent is forced from the
gel. Figure 6a shows θp increasing towards X = 0 over early time in response to the
cell force gradient, while in Fig. 6c, we see a corresponding decrease in height around
X = 0. Contrary to the previous examples seen in this Section, the non-uniformity
that arises in the height as the gel evolves does not continue to equilibrium. In this
instance, with the polymer initially uniform, the small local variations in the gel’s
thickness do not persist at equilibrium. As required, the cell density is constant when
the gel equilibrates, with the strong diffusion coefficient playing a significant role in
smoothing out the initial variations. The gel reaches the same steady state as the pre-
vious example with θ∗

p = 0.86, n∗ = 1.44, h∗ = L∗ = 0.83; therefore, we see that
varying the initial cell distribution does not led to greater contraction in the gel.
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8.1.4 Spatially varying initial height, cell-gel system

We now vary the initial height for this gel, such that hI = 1 + 0.02 cos(πX), while
taking θI = 0.6 and nI = 1 to be constant. The gel again contracts to an equilibrium
with θp and n being spatially uniform, while spatial variations in h persist through
to the gel’s steady state. The mean equilibrium values of the model variables are
unchanged from previous examples. As this example does not demonstrate any new
qualitative outcomes, we do not include any figures.

We note that taking different combinations of spatially varying initial conditions
in h, n and θp will result in the same qualitative outcomes for the system – if θp
or h are spatially varying initially, then h will be spatially dependent at equilibrium,
regardless of the initial cell density; only varying n initially will not induce a non-
uniform equilibrium by itself.

8.2 Influence of drag and resistance

We now investigate the effect that the drag parameter ξ and the resistance parameter
R have on the gel’s evolution. We take a contracting gel with cells, with parameter
values and initial conditions as given in Fig. 5, where the initial polymer fraction is
non-uniform. We reiterate that in this case, the gel will equilibrate to a uniform value
of polymer, θ∗ = 0.86. We now modify the drag parameter ξ . In Fig. 7a and b we
compare the polymer fraction’s spatial evolution over early time (up to T = 0.8) for
high drag (ξ = 4) and low drag (ξ = 0.2) respectively. In the high drag case, we
see little change over this time to the spatial structure of the gel as it contracts. The
amplitude of the variations in the polymer fraction decreases over time (amplitude
Aθp = 0.007 at T = 0.8); however, it retains the sinusoidal shape of the initial
condition. In this case, the large drag coefficient slows down solvent flow through the
gel in the x-direction. It is therefore easier for solvent to flow out of the gel primarily
in the thin direction. It does this at a relatively uniform rate across the domain, hence
the spatial distribution only slowly decreases in amplitude. With low drag on the other
hand, we see that the polymer fraction changes more rapidly near X = 1 than in the
high drag case. The polymer moves quickly towards a uniform spatial distribution,
since it is now easier for fluid to flow longitudinally within the gel as well as in the
vertical direction. With more cell forces being applied in the area near X = 1, the
polymer fraction increases at one point (at around T = 0.4) as it evolves, before
evening out again as the gel moves towards its equilibrium state. We note that the
polymer fraction reaches a uniform steady state at T ≈ 3 in both the low and high
drag cases here (results not shown).

The resistance parameter R affects the speed at which fluid can flow across the
gel-solvent interface at both y = h and X = 1. We see dramatic differences when
comparing the evolution in θp for low resistance with R = 0.4 in Fig. 8b with high
resistance, R = 4 in Fig. 8a (we note that in both these examples ξ = 1). For low
resistance, the gel quickly contracts, with θp smoothing out as it moves towards its
steady state. With this small value of R, the gel has equilibrated by T = 0.8. For
high resistance, the evolution is significantly slower. Indeed, by T = 0.8, the polymer

123



   61 Page 34 of 42 J. R. Reoch et al.

Fig. 7 The effect of varying the drag parameter, ξ . For large drag (ξ = 4, Fig. 7a) spatial variations
in polymer density slowly recede as the gel contracts over time. By contrast, in the case of low drag
(ξ = 0.2, Fig. 7b), the spatial variations quickly smooth out as the gel contracts. Profiles are plotted at
T = 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, with time increasing in the direction of the black arrow. Initial
conditions and parameter values otherwise as given in Fig. 5

Fig. 8 The effect of varying the resistance parameter, R. When resistance is high (R = 4, Fig. 8a)
the polymer fraction decreases very slowly due to the impermeability of the boundary, whilst when
the boundary is more permeable (R = 0.4, Fig. 8b), contraction is much faster. Profiles are plotted at
T = 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, with time increasing in the direction of the black arrow. Initial
conditions and parameter values otherwise as given in Fig. 5

fraction has only increased to approximately θp = 0.64 at its maximum. Interestingly,
in this case, while the fraction of polymer is only changing slowly, the amplitude has
halved from its initial value by T = 0.8. This indicates that, while the resistance is
slowing the flow of solvent across the gel’s boundary, solvent inside the gel is flowing
quickly enough to flatten the polymer’s distribution.

8.3 Zero-diffusion case

The derivation of the thin film model, wherein the diffusive flux terms are used to
derive that n is independent of y, requires D to be O(1). Accordingly, the examples
presented in this chapter so far have been generated with D = 1. Nevertheless, for

123



A two-phase thin-film model... Page 35 of 42    61 

the sake of completeness, we now investigate the outcomes for the system without
diffusion, although we cannot guarantee the validity of our thin film reduction in this
case. With zero diffusion, cells must move with the polymer and the cell distribution
does not need to be uniform at steady state, indicating that θp in turn is also not required
to be uniform at equilibrium.

By way of example, we take D = 0 with initial conditions nI = 1+0.02 cos(πX),
θI = 0.6, hI = 1. We note here that due to issues with code convergence, we have
run these examples with a smaller interaction energy than previously, taking χ = 0.4.
We show in Fig. 9a, b that with no diffusion and a non-uniform initial cell density, we
obtain equilibria that are non-uniform in the cell density and polymer fraction. This
reflects similar examples in our 1D model (Reoch et al. 2022). In this instance, the
gel reaches a mean equilibrium cell density n̄∗ = 1.29 with amplitude An∗ = 0.033,
which is greater than the initial amplitude. The polymer fraction evolves to mean
equilibrium value θ̄∗ = 0.78 with amplitude Aθ∗ = 0.004, while for the height,
h̄∗ = 0.88 with amplitude Ah∗ = 0.002. Figure 9c demonstrates the time evolution
of velocity vp at different points in the spatial domain. We see that the velocity goes
to zero at all shown spatial points, confirming that the gel is at a steady state. With
only cells taken to be initially non-uniform, the gel reaches a steady state where the
cells, polymer and height are all non-uniform. This is a significant difference to the
case with diffusion, where non-uniform initial cell profiles did not lead to spatially
varying steady states. While this simulation does not fit with the particular derivation
of the thin film system here, it does demonstrate the possibility that spatially dependent
solutions may occur in both the polymer and cells. Examples with a small diffusion
coefficient (e.g. D ≈ 1x10−3 − 1x10−5) were found to reach a similar non-uniform
quasi-steady state; however, given the presence of the small diffusive flux, cells and
polymer moved very slowly towards a uniform distribution (results not shown).

9 Discussion

In this paper, we have presented a model to study the behaviour of a thin film of gel
floating freelywithin a bath of solvent. Starting from the equations of our earlier model
of cell-induced gel contraction (Reoch et al. 2022), we exploited the small aspect ratio
ε of the problem, assumed symmetry about x = 0 and y = 0, and showed that under
a particular set of scalings, the original two-dimensional system of equations can be
reduced to a one-dimensional system of four coupled PDEs. This leading-order model
consists of equations for the gel half-height h (3.21), polymer fraction θp (3.22), cell
density n (3.28) and polymer velocity vp (3.41). Such amodel, considering cell traction
stresses and osmotic pressure in this thin film setting has not, to our knowledge, been
presented previously.

The thin film model presented here has some key differences to the 1D model
presented in Reoch et al. (2022). In the previous geometry, all solvent flowed in or
out of the gel horizontally through the gel’s endpoints at X = ±1. In contrast, in
the thin film model, most of the solvent flow into or out of the gel occurs across
the long boundaries at y = ±h. This manifests itself in the additional terms seen in
equation (3.20), which describes (at leading order) mass conservation of the solvent
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Fig. 9 Time evolution of a cell-gel system with zero cell diffusion, a non-uniform initial cell density
nI = 1 + 0.02 cos(πX), and parameters θI = 0.6, hI = 1, χ = 0.4, ξ = 1, R = 1, τ0 = 1, D = 0,
contracting to equilibrium (θ̄∗, n̄∗, h̄∗, L∗) = (0.78, 1.29, 0.88, 0.88). Spatial variations in the cell profile
grow and persist at equilibrium (Fig. 9a), whilst similar spatial variations in the polymer density also emerge
and persist (Fig. 9b); profiles are plotted at T = 0, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 8, with time increasing in
the direction of the black arrow. Figure 9c shows curves of the velocity vp , versus time T , at X = 0 (blue),
X = 0.25 (red), X = 0.5 (yellow), X = 0.75 (purple), X = 1 (green); vp goes to zero across the spatial
domain as the gel reaches its spatially varying equilibrium

fraction across the thickness of the gel, and includes a source term which depends on
the balance of chemical and cell potentials, scaled by the resistance of the interface
to fluid flow. This source term effectively emerges as a result of integrating over the
height of the gel. Another key difference is that we have an equation (3.41) for the
polymer velocity in the thin film model which is first order in space, as opposed to
a second order equation previously. Finally, we note that the thin film approximation
relies on the presence of the cell diffusion terms to show that n0 is independent of y;
therefore, unlike the previous 1D case, we cannot set D = 0 without violating one
of the assumptions underpinning the thin film model. Despite these differences in the
detail of the equations, the conditions for a steady state remain the same as in the
one-dimensional model of Reoch et al. (2022).

For spatially uniform initial conditions, we have shown that the solution of thin-film
equations is also spatially uniform in the dependent variables θp, n and h. In fact, the
model can be reduced to a single ODE in time for the height h. By contrast, in the
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1D Cartesian model such spatially-uniform solutions only occur for no drag, ξ = 0
(Keener et al. 2011b; Reoch et al. 2022). This is because, in the 1D case, fluidmust flow
into or out of the gel through the boundary at X = 1, producing non-uniform spatial
profiles in the dependent variables as it moves through the gel (these non-uniformities
generally smooth out by the time the gel equilibrates). In the thin film, solvent can
flow across the long boundary at y = h and so drag has less influence on the gel’s
behaviour. The dynamics of the ODEmodel are driven by the balance between cell and
chemical potentials internally with the external chemical potential. As expected, given
the same equilibrium conditions exist for both 1D and thin filmmodels, the simulations
reach the same equilibrium values for θ∗ and n∗ given the same parameter values and
initial conditions. Interestingly, in deriving the thin film ODE model, we find that the
scaled thin film length and height are equal. This relationshipwas assumed in an ad hoc
manner in thework of Stevenson et al. (2010)when calculating cell traction.Ourmodel
thus provides a validation for their assumption in the case of uniform initial conditions.

For non-uniform initial conditions, we have derived small-time solutions, allowing
for predictions of the stability of steady states. We also performed numerical simula-
tions which show more complex behaviour compared to the spatially uniform case.
The behaviour of the gel is still primarily driven by flow in the thin direction; however,
the terms involving drag and spatial derivatives in the dependent variables are now
active. Accordingly, we see spatial variations arising in θp, n and h as the gel evolves.
We have found that solutions exist where the gel height is non-uniform at steady state,
even though the polymer fraction and cell density are spatially constant. When the ini-
tial polymer fraction θI is non-uniform, local variations in the polymer induce solvent
flow into or out of the gel to even out the polymer fraction; this correlates with spatial
variations in the gel height at these points, reflecting the variations in mass. Similarly,
when the initial gel height, hI , is non-uniform, then h will be spatially-varying to
ensure θp remains constant.

A significant difference in the thin geometry from the 1D case is that increasing
drag now reduces spatial changes in the velocity. This is evident from equation (6.1d),
where we see that increasing ξ decreases the influence of the spatial derivative terms
on the velocity. A consequence of this is evident in Fig. 7a, which shows that, with
large drag, initial spatial variations persist longer through the gel’s evolution, as it is
easier for fluid to flow vertically out of the gel than across the spatial domain due to
the shearing forces present with a large drag coefficient. In the 1D case, we saw that
increasing the drag coefficient tended to induce greater spatial gradients in the polymer
and cells, as solvent could only enter and leave the gel through the endpoint at X = 1,
and so had to flow across the entire spatial domain. We believe that this may explain
why, for the thin film geometry, we have not observed oscillation between swelling and
contraction, which we previously observed in the 1D geometry (Reoch et al. 2022).

We have noted that our thin filmmodel derivation assumes that the non-dimensional
diffusion coefficient D is O(1). Under this assumption, as seen in Sect. 4, we cannot
find equilibria in the thin film system with non-uniform polymer or cell distributions.
Diffusion causes the cells to spread until a uniform cell density is reached across the
gel.Wenote that exampleswith diffusion D �= 0 in the 1Dcase also resulted in uniform
equilibria. We have presented simulations with zero diffusion in the thin film here,
finding examples where non-uniform equilibria persist in θp and n. While we cannot
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definitively say that n = n(x, t) for the zero diffusion case, we have shown that, if such
y-independent solutions can exist for D = 0, then we can find non-uniform equilibria
in the thin film environment as well. We note that with small diffusion (D ≈ 0.0001),
we do see quasi-steady states in θp and n, where non-uniform states are found which
slowly drift towards uniformity as a result of diffusive flux.

Unlike the studies by Trinschek et al. (2016, 2017) discussed in Sect. 1, we do not
see situations where, at a certain point, the gel continues expanding lengthwise while
its vertical swelling has stopped. Indeed, throughout these simulations, we see that
the scaled height (or its mean value) is equal to the scaled gel length at equilibrium.
As noted above, this supports modelling assumptions used in Stevenson et al. (2010),
although we do note that, in the spatially non-uniform case, the average gel height h̄
does not equal L for all time. In our model, there is no mechanism to cause a change in
behaviour and decouple the lengthwise expansion from the vertical movement of the
gel. This could possibly occur if the domain was somehow vertically or horizontally
limited, or if an additional external pressurewas imposed fromone particular direction.
A different cell force function might also see more emphasis on horizontal forces. An
avenue for future work may be to explore whether these dynamics can be factored in,
allowing for the expansion or contraction of a gel to be tailored in a certain direction,
not just a situation where the length and height evolve similarly as seen here.

There is significant scope to extend this research andvalidate themodel’s behaviours
through experimental collaboration. This would allow for parameter values to be fit-
ted and suggest particular regions in the parameter space for deeper analysis to be
carried out. The numerical results in this paper suggest further avenues to investigate
experimentally, for example, confirming whether gels which are initially uniform in
space retain this uniformity as they evolve, and whether small variations in the initial
polymer profile do indeed result in spatially varying height profiles.

A number of modelling extensions are also of interest. Inclusion of surface tension
would enable a study of its effect in cases where the gel height is found to vary; the
aim would be to establish whether surface tension is sufficiently large to smooth out
the height in such cases. Typical experimental setups, suggest future consideration of
a thin gel on a solid substrate; this removes the symmetry about y = 0 so making the
modelling more complex. Further, there may be cases where mechanical changes in
the gel occur on a timescale similar to that of cell proliferation and death, making this
an interesting scenario to explore. Again, this would add complexity to the model and
its solution, requiring addition of suitable source terms to the PDE for cell density,
and we have left this to future work.
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A Nomenclature

Symbol Description Symbol Description

Domains Independent variables
�g Gel domain t Time
�s Pure solvent domain x Distance along the gel from its centre
� Total domain �g ∪ �s y Height above the centre of the gel

Dependent variables Physical parameters & functions
ep Rate-of-strain tensor in

polymer phase
D Diffusivity of cells in gel

es Rate-of-strain tensor in
solvent phase

f Free energy per unit volume of gel

h Gel half-height G Cell force potential
L Gel half-length H Initial average gel height
n Cell density or number per

unit volume
kB Boltzmann constant

n̂ Unit normal to gel surface L Initial gel half-length
P Pressure within the gel N Polymer chain length
Pe Pressure external to the gel N Initial average cell density
P� P − Pe R Resistance of boundary to solvent flow
v p Velocity in the polymer phase T Temperature
vs Velocity in the solvent phase ε Initial average gel height over length
vp x-component of polymer

velocity v p

ηp Dynamic viscosity of polymer phase

vs x-component of solvent
velocity vs

ηs Dynamic viscosity of solvent phase

wp y-component of polymer
velocity v p

κp Bulk viscosity of polymer phase

ws y-component of solvent
velocity vs

κs Bulk viscosity of solvent phase

θp Volume fraction of polymer λ Contact inhibition parameter
θs Volume fraction of solvent μp Chemical potential for the polymer

 P − θpG μs Chemical potential for the solvent
σ p Stress tensor in polymer

phase
μe
s Chemical potential in external solvent

σ s Stress tensor in solvent phase μ0
s Standard free energy in pure solvent

σ e
s Stress tensor in external

solvent
μ� μs − μe

s

θ̄ , n̄, h̄ Spatially averaged θ, n, h νm Characteristic volume of a monomer
θ̄I , n̄ I , h̄ I Initial θ̄ , n̄, h̄ ξ Drag coefficient
θ∗, n∗, h∗, L∗ Equilibria of θ, n, h, L τ0 Cell traction strength
θ̄∗, n̄∗, h̄∗ Spatially averaged θ∗, n∗, h∗ χ Flory interaction parameter
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B Thin film approximation: the y-independence of the first-order
correction terms

In this appendix, we demonstrate that the O(ε) terms in cell density n1, pressure P1,
polymer fraction θp1 , and polymer axial velocity vp1 are also independent of y. This
simplifies the derivation of an equation for the leading-order velocity (see Sect. 3.3).

The result follows from essentially the same arguments as used in Sect. 3.1. We
begin by integrating equation (2.19) atO(ε−1) and using the no-flux boundary condi-
tion ∂n1/∂ y = 0 at y = h0,wefind thatn1 = n1(x, t). This indicates that thefirst order
correction to the cell force function is also independent of y, that is, G1 = G1(x, t).
Evaluating (2.22b) at O(ε−1) yields

∂
1

∂ y
= 0, 	⇒ 
1 = 
1(x, t), (B.1)

where 
1 = P1 − θp0G1 − θp1G0. Using (2.25), we find that

P1 − θp0G1 − θp1G0 = 0 (B.2)

at y = h0, and hence 
1 = 0. Therefore,

P1 = θp0G1 + θp1G0 (B.3)

everywhere in the domain. Now, equation (2.21b) at O(ε) becomes

θs0
∂

∂ y

(
μs1 + G0θp1

) = 0, (B.4)

where μs1 is the first order correction to μs ; therefore,

θs0

(
∂μs1

∂θp
+ G0

)
∂θp1

∂ y
= 0. (B.5)

As in the leading order case, either possible solution to this equation requires that
θp1 = θp1(x, t); hence μs1 must also be independent of y. We also, therefore, have
that P1 = P1(x, t) from equation (B.3).

Evaluating equation (2.22a) at O(ε), we find

−∂
1

∂x
+ ∂

∂ y

(
θp0

∂vp1

∂ y
+ θp1

∂vp0

∂ y

)
= 0. (B.6)

This simplifies to the condition

∂

∂ y

(
θp0

∂vp1

∂ y

)
= 0, (B.7)
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fromwhich, after integrating with respect to y and applying interface condition (2.24),
we have

θp0
∂vp1

∂ y
= 0, 	⇒ vp1 = vp1(x, t). (B.8)

From (2.21b) at O(ε), we find that

vs1 = vp1 − 1

ξθp1

∂

∂x

(
μs1 + θp0G1 + θp1G0

)
. (B.9)

Thus, the solvent axial velocity must also be independent of y at first order, i.e. vs1 =
vs1(x, t).
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