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Abstract
We consider stochastic dynamics of a population which starts from a small colony
on a habitat with large but limited carrying capacity. A common heuristics suggests
that such population grows initially as a Galton–Watson branching process and then
its size follows an almost deterministic path until reaching its maximum, sustainable
by the habitat. In this paper we put forward an alternative and, in fact, more accurate
approximation which suggests that the population size behaves as a special nonlinear
transformation of the Galton–Watson process from the very beginning.

Keywords Population dynamics · Branching processes · Limit theorems ·
Approximation

Mathematics Subject Classification 92D25 · 60J80

1 Introduction

1.1 Themodel

A large population often starts from a few individuals who colonize a new habitat.
Initially, in abundance of resources and lack of competition it grows rapidly until
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reaching the carrying capacity. Then the population fluctuates around the carrying
capacity for a very long period of time, until, by chance, it eventually dies out, see,
e.g., Haccou et al. (2007); Hamza et al. (2016).

This cycle is captured by a stochasticmodel of density dependent branching process
Z = (Zn, n ∈ Z+) generated by the recursion

Zn =
Zn−1∑

j=1

ξn, j , n ∈ N, (1)

started at an initial colony size Z0. The random variables ξn, j take integer values and,
for each n ∈ N, are conditionally i.i.d. given all previous generations

Fn−1 = σ {ξm, j : m < n, j ∈ N}.

The object of our study is the density process of the population Zn := Zn/K relative
to the carrying capacity parameter K > 0. The common distribution of the random
variables ξn, j is assumed to depend on the density Zn−1:

P(ξn,1 = �|Fn−1) = p�(Zn−1), � ∈ Z+, (2)

and is determined by the functions p� : R+ �→ [0, 1].
Both processes Z and Z are indexed by K , but this dependence is suppressed in

the notation. The mean and the variance of offspring distribution when the density
process has value x are denoted by

m(x) =
∞∑

k=0

kpk(x) and σ 2(x) =
∞∑

k=0

(k − m(x))2 pk(x), x ∈ R+, (3)

assumed to exist. Consequently,

E(ξn,1|Fn−1) = m(Zn−1) and Var(ξn,1|Fn−1) = σ 2(Zn−1).

If the offspring mean function satisfies

m(x)

⎧
⎪⎨

⎪⎩

> 1, x < 1

= 1, x = 1

< 1, x > 1

(4)

the process Z has a supercritical reproduction below the capacity K , critical repro-
duction at K and a subcritical reproduction above K . Thus a typical trajectory of Z
grows rapidly until it reaches the vicinity of K . It then stays there fluctuating for a
very long period of time and gets extinct eventually if p0(x) > 0 for all x ∈ R+.
Thus the lifespan of such population roughly divides between the emergence stage, at
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which the population establishes itself, the quasi-stationary stage around the carrying
capacity and the decline stage which ends up with inevitable extinction.

Remark 1 While (4) is typical for populations with quasi stable equilibrium at the
capacity, it is not needed in the proofs and will not be assumed in what follows.

1.2 Large initial colony

Amorequantitative picture canbeobtainedby considering the dynamics for the density
process derived from (1) by setting f (x) := xm(x), dividing by K and rearranging:

Zn = f (Zn−1) + 1

K

Zn−1∑

j=1

(ξn, j − m(Zn−1)). (5)

The second term on the right has zero mean and conditional variance

Var

⎛

⎝ 1

K

Zn−1∑

j=1

(ξn, j − m(Zn−1))

∣∣∣Fn−1

⎞

⎠ = K−1Zn−1σ
2(Zn−1).

Consequently (5) can be viewed as a deterministic dynamical system perturbed by
small noise of order1 OP(K−1/2). If the initial colony size is relatively large, i.e.,
proportional to the carrying capacity:

Z0 = Z0/K −−−−→
K→∞ x0 > 0,

then Zn
P−−−−→

K→∞ xn where xn follows the unperturbed deterministic dynamics

xn = f (xn−1), n ∈ N, (6)

started at x0. If (4) is assumed, x = 1 is the stable fixed point of f and if, in addition,
f is an increasing function, then the sequence xn increases to 1 with n when x0 < 1.
This limit also implies that the probability of early extinction tends to zero as K → ∞.

Moreover, the stochastic fluctuations about the deterministic limit converge to a
Gaussian process V = (Vn, n ∈ Z+) in distribution:

√
K (Zn − xn)

d−−−−→
K→∞ Vn

where Vn satisfies the recursion, Klebaner and Nerman (1994),

Vn = f ′(xn−1)Vn−1 +
√
xn−1σ 2(xn−1)Wn, n ∈ N,

1 The usual notations for probabilistic orders is used throughout. In particular, for a sequence of random
variables ζ(K ) and a sequence of numbers α(K ) ↘ 0 as K → ∞, the notation ζ(K ) = OP(α(K )) means
that the sequence α(K )−1ζ(K ) is bounded in probability.
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with N (0, 1) i.i.d. random variables Wn’s.
Roughly speaking, this implies that when K is large, Zn grows towards the capacity

K along the deterministic path Kxn and its fluctuations are of order OP(K 1/2):

Zn = xnK + VnK
1/2 + oP(K

1/2), n ∈ N. (7)

If p0(x) > 0 for all x ∈ R+ and (4) is imposed, zero is an absorbing state and hence the
population gets extinct eventually. Large deviations analysis, see for exampleKlebaner
and Zeitouni (1994); Klebaner et al. (1998), and Jung (2013); Högnäs (2019), shows
that the mean of the time to extinction τe = inf{n ≥ 0 : Zn = 0} grows exponentially
with K . In this paper we are concerned with the establishment stage of the population,
which occurs well before the ultimate extinction, on the time scale of log K .

1.3 Small initial colony

When Z0 is a fixed integer, say Z0 = 1, then Z0/K → x0 = 0 and, since f (0) = 0,
the solution to (6) is xn = 0 for all n ∈ N. In this case the approximation (7) ceases to
provide useful information. An alternative way to describe the stochastic dynamics in
this setting was suggested recently in Barbour et al. (2016); Chigansky et al. (2018,
2019). It is based on the long known heuristics (Kendall 1956; Whittle 1955; Metz
1978), according to which such a population behaves initially as the Galton–Watson
branching process and, if it manages to avoid extinction at this early stage, it continues
to grow towards the carrying capacity following an almost deterministic curve.

This heuristics is made precise in Chigansky et al. (2019) as follows. We couple
Z to a supercritical Galton–Watson branching process Y = (Yn, n ∈ Z+) started at
Y0 = Z0 = 1,

Yn =
Yn−1∑

j=1

ηn, j (8)

with the offspring distribution identical to that of Z at zero density size

P(η1,1 = �) = p�(0), � ∈ Z+.

This coupling is defined under assumption (a1.) below in Sect. 3.2.
Denote by ρ := m(0) > 1, define2 nc := nc(K ) = [logρ Kc] for some c ∈ ( 12 , 1)

and let Y n := Yn/K be the density of Y . Then Zn = Zn/K is approximated in
Chigansky et al. (2019) by

{
Yn, n ≤ nc,

f n−nc(Y nc), n > nc,

2 [x] and {x} = x − [x] denote the integer and fractional part of x ∈ R+.
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where f k stands for the k-th iterate of f . As is well known (Athreya and Ney 1972)

ρ−nYn
P−a.s.−−−→
n→∞ W ,

whereW is an a.s. finite random variable.Moreover, under certain technical conditions
on f , the limit

H(x) := lim
n→∞ f n(x/ρn), x ∈ R+ (9)

can be shown to exist and define a continuous function.

Theorem 1 (Chigansky et al. 2019) Let n1 := n1(K ) = [logρ K ] then

Zn1 − H
(
Wρ−{logρ K }) P−−−−→

K→∞ 0. (10)

In particular, this result implies that when K is a large integer power of ρ the
distribution of Zn1 is close to that of H(W ). Moreover,

Zn1+n
P−−−−→

K→∞ xn, n ∈ N,

where xn solves (6) started from the random initial condition H(W ). This approx-
imation also captures the early extinction event since H(0) = 0 and P(W = 0) =
P(limn Yn = 0), the extinction probability of the Galton–Watson process Y .

1.4 This paper’s contribution

In this paper we address the question of the rate of convergence in (10). Note that if
the probabilities in (2) are constant with respect to x then f (x) = ρx , consequently
H(x) = x , and the processes Z and Y coincide. In this case

√
K (Y n1 − Wρ−{logρ K }) = ρ− 1

2 {logρ K }√ρn1(ρ−n1Yn1 − W ) = OP(1) (11)

where the order of convergence is implied by the CLT for the Galton–Watson process
(Heyde 1970) by which

√
ρn(ρ−nYn−W ) converges in distribution to amixed normal

law as n → ∞. Thus it can be expected that at best the sequence in (10) is of order
OP(K−1/2) as K → ∞. However, the best rate of convergence in the approximation
in Theorem 1 described above, is achieved with c = 5

8 and it is only OP(K−1/8 log K ).
This can be seen from a close examination of the proof in Chigansky et al. (2019).

The goal of this paper is to put forward a different approximation with much faster
rate of convergence of order OP(K−1/2 log K ). This is still slower than the rate achiev-
able in the density independent case, but only by a logarithmic factor. The new proof
highlights a better understanding of population dynamics at the emergence stage,
which shows that, in fact, a sharper approximation is given by the Galton–Watson
process transformed by a nonlinear function H arising in deterministic dynamics (9).
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It is not clear at the moment whether the log K factor is avoidable and whether a
central limit type theorem holds. These questions are left for further research.

2 Themain result

We will make the following assumptions.

a1. The offspring distribution Fx (t) = ∑
�≤t p�(x) is stochastically decreasing with

respect to the population density: for any y ≥ x ,

Fy(t) ≥ Fx (t), ∀t ∈ R+.

a2. The second moment of the offspring distribution, cf. (3),

m2(x) = σ 2(x) + m(x)2

is L-Lipschitz for some L > 0.
a3. The function f (x) = xm(x) has two continuous bounded derivatives and 3

‖ f ′‖∞ = f ′(0) = ρ.

Remark 2 Assumption (a1.) means that the reproduction drops with population den-
sity. In particular, it implies that x �→ m(x) is a decreasing function and hence,

f ′(x) = m(x) + xm′(x) ≤ m(x) ≤ ρ, ∀x ∈ R+,

which is only slightly weaker than (a3.). The assumption (a2.) is technical.

Remark 3 The distribution of the process Z does not depend on the values of
{p�(0), � ∈ Z+} for any K , while the distribution ofW and, therefore, of H(W ) does.
This is not a contradiction since our assumptions imply continuity of x �→ p�(x) at
x = 0 for all � ∈ Z+. Indeed, m(x) = ∫ ∞

0 (1 − Fx (t))dt and therefore

∫ ∞

0
(Fx (t) − F0(t))dt = m(0) − m(x) −−−→

x→0
0

where the convergence holds since m(x) is differentiable and a fortiori continuous at
x = 0. By the stochastic order assumption (a1.), Fx (t) − F0(t) ≥ 0 for any t ≥ 0.
Since both Fx and F0 are discrete with jumps at integers, for any s ≥ 0,

Fx (s) − F0(s) =
∫ [s]+1

[s]
(Fx (t) − F0(t))dt ≤

∫ ∞

0
(Fx (t) − F0(t))dt −−−→

x→0
0.

This in turn implies that p�(x) → p�(0) as x → 0 for all �.

3 ‖ f ‖∞ = supx | f (x)|
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Theorem 2 Under assumptions (a1.)–(a3.)

Zn1 − H
(
Wρ−{logρ K }) = OP

(
K−1/2 log K

)
, as K → ∞.

Example 1 The binary splitting model from Chigansky et al. (2018) satisfies the above
assumptions. Another example is Geometric offspring distribution

p�(x) = q(x)�(1 − q(x)), � ∈ Z+

where q : R+ �→ [0, 1] is a decreasing function. This distribution satisfies the stochas-
tic order condition (a1.). The normalization m(0) = ρ and m(1) = 1 implies that
q(0) = ρ/(1 + ρ) and q(1) = 1/2. A direct calculation shows that, e.g.,

q(x) = ρ

1 + ρ
exp

(
−x log

2ρ

1 + ρ

)
, x ≥ 0

satisfies both (a2.) and (a3.).

Example 2 Stochastic Ricker model (Högnäs 1997) is given by a density dependent
branching process with the offspring distribution

p�(x) = q�e
−γ x ,

where γ > 0 is a constant, q�, � ≥ 1 is a given probability distribution, and no
offspring are produced with probability 1 − e−γ x . This model satisfies the stochastic
ordering assumption (a1.). The mean value of the distribution q� is denoted by er , to
emphasize the relation to the deterministic Ricker model. With such notation,

m(x) = er−γ x , f (x) = xer−γ x .

Under normalization m(0) = ρ and m(1) = 1 this becomes

m(x) = ρ1−x , f (x) = xρ1−x .

A direct calculation verifies the assumptions (a2.) and (a3.).

3 Proof of Theorem 2

We will construct the process Z defined in (1) and the Galton–Watson process Y from
(8) on a suitable probability space so that Yn ≥ Zn for all n ∈ N and the trajectories of
these processes remain sufficiently close at least for relatively small n’s (Sect. 3.2).We
will then show that H is twice continuously differentiable (Sect. 3.1) and use Taylor’s
approximation to argue (Sect. 3.3) that

Zn1 − H(Yn1) = OP(K
−1/2 log K ), as K → ∞.
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This convergence combined with (11) implies the result. Below we will write C for a
generic constant whose value may change from line to line.

3.1 Properties of H

In this section we establish existence of the limit (9) under the standing assumptions
and verify its smoothness. The proof of existence relies on a result on functional
iteration, shown in Baker et al. (2020).

Lemma 3 (Baker et al. 2020, Lemma 1) Let xm,n be the sequence generated by the
recursion

xm,n = ρxm−1,n(1 + Cxm−1,n), m = 1, . . . , n

subject to the initial condition x0,n = x/ρn > 0, where ρ > 1 and C ≥ 0 are
constants. There exists a locally bounded function ψ : R+ �→ R+ such that for any
n ∈ N

xm,n ≤ ψ(x)ρm−n, m = 1, . . . , n. (12)

Throughout we will use the notation Hn(x) := f n(x/ρn).

Lemma 4 Under assumption (a3.) there exists a continuous function H : R+ �→ R+
and a locally bounded function g : R+ �→ R+ such that

∣∣Hn(x) − H(x)
∣∣ ≤ g(x)ρ−n, n ∈ N.

Proof By assumption (a3.)

f (x) = ρx +
∫ x

0

∫ t

0
f ′′(s)dsdt (13)

and hence for any x, y ∈ R+

| f (y) − f (x)| ≤ ρ|y − x | + 1

2
‖ f ′′‖∞|y2 − x2| ≤ ρ

(
1 + C |y| ∨ |x |)|y − x |

(14)

with C = ‖ f ′′‖∞/ρ. Thus the sequence xm,n := f m(x/ρn) satisfies

xm,n = f (xm−1,n) ≤ ρ
(
1 + Cxm−1,n

)
xm−1,n

and x0,n = x/ρn . By Lemma 3 there exists a locally bounded function ψ such that
for any n ∈ N

∣∣ f m(x/ρn)
∣∣ ≤ ψ(x)ρm−n, m = 1, . . . , n. (15)
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The bound (14) also implies

∣∣ f m+1(x/ρn+1) − f m(x/ρn)
∣∣ = ∣∣ f ◦ f m(x/ρn+1) − f ◦ f m−1(x/ρn)

∣∣

≤ ρ
(
1 + CFm,n

)∣∣ f m(x/ρn+1) − f m−1(x/ρn)
∣∣
(16)

where, in view of (15),

Fm,n := f m(x/ρn+1) ∨ f m−1(x/ρn) ≤ ψ(x)ρm−1−n .

Since f has bounded second derivative and f ′(0) = ρ, cf. (13),

| f (x/ρn+1) − x/ρn | ≤ 1

2
‖ f ′′‖∞(x/ρ)2ρ−2n .

Plugging this bound into (16) and iterating n times we obtain

∣∣ f n+1(x/ρn+1) − f n(x/ρn)
∣∣ ≤ ∣∣ f (x/ρn+1) − x/ρn

∣∣ ρn
n∏

m=1

(
1 + CFm,n

)

≤ 1

2
‖ f ′′‖∞(x/ρ)2ρ−2nρn

n∏

m=1

(
1 + Cψ(x)ρm−1−n) ≤ g̃(x)ρ−n

where we defined

g̃(x) := 1

2
‖ f ′′‖∞(x/ρ)2

∞∏

k=1

(
1 + Cψ(x)ρ−k).

Thus the limit H(x) = limn→∞ f n(x/ρn) exists and satisfies the claimed bound with
g(x) = g̃(x)/(1− ρ−1). Continuity of H follows since Hn are continuous for each n
and the convergence is uniform on compacts. ��
Corollary 5 f is topologically semiconjugate to its linearization at the origin:

H(x) = f ◦ H(x/ρ), ∀x ∈ R+.

Proof Since f is continuous

H(x) = lim
n→∞ f n+1(x/ρn+1) = lim

n→∞ f ◦ f n((x/ρ)ρ−n) = f ◦ H(x/ρ).

��
The next lemma shows that H is strictly increasing in a vicinity of the origin and

is therefore a local conjugacy.
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Lemma 6 There exists an a > 0 such that H is strictly increasing on [0, a] and

f (x) = H(ρH−1(x)), x ∈ [0, H(a)]. (17)

Proof Let c := ‖ f ′′‖∞ and r := ρ/c then

f ′(x) ≥ ρ − cx > 0, ∀x ∈ [0, r).

Since f is ρ-Lipschitz and f (0) = 0, for any j = 1, . . . , n and x ∈ [0, r),

f n− j (x/ρn) ≤ x/ρ j ∈ [0, r)

and hence for all x ∈ [0, r)

H ′
n(x) =

n∏

j=1

1

ρ
f ′( f n− j (x/ρn)) ≥

n∏

j=1

(
1 − c

ρ
f n− j (x/ρn)

)

≥
n∏

j=1

(
1 − c

ρ
xρ− j ) ≥ 1 − c

ρ
x

n∑

j=1

ρ− j ≥ 1 − c

ρ − 1
x,

where we used the Bernoulli inequality. Thus we can choose a number a ∈ (0, r) such
that H ′

n(x) ≥ 1/2 for all x ∈ [0, a]. It then follows that for any y > x in the interval
[0, a]

Hn(y) − Hn(x) =
∫ y

x
H ′
n(t)dt ≥ 1

2
(y − x) > 0.

Taking the limit n → ∞ implies that H is strictly increasing on [0, a]. Being contin-
uous, H is invertible and (17) holds by Corollary 5. ��
Remark 4 Under additional assumption that f is strictly increasing on the whole R+,
the function H is furthermore a global conjugacy, i.e. (17) holds on R+.

The next lemma establishes differentiability of H .

Lemma 7 H has continuous derivative

H ′(x) =
∞∏

j=1

1

ρ
f ′(H(xρ− j )), ∀x ∈ R+ (18)

where the series converges uniformly on compacts.

Proof Step 1. Let us first argue that the infinite product in (18)

G(x) :=
∞∏

j=1

1

ρ
f ′(H(xρ− j )) (19)
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is well defined. By assumption (a3.), f is ρ-Lipschitz and hence f n is ρn-Lipschitz.
Consequently, Hn is 1-Lipschitz for all n ∈ N and so is H . This will be used in the
proof on several occasions. Let c := ‖ f ′′‖∞ and r := 1

2ρ/c, then

f ′(x) ≥ ρ − cx > 0, ∀x ∈ [0, r ]. (20)

For x > 0 define the function j(x) := [logρ(x/r)]. Then for any j > j(x),

∣∣∣ log
1

ρ
f ′(H(xρ− j ))

∣∣∣ = − log
1

ρ
f ′(H(xρ− j )) ≤ − log

(
1 − c

ρ
H(xρ− j )

)

†≤ 2
c

ρ
H(xρ− j ) ≤ 2

c

ρ
xρ− j =: Cxρ− j ,

(21)

where † holds since − log(1− u) ≤ 2u for all u ∈ [0, 1
2 ]. The partial products in (19)

can be written as

Gn(x) :=
n∏

j=1

1

ρ
f ′(H(xρ− j ))

=
⎛

⎝
j(x)∏

j=1

1

ρ
f ′(H(xρ− j ))

⎞

⎠ exp

⎛

⎝
n∑

j= j(x)+1

log
1

ρ
f ′(H(xρ− j ))

⎞

⎠ =: T (x) exp(Ln(x)).

In view of the estimate (21), Gn(x) converges to G(x) := T (x) exp(L(x)) for any
x ∈ R+ where L(x) = limn Ln(x). Furthermore,

∣∣Gn(x) − G(x)
∣∣ = |T (x)|∣∣ exp(Ln(x)) − exp(L(x))

∣∣

≤ exp(L(x) ∨ Ln(x))
∣∣L(x) − Ln(x)

∣∣ (22)

where we used the bound |T (x)| ≤ 1. For any R > 0 and all x ∈ [0, R] the estimate
(21) implies

∣∣L(x) − Ln(x)
∣∣ =

∞∑

j=n+1

∣∣ log
1

ρ
f ′(H(xρ− j ))

∣∣ ≤
∞∑

j=n+1

Cxρ− j ≤ CR
ρ−n

ρ − 1
,

and thus, in view of the bound (22), we obtain

sup
x≤R

∣∣Gn(x) − G(x)
∣∣ → 0. (23)

SinceGn is continuous for anyn, this uniformconvergence implies thatG is continuous
as well.
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Step 2. To show that H(x) is differentiable and to verify the claimed formula for the
derivative, it remains to show that the sequence of derivatives

H ′
n(x) =

n∏

j=1

1

ρ
f ′( f n− j (x/ρn))

converges to G uniformly on compacts. Fix an R > 0, define J (R) = [logρ(R/r)]
and, for n > J (R), let

P̃n(x) :=
J (R)∏

j=1

1

ρ
f ′( f n− j (x/ρn)), Pn(x) :=

n∏

j=J (R)+1

1

ρ
f ′( f n− j (x/ρn))

and

Q̃n(x) :=
J (R)∏

j=1

1

ρ
f ′(H(xρ− j )), Qn(x) :=

n∏

j=J (R)+1

1

ρ
f ′(H(xρ− j )).

Since ‖ f ′‖∞ = ρ all these functions are bounded by 1 and

∣∣H ′
n(x) − G(x)

∣∣ ≤ ∣∣H ′
n(x) − Gn(x)

∣∣ + ∣∣Gn(x) − G(x)
∣∣

= ∣∣P̃n(x)Pn(x) − Q̃n(x)Qn(x)
∣∣ + ∣∣Gn(x) − G(x)

∣∣

≤ ∣∣Pn(x) − Qn(x)
∣∣ + ∣∣P̃n(x) − Q̃n(x)

∣∣ + ∣∣Gn(x) − G(x)
∣∣.

Since f ′ is continuous and the convergence Hn → H is uniform on compacts, it
follows that

sup
x≤R

∣∣P̃n(x) − Q̃n(x)
∣∣ = sup

x≤R

∣∣∣∣∣∣

J (R)∏

j=1

1

ρ
f ′(Hn− j (xρ

− j )) −
J (R)∏

j=1

1

ρ
f ′(H(xρ− j ))

∣∣∣∣∣∣
−−−→
n→∞ 0,

and hence, to complete the proof, we need to show that

sup
x≤R

∣∣Pn(x) − Qn(x)
∣∣ −−−→

n→∞ 0. (24)

To this end, in view of Corollary 5,

H(xρ− j ) = f ◦ H(xρ− j−1)) = f 2 ◦ H(xρ− j−2)) = . . .

= f n− j ◦ H(xρ− j−(n− j)) = f n− j ◦ H(xρ−n)

and hence

Pn(x) − Qn(x) =
n∏

j=J (R)+1

1

ρ
f ′( f n− j (xρ−n)) −

n∏

j=J (R)+1

1

ρ
f ′( f n− j (H(xρ−n)

))
.
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Consequently, for all x ∈ (0, R],
∣∣ log Pn(x) − log Qn(x)

∣∣

≤
n∑

j=J (R)+1

∣∣∣ log
1

ρ
f ′( f n− j (xρ−n)) − log

1

ρ
f ′( f n− j (H(xρ−n)

))∣∣∣

†≤ 1

ρ − cr
‖ f ′′‖∞

n∑

j=J (R)+1

∣∣ f n− j (xρ−n) − f n− j (H(xρ−n)
)∣∣

≤ 1

ρ − cr
‖ f ′′‖∞

n∑

j=1

ρn− j
∣∣xρ−n − H(xρ−n)

∣∣ ≤ Cρn
∣∣ρ−nx − H(xρ−n)

∣∣

= Cρn
∣∣H ◦ H−1(xρ−n) − H(xρ−n)

∣∣ ‡≤ C
∣∣ρnH−1(xρ−n) − x

∣∣.

(25)

Here the bound † holds since for j > J (R) both arguments of f ′ are smaller than r
and thus (20) applies. The inequality ‡ is true since H is 1-Lipschitz. The inverses in
the last line of (25) are well defined for n ≥ k := [logρ(R/H(a))] + 1 where a is the
constant guaranteed by Lemma 6. Moreover, for all such n

∣∣ρn H−1(xρ−n) − x
∣∣ = ρk

∣∣ρn−k H−1(xρ−kρ−(n−k)) − xρ−k
∣∣

= ρk
∣∣H−1 ◦ f n−k(xρ−kρ−(n−k)) − xρ−k

∣∣ = ρk
∣∣H−1 ◦ Hn−k(xρ

−k) − xρ−k
∣∣ −−−→

n→∞ 0.

(26)

Moreover, the sequence of functions Dn(x) := ρnH−1(xρ−n) is decreasing on [0, R]
for all n large enough:

Dn+1(x) = ρnρH−1(xρ−n−1) = ρnH−1 ◦ f (xρ−n−1) ≤ ρnH−1(xρ−n) = Dn(x),

where the inequality holds since H−1 is increasing near the origin. It follows now
from Dini’s theorem that the convergence in (26) is uniform:

sup
x≤R

∣∣ρnH−1(xρ−n) − x
∣∣ −−−→

n→∞ 0.

The convergence in (24) holds since both Qn and Pn are bounded by 1 and

sup
x≤R

∣∣Pn(x) − Qn(x)
∣∣ ≤ sup

x≤R

∣∣Pn(x) ∨ Qn(x)
∣∣ sup
x≤R

∣∣ log Pn(x) − log Qn(x)
∣∣ −−−→

n→∞ 0.

��
Lemma 8 H has continuous second derivative

H ′′(x) = H ′(x)
∞∑

i=1

f ′′(H(xρ−i ))

f ′(H(xρ−i ))
H ′(xρ−i )ρ−i . (27)
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Proof The partial products in (18)

Gn(x) :=
n∏

j=1

1

ρ
f ′(H(xρ− j ))

satisfy

G ′
n(x) =

n∑

i=1

⎛

⎝
n∏

j=1, j �=i

1

ρ
f ′(H(xρ− j ))

⎞

⎠ 1

ρ
f ′′(H(xρ−i ))H ′(xρ−i )ρ−i

= Gn(x)
n∑

i=1

f ′′(H(xρ−i ))

f ′(H(xρ−i ))
H ′(xρ−i )ρ−i ,

where the convention 0/0 = 0 is used. By assumption (a3.), f ′′/ f ′ is bounded uni-
formly on a vicinity of the origin. H ′ is continuous by Lemma 7 and therefore is
bounded on compacts. Hence the series is compactly convergent. By Lemma 7, so
is Gn . Thus G ′

n(x) converges compactly, its limit is continuous and coincides with
H ′′(x). ��

3.2 The auxiliary Galton–Watson process

Let (Un, j : n ∈ N, j ∈ Z+) be an array of i.i.d.U ([0, 1]) random variables and define

ξn, j (x) = F−1
x (Un, j ) := min

{
t ≥ 0 : Fx (t) ≥ Un, j

}
,

where Fx (t) is the offspring distribution function when the population density is x , cf.
assumption (a1.). Then P(ξn, j (x) = k) = pk(x) for all k ∈ Z+. Let ηn, j := ξn, j (0).
By assumption (a1.)

ξn, j (x) ≤ ηn, j ∀x ∈ R+, n, j ∈ N. (28)

Let Z = (Zn, n ∈ Z+) and Y = (Yn, n ∈ Z+) be processes generated by the
recursions

Zn =
Zn−1∑

j=1

ξn, j (Zn−1) and Yn =
Yn−1∑

j=1

ηn, j

started from the same initial conditions Z0 = Y0 = 1. By construction these processes
coincide in distribution with (1) and (8) respectively. Moreover, in view of (28), by
induction

Zn ≤ Yn, ∀n ∈ Z+. (29)
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3.3 The approximation

In view of (11),

Yn1 − Wρ−{logρ K } = ρ−{logρ K }(ρ−n1Yn1 − W
) = OP(ρ

−n1/2) = OP(K
−1/2).

Since H has continuous derivative it follows that

H(Y n1) − H(Wρ−{logρ K }) = OP(K
−1/2).

Thus to prove the assertion of Theorem 2 it remains to show that

Zn1 − H(Yn1) = OP(K
−1/2 log K ), K → ∞.

The process Y n = K−1Yn satisfies

Yn = ρY n−1 + 1

K

Yn−1∑

j=1

(ηn, j − ρ).

By Taylor’s approximation and in view of Corollary 5

H(Y n) = H(ρY n−1) + H ′(ρY n−1)
1

K

Yn−1∑

j=1

(ηn, j − ρ) + Rn(K )

= f (H(Y n−1)) + H ′(ρY n−1)
1

K

Yn−1∑

j=1

(ηn, j − ρ) + Rn(K )

(30)

where

Rn(K ) := 1

2
H ′′(θn−1(K ))

⎛

⎝ 1

K

Yn−1∑

j=1

(ηn, j − ρ)

⎞

⎠
2

(31)

with θn−1(K ) ≥ 0 satisfying

∣∣θn−1(K ) − ρY n−1
∣∣ ≤

∣∣∣∣∣∣
1

K

Yn−1∑

j=1

(ηn, j − ρ)

∣∣∣∣∣∣
. (32)

Since ‖ f ′‖∞ = ρ is assumed, f is ρ-Lipschitz. By subtracting equation (5) from (30)
we obtain the bound for δn := |H(Yn) − Zn|:

δn ≤ ρδn−1 + ∣∣ε(1)
n

∣∣ + ∣∣ε(2)
n

∣∣ + ∣∣ε(3)
n

∣∣ + |Rn(K )| (33)

123



44 Page 16 of 20 N. Bauman et al.

subject to δ0 = |H(1/K ) − 1/K |, where we defined

ε(1)
n =

(
H ′(ρY n−1) − 1

) 1

K

Yn−1∑

j=1

(ηn, j − ρ),

ε(2)
n = 1

K

Zn−1∑

j=1

(
(ηn, j − ρ) − (ξn, j (Zn−1) − m(Zn−1))

)
,

ε(3)
n = 1

K

Yn−1∑

j=Zn−1+1

(ηn, j − ρ).

Consequently,

δn ≤ ρnδ0 +
n∑

j=1

ρn− j
(∣∣ε(1)

j

∣∣ + ∣∣ε(2)
j

∣∣ + ∣∣ε(3)
j

∣∣ + |R j (K )|
)

and it is left to show that the contribution of each term at time n1 = [logρ K ] is of
order OP(K−1/2 log K ) as K → ∞.

3.3.1 Contribution of the initial condition

Since H(0) = 0 and, by (18), H ′(0) = 1, Taylor’s approximation implies that for all
K large enough

δ0 = |H(1/K ) − 1/K | ≤ 1

2
sup
x≤1

|H ′′(x)|K−2 = CK−2

and, consequently, |ρn1δ0| ≤ CK−1.

3.3.2 Contribution of Rn(K)

To estimate the residual, defined in (31), let us show first that the family of random
variables

max
m≤n1

∣∣∣H ′′(θm(K ))

∣∣∣ (34)

is bounded in probability as K → ∞. By equation (32),

Eθn−1(K ) ≤ ρEY n−1 + E

∣∣∣∣∣∣
1

K

Yn−1∑

j=1

(
ηn, j − ρ

)
∣∣∣∣∣∣

≤ ρEY n−1 + 1

K

√
EYn−1σ 2(0) ≤ 1

K
ρn + 1

K

√
ρnσ 2(0)

≤ K−1ρn + CK−1ρn/2 ≤ 2CK−1ρn .

123



An approximation of populations... Page 17 of 20 44

If H ′′ is bounded then (34) is obviously bounded. Let us proceed assuming that H ′′
is unbounded. Define ψ(M) := maxx≤M |H ′′(x)|. By continuity, ψ(M) is finite,
continuous and increases to ∞. Let ψ−1 be its generalized inverse

ψ−1(t) = inf{x ≥ 0 : ψ(x) ≥ t}.

Since ψ is continuous and unbounded, ψ−1 is nondecreasing (not necessarily contin-
uous) and ψ−1(t) → ∞ as t → ∞. Then for any R ≥ 0, by the union bound,

P
(
max
m≤n1

|H ′′(θm(K )| ≥ R
)

≤ P
(
max
m≤n1

ψ(θm(K )) ≥ R
)

≤
n1∑

m=1

P
(
ψ(θm(K )) ≥ R

)
≤

n1∑

m=1

P
(
θm(K ) ≥ ψ−1(R)

)

≤
n1∑

m=1

Eθm(K )

ψ−1(R)
≤ 1

ψ−1(R)

n1∑

m=1

2CK−1ρm ≤ ρ

ρ − 1

2C

ψ−1(R)
−−−→
R→∞ 0.

This proves that (34) is bounded in probability. The contribution of Rn(K ) in (33) can
now be bounded as

∣∣∣∣∣

n1∑

m=1

ρn1−m Rm(K )

∣∣∣∣∣ ≤ max
j≤n1

∣∣∣H ′′(θ j (K ))

∣∣∣
n1∑

m=1

ρn1−m

⎛

⎝ 1

K

Ym−1∑

j=1

(ηm, j − ρ)

⎞

⎠
2

where

E
n1∑

m=1

ρn1−m

⎛

⎝ 1

K

Ym−1∑

j=1

(ηm, j − ρ)

⎞

⎠
2

=
n1∑

m=1

ρn1−m 1

K 2 EYm−1σ
2(0) ≤

n1∑

m=1

ρn1−m 1

K 2 ρmσ 2(0) ≤ CK−1 log K .

Hence

∣∣∣∣∣

n1∑

m=1

ρn1−m Rm(K )

∣∣∣∣∣ = OP(1)OP(K
−1 log K ) = OP(K

−1 log K ).

3.3.3 Contribution of "(3)

By conditional independence of ηn, j ’s

E
(
ε(3)
m

)2 = σ 2(0)

K
E(Ym−1 − Zm−1).
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In view of (29), the sequence Dm := Ym − Zm ≥ 0 satisfies

EDm = 1

K
E

⎛

⎝
Ym−1∑

j=1

ηm, j −
Zm−1∑

j=1

ξm, j (Zm−1)

⎞

⎠

= 1

K
E

Ym−1∑

j=Zm−1+1

ηm, j + 1

K
E
Zm−1∑

j=1

(
ηm, j − ξm, j (Zm−1)

)

= ρEDm−1 + 1

K
E
Zm−1∑

j=1

(
ρ − m(Zm−1)

)

= ρEDm−1 + EZm−1
(
ρ − m(Zm−1)

)

= ρEDm−1 + E
(
ρZm−1 − f (Zm−1)

)

≤ ρEDm−1 + 1

2
‖ f ′′‖∞EZ

2
m−1

≤ ρEDm−1 + CK−2ρ2m,

where the last bound holds in view of (29) and the well known formula for the second
moment of the Galton–Watson process. Since D0 = 0 it follows that

EDm ≤
m∑

�=1

ρm−�CK−2ρ2� ≤ CK−2ρ2m .

Hence the contribution of ε(3) in (33) is bounded by

E
∣∣∣

n1∑

m=1

ρn1−mε(3)
m

∣∣∣ ≤ C
n1∑

m=1

ρn1−mK−1/2
√
EDm

≤ C
n1∑

m=1

ρn1−mK−1/2K−1ρm ≤ CK−1/2 log K .

3.3.4 Contribution of "(2)

By assumption (a2.),

E
(
ε(2)
m

)2 = K−2E
Zm−1∑

j=1

(
ηm, j − ξm, j (Zm−1) − (

ρ − m(Zm−1)
))2

≤ K−2E
Zm−1∑

j=1

(
ηm, j − ξm, j (Zm−1)

)2 †≤ K−2E
Zm−1∑

j=1

(m2(0) − m2(Zm−1)
)

≤ K−2E
Zm−1∑

j=1

LZm−1 ≤ CK−3ρ2m
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where † holds by (28). Hence ε(2) contributes

E
∣∣∣

n1∑

m=1

ρn1−mε(2)
m

∣∣∣ ≤ C
n1∑

m=1

ρn1−mK−3/2ρm ≤ CK−1/2 log K .

3.3.5 Contribution of "(1)

The function g(x) := H ′(x) − 1 is continuously differentiable with g(0) = 0 and
thus Taylor’s approximation gives

ε(1)
n = g(ρYn−1)

1

K

Yn−1∑

j=1

(ηn, j − ρ) = g′(ζn−1(K ))ρYn−1
1

K

Yn−1∑

j=1

(ηn, j − ρ)

where ζn−1(K ) satisfies 0 ≤ ζn−1(K ) ≤ ρY n−1. Here

E
∣∣∣Yn−1

1

K

Yn−1∑

j=1

(ηn, j − ρ)

∣∣∣

≤
(
E
(
Yn−1

)2)1/2
⎛

⎝E
( 1

K

Yn−1∑

j=1

(ηn, j − ρ)
)2

⎞

⎠
1/2

≤ (
K−2ρ2n)1/2

(
K−2EYn−1σ

2(0)
)1/2 ≤ CK−2ρ3/2n .

It follows that

E
n1∑

m=1

ρn1−m
∣∣∣Ym−1

1

K

Ym−1∑

j=1

(ηm, j − ρ)

∣∣∣ ≤
n1∑

m=1

ρn1−mCK−2ρ3/2m ≤ CK−1/2.

It is then argued as in Sect. 3.3.2 that

n1∑

m=1

ρn1−mε(1)
m = OP(1)OP(K

−1/2) = OP(K
−1/2).
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