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Abstract
Emerging and re-emerging pathogens are latent threats in our society with the risk
of killing millions of people worldwide, without forgetting the severe economic and
educational backlogs. From COVID-19, we learned that self isolation and quarantine
restrictions (confinement) were the main way of protection till availability of vaccines.
However, abrupt lifting of social confinement would result in new waves of new
infection cases and high death tolls. Here, inspired by how an extracellular solution can
make water move into or out of a cell through osmosis, we define confinement tonicity.
This can serve as a standalone measurement for the net direction and magnitude
of flows between the confined and deconfined susceptible compartments. Numerical
results offer insights on the effects of easing quarantine restrictions.

Keywords Epidemic · Confinement · Stability · Epidemic final size

Mathematics Subject Classification 92D30 · 34D20 · 34C60

1 Introduction

Pandemics are latent threat to public health. In history, we have encountered the
Black Death in the mid-1300s, the 1918 flu pandemic, H1N1 influenza pandemic
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Fig. 1 A schema representing our modeling framework, where freely-moving molecules (small circles)
represent individuals. A semi-permeable membrane (pink) isolates the confined individuals (green) from
the disease spread, inducing an “osmosis” given by the net confinement (blue arrow, with per-capita rate
q) and deconfinement (green arrow, with per-capita rate τ ). The schema embeds a compartmental diagram
describing the progression of unconfined individuals (blue) as they become infectious (red), symptomatic
(orange), and finally removed from the population (gray)(color figure online)

in 2009, Ebola 2013 and 2018, Madagascar Plague outbreak 2014, Measleas outbreak
2019–2020, among many others (Hernandez-Vargas et al. 2019). In recent history, the
2019–2022 coronavirus pandemic (COVID-19) has made significant global impacts
(Guo et al. 2020; Huang et al. 2020; Wang et al. 2020). Pandemics pose several
challenges to determine effective disease control strategies tailored to a national or
local region.

A diverse collection of epidemic models was proposed to gain further quantitative
understanding of the pandemic as it evolves and to emphasize the importance of disease
control measures (Anderson et al. 2020; Ferguson et al. 2020; Heesterbeek et al. 2015;
Mejia-Hernandez and Hernandez-Vargas 2020). A central measure to avoid infections
involves quarantine (or confinement). SEIR minimal compartmental epidemic model
to study the effects of sharp and gradual lifting of confinement has been formulated in
Ricardo-Azanza andHernandez-Vargas (2020), Peng et al. (2020) andLópez andRodó
(2020). Among all numerical results (Ricardo-Azanza and Hernandez-Vargas 2020;
Peng et al. 2020), the models predict that implementing a sharp lifting of confinement
strategies, i.e., immediate return to pre-COVID activities, would result in a massive
peak in infected cases. This observation leads to the possibility of a breakdown in the
health system due to a surge in patient admissions. Moreover, the model in Ricardo-
Azanza and Hernandez-Vargas (2020) suggested a better strategy through phased
gradual de-confinement tailored to each city inMexico. Aside from these observations,
no mathematical analysis was carried out on the SEIR model with confinement to
determine qualitative features like stability and long-term behavior. We address this
gap by associating the confinement behavior with osmosis between two substances
(Fig. 1).

Model analysis based on dynamical systems theory can lead to a more in-depth
understanding of the disease. For example, in-host COVID-19modeling using dynam-
ical systems and control theory helped to identify conditions for reducing the pathogen
load (Almocera et al. 2020;Abuin et al. 2020).On a population-level, the severity of the
disease (through the basic reproduction number), epidemic final sizes, and epidemic
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peak times have been established for previous epidemic models (Ricardo-Azanza and
Hernandez-Vargas 2020; Arino et al. 2007). From a control-theoretic view, SIR mod-
eling studies considered various approaches to reduce the epidemic peak size through
maximal, long-term confinement (Bliman and Duprez 2021), single short-term and
non-repeating (“one-shot”) actions (Di Lauro et al. 2021), and timed control of the
contact rate over finite time (Ketcheson 2021).

We organize this paper as follows. After a brief review of epidemic terms in Sect. 2,
the compartmental epidemic model SEIRC is presented in Sect. 3 to highlight the
confinement and deconfinement of susceptible individuals. We analyze the model in
Sect. 4 to characterize equilibrium points, compute the basic reproduction number, and
obtain global asymptotic properties. Section6 concludes the paper with an in-depth
discussion on the mathematical results and possible directions for future work.

2 Review of epidemic terms

We review some primary concepts in epidemiology (Keeling and Rohani 2008),
namely the basic reproduction number, herd immunity, final size, and epidemic peak,
to contextualize our analysis; see also Sereno et al. (2021), Sereno et al. (2021) and
González et al. (2022). Hence, it is helpful to consider the basic SIRmodel of Kermack
and McKendrick (1927), given in dimensionless form by the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS

dt
= −R0SI ,

d I

dt
= R0SI − I ,

dR

dt
= I .

(1)

The state variables S, I , and R denote the fractions of the population that are susceptible
to the disease, infected and capable of spreading the disease, and removed (recovered
or dead) individuals, respectively.

We call R0 the basic reproduction number or the average number of new infec-
tions caused by a single infected host during the course of infection when introduced
to a completely susceptible population. This quantity is one of the most fundamen-
tal concepts in epidemiology. Typical models like (1) predict disease spread within
a population when R0 > 1, supporting the importance of R0 as a threshold quan-
tity and metric for mitigation efforts (Anderson et al. 2020). Moreover, these models
have R0 = β/η where β and η denote the transmission and removal (recovery or
death) rates with appropriate units. However, various approaches are available for the
calculation of R0 (van den Driessche 2017).

Herd immunity is generally associated with the protection of a critical fraction of
the population to impede disease spread. There are different notions of herd immunity
based on the proportion of immune individuals (Fine 1993). Here, we consider herd
immunity as a critical population size under which the number of infected individuals
do not increase (Sereno et al. 2021). With the SIR model (1), we may consider the
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herd immunity threshold S∗ such that I ′ < 0 when S < S∗. In our work, we
consider a slightly restricted version of herd immunity that only considers part of
the susceptible individuals that are unconfined (x) with infectious individuals (z): we
define this herd immunity threshold x̃ in (14), which will satisfy the property that
z′/z ≤ 0 (z decreases) when x ≤ x̃ .

There are two related ideas about “final size.” The first idea is epidemic final size,
which informally denotes how many individuals experienced the infection during an
outbreak (Bidari et al. 2016). For the SIR model (1) assuming S(0) = 1, the epidemic
final size Z is given by the so-called final-size relation Z = 1 − S∞ = 1 − e−R0Z

where S∞ := limt→∞ S(t) (see Ma and Earn 2006; Sereno et al. 2021). The limit
value S∞ expresses the asymptotic behavior of the number of susceptible cases, which
leads to our second idea: we define the final size of a state variable u corresponding
to an epidemic state u∞ := limt→∞ u(t). For example, S∞ is the final size of the
susceptible population. This notation is used, for example, in Hsu and Roeger (2007).

Finally, given the number or size of infected individuals I (t), we define the epi-
demic peak (or the infected peak prevalence) as the maximum value of I for all
t ≥ 0. This value and the epidemic final size are two control objectives of interest
from an epidemic perspective (Di Lauro et al. 2021).

3 Epidemic mathematical model with confinement

The followingmodel (Ricardo-Azanza andHernandez-Vargas 2020)modifies the stan-
dard SEIR model with confinement effects:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −βA

N
S − (qS − τC),

dC

dt
= qS − τC,

d A

dt
= βA

N
S − ηA,

d I

dt
= εηA − δ I ,

dR

dt
= (1 − ε)ηA + δ I .

(2)

Here, the total population is N = S + C + A + I + R. This model assumes that
infectious individuals are asymptomatic (A), since otherwise they are isolated, and
either progress to become infected with symptoms (I ) or are removed (R). Unconfined
susceptible individuals (S) enter the confined sub-population (C) at a per-capita rate of
q (1/week), while the deconfinement fromC to S is represented by the per-capita rate τ

(1/week). Standard epidemic parameters are the transmission rate β, which according
to this model occurs between susceptible and asymptomatic, incubation rate η, and the
removal rate of symptomatic individuals δ; all these parameters are measured in units
of 1/week.We assume that a fraction ε of asymptomatic individuals present symptoms
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(i.e., enter the I compartment), while the rest (1 − ε) bypass the symptomatic stage
and are directly removed.

Remark 3.1 The state variable S represents only a fraction of the classical susceptible
population given in this context by S+C . In the samevein, classical infected population
(which represents both infected and infectious) is given here by A + I where only A
is infectious.

We can nondimensionalize the system (2) to scale each compartment size. Since N
is constant with dN/dt = 0, we scale our variables with

x(t) := S(t)

N
, y(t) := C(t)

N
, z(t) := A(t)

N
,

u(t) := I (t)

N
, v(t) := R(t)

N
, t∗ := τ t .

The dimensionless variables x , y, z, u, and v are the fractions of N that are uncon-
fined (susceptible), confined, asymptomatic, symptomatic, and removed, respectively.
Introduce the dimensionless parameter μ∗ := μ/τ for each dimensional parameter
μ from (2). Then dividing through each equation of the system (2) by τN yields the
following dimensionless form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x ′ = −η∗R0xz − (q∗x − y),

y′ = q∗x − y,

z′ = η∗R0xz − η∗z,
u′ = εη∗z − δ∗u,

v′ = (1 − ε)η∗z + δ∗u,

(3)

where ′ = d/dt∗. We also have

x + y + z + u + v = 1. (4)

We call

R0 := β∗

η∗ = β

η
(5)

the basic reproduction number in the absence of control interventions.

Remark 3.2 The dimensionless parameter q∗ = q/τ expresses the strictness of the
confinement. Indeed, q∗ = y/x = C/S at any equilibrium point (steady state), from
which q∗ > 1 (resp. q∗ < 1) can indicate that there are more (resp. less) confined
individuals than those unconfined. Hence, we may associate a strict confinement with
q∗ > 1 and a lenient confinement with q∗ < 1.
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Now, we are interested in the effects of confinement on the behavior of asymp-
tomatic individuals z. We observe that the differential equations of x , y, z in the
system (3) do not depend on u and v. Therefore, it is enough to study the system

⎧
⎪⎨

⎪⎩

x ′ = −η∗R0xz − (q∗x − y),

y′ = q∗x − y,

z′ = η∗(R0xz − z),

(6)

which generates the solutions of (3) with

u(t∗) = exp(−δ∗t∗)
[

u(0) + εη∗
∫ t∗

0
z(θ) exp(δ∗θ)dθ

]

,

v(t∗) = 1 − [
x(t∗) + y(t∗) + z(t∗) + u(t∗)

]
.

In this manner, we can visualize the behavior of (3) with the three-dimensional phase
portrait of (6). Furthermore, Eq. (4) necessitates x + y + z ≤ 1. Thus, we choose our
state space (or feasible region) for the system (6) to be

X :=
{
(x, y, z) ∈ R

3+ | x + y + z ≤ 1
}

(7)

where R3+ denotes the non-negative octant (i.e., the set of points in three-dimensional
space with non-negative coordinates). Finally, we can quantify the net movement
between the confined and unconfined compartments. We introduce a dimensionless
quantity

Q(t∗) := q∗ − y(t∗)
x(t∗)

= y′(t∗)
x(t∗)

. (8)

Based on an upcoming result on how y changes over time, we may call Q a con-
finement tonicity inspired by how water flows between two solutions undergoing
osmosis. A central result of our work is a formula for the final size of the unconfined
population that incorporates the integral of Q over all forward times.

4 Mathematical analysis

4.1 Equilibria

We begin our dynamical analysis by defining the equilibrium sets of the system (6).
Any equilibrium point with coordinates (x, y, z) satisfies the following equations:

0 = −η∗R0xz − (q∗x − y),

0 = q∗x − y,

0 = η∗R0xz − η∗z.
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These equations yield z = 0 and y = q∗x . Restricted to the state space X , we also
have

x + y + z = (1 + q∗)x ≤ 1 	⇒ 0 ≤ x ≤ 1

1 + q∗ .

Therefore, the set

X ∗ :=
{

(x, q∗x, 0)
∣
∣
∣
∣ 0 ≤ x ≤ 1

1 + q∗

}

, (9)

consists all the (non-isolated) equilibrium points of (6) in X . Furthermore, the line
segment connecting the origin and the point

E(q∗) :=
(

1

1 + q∗ ,
q∗

1 + q∗ , 0

)

(10)

represents X ∗.
Observe that E(q∗) corresponds to the steady state of (3) where x + y = 1 and

z = u = v = 0. Hence, in the context of Remark 3.1, we may interpret E(q∗) as
the completely susceptible population. However, the disease-free scenario without the
pathogen is only meaningful without confinement, that is, when viewing q∗ as control
parameter and q∗ = 0. Thus, we define the disease-free equilibrium

DFE := (1, 0, 0) = E(0)

where y = 0.

Remark 4.1 Each point in X ∗ corresponds to the following equilibrium point of (3)
with the same x-coordinate:

y = q∗x, z = u = 0, v = 1 − (1 + q∗)x .

Now, the equilibrium points in X ∗ are non-isolated in the sense that no open set
separates any equilibrium point from the rest. Althoughwe typically employ lineariza-
tion for isolated equilibrium points, we can classify equilibrium points in X ∗ based
on the Jacobian matrix. The Jacobian matrix of the system (6) is

J (x, y, z) =
⎡

⎣
−η∗R0z − q∗ 1 −η∗R0x

q∗ −1 0
η∗R0z 0 η∗(R0x − 1)

⎤

⎦ .

Evaluating J at any point on X ∗, we obtain

J ∗ =
⎡

⎣
−q∗ 1 −η∗R0x
q∗ −1 0
0 0 η∗(R0x − 1)

⎤

⎦ , 0 ≤ x ≤ 1

1 + q∗ .
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46 Page 8 of 37 A. E. S. Almocera et al.

The eigenvalues of J ∗ are 0, −(1 + q∗), and

λ = η∗R0

(

x − 1

R0

)

.

Let

x̂ := min

{
1

R0
,

1

1 + q∗

}

. (11)

Observe that λ < 0 when x < x̂ ≤ 1/R0, and λ ≤ 0 when x = x̂ . We also have
x̂ < x ≤ 1/(1 + q∗) only if x̂ = 1/R0, from which λ > 0. Thus we obtain the
following partition of X ∗:

X ∗
st := {

(x, q∗x, 0) ∈ X | 0 ≤ x ≤ x̂
}
, (12)

X ∗
un := {

(x, q∗x, 0) ∈ X | x̂ < x ≤ 1/(1 + q∗)
}
. (13)

Based on the signs of the eigenvalues, wemay callX ∗
st andX ∗

un the stable andunstable
sets, respectively. Theorem 4.12(a) justifies this notation in the local stability of X ∗

st .
Generally speaking, we define herd immunity as the threshold proportion of the

unconfined population (x) below which the asymptomatic population (z) decreases.
Since R0 does not change with the control parameter q∗, we consider the endemic
case and define our herd immunity threshold as

x̃ := 1

R0
(14)

from which x̂ = min{̃x, 1/(1 + q∗)}. If x ≤ x̃ , then

z′

z
= η∗R0

(

x − 1

R0

)

≤ η∗R0

(

x̃ − 1

R0

)

= 0, (15)

hence z decreases.
For a possible extension of our model that allows external action to change R0,

we may redefine our herd immunity as x̃ = min{1/R0, 1}. Then arguing as in (15), z
decreases when x ≤ x̃ .

4.2 Positively invariant sets

Next, we introduce results concerning invariant sets in X that are the natural gener-
alization of equilibria. Henceforth, we call D ⊆ R

3 a positively invariant set if any
solution ϕ of (6) with ϕ(t0) ∈ D for some t0 ≥ 0 satisfies ϕ(t) ∈ D for all t > t0.
It is customary to call ϕ a solution in D. The following theorem asserts that we may
partition our state space X into three positively invariant sets.
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Theorem 4.2 Write X = Y1 ∪ Y2 ∪ Y3 where

Y1 = {(x, y, z) ∈ X | z = 0},
Y2 = {(x, y, z) ∈ X | z > 0 and x = y = 0},
Y3 = {(x, y, z) ∈ X | z > 0, and either x > 0 or y > 0}.

Then Yk is positively invariant for k = 1, 2, 3, and X is positively invariant.

Proof Note that positively invariant sets are closed under set union, hence, it suffices
to establish the positive invariance of Yk for k = 1, 2, 3. According to the system (6),
the derivative z′ = 0 whenever z = 0, which establishes the positive invariance of Y1.
We have x = y = 0 in Y2, from which x ′ = y′ = 0. Thus, Y2 is positively invariant.

Now, let π1 and π2, π3 be the intersections of Y3 with the planes x = 0, y = 0,
and x + y + z = 1, respectively. These planes have corresponding outward normal
vectors 
n1 = 〈−1, 0, 0〉, 
n2 = 〈0,−1, 0〉, and 
n3 = 〈1, 1, 1〉. Moreover, we obtain
the following negative dot products:


n1 · 〈x ′, y′, z′〉∣∣
π1

= −y,


n2 · 〈x ′, y′, z′〉∣∣
π2

= −q∗x,

n3 · 〈x ′, y′, z′〉∣∣

π3
= −η∗z.

This result combined with the positive invariance of Y1 and Y2 implies that the direc-
tion vectors of (6) direct inwards on the boundary of Y3. Therefore, Y3 is positively
invariant. ��
Remark 4.3 Solutions restricted to Y1 = X ∩ {(x, y, z) ∈ R

3+ | z = 0} satisfy
x ′ + y′ = 0 and are thus implicitly defined by

x + y = x(0) + y(0), z ≡ 0.

Moreover, x(t∗) and y(t∗)monotonically approach their respective limits as t∗ → ∞.
These limits are

lim
t∗→∞ x(t∗) = x(0) + y(0)

1 + q∗ , lim
t∗→∞ y(t∗) = q∗[x(0) + y(0)]

1 + q∗ .

OnY2 where x = 0 and y = 0, the system (6) reduces to a single equation, z′ = −η∗z,
from which z(t∗) = z(0) exp(−η∗t∗) → 0 as t∗ → ∞.

Remark 4.4 Points on Y3 ∩ {(x, y, z) ∈ R
3+ | x = 0} satisfy y > 0, and thus,

x ′ = y > 0. Similarly, solutions in Y3 with y = 0 satisfy y′ > 0. Thus, solutions in
the positive invariant set Y3 enter

{(x, y, z) ∈ X | x > 0, y > 0, z > 0},

in forward time. That is, solutions of (6) where z(0) and either x(0) or y(0) are
positive eventually have positive coordinates.
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Remark 4.5 The positive invariance of X permits our choice of an initial point to be
anywhere insideX . In practice, however, we restrict our initial conditions toY3∩{y =
0} with

x(0) = 1 − ε, y(0) = 0, z(0) = ε, u(0) = 0, v(0) = 0,

where 0 < ε � 1. These conditions are near the completely susceptible case where
x = 1.

4.3 Reproduction number with confinement strictness

We may compute another epidemic threshold based on the next-generation matrix
method (van den Driessche 2017). Given that z is the only state variable in (6) that
has infected individuals, we have

z′ = F(x, y, z) − G(x, y, z), F(x, y, z) = η∗R0xz, G(x, y, z) = η∗z.

Here, F represents the inflow of new infections, and G represents the outflow of
individuals from the z compartment. Let

F = ∂F
∂z

= η∗R0

(
1

1 + q∗

)

, G = ∂G
∂z

= η∗,

where the partial derivatives are evaluated at E(q∗), where z = 0, and define RC :=
FG−1. Computing, we have

RC = R0

1 + q∗ . (16)

We may also characterize RC with the following observation: z′/z > 0 at E(q∗) if
and only ifRC > 1. For q∗ = 0 (i.e., evaluating at DFE), FG−1 becomes the (1× 1)
next-generationmatrix, andRC = R0.Moreover,RC reduces with strict confinement
(see Remark 3.2), hence we may callRC a reproduction number with confinement
strictness.

Remark 4.6 Equation (16) views RC as a linear function of R0 and

dRC

dR0
= 1

1 + q∗ = τ

τ + q
,

hence every unit of change inR0 corresponds to a change of 1/(1+ q∗) units inRC .
Thus with a large q∗ (corresponding to either a large q or small τ ), marginal changes
inRC are small when compared to the corresponding changes R0.
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4.4 Asymptotic behavior

Here, we denote the following limits for simplicity:

x∞ := lim
t→∞ x(t), y∞ := lim

t→∞ y(t), z∞ := lim
t→∞ z(t).

We refer to these limits as final sizes, which may depend on the model parameters and
the initial condition of the solution.

To establish the existence of these final sizes, we first note that the second derivative

y′′ = q∗x ′ − y′ = −q∗η∗R0xz − (1 + q∗)y′ (17)

determines the monotone properties of y(t∗) in the following result.

Theorem 4.7 Consider a solution of (6) in the state space Y3 where z(t0) > 0 for
some t0 ≥ 0. Then the following statements are true:

(a) If y′(t1) = 0 for some t1 ≥ t0, then y′′(t1) < 0 (the only optimal value that y can
reach is a maximum).

(b) If y′(t0) ≤ 0, then y′(t∗) < 0 for all t∗ > t0 (if y does not increase for some time,
then y decreases for all further time).

(c) If y′(t0) > 0 and y′(t1) = 0 for some t1 > t0, then we can choose t1 such that
y′(t∗) has the same sign with t1 − t∗ for all t∗ > t0 (if y increases and reaches an
optimal value, then this value is the unique maximum value).

Proof By virtue of Remark 4.4, we assume without loss of generality that x(t∗) >

0, y(t∗) > 0, and z(t∗) > 0 for all t∗ ≥ t0. Then statement (a) is an immediate
consequence of Eq. (17).

For statement (b), it is enough to consider y′(t0) < 0, since y′(t0) = 0 implies
y′′(t0) < 0 by statement (a), and y′(t∗) < 0 as t∗ increases from t0. Given y′(t0) < 0,
suppose that there exists t1 > t0 such that y′(t1) ≥ 0. Then we choose t1 to be the
smallest such value that y′(t1) = 0. However, statement (a) yields y′′(t1) < 0 (i.e., y′
decreases near t1) and y′(t∗) > 0 as t∗ → t1 from the left. We obtain a contradiction
because our choice of t1 forces y′(t∗) < 0 for t0 ≤ t∗ < t1. Therefore, y′(t∗) < 0 for
all t > t0. We have proven statement (b).

We now prove statement (c) by supposing that y′(t0) > 0 and y′(t1) = 0 for some
t1 > t0. Then we can take t1 to be the smallest possible value such that y′(t∗) > 0
for all t∗ < t1. Then appealing to statement (b) where t1 takes the place of t0, we
have y′(t∗) < 0 for all t∗ > t1. Therefore, y′(t∗) takes equal sign with t1 − t∗ for all
t∗ > t0. ��
Corollary 4.8 For any solution ϕ(t∗) = (x(t∗), y(t∗), z(t∗)) of (6), the limit y∞ is a
unique finite real number.

Proof Consider the positively invariant sets Yk (k = 1, 2, 3) in Theorem 4.2, which
define a partition of our state space X . Then by Remark 4.3, the limit y∞ uniquely
exists whenever ϕ is a solution in either Y1 or Y2. If ϕ is a solution in Y3, then the
hypotheses of Theorem 4.7 hold where t0 = 0. We argue as follows:
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• If y′(0) ≤ 0, then y(t∗) strictly decreases for all t∗ > 0 according to statement (b).
• If y′(0) > 0, then either y(t∗) strictly increases for all t∗ > 0 or it initially
increases to a global maximum and finally decreases.

Therefore, y(t∗) is monotone for sufficiently large t∗, which guarantees the existence
of a unique y∞. Since the solution is restricted to the state spaceX , which is a bounded
set, y∞ is a unique finite real number. ��
Theorem 4.9 Consider a solution of (6) in X with initial value at t∗ = t0 ≥ 0. Then
(x+y)(t∗) decreases, i.e., (x+y)′(t∗) ≤ 0, for all t∗ ≥ t0. Moreover, (x∞, y∞, z∞) ∈
X ∗
st when z(t0) > 0.

Proof Recalling the partition X = Y1 ∪ Y2 ∪ Y3 in Theorem 4.2, our result holds
for solutions in Y1 and Y2. Thus appealing to Remark 4.4, we assume without loss of
generality that x > 0 and z > 0. Then the system (6) yields

(x + y)′(t∗) = −η∗R0x(t
∗)z(t∗) < 0

for all t∗ ≥ t0. By Corollary 4.8, x∞ = (x + y)∞ − y∞ uniquely exists.
Now, the second derivative y′′ in (17) expands into a polynomial expression in

the solution coordinates, which inherit the finite bounds of the state space X . Hence,
y′∞ = q∗x∞ − y∞ = 0 by Barbălat’s lemma, and y∞ = q∗x∞. Similarly, Barbălat’s
lemma also yields (x + y)′∞ = 0, and

z′(t∗) = −(x + y)′(t∗) − η∗z(t∗) ≈ −η∗z(t∗). (18)

as t∗ → ∞. Moreover, z(t∗) ≈ C exp(−η∗t∗) for some C > 0 and sufficiently large
values of t∗, hence z∞ = 0. To complete the proof, we claim that x∞ ≤ x̂ along the
following arguments:

• The bounds of the state space X imply that x∞ + y∞ + z∞ ≤ 1, which reduces
to (1 + q∗)x∞ ≤ 1 and x∞ ≤ 1/(1 + q∗).

• Equation (18) holds for sufficiently large t∗, from which z′ = η∗z(R0x − 1) ≤ 0
and x(t∗) ≤ 1/R0. Taking t∗ → ∞, we obtain x∞ ≤ 1/R0.

Therefore, x∞ ≤ min{1/R0, 1/(1 + q∗)} = x̂ and (x∞, y∞, z∞) ∈ X ∗
st . ��

Theorem 4.9 asserts that each state with z > 0 will end up at some point in the
stable set X ∗

st . However, the result does not necessarily determine whether X ∗
st is

asymptotically stable (see “Appendix A” for the definition).
An immediate consequence of Remark 4.3 (for z = 0) and Theorem 4.9 is given

by the following result.

Corollary 4.10 Every solution of (6) in X with x∞ > 0 satisfies

Q∞ := lim
t∗→∞ Q(t∗) = q∗ − y∞

x∞
= 0.

Thus, y∞ = q∗x∞.
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Consider the solution with initial values x(t0), y(t0) and z(t0), for some t0 ≥ 0.
From (6), we have

x ′

x
= −η∗R0z −

(
q∗ − y

x

)
= −η∗R0z − Q,

where Q is defined in Eq. (8). Integrating both sides, we obtain:

ln

[
x(t∗)
x(t0)

]

= −η∗R0

∫ t∗

t0
z(θ) dθ −

∫ t∗

t0
Q(θ) dθ,

x(t∗) = x(t0)e

[
−η∗R0

∫ t∗
t0

z(θ) dθ−∫ t∗
t0

Q(θ) dθ
]

x(t∗) = x(t0)
e

[
−η∗R0

∫ t∗
t0

z(θ) dθ
]

e

[∫ t∗
t0

Q(θ) dθ
] (19)

for t∗ ≥ t0. Meanwhile, adding the equations in (6) yield

−η∗z = x ′ + y′ + z′,

from which

−η∗
∫ t∗

t0
z(θ) dθ = (x + y + z)(t∗) − (x + y + z)(t0) (20)

Substituting (20) into (19), we have

x(t∗) = x(t0)e[R0(x+y+z)(t∗)−R0(x+y+z)(t0)]

e

[∫ t∗
t0

Q(θ) dθ
] (21)

for t∗ ≥ t0. Taking t∗ → ∞ in (21) and applying the identity

x∞ + y∞ + z∞ = (1 + q∗)x∞

by Remark 4.3 or Theorem 4.9, we have

x∞ = x(t0)
e[R0 (1+q∗)x∞−R0(x+y+z)(t0)]

e
∫ ∞
t0

Q(θ) dθ
,

or

x∞e−R0 (1+q∗)x∞ = x(t0)e−R0[x(t0)+y(t0)+z(t0)]

e
∫ ∞
t0

Q(θ) dθ
. (22)

Equation (22) is a central result of our work, which defines the final size x∞ of
the unconfined population under a constant level of confinement. That is, with q∗
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constant, our model predicts that the unconfined population x(t∗) will eventually
reach the proportion x∞. We emphasize that Eq. (22) incorporates the integral of
the confinement tonicity, i.e., the function Q defined in (8), evaluated over all future
times from t0. Hence, unlike conventional forms that only depend on initial conditions
(Arino et al. 2007), an exact value of the epidemic final size may also depend on the
solution trajectory.

Theorem 4.11 Consider a solution in Y2 or Y3 where z > 0, such that x(t∗) strictly
decreases for all t∗ ≥ t0.

(a) If x(t0) < 1/R0, then z(t∗) strictly decreases for all t∗ ≥ t0. Moreover, z∞ :=
limt∗→∞ z(t∗) = 0.

(b) If x(t0) > 1/RC , then z′(t0) > 0. Furthermore, if there exists t1 > t0 such that
x(t∗) > 1/R0 for t∗ < t1 and x(t∗) < 1/R0 for t∗ > t1, then z(t∗) initially and
strictly increases to its global maximum z(t1) and finally decreases to zero.

Proof From (6), we have

z′(t∗) = η∗[R0x(t
∗) − 1]z(t∗), t∗ ≥ t0.

Let σ(t∗) = η∗[R0x(t∗) − 1], and note from our assumption that x(t∗) < x(t0) for
all t∗ > t0.

If x(t0) < 1/R0, then σ(t0) < 0 and z′(t∗) < σ(t0)z(t∗) for all t∗ > t0. Hence,
z(t∗) is strictly decreasing and z∞ = 0. We have established statement (a).

If x(t0) > 1/RC , then σ(t0) > η∗(RCx(t0) − 1) > 0 because RC < R0. Hence,
we have z′(t0) = σ(t0)z(t0) > 0. Now, suppose that there exists t1 > t0 such that
x(t∗) > 1/R0 for t∗ < t1 and x(t∗) < 1/R0 for t∗ > t1. Then σ(t∗) > 0 and
z′(t∗) = σ(t∗)z(t∗) > 0 for t0 ≤ t∗ < t1. The global maximum occurs at t∗ = t1
where z′ = σ(t1)z(t∗) = 0. Applying statement (a) with any t∗ > t1 in place of t0,
we conclude that z(t∗) initially and strictly increases to its global maximum z(t1) and
finally decreases to zero. We have proven statement (b). ��
Theorem 4.12 For some t0 ≥ 0, fix the model parameter values, and consider

ζ(x(t0), y(t0), z(t0)) := −R0 (1 + q∗)x(t0)e−R0[x(t0)+y(t0)+z(t0)]

e
∫ ∞
t0

Q(θ) dθ
(23)

Then the following statements hold:

(a) The stable set X ∗
st is locally stable.

(b) If −e−1 ≤ ζ ≤ 0 andR0(1 + q∗)x∞ < 1 over all solutions in the state space X ,
then

X ∗
as :=

{

(x, q∗x, 0)
∣
∣
∣
∣ 0 ≤ x ≤ x̃

1 + q∗

}

(24)

is an asymptotically stable subset of X ∗
st .
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(c) Assuming that X ∗
as is asymptotically stable, suppose that, for every p0 =

(x0, q∗x0, 0) ∈ X ∗
as and arbitrary ε with 0 < ε � 1, there exist initial states

p1 and p2 not in X ∗ such that ‖pk − p0‖ < ε for each k and ζ(p1) �= ζ(p2), then
X ∗
as is the smallest asymptotically stable set.

See “Appendix A” for the definitions of local and asymptotic stability.

Proof To prove statement (a), consider any equilibrium point x∗ = (ξ, q∗ξ, 0) ∈ X ∗
st

where 0 < ξ ≤ x̂ . Define

V (x, y, z) =
[

x − ξ − ξ ln

(
x

ξ

)]

+
[

y − q∗ξ − q∗ξ ln
(

y

q∗ξ

)]

+ z (25)

on the region where x > 0, y > 0, and z ≥ 0, denoted D. Then V > 0 on D − {x∗},
and V = 0 at x∗. We compute dV /dt∗ below:

dV

dt∗
= ∂V

∂x
· dx

dt∗
+ ∂V

∂ y
· dy

dt∗
+ ∂V

∂z
· dz

dt∗

=
(

ξ

x
− 1

)

(η∗R0xz + q∗x − y) +
(

1 − q∗ξ
y

)

(q∗x − y) + η∗(R0x − 1)z

=
[(

ξ

x
− 1

)

R0x + (R0x − 1)

]

η∗z +
[(

ξ

x
− 1

)

+
(

1 − q∗ξ
y

)]

(q∗x − y)

= (ξR0 − 1)η∗z + ξ

(
1

x
− q∗

y

)

(q∗x − y)

= (ξR0 − 1)η∗z − ξ(y − q∗x)2

xy

Since ξ ≤ x̂ , we have ξR0 ≤ 1 and thusdV /dt∗ ≤ 0 onD. Therefore,V is aLyapunov
function and x∗ is locally stable (see TheoremA.5).With x∗ arbitrary inX ∗

st , it follows
that X ∗

st and its subset X ∗
as are locally stable sets. This proves statement (a).

For statement (b), assume that ζ attains a maximum ζ = 0 and a minimum of ζ =
−e−1 over all solutions in the state space X . Now, express (22) as the transcendental
equation ζ = wew where w = −R0 (1 + q∗)x∞. Then −1 < w < 0 and we have

w = W(ζ ) 	⇒ x∞ = − W(ζ )

R0(1 + q∗)
(26)

where W is the principal branch of the Lambert function on a restricted domain
−e−1 ≤ ζ ≤ 0, where W strictly increases. Moreover, we have the following equiv-
alent inequalities independent of any solution:

−1 ≤ W(ζ ) ≤ 0, 0 ≤ x∞ ≤ 1

R0(1 + q∗)
.

Remark 4.3 and Theorem 4.9 additionally provide 0 ≤ x∞ ≤ 1/(1+q∗), from which
0 ≤ x∞ ≤ min{1/R0, 1}/(1 + q∗) = x̃/(1 + q∗). Therefore, X ∗

as is attractive.
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Fig. 2 Two branches of the Lambert function, w = Wk (ζ ). Blue, solid line: k = 0 (principal branch). Red,
dashed line: k = −1. The graphs of these functions meet at ζ = −e−1 where w = −1 (color figure online)

Note that x̃/(1+ q∗) ≤ x̂ , hence X ∗
as ⊆ X ∗

st (with equality if and only if 0 < R0 ≤
1). Therefore,X ∗

as inherits the local stability ofX ∗
st and becomes asymptotically stable.

We have proven statement (b).
For statement (c), we consider the initial points p1 and p2 per assumption. For each,

let the solution with initial point pk have the final size

x∞,k = − W(ζ(pk))

R0(1 + q∗)
.

Then W(ζ(p1)) �= W(ζ(p2)) and x∞,1 �= x∞,2 because W is injective. Thus, the
solutions corresponding to the initial points p1 and p2 must converge to different
points in X ∗

as. Hence, singleton and proper subsets of X ∗
as are locally stable but not

attractive. Therefore, X ∗
as is the smallest asymptotically stable set. ��

Remark 4.13 The final size x∞ depends on the parameters R0 and q∗. Thus, we can
think of w = −R0(1 + q∗)x∞ > −1 as a constraint of the parameter space over all
solutions. Since (x∞, y∞, z∞) ∈ X ∗

st and thus (1 + q∗)x∞ ≤ 1, it suffices (but is not
necessary) thatR0 < 1 for the constraint to apply. Removing the constraint may yield
w < −1 for some solutions and w > −1 for others (see Fig. 13). Hence, we generally
have two versions for the final size of a given solution:

x∞ = − W0(ζ )

R0(1 + q∗)
, x∞ = − W−1(ζ )

R0(1 + q∗)
,

whereW0 (principal branch) andW−1 are two branches of the Lambert function; see
Fig. 2. If w ≥ −1, then we take W = W0; otherwise, we take W = W−1.
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Remark 4.14 The Lyapunov function V defined in Eq. (25) does not ensure asymptotic
stability of single equilibrium points x∗ ∈ X ∗

st because dV /dt = 0 for all points where
z = 0 and y = q∗x .

4.5 Final size bounds

Consider the solution of our model, Eq. (6), with the following conditions where t0
denotes initial time:

• z(t0) > 0 and x(t0) > 0, that is, both unconfined and asymptomatic populations
have positive sizes.

• y′(t0) < 0 or there exists t1 ≥ t0 such that y′(t1) = 0. That is, the confined
population decreases or, per Theorem 4.7, reaches its maximum value at t1.

• The improper integral
∫ ∞
t0

Q(θ) dθ is a finite real number.

Then

ζ < ζ̃ ≤ ζ̂

where

ζ̃ := −R0 (1 + q∗)x(t0)e−R0[x(t0)+y(t0)+z(t0)]

e
∫ t1
t0

Q(θ) dθ
,

ζ̂ := −R0 (1 + q∗)x(t0)e−R0[x(t0)+y(t0)+z(t0)]

eQ(t0)(t1−t0)
. (27)

Moreover, the final size relation given by

x∞ = − Wk(ζ )

R0(1 + q∗)
, ζ > −e−1, k ∈ {0,−1},

yields the following bounds:

• x∞ > x̃∞ ≥ x̂∞ for k = 0, and
• x∞ < x̃∞ ≤ x̂∞ for k = −1,

where

x̃∞ := − Wk (̃ζ )

R0(1 + q∗)
, x̂∞ := − Wk (̂ζ )

R0(1 + q∗)
. (28)

See “Appendix B” for the derivations.

5 Numerical results

The original parameters are given (Ricardo-Azanza and Hernandez-Vargas 2020) by

q = 1, τ = 3

5
, η = 1

0.55
, δ = 2, ε = 0.2,
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from which we compute the following default parameter values for our dimension-
less models, systems (3) and (6):

η∗ = 1

0.33
≈ 3.0303, q∗ = 5

3
≈ 1.6667, δ∗ = 10

3
≈ 3.3333.

Note that we have a one-to-one correspondence between R0 and β, which permits a
variation of R0 while leaving other dimensionless parameters fixed.

5.1 Phase portraits

We adopt the following visual language to all our phase portraits:

• Solution trajectories appear as blue lines. The endpoints of each trajectory are
empty and filled blue circles, corresponding to initial and final times respectively.
The plot assumes t∗ = t0 = 0 for the initial time and t∗ = 104 for the final time.

• The stable set X ∗
st and the unstable set X ∗

un appear as thick lines colored red and
green, respectively.

• There are three semi-transparent triangular planes: x + y + z = 1 (gray), x = x̂
(yellow), and x = 1/R0 (blue). In the case x̂ = 1/R0, the blue triangle represents
x = x̂ = 1/R0 (coinciding with the yellow triangle).

Figure3 depicts the phase portrait generated with these default parameter values. We
observe the following sequence of behaviors for a solution with initial point x(t0) > x̂ :

1. x(t∗) strictly decreases, and both y(t∗) and z(t∗) strictly increases until some
t∗ = t∗1 where x(t∗1 ) = x̂ and z′(t∗1 ) = 0. From here, z decreases for t∗ > t∗1 .

2. Either y(t∗1 ) will strictly increase for t∗ > t∗1 or the strict increase still occurs until
some t∗ = t∗2 where y(t∗2 ) = q∗x(t∗2 ) and y′(t∗2 ) = 0.

3. Finally, if y′(t∗2 ) = 0, then y(t∗) strictly decreases for t∗ > t∗2 .
Ultimately, each solution converges to some point (x∞, y∞, 0) ∈ X ∗

st . Furthermore,
it is possible for x ′(t∗3 ) = 0 for some t∗3 > t∗2 and x(t∗3 ) strictly increases for t∗ > t∗3
provided the solution trajectory intersects the nonplanar surface y = (η∗R0z + q∗) x
at t∗ = t∗3 . We might attribute this effect to deconfinement.

These numerical observations warrant further analysis on the nullcline surfaces,
direction vectors along these surfaces, and locating the final-size points. In particular,
we identify the x-nullcline with the surface (η∗R0z+q∗)x − y = 0 on which x ′ = 0;
see Fig. 4. Intricate qualitative dynamics might be associated with the nonplanar shape
of this nullcline.

We have two cases when R0 > 1 according to x̂ :

• Case 1, x̂ = 1/(1 + q∗) > 1/R0: Fig. 5 illustrates this case for R0 = 2 with
noticeable peaks in y. For solutions with initial point at x < 1/R0, z(t∗) initially
increases to its global maximum value; cf. Fig. 3 (R0 = 2.7).

• Case 2, x̂ = 1/R0 > 1/(1+q∗): Fig. 6 illustrates this case forR0 = 8. Here, both
the stable and unstable sets are nonempty, and the stable set decreases in size when
R0 increases further. We also observe that some solutions with y(t0) > q∗x(t0)
have x(t∗) attain localmaximum, possibly followed by a localminimum. Solutions
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Fig. 3 Phase portrait at different viewing angles with R0 = 2.7, q∗ = 5/3, and η∗ = 1/0.33. Top left:
three-dimensional view. Top right: magnification to the unstable set. Bottom left: projection to the xz-plane.
Bottom right: projection to the xy-plane. Note that z′ = 0 on x = x̂ = 1/R0 (light blue triangular plane)
and y′ = 0 along y = q∗x . Not shown: the x-nullcline

(
η∗R0z + q∗) x − y = 0 where x ′ = 0 (color

figure online)

Fig. 4 The x-nullcline surface where x ′ = 0. The equilibrium setX ∗ lies on the intersection of this surface
with the xy-plane. Parameter values used:R0 = 2.7, q∗ = 5/3, and η∗ = 1/0.33
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Fig. 5 Phase portrait at different viewing angles with R0 = 2, q∗ = 5/3, and η∗ = 1/0.33. Top-left:
three-dimensional view. Top-right: projection onto the xz-plane. Bottom: projections onto the xy-plane.
Both the planes x = 1/R0 (blue) and x = x̂ = 1/(1+ q∗) (yellow) appear on the phase portrait. Only the
stable set (thick red line) appears (color figure online)

with y(t0) < q∗x(t0) cross y = q∗x and remain in the region y > q∗x ; these
solutions experience a peak in y. For all solutions, z(t∗) eventually decreases after
possibly attaining a global maximum.

We may theoretically consider larger values of R0 to anticipate possible variants
that are more transmissible. Figure7 suggests that larger values ofR0 may introduce
solutions with exceptional behavior. Here, z(t∗) attains a local minimum, followed by
a local maximum, before eventually decreasing to zero. This numerical example also
indicates the non-monotone behavior of x(t∗) due to the presence of the expression
q∗x − y in the corresponding differential equation.

5.2 Stability and final size

The key results from Theorem 4.12 are the local stability of setX ∗
st and the asymptotic

stability of its subsetX ∗
as. These results hinge on the quantity ζ in Eq. (23) as a function

of the initial point (x(t0), y(t0), z(t0)). Equation (26) further establishes that x∞ is both
a function of the same initial point and a decreasing function of ζ . Since the principal
Lambert functionW increases over its restricted domain−e−1 ≤ ζ ≤ 0, the final size
x∞ attains its global maximum if and only if ζ attains its global minimum.
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Fig. 6 Phase portrait at different viewing angles with R0 = 8, q∗ = 5/3, and η∗ = 1/0.33. Top-left:
three-dimensional view. Top-right: projection onto the xz-plane. Bottom: projections onto the xy-plane.
Note that the blue triangle represents both x = 1/R0 and x = x̂ because 1/R0 = 0.125 < 1/(1 + q∗)

(color figure online)

Fig. 7 A solution trajectory (blue line) where x(t0) = y(t0) = 0.0001 and z(t0) = 0.20004 for some
t0 > 0 (empty circle with data tip). Parameter values: R0 = 18, q∗ = 5/3, η∗ = 1/0.33. The solution
crosses x = 1/R0 (light-blue vertical line) twice, forming a small loop, before it ultimately tends to the
stable set (thick red line) (color figure online)

123



46 Page 22 of 37 A. E. S. Almocera et al.

Fig. 8 Numerical confirmation of the uniform bound of ζ = ζ1/ζ2 over all solutions in X with z > 0,
where ζ1 and ζ2 are defined in Eqs. (29)–(30). Left panel: R0 = 2.7; Right panel: R0 = 8. Both panels
assume η∗ = 3.0303, q∗ = 1.6667, and t0 = 0. The points are generated from a lattice of initial points
(x(t0), y(t0), z(t0)) and colored according to the value of z(t0). These points are bounded by ζ1 = 0 and
ζ1 = −e−1ζ2 (thick solid red lines), implying the uniform bound −e−1 ≤ ζ ≤ 0 (color figure online)

Now, we numerically verify Theorem 4.12(b) in Fig. 8. Here, we express ζ = ζ1/ζ2
where

ζ1 := −R0 (1 + q∗)x(t0)e−R0[x(t0)+y(t0)+z(t0)], (29)

ζ2 := e
∫ ∞
t0

Q(θ) dθ
. (30)

Each point in the figure represents a solution whose initial point is chosen from a
lattice of sample points. The location (ζ2, ζ1) of this point is above the line ζ = −e−1

and below the line ζ = 0, implying that −e−1 ≤ ζ ≤ 0.
Note that ζ1 corresponds to the epidemic final size at an equilibrium point, or

equivalently, when the confinement tonicity is identically zero. Indeed, y = q∗x and
Q = 0 at any equilibrium point, from which ζ2 = 1 and ζ1 = ζ . Moreover, ζ1 agrees
with the classic final size relation which only needs initial population sizes to compute
the exact value. In contrast, knowledge of the solution in forward time—and not only
initial time—is necessary to calculate ζ2. Finding an exact non-integral form of ζ2
remains an open problem, but we present some attempts along this direction in Sect. 6.

Figure 9 depicts the graph of ζ(x(t0), y(t0))where z(t0) is fixed. Here, it is possible
to attain the global minimum ζmin of ζ not at a point but along a curve of initial points
(x(t0), y(t0)). Furthermore, large values of R0 may introduce local maximum points
along another curve. It is also possible to attain the global maximum at ζ = 0 when
(x(t0), y(t0)) approaches the origin.

The same figure suggests computing ζmin as follows: for each a ∈ [0, 1], let

ζa := min{ζ(x(t0), y(t0), z(t0)) | z(t0) = a and (x(t0), y(t0), z(t0)) ∈ X }.

Then ζmin = min{ζa | 0 ≤ a ≤ 1} and x∞ attains the maximum value
−W(ζmin)/[R0(1 + q∗)].
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Fig. 9 Graph of the function ζ generated by surface interpolation of (x(t0), y(t0)) (red points) with a fixed
value z(t0) = 0.001. Left panel: R0 = 2.7; Right panel: R0 = 8. Both panels assume η∗ = 3.0303,
q∗ = 1.6667, and t0 = 0 (color figure online)

Fig. 10 Graph of the function ζ1 generated by surface interpolation of (x(t0), y(t0)) (red points) with a
fixed value z(t0) = 0.001. Left panel:R0 = 2.7; Right panel:R0 = 8. Both panels assume η∗ = 3.0303,
q∗ = 1.6667, and t0 = 0 (color figure online)

In the same vein, we may consider the numerator ζ1 and the denominator ζ2 sepa-
rately in Figs. 10 and 11. Observe that ζ2 is not identically constant, hence information
from ζ1 is not sufficient to establish the maximum value of x∞. Now, both ζ1 and ζ2
approach zero for smaller values of x(t0). Equation (29) implies that ζ1 → 0 as
x(t0) → 0 independent of y(t0), z(t0), and the parameter values. We might observe
the same behavior (at least numerically) for ζ2. However, it remains unknown whether
ζ1/ζ2 will converge to some value, assuming y(t0) and z(t0) fixed. Further analysis is
needed in light of Theorem 4.7.

Figure 12 depicts solution trajectories when z(t0) is small. Observe that the final
state of each solution, obtained by taking t∗ → ∞, and indicated by a filled blue circle
in the phase portrait, is located in the stable set; the previous figures also provide the
same results. Hence, after considering additional solutions, we may conclude that the
final states will cover the stable set. That is, we may conjecture that the stable set
is the smallest attracting set. The previous figures also support this claim, where
solutions exist that tend to a point close to either the origin or the equilibrium point
where x = x̂ .
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Fig. 11 Graph of the function ζ2 generated by surface interpolation of (x(t0), y(t0)) (red points) with a
fixed value z(t0) = 0.001. Left panel:R0 = 2.7; Right panel:R0 = 8. Both panels assume η∗ = 3.0303,
q∗ = 1.6667, and t0 = 0 (color figure online)

Fig. 12 Phase portrait with solutions in the state space satisfying z(t0) = 0.0001. Clockwise from top-left:
R0 = 2, R0 = 4,R0 = 8, andR0 = 16. For all plots, q∗ = 5/3 and η∗ = 1/0.33

Figure 13 indicates a possibility that x∞ emerges from more than one branch of
the Lambert function (Remark 4.13). Here, we plot w = −R0(1 + q∗)x∞, which
satisfies the transcendental equation wew = ζ . Observe that w < −1 over a set of
initial points inside the region 0.1 < x(t0) + y(t0) < 1 and z(t0) = 0.001, leading to
the choice k = −1 in the formula x∞ = −Wk(ζ )/[R0(1+ q∗)]. Outside this set, x∞
takes the principal branch k = 0.
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Fig. 13 The value of w = −R0(1+ q∗)x∞ at different values of (x(t0), y(t0)) (red points) where z(t0) =
0.001. We generate this figure withR0 = 8, η∗ = 1/0.33, q∗ = 5/3, and t0 = 0 (color figure online)

From the standpoint of maximizing x∞, we conjecture from the same figure that
the maximum of x∞ (or equivalently, the minimum of w) might not be at a single
initial point but along a curve.

5.3 Epidemic peaks

In the context of our model (6), we identify the epidemic peak with the peak in the
asymptomatic population (z). Figure12 also sheds light on how the peaks in z change
with R0. Increasing R0 moves the plane x = 1/R0 towards the yz-plane, i.e, where
x = 0. This effect permits solutions with x(t0) < 1/R0 a larger time interval where
z(t∗) increases to a local maximum (peak). Furthermore, the peak in z increases with
R0.

Figure 14 below qualitatively indicates that the time t1 the confined population
size peaks is a function of the initial condition, where y/x < q∗ and y′ > 0 at t0.
Here, we compute t1 as the smallest value such that y(t) attains its maximum among
all numerically computed values of t . Our computations also suggest a substantial
computed value in t1—implying possible longer times for confined individuals to
peak in numbers—for points (x(t0), y(t0)) near the origin.

In the region y/x > q∗, we have t1 = t0, which agrees with Theorem 4.7(b) where
y′(t) < 0 for all t ≥ t0.

We advise readers to interpret Fig. 14 from a qualitative standpoint due to numer-
ical challenges. Preliminary simulations using a standard non-stiff solver (ode45 in
Matlab) revealed minute oscillations for a solution where y(t) is visually increasing.
These oscillations potentially lead to a computed value of t1 that is significantly less
than the correct value, thus implying possible erratic behavior near the origin. For this
reason, we chose a stiff solver (ode23s) to capture the essential variations in t1 and
minimize erratic behavior at the cost of numerical accuracy.
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Fig. 14 The time that the confined population peaks (t1) as a function of x(t0) and y(t0), for t0 = 0 and
z(t0) = 0.001. The surface is interpolated from sample points (red) computed from the solutions. Parameter
values:R0 = 8, η∗ = 1/0.33, and q∗ = 5/3. The solutions are computed using a stiff solver (ode23s in
Matlab) for 0 ≤ t ≤ 365 (color figure online)

5.4 Solution curves and final-size bounds

Figure 15 depicts the behavior of themodel (6) with a fixed initial point. Although both
panels in this figure considerR0 > 1, they are differ by thevalueofRC = R0/(1+q∗).
Fixing q∗ = 5/3, we observe the following:

• For RC < 1 (given by R0 = 1.1), the confined and asymptomatic populations
monotonically increase and decrease, respectively. The unconfined population
monotonically decreases.

• If RC > 1 (given by R0 = 2.7), both the confined and asymptomatic popu-
lations experience peaks before converging to their final sizes. The unconfined
population may experience a transient decrease followed by an increase due to the
confinement/deconfinement mechanism.

In both cases, the confined fraction is either monotone or experiences a peak, agreeing
with Theorem 4.7.

Figure 16 focuses on the component x(t), which converges to its final size x∞. This
figure also depicts x̃∞ and x̂∞, which may be upper of lower bounds depending on
R0. Observe that x̃∞ provides a better approximation of x∞ than x̂∞.

6 Discussion

SARS-CoV-2 crippled our society around the globe, forcing self-isolation and quar-
antine for many months. In 2020 we proposed a mathematical model study to assist
the pandemic in Mexico, the 10th most populous nation, with 1.5 critical care beds
per 1,000 people, making it vulnerable to COVID-19. Our report examined Mexico’s
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Fig. 15 The components of the solution (x(t), y(t), z(t)) of (6) with initial point (x(0), y(0), z(0)) =
(0.9, 0, 0.1), given R0 = 1.1 (top panel) and R0 = 2.7. The fraction of the population that is unconfined
(blue, solid line) initially decreases and may increase for a sufficiently largeR0 before converging to x∞.
Meanwhile, both the confined (red, dashed line) and asymptomatic population sizes (green, dotted thick
line) either followmonotone change or encounter peaks at different times before converging to y∞ = q∗x∞
and z∞ = 0, respectively. Both panels are generated with η∗ = 1/0.33, q∗ = 5/3 (color figure online)

COVID-19 pandemic and projects scenarios to assess sharp or gradual quarantine lift-
ing techniques. On June 1, 2020, Mexico abolished rigorous social distancing laws,
resulting in pandemic statistics with considerable variations and uncertainty. We per-
formed parameter fitting to the mathematical model, but long-term behavior was not
performed.

Here, retaking the modeling work (Ricardo-Azanza and Hernandez-Vargas 2020)
we formalize the concept of confinement tonicity to formulate confinement restric-
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Fig. 16 The solution trajectory of unconfined susceptible (x(t), solid blue line) from the model (6) for
R0 = 1.1 (top panel) and R0 = 2.7 (bottom panel). This fraction converges towards the final size x∞
(black, dashed horizontal line), which is bounded by x̃∞ (red, thick dotted horizontal line) and x̂∞ (red, thick
solid horizontal line) according to Corollary B.4. Both panels are generated with η∗ = 1/0.33, q∗ = 5/3,
and (x, y, z) = (0.9, 0, 0.1) at initial time t = 0 (color figure online)

tions established during pandemics. Much of our analysis focused on the stability and
limiting behavior of model (6). Theorem 4.9 asserts that, irrespective of the parameter
values, the model will stabilize to some steady state given by x = ξ , y = q∗ξ , and
z = 0, where 0 ≤ ξ ≤ x̂ . This point lies in the stable set X ∗

st which satisfies local
stability according to Theorem 4.12. According to this observation, our model predicts
that the infectious population z will eventually clear as expected of an acute disease.
Moreover, the confined population will eventually reach a level proportional to the
number of unconfined, i.e., y = q∗x .
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An important result is the final size relation

x∞e−R0 (1+q∗)x∞ = x(t0)e−R0[x(t0)+y(t0)+z(t0)]

e�(p0,t0)

in (22). Theorem 4.12 leverages this equation to establish an attractive subset X ∗
as of

X ∗
st . Here,

�(p0, t0) =
∫ ∞

t0
Q(θ) dθ, Q(t) = q∗ − y(t)

x(t)
= y′(t)

x(t)
,

where the ordered pair (p0, t0) corresponds to the solution ϕ(t) = (x(t), y(t), z(t))
of (6) with initial condition ϕ(t0) = p0. We computed the integral � from the expres-
sion q∗x − y = Qx associated with the transition between the confined (y) and the
unconfined (x) susceptible compartments. This expression also implies that x may not
always decrease.

The function Q(t) can serve as a standalone measurement for the net direction and
magnitude of flows between the confined and deconfined susceptible compartments.
This prompted us to think of a succint and appropriate term as a reference for future
work. Since Q shares equal signs with y′, having Q > 0 indicates net inward flow
into the y compartment (confinement) and Q < 0 indicates the opposite outward flow
(deconfinement). Hence in the context of Theorem 4.7, the system may either stick
to a single (de)confinement state (where the sign of y′ is fixed) or switch only once
fromconfinement to deconfinement before reaching the equilibriumstatewhereQ = 0
(Theorem4.9).Wemay liken this behavior to osmosis between two chemical solutions,
characterized by the diffusion of water from one solution to the other until equilibrium
is reached. The tonicity of one solution relative to the other determines the direction of
osmosis, hence inspiring our term “confinement tonicity” for Q. Furthermore, wemay
call the confined compartment hypertonic when Q > 0, hypotonic when Q < 0,
and isotonic when Q = 0.

Further mathematical analysis is required on the integral� in light of the use of the
Lambert function. It is desirable to find a non-integral closed-form expression of� that
leads to an expression of the final size relation (22) that depends only on initial values
and parameters. This simplification is a potential key step to upgrade Theorem 4.12
by verifying the hypotheses of statements (b) and (c).

However, achieving a tractable form for � or one of its partial derivatives as sug-
gested abovemay be challenging, unless, for instance, there is an exact solution (Harko
et al. 2014) to the model (6). Moreover, we might require auxiliary differential equa-
tions involving higher-order derivatives based on the model. Alternatively, we may
apply advanced mathematical methods to study partial derivatives of � in the coor-
dinates of p0, allowing us to investigate how � changes with initial conditions. As a
first step, we generated graphs of ζ2 in Fig. 11, noting that � = ln(ζ2).

Nevertheless, we achieved the following bounds for ζ in Theorem B.3:

ζ̃ := ζ1

e�max(p0,t0)
, ζ̂ := ζ1

eQ(t0)(t1−t0)
,
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where ζ < ζ̃ ≤ ζ̂ . We also determined the following bounds in Corollary B.4:

x̃∞ := − Wk (̃ζ )

R0(1 + q∗)
, x̂∞ := − Wk (̂ζ )

R0(1 + q∗)
,

where k = 0 or k = −1, depending on the value of R0(1 + q∗)x∞. The choice
of k determines the value of x∞ and its order relationship with the two bounds. As
indicated in Fig. 13, the choice of k with some fixed parameters will generally depend
on the initial points.

The formulas of x̃∞ and x̂∞ in (28) provide two different approaches to approximate
x∞, with x̃∞ relying on the definite integral �(p0, t0) evaluated between initial and
y-peak times. On the other hand, x̂∞ relies on the solution values at t0 (initial time)
and the value of t1 (time where confined population peaks). However, both of these
approaches come with two key limitations: (1) these do not apply to the case where
y′(t) > 0 for all t > t0; (2) the values of x̃∞ and x̂∞ are only useful when they are
both positive and less than unity.

Unlike x̃∞, which relies on an integral for an accurate bound, x̂∞ is practical in the
sense that we can use the expression to identify possible disease control measures at
the cost of accuracy. Increasing x̂∞ as a lower bound of x∞ favors disease control by
minimizing the loss of unconfined individuals to the infectious stage (z). By contrast,
decreasing x̂∞ as an upper bound may indicate a more pronounced effect by the
epidemic through reduced final sizes. We note that the initial solution values affect
both the numerator and the denominator of x̂∞. Thus, subtle changes in the initial
condition may increase or decrease x̂∞, or even change the role of x̂∞ as an upper or a
lower bound. These changes carry over to the peak time t1 for the confined population,
where a significant increase in t1 may reduce ζ̂ .

We now discuss some attempts to achieve a tractable form of the integral�(p0, t0).
If Q has an antiderivative F such that F ′(t) = Q(t) for all t ≥ 0, and if F∞ =
limt→∞ F(t) exists, then the Fundamental Theorem of Calculus yields

� = lim
t→∞

∫ t

t0
F ′(θ) dθ = lim

t→∞[F(t) − F(t0)] = F∞ − F(t0).

An open problem is to find such F that is expressed in the solution coordinates. In a
different direction, we may appeal to Taylor expansion and compute the derivatives
of Q. Denote fn = y(n)/x and g = ln x (note that Q = f1 and g′ = x ′/x). Then

f ′
n =

(
y(n)

x

)′
= xy(n+1) − x ′y(n)

x2
= fn+1 − g′ fn, n = 1, 2, . . .

That is, the derivative of fn involves fn itself, fn+1, and g′. With Q = f1, we can
express Q(n) in terms of f1, f2,…, fn , fn+1, and the derivatives g′, g′′,…, g(n). We
list the first three derivatives below:

Q′ = f2 − g′Q
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Q′′ = f3 − 2g′ f2 + [(g′)2 − g′′]Q
Q′′′ = f4 − 3g′ f3 + 3[(g′)2 − g′′] f2 + [3(g′)(g′′) − g′′′ − (g′)3]Q

Simplifying these expressions, which would lead to a tractable Taylor expansion, may
be achieved from equations involving members of the sequence { fn | n = 1, 2, . . .}.

Statements (b) and (c) of Theorem 4.7 imply the existence of t1 ≥ t0 such that the
derivative y′ assumes a fixed sign over each of the open intervals (t0, t1) and (t1,∞);
in case t1 > t0, y attains a local maximum (peak) at t1. Thus, with Q = y′/x , we have

∫ ∞

t0
Q(θ) dθ =

∫ t1

t0

y′(θ)

x(θ)
dθ +

∫ ∞

t1

y′(θ)

x(θ)
dθ,

where each integral on the right-hand side shares the same sign with y′.
Part of our dynamical analysis of (6) involved

RC = R0

1 + q∗ ,

as defined in Eq. (16) based on the next-generation matrix method. Hence, when the
disease has already spread, the model supports the necessity of confinement to control
the disease with the goal of RC < 1 (equivalently R0 < 1 + q∗). A more aggressive
confinement measure is associated with increasing q∗, which reduces the value ofRC

while increasing the threshold R0 = 1 + q∗ where confinement fails to contain the
disease.

In contrast, reducing q∗ to zero corresponds to a lifting of confinement, fromwhich
RC increases to R0. Moreover, the model predicts classic epidemic behavior in the
limit where q∗ = 0 (assuming that y = 0). Thus, a more mechanistic model should
consider q∗ as a time-dependent function. For example, wemay choose two constants,
a > 1 and T > 0, and define

q∗(t∗) =
{
a, if 0 ≤ t∗ ≤ T ,

0, if t∗ > T .

Sereno et al. (2021) explored the general form of suspending interventions in SIR-
type systems and found that the unconfined (susceptible), x(q∗)(1 + q∗), should be
smaller than 1/R0 before t∗ = T , in order to avoid a secondwave of infection. Azanza
Ricardo and Hernandez-Vargas (2020) explored the effects of different scenarios to
lift the confinement, which would correspond to different definitions of q∗.

Our model also supports the need for basic measures to curtail transmission (with
the goal of reducing R0 < 1), since it predicts that RC < R0 < 1 at any tolerance
for confinement (q∗). We recall that RC is the basic reproductive number associated
with (6) computed by next generation matrix.

We conclude with the following comments. Like many other models, the model
(3) was made to explore quarantine as a viable disease control strategy in response to
the first stages of the epidemic. Therefore, if the COVID-19 pandemic continues to
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persist in the long-term, then factors like demography may become necessary. Thus,
for example, we may extend the model (3) to

S′ = (NS − μS) − βE

N
S − (qS − τC),

C ′ = qS − τC − μC,

E ′ = βE

N
S − ηE − μE,

I ′ = εηE − δ I − μI ,

R′ = (1 − ε)ηE + δ I − μR,

where NS is the constant birth/immigration rate, and μ is the per capita mortality
rate. After some tedious computations, we find that this new model admits only two
equilibrium points: the disease-free equilibrium where E = I = R = 0 and the
endemic equilibrium (EE). Furthermore, the basic reproduction number is now given
by

R0 = β(μ + τ)

(η + μ)(μ + τ + q)
,

and EE exists with all positive coordinates if and only if R0 > 1. Besides extending
the model to account for long-term population dynamics, coupling an in-host model
of SARS-CoV-2 (the pathogen behind COVID-19) (Hernandez-Vargas and Velasco-
Hernandez 2020) may reveal a deeper understanding on how viral infection together
with quarantine measures can help control the disease.

Further analysis may be directed towards characterizing transient dynamics, par-
ticularly epidemic peaks, with respect to model parameters. Our mathematical results
are guided by this central problem.
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Appendix A Stability theory

The systems considered here take the form

dx

dt
= f (x), x(0) = x0, (A1)

where x (the state vector) is constrained to a state space X in Rn . A solution φ(t, x0)
uniquely exists with each initial state (initial point) x0 ∈ X provided the vector
field f is Lipschitz continuous. In the following results, we consider the system (A1)
constrained to its state space X . We also equip R

n with the Euclidean norm ‖·‖ and
define the distance between a point x and a set Y as ‖x‖Y := inf y∈Y‖x − y‖.
Definition A.1 (Equilibrium set) We can the set X ∗ ⊆ X an equilibrium set for the
system (A1) if each x∗ ∈ X ∗ satisfies f (x∗) = 0, from which φ(t, x∗) = x∗ for all
t ≥ 0. Thus, we call x∗ an equilibrium point.

Definition A.2 (Attractivity of an equilibrium set) We call a closed equilibrium set
X ∗ ⊆ X attractive in X if limt→∞‖φ(t, x0)‖X ∗ = 0 for all x0 ∈ X .

The existence of an attractive subset of X ∗ suffices for X ∗ to be attractive, hence
it is crucial to determine the smallest attractive subset Y ⊆ X such that the only
attractive set Z ⊆ Y is Z = Y .

Definition A.3 (Local stability of an equilibrium set) We call a closed equilibrium set
X ∗ ⊆ X locally stable in X if, for all ε > 0 there exists δ > 0 such that every point
x0 with ‖x‖X ∗ < δ satisfies ‖φ(t, x0)‖X ∗ < ε for all t ≥ 0.

Definition A.4 (Asymptotic stability of an equilibrium set) A closed equilibrium set
X ∗ ⊆ X is asymptotically stable in X if X ∗ is both locally stable and attractive in
X .

Theorem A.5 (Lyapunov theorem Khalil and Grizzle 2002; Haddad and Chellaboina
2011) Consider the system (A1) constrained to the state space X with an equilibrium
point x∗ contained in Y ⊆ X . Suppose that there exists a Lyapunov funcion V :
Y → R defined by the following properties: V (x) > 0 for all x �= x∗, V (x∗) = 0,
and dV /dt = ∇V (x) · f (x) ≤ 0. Then x∗ is locally stable in X . If we also have
V̇ (x) < 0 for all x �= x∗, and V̇ (x∗) = 0, then x∗ is asymptotically stable.

Appendix B Final size bounds

The value of ζ in Eq. (23) is specific to the solution of (6) at a given initial time t0
and the corresponding initial point p0 = (x(t0), y(t0), z(t0)). Indeed, this value will
depend on the integral

�(p0, t0) :=
∫ ∞

t0
Q(θ) dθ, Q(t) = q∗ − y(t)

x(t)
= y′(t)

x(t)
.
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By the continuous dependence of (6) with initial conditions, the ordered pair (p0, t0)
determines the specific trajectories of both x(t) and y(t), which in turn determines the
exact value of �.

Finding a closed-form expression for �(p0, t0) is still an open problem (see the
Discussion, Sect. 6 for an explanation). Nevertheless, it is possible to obtain closed-
form bounds for � even if we only know that x∞ is (up to a constant multiple) the
value of some branch of the Lambert function.

To this end, we fix (p0, t0) and impose the following hypotheses:

(H1) z(t0) > 0 and x(t0) > 0.
(H2) y′(t0) < 0 or there exists t1 ≥ t0 such that y′(t1) = 0.
(H3) The improper integral �(p0, t0) exists.

Then by the positive invariance of Y3 (Theorem 4.2), hypothesis (H1) implies that
x(t) > 0 and z(t) > 0 for all t ≥ t0, ensuring that Q is defined on the interval [t0,∞).
With hypothesis (H2), Theorem 4.7 ensures the existence of a unique t1 ≥ t0 defined
as follows:

• If y′(t0) < 0, then y strictly decreases over [t0,∞); here, we let t1 = t0.
• If y′(t0) ≥ 0, then let t1 be the unique value such that y′(t1) = 0, hence y′(t)
shares the same sign with t1 − t over [t0,∞).

Hence, y has a unique global maximum (or “peak”) ymax := y(t1) over [t0,∞). Please
note that ymax is based on a fixed (p0, t0). Finally, let us define the area function

�t (p0, t0) :=
∫ t

t0
Q(θ) dθ, t ≥ t0.

Then hypothesis (H3) means that �(p0, t0) has a finite limit value, namely

�(p0, t0) = lim
t→∞ �t (p0, t0),

where (p0, t0) was fixed.
We remark that our choice of t1 is also the smallest value in [t0,∞) such that

y′(t1) ≤ 0, from which y′ > 0 over [t0, t1]. Since Q shares the same sign with y′, we
can compute �(p0, t0) as

�(p0, t0) =
∫ t1

t0
Q(θ) dθ +

∫ ∞

t1
Q(θ) dθ

where the integral terms over [t0, t1] and [t1,∞) are non-negative and negative, respec-
tively.

Lemma B.1 Fix (p0, t0) and consider the solution of (6) with initial point p0 =
(x(t0), y(t0), z(t0)). Assume hypotheses (H1)–(H3) and define the following integrals:

�max :=
∫ t1

t0
Q(θ) dθ, �min :=

∫ ∞

t1
Q(θ) dθ.

Then the following statements hold:
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(a) If y′(t0) ≤ 0, then �max = 0 and � = �min < 0.
(b) If y′(t0) > 0, then �min < � < �max.

Therefore, �min ≤ � < �max with strict inequality if and only if y′(t0) > 0.

Proof Note that � = �max + �min where �max ≥ 0 (with equality if and only if
t1 = t0) and �min < 0. Hence, we argue as follows:

• If y′(t0) ≤ 0, then we have t1 = t0 and �max = 0. Hence, � = �min < 0.
• If y′(t0) > 0, then we must have t1 > t0 and �max > 0; thus, � > �min. Since

�min < 0, we can add both sides with �max to yield � < �max. Therefore,
�min < � < �max.

We have proven statements (a) and (b), which cover all possible signs of y′(t0). Hence,
their respective conclusions can be recast as a single result, namely that �min ≤ � <

�max with strict inequality if and only if y′(t0) > 0. ��
Lemma B.2 Fix (p0, t0) and consider the solution of (6) with initial point p0 =
(x(t0), y(t0), z(t0)). Assume hypotheses (H1)-(H3). Then

Q(t1)(t1 − t0) ≤ �max ≤ Q(t0)(t1 − t0).

Proof Consider the sign of x ′, y′, and Q′ restricted to the closed interval [t0, t1]. Then
y′ > 0 by definition of t1. With (H1) ensuring positive values of x and z, we also have

x ′ = −η∗R0xz − y′ < 0,

which yields

Q′ = yx ′ − xy′

x2
≤ − xy′

x2
< 0.

Therefore, Q(t1) ≤ Q(t) ≤ Q(t0) for all t ∈ [t0, t1]. Integrating over [t0, t1], we have
Q(t1)(t1 − t0) ≤ �max ≤ Q(t0)(t1 − t0). ��

We are now ready to establish a bound for x∞ for a fixed (p0, t0). Recall Eq. (23)
for ζ and Eq. (27) for ζ̃ and ζ̂ .

Theorem B.3 Fix (p0, t0) and consider the solution of (6) with initial point p0 =
(x(t0), y(t0), z(t0)). Assume hypotheses (H1)–(H3). Then ζ < ζ̃ ≤ ζ̂ .

Proof By Lemmas B.1 and B.2, under any sign of y′(t0), we have:

�(p0, t0) < �max(p0, t0) ≤ Q(t0)(t1 − t0)

e�(p0,t0) < e�max(p0,t0) ≤ eQ(t0)(t1−t0)

1

e�(p0,t0)
>

1

e�max(p0,t0)
≥ 1

eQ(t0)(t1−t0)
.

Multiplying both sides of the last inequality by ζ1 we get ζ < ζ̃ ≤ ζ̂ . ��

123



46 Page 36 of 37 A. E. S. Almocera et al.

Corollary B.4 Fix (p0, t0) and consider the solution of (6) with initial point p0 =
(x(t0), y(t0), z(t0)). Assume hypotheses (H1)–(H3) together with ζ > −e−1, and
suppose that

x∞ = − Wk(ζ )

R0(1 + q∗)
,

where k ∈ {0,−1}. Let

x̃∞ = − Wk (̃ζ )

R0(1 + q∗)
, x̂∞ = − Wk (̂ζ )

R0(1 + q∗)
.

See Eq. (28). Then x∞ > x̃∞ ≥ x̂∞ for k = 0, and x∞ < x̃∞ ≤ x̂∞ for k = −1.

Proof Theorem B.3 yields

−e−1 < ζ < ζ̃ ≤ ζ̂ < 0,

which defines Wk at ζ , ζ̃ , and ζ̂ . Since the principal branch W0 increases while the
branch W−1 decreases, we have x∞ > x̃∞ ≥ x̂∞ for k = 0 and x∞ < x̃∞ ≤ x̂∞ for
k = −1. ��
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