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Abstract
To maintain renewing epithelial tissues in a healthy, homeostatic state, cell divisions
and differentiation need to be tightly regulated.Mechanisms of homeostatic regulation
often rely on crowding feedback control: cells are able to sense the cell density in their
environment, via various molecular and mechanosensing pathways, and respond by
adjusting division, differentiation, and cell state transitions appropriately. Here, we
determine, via a mathematically rigorous framework, which general conditions for
the crowding feedback regulation (i) must be minimally met, and (ii) are sufficient,
to allow the maintenance of homeostasis in renewing tissues. We show that those
conditions naturally allow for a degree of robustness toward disruption of regulation.
Furthermore, intrinsic to this feedback regulation is that stemcell identity is established
collectively by the cell population, not by individual cells, which implies the possibility
of ‘quasi-dedifferentiation’, in which cells committed to differentiation may reacquire
stem cell properties upon depletion of the stem cell pool. These findings can guide
future experimental campaigns to identify specific crowding feedback mechanisms.
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1 Introduction

Many adult tissues are renewing, that is, terminally differentiated cells are steadily
removed and replaced by new cells produced by the division of cycling cells (stem
cells and progenitor cells), which then differentiate. In order to maintain those tissues
in a healthy, homeostatic state, (stem) cell divisions and differentiation must be tightly
balanced. Adult stem cells are the key players in maintaining and renewing such
tissues due to their ability to produce cells through cell division and differentiation
persistently (National Institute of Health 2016). However, the underlying cell-intrinsic
and extrinsic factors that regulate a homeostatic state are complex and not always well
understood.

Several experimental studies have identified mechanisms and pathways that regu-
late homeostasis. For example, cell crowding can trigger delamination and thus loss of
cells in Drosophila back (Marinari et al. 2012), and differentiation in cultured human
colon, various zebrafish epithelia, and canine kidney cells (Eisenhoffer et al. 2012;
Eisenhoffer and Rosenblatt 2013). On the other hand, cell crowding can affect cell
proliferation: overcrowding can inhibit proliferation (Puliafito et al. 2012), whereas a
reduction in the cell density, obtained, for example, by stretching a tissue (Gudipaty
et al. 2017) causes an increase in proliferative activity (both shown in cultured canine
kidney cells). Although the mechanisms to mediate this regulation are not always
clear, experimental studies on mechanosensing showed that cell overcrowding gener-
ates pressure on cells which they can sense through mechanosensing pathways [e.g.
the Hippo pathway (Bin et al. 2011; Yu et al. 2012)], allowing them to reduce cell
proliferation (McClatchey and Yap 2012; Puliafito et al. 2012; Shraiman 2005; Huf-
nagel et al. 2007; Nonomura and Hirata 2020) (“contact inhibition”). Another control
mechanism of homeostasis is the competition for limited growth signalling factors
(Kitadate et al. 2019; Jörg et al. 2019). More specifically, in the mouse germ line, cells
in the stem cell niche respond to a growth factor (FGF5) that promotes proliferation
over differentiation, which they deplete upon being exposed to it. Therefore, the more
cells are in the niche, the less FGF5 is available per cell, and the less proliferation (or
more differentiation) occurs.

Despite differing in the involved molecular pathways and many other details, all
these regulatory mechanisms are, in essence, sensing the cell density in their envi-
ronment, e.g. in the stem cell niche, and responding by adjusting their propensities to
divide, differentiate, die, or emigrate from the tissue. This class of mechanisms, for
which cell fate propensities depend on the cell density, can be classified as crowding
feedback regulation: the local cell density determines the cells’ proliferation and dif-
ferentiation, which affects their population dynamics and thus feeds back to adjust the
cell density, in a way that keeps it in a steady state.

Previous studies based on mathematical modelling have shed light on quantitative
mechanisms for homeostatic control via feedbackwhen there is a one-way progression
of differentiation from stem cells towards terminally differentiated cells (possibly
via transient progenitors) (Johnston et al. 2007; Stiehl and Marciniak-Czochra 2011;
Bocharov et al. 2011; Lander et al. 2009; Alarcon and Marciniak-Czochra 2011;
Stiehl and Marciniak-Czochra 2017). However, it has been shown that differentiation
is not always a one-way process, but priming or ’licensing’ for differentiation may
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occur, which allows cells in early stages of differentiation to return to their naive stem
cell state (Ritsma et al. 2014; Hara et al. 2014; Nakagawa et al. 2021; Greulich and
Simons 2016; Chatzeli and Simons 2020). In this case, conditions for homeostasis
may be more complex than previously proposed. In reference Greulich et al. (2021),
necessary conditions for the existence of a homeostatic state have been derived, for the
most general case of arbitrary cell state transitions, as well as a sufficient condition for
a dynamic homeostatic state—which, beyond a strict steady state, allows for bounded
oscillations (as in the uterus during the menstrual cycle).

Here, we wish to generalise previous findings about homeostatic control via crowd-
ing feedback and identify general conditions for successful control, for possibly
complex transitions between cell types and states, including branched cell fate trajecto-
ries, reversible switching, and loops. We will consider the situation when propensities
for division, differentiation, and loss of (stem) cells are responsive to variations of
the cell density in the cellular environment (for example the stem cell niche) and
derive conditions that must be minimally fulfilled (necessary conditions) and condi-
tionswhich are sufficient to ensure that homeostasis prevails. To identify and formulate
those conditions, we note that homeostasis is a property of the tissue cell population
dynamics, which can be mathematically expressed as a dynamical system. Even if a
numerically exact formulation of the dynamics may not be possible, one can formu-
late generic yet mathematically rigorous conditions by referring to the criteria for the
existence of stable steady states in the cell population dynamics of renewing tissues.
We will derive those conditions by mathematical, analytical means, augmented by a
numerical analysis testing the limits of those conditions.

We will also show that homeostatic control by crowding feedback possesses inher-
ent robustness to failures and perturbations of the involved regulatory pathways, which
may occur through external influences (e.g. wide-spread biochemical factors) and
genetic mutations. Finally, we will assess the response of cells when the pool of stem
cells is depleted. Crucially, we find that upon depletion of the stem cell pool, crowding
feedback control causes formerly committed progenitor cells to reacquire self-renewal
capacity without substantial changes in their internal states. Dedifferentiation has been
widely reported under conditions of tissue regeneration (Donati et al. 2017; Jopling
et al. 2011) or when stem cells are depleted (Tata et al. 2013; Tetteh et al. 2015, 2016;
Murata et al. 2020), which is usually thought to involve a substantial reprogramming
of the cell-intrinsic states towards a stem cell type. On the other hand, our analysis
suggests the possibility of “quasi”-dedifferentiation, the reversion of a committed cell
to a stem cell by a mere quantitative adjustment of the pacing of proliferation and
differentiation, without a substantial qualitative change in its expression profiles.

2 Modelling of tissue cell dynamics under crowding feedback

We seek to assess the conditions for homeostasis in renewing tissue cell populations,
that is, either a steady state of the tissue cell population (strict homeostasis) or long-
term, bounded oscillations or fluctuations (dynamic homeostasis). To this end, we will
here derive a formal, mathematical representation of the tissue cell dynamics under
crowding feedback regulation.
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2.1 Tissue cell population dynamics: a general mathematical framework

The tissue cell population dynamics are defined via the rates of change of cell numbers.
Cell numbers in a tissue change via cell division, increasing the cell number, and via
cell loss—either by cell death or shedding from the tissue—which decreases the cell
number. Here, we define as a "tissue cell population" a closed population of cells:
immigration of cells into this population does not occur, by definition, as the source
of this immigration would be included in the here defined tissue cell population. Cell
division and loss rates may depend on factors like cell-intrinsic (biochemical and
mechanical) states and interactions with other cells, e.g. via paracrine signalling. In
principle, cell-intrinsic states could be any molecular or mechanical configuration of
the cell, which, from now on, we will call cell states. However, to define the cell
population dynamics, it is sufficient to distinguish only cell states having different
propensities that affect the population dynamics (e.g. different propensities to divide
or differentiate). Configurationswhich are not different in those propensities are pooled
together here as one cell state. With this definition, we number those states as i =
1, . . . ,m (m can be arbitrarily large) and each state i is associated with a unique
propensity (i) to divide, λi , (ii) to be lost, γi , or (iii) to change into another cell state
j = 1, . . . ,m, ωi j . Accordingly, the cell population dynamics are defined by those
three processes that each cell may be able to perform. Following the lines of reference
Greulich et al. (2021), Parigini and Greulich (2020) and denoting as Xi, j,k a cell in
cell states i, j, k, respectively, we can formalise this as:

cell division: Xi
λi r

jk
i−−−→ X j + Xk (1)

cell state transition: Xi
ωi j−→ X j (2)

cell loss: Xi
γi−→ ∅ , (3)

where the symbols above the arrows denote the dynamical rates of the processes,
i.e. the average frequency at which such events occur. Notably, since a cell division
may produce daughter cells in different cell states, we assigned to each division the
probability r jk

i that a division of a cell in state i produces daughter cells in states j

and k (i = j, j = k, k = i are possible), such that
∑m

j,k=1 r
jk
i = 1 for all i . In the

following, we will denote the total number of cells as n and the number of cells in
state i as ni . The corresponding expected values (mean values) are denoted as n̄ and
n̄i , respectively.

The rates given in (1) - (3) denote the expected number of events happening per
time unit. Thus, we can express the total rate of change of the expected number of
cells in state i , that is, the derivative ˙̄ni = dn̄i

dt , in terms of the rates of those events.
This defines a set of ordinary differential equations. Following the lines of references
Greulich et al. (2021), Parigini and Greulich (2020), we can write ˙̄ni as,

˙̄ni =
∑

j

[

ω j i + λ j

∑

k

(
r ikj + rkij

)
]

n̄ j −
⎛

⎝λi + γi +
∑

j

ωi j

⎞

⎠ n̄i , (4)
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where for convenience, we did not write the time dependence explicitly, i.e. n̄i = n̄i (t)
In general, the ratesλi , γi , ωi j and probabilities r

jk
i can depend on the cells and their

states in the cellular environment of Xi , via paracrine or mechanical signalling. Here,
we restrict our study to situationswhere the explicit spatial position does notmatter and
where only the number of cells and their states in a close cellular environment affect
those parameters. Examples of this type of cell fate regulation are cells competing for
signalling molecules in a niche (Jörg et al. 2019; Kitadate et al. 2019) or responding
to mechanical pressure and stresses (Puliafito et al. 2012; Shraiman 2005). Yet, more
generally, this simplification can also serve as (mean-field) approximation for more
complex spatial interactions.

As we examine a situation close to a homeostatic state, we assume that the cell
density is homogeneous over the range of interaction between cells, which expands
over a volume V . Hence, the cell density, ρ, is proportional to the expected (average)
number of cells in that volume, ρ = n̄

V . Similarly, the density of cells in cell state i is

ρi = n̄i
V .

Thus, the parameters can, in general, depend on the cell densities ρ j , j = 1, . . . ,m.
Since V is constant, we can divide Eq. (4) by V to equivalently express this in terms
of the cell state densities, ρi = n̄i

V , compactly as,

d

dt
ρ(t) = A(ρ(t)) ρ(t) , (5)

where ρ = (ρ1, ρ2, . . .) is the vector of cell state densities and A(ρ) is the matrix,

A =

⎛

⎜
⎜
⎜
⎝

λ1 − ∑
j �=1 κ1 j − γ1 κ21 · · · κm1

κ12 λ2 − ∑
j �=2 κ2 j − γ2 · · · κm2

...
...

. . .
...

κ1m κ2m · · · λm − ∑
j �=m κmj − γm

⎞

⎟
⎟
⎟
⎠

,

(6)

in which κi j = λi2r
j
i + ωi j , with r j

i = ∑
k(r

jk
i + rk ji )/2, is the total transition

rate, that combines all transitions from Xi to X j by cell divisions and direct state
transitions. Again, all parameters may depend on ρ, as therefore also does A. We can
thus generally write the elements of the matrix A, ai j with i, j = 1, . . . ,m as,

ai j =
{

λi − γi − ∑
k �=i κik for i = j

κ j i for i �= j
. (7)

Finally, we make the mild assumption that the propensities to divide and to change
state are controlled separately, that is, the total cell state transition propensities κi j and
the cell division rate λi are the relevant parameters subject to crowding control, as in
(6), instead of ωi j and r

jk
i .

Equation (5) with matrix A as in (6) describes a dynamical system which, for given
initial conditions, determines the time evolution of the cell densities, ρi (t). Crucially,
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this description allows for a rigorousmathematical definition of a homeostatic state and
the application of tools of dynamical systems analysis to determine the circumstances
under which a homeostatic state prevails. In particular, we define a (strict) homeostatic
state as a stable non-negative steady state of the system, (5), when the expected cell
numbers—and thus cell densities, given that V is fixed—in each state do not change,
mathematically expressed as dρ

dt = 0 and ρi ≥ 0 for all states i (a non-negative
fixed point of the system). A dynamic homeostatic state is when cell densities may
also oscillate or fluctuate but remain bounded (Greulich et al. 2021), thus possessing
a finite long-term average cell population. Based on these definitions, we can now
consider explicit models to analyse under which circumstances crowding feedback
can maintain homeostatic states.

2.2 Model constraints, conventions, and conditions for a steady state

To define our particular model, it is helpful to introduce some definitions and con-
ventions and to recapitulate previously established conditions for the existence of a
non-negative steady state ρ∗ = (ρ∗

1 , . . . , ρ
∗
m) with ρ∗

i ≥ 0 for all i = 1, . . . ,m, in a
system of the form (5) (Greulich et al. 2019, 2021).

We first note that by choosing an appropriate ordering of the cell states (that is, the
basis vectors) the matrix A has lower triangular block form (Varga 2000),

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

B1 0 0 0 · · ·
C21 B2 0 0 · · ·
C31 C32 B3 0 · · ·
...

...
...

. . . 0
· · · · · · · · · · · · Bh

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (8)

where Bk , k = 1, . . . , h, h ≥ 1, are irreducible matrices. For A as in (6), all its
off-diagonal elements are non-negative, which means that Bk are irreducible Metzler
matrices, and the Perron-Frobenius theorem holds for them (MacCluer 2000). This
feature implies that each matrix Bk possesses a simple, real maximum eigenvalue μk ,
called the dominant eigenvalue. Since A is a function of cell densities ρ, so is μk =
μk(ρ). We can define a graph G(A) for matrix A, such that the cell states represent
its nodes and the cell state transitions the links between nodes. More precisely, each
entry of A, ai j , corresponds to the weight of the link from node j to node i in G(A)
which, for j �= i , is the transition rate κ j i (by definition there is no link from j to i
if ai j = κ j i = 0). A can thus be interpreted as the transposed adjacency matrix of
G(A). Note that the diagonal elements of A do not change the connectivity of G(A)

and are arbitrarily defined as in (7). The graphs of the irreducible matrices Bk , G(Bk),
then correspond to the strongly connected components (SCC) of G(A) (Greulich et al.
2019) and the SCCs form a hierarchical structure, without any cycles between different
SCCs. We also refer to this as the lineage hierarchy.

If G(Bk) does not have any incoming links from other SCCs, then we call it an
apex SCC, which is the case for B1 and any Bk for which Ckl = 0 for l < k; otherwise
it is called non-apex SCC. In reference Greulich et al. (2021), it was established that a
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necessary condition for the existence of a non-negative (and non-trivial) steady state
in a system of form (5) is that for all apex SCCs, Bk must have dominant eigenvalue
μk = 0, while all non-apex Bk must have μk < 0. Furthermore, if the non-apex
matrices Bk do not depend on ρ, then this necessary condition is also sufficient for the
existence of a non-negative steady state (Greulich et al. 2019).

Following the convention from previous works, we call the collection of all cell
states in one SCC of G(A) a cell type [see a detailed discussion of this convention in
Greulich et al. (2021)]. Consistently, any state transition from one cell type to another
is called differentiation. From a biological point of view, apex SCC/cell types which
are at a steady state, i.e. maintain a homeostatic population, can be interpreted as stem
cells, as they have self-renewal potential (the population not changing upon the course
of continued divisions) and full lineage potential (being at the apex of the lineage
hierarchy) (Greulich et al. 2021). We will make the following Model Assumptions
to define our model:

1. The parameters of an apex (stem) cell type s only dependon the total density of cells
in type s, that is, elements of an apexSCCG(Bs) only depend onρs = ∑

i∈G(Bs ) ρi
(the sum is over all states that constitute the apex cell type). We refer to this
interaction as crowding feedback.

2. The range of variation of parameters λi (ρs), γi (ρs) and κi j (ρs) is sufficiently large,
so that a state ρ∗

s with μs(ρ
∗
s ) = 0 exists for any apex SCC G(Bs).

3. All non-apex cell types Bk have sufficiently high differentiation rates, so that
μk < 0.

Assumption 1 is based on the common biological scenario where stem cells (apex type
cells) reside in a separate niche (Scadden 2006; Watt and Hogan 2000), competing for
niche factors that promote self-renewal, or they compete directly for space in the niche,
only with each other, and respond to crowding pressure through mechanosensing. In
Sect. 3.5, we will consider a similar crowding feedback also for some committed
cells. Assumptions 2 and 3 are necessary conditions for the existence of a steady
state (Greulich et al. 2021) and are thus always required if we want to assess further
(e.g. sufficient) conditions for homeostasis. These conditions mean that the crowding
response range and the differentiation rate of non-stem cells are sufficiently high (note
that Assumption 3 can always be achieved by a sufficiently high differentiation rate,
as increasing γi > 0 decreases the diagonal elements of Bk).

With those assumptions, a steady state ρ∗ of the whole system prevails if for all
apex cell types Bs the corresponding dominant eigenvalue is μs(ρ

∗
s ) = 0. Hence, in

order to determine the condition for homeostasis of the system as a whole, it suffices to
determine the conditions for stability of the steady state ρ∗

s = (ρ∗
i )|i∈G(Bs ), when the

assumptions above are fulfilled. Therefore, for convenience, we will initially restrict
our analysis to cell states of an apex cell type/SCC only, neglecting the remainder of
the system, whose steady state is assured by the assumption that μk < 0 for non-apex
SCCs. The inclusion of non-apex SCCs is discussed later in this work. As such, we
will in the following sections consider only systems made up of cell states of an apex
type Bs , and thus identify Bs with A, and similarly, ρs is denoted as ρ (meaning that
ρs is denoted as ρ, for simplicity), to keep the notation simple.
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We note that when we consider only cell states of the apex cell type, any differenti-
ation event (transition to another cell type) is—according to this restricted model—a
cell loss event and included as an event occurring with rate γi . Since this corresponds
to the irreversible transition to a (committed) non-stem cell type, we will thus denote
the rates γi as differentiation rates.

Finally, we choose a convenient notation formodel parameters andwill often gener-
ally refer to them as αi , i = 1, . . . , 2m+m2, where αi stands for any of the parameters,
{λi , γi , κi j |i, j = 1, . . . ,m}, respectively1. Hence, our main goal is to study which
conditions the functions αi (ρ) must meet to maintain homeostasis. In particular, we
study how those parameters qualitatively change with the cell density—increase or
decrease—that is, how the signs and magnitudes of derivatives α′

i := dαi
dρ

affect home-
ostasis.

2.3 An illustrative simple example

To illustrate the conditions for a strict homeostatic state, which we later wish to gen-
eralise, we consider a simple textbook example system [see, e.g. reference Stiehl and
Marciniak-Czochra (2011)].

Let us consider cells with two possible states, a and b, whereby cells can divide in
both states, with rates λa and λb, respectively, transit from state a to state b, with rate
γa , and be lost from state b, with rate γb, according to the following events:

Xa
λa−→ Xa + Xa, Xa

γa−→ Xb, Xb
λb−→ Xb + Xb, Xb

γb−→ ∅ , (9)

where λa and γa depend on the density of cells in state a, ρa , i.e. λa = λa(ρa), γa =
γa(ρa) and they are assumed to bemonotone functions and thus invertible. The dynam-
ics of this system are written according to (4) as,

ρ̇a = λa(ρa)ρa − γa(ρa)ρa (10)

ρ̇b = γa(ρa)ρa + λbρb − γbρb , (11)

or alternatively as,

ρ̇ = A(ρ)ρ, with A(ρ) =
(

λa(ρa) − γa(ρa) 0
γa(ρa) λb − γb

)

, (12)

and ρ = (ρa, ρb). We can see that A has the form A =
(
B1 0
C21 B2

)

, where B1 =
(λa − γa), B2 = (λb − γb) are 1× 1 (trivially) irreducible matrices. As defined in the
previous section, we can associated the matrix Awith a graphG(A)where ai j denotes
the link weight from node j to node i . This graph is shown in Fig. 1 (for convenience
and clarity, the negative terms on loops are not shown). Here, the states a and b are

1 More precisely, αi |i=1,..,m := λi , αi |i=m+1,..,2m := γi−m , αi |i=2m+1,..,2m+m2 :=
κ	(i−2m)/m
,i−	(i−2m)/m
m
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Fig. 1 Sketch of the illustrative two-cell state model, (10), (11) under consideration

trivial one-node SCCs, as no cycles between nodes exist, but in more complex systems
these matrices could be larger irreducible matrices corresponding to non-trivial SCCs.
Hence, we can identify the states a and b with SCCs, i.e. cell types according to
our definition, and a hierarchy prevails: type a does not possess incoming links from
anywhere else and is therefore an apex type, while type b possesses an incoming link
from type a and is a non-apex type. Notably, the transition from a to b is between two
cell types, thus it is a differentiation event (an irreversible loss of an Xa cell), therefore
we had chosen the symbol “γa” instead of “ωab” for the rate of this event.

For this system, the steady state condition, ρ̇ = 0, implies ρ∗
b = −γa(ρ

∗
a )

λb−γb
ρ∗
a . A non-

trivial and non-negative steady state, ρ∗
a , ρ

∗
b > 0, can be achieved only if λa(ρ

∗
a ) −

γa(ρ
∗
a ) = 0 and λb − γb < 0. We note now that the eigenvalues of the matrix A

can simply be read off as its diagonal elements, that is, μa(ρa) = λa(ρa) − γa(ρa)

and μb = λb − γb. Therefore, the above condition is equivalent to asking for a null
dominant eigenvalue of the apex type a at the steady state ρ∗

a , μa(ρ
∗
a ) = 0 and a

negative dominant eigenvalue of the non-apex type b,μb < 0. This result is consistent
with the necessary conditions for a steady state derived in Greulich et al. (2019, 2021),
which can only be achieved if Assumptions 2 and 3 from the previous section are met.

The above relations between the model parameters assure the existence of a non-
trivial and non-negative steady state, ρ∗, but do not specify its stability properties. To
determine these, we study the Jacobian matrix at the steady state, J , which has the
elements,

Ji j = ∂[A(ρ)ρ]i
∂ρ j

∣
∣
∣
∣
ρ=ρ∗

, i.e. J =
(

(λ′
a − γ ′

a)ρ
∗
a + γa − λa 0

γ ′
aρ

∗
a + γa λb − γb

)

, (13)

where here the functions λa, γa are to be taken at ρ∗
a , as are the derivatives λ′

a, γ
′
a .

For ρ to be asymptotically stable it is required that all eigenvalues of J are negative.
Noting that at the steady state, λa −γa = 0, the Jacobian matrix J has the eigenvalues
(λ′

a − γ ′
a)ρ

∗
a and λb − γb. Since λb − γb < 0 is already assured through the steady

state condition, the crucial necessary and sufficient condition for stability is,

λ′
a − γ ′

a < 0 . (14)

Notably, from this we can formulate a simpler, sufficient condition,

λ′
a ≤ 0, γ ′

a ≥ 0, λ′
a �= 0 or γ ′

a �= 0. (15)

The latter condition has the advantage that it only relies on the sign of the feedback,
a qualitative condition which is easier to check experimentally.
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In the following, we wish to find similar conditions for the stability of steady states,
that is, strict homeostasis, in generically more complex systems, with multiple states
and non-trivial cell types. As in Eq. (15), we wish to express those conditions in
terms of the crowding feedback response, that is, how the parameters αi (here, λa, γa)
depend on the (stem) cell density ρ (here, ρa), i.e. the derivatives α′

i (ρ) at the steady
state (here, λ′

a(ρa), γ
′
a(ρa)).

3 Results

We will now determine necessary and sufficient conditions for the establishment of
dynamic and strict homeostasis in renewing cell populations,when subject to crowding
feedback, and we will study its stability and robustness. In Sects. 3.1–3.4 we will
follow model Assumptions 1–3 from Sect. 2.2 and thus define crowding feedback as
dependence of the parameters of stem cells (that is, of an apex cell type as defined
above) on the total density of stem cells ρ := ρs = ∑

i∈G(Bs ) ρi , only. As argued
in Sect. 2.2, it suffices to consider stem cells, only, in this case. With this scope, the
system constitutes a single cell type (that is a single SCC), thus the matrix A is an
irreducible Metzler matrix for which a simple dominant eigenvalue μ and associated
eigenvector v exists. In Sect. 3.5 we consider similar assumptions for some non-apex
(committed) cell types.

3.1 Sufficient condition for dynamic homeostasis

In Greulich et al. (2021), it was shown that a dynamic homeostatic state, where cell
numbers may change over time but stay bounded, is assured if2

μ′(ρ) < 0 for all ρ > 0 , (16)

where μ is the dominant eigenvector of the dynamical matrix of the stem cell type,
and ρ the density of stem cells. This sufficient condition requires thatμ(ρ) is a strictly
decreasing function of cell density. Also, the range of this functionmust be sufficiently
large so that it has a root, i.e. a value ρ∗ with μ(ρ∗) = 0 must exist for the function
μ(ρ), which is assured by our Assumption 2 from Sect. 2.2.

First, we note that from the Perron-Frobenius theorem follows that each irreducible
Metzler matrix, and thus A, possesses left and right eigenvectors associated with
dominant eigenvalueμ (MacCluer 2000), respectively indicated as v andw, which are
strictly positive, that is, all their entries are positive. From this follows that the partial
derivative of the dominant eigenvalue μ by the i, j-th element of A, ai j = [A]i j is
always positive:

∂μ

∂ai j
= viw j

vw
> 0 , (17)

2 In Greulich et al. (2021), this condition, defined through dependency on cell number, can be directly
translated into a condition on the cell density derivative if the volume is assumed as a constant.
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where the left equality is according to Horn and Johnson (1985) and is generally valid
for simple eigenvalues. Here, v is assumed to be in row form, and vw thus corresponds
to a scalar product.

According to our assumptions, a non-trivial, non-negative steady state ρ∗ exists,
andwe now translate the sufficient condition for a dynamic homeostatic state, Eq. (16),
into conditions on the parameters as a function of the cell density, αi (ρ). In particular,
we can write,

μ′(ρ) =
∑

i j

∂μ

∂ai j

∂ai j
∂ρ

=
∑

i j

viw j

vw
a′
i j =

∑

i

viwi

vw
a′
i i +

∑

i, j �=i

viw j

vw
a′
i j

=
∑

i

viwi

vw

⎛

⎝λ′
i − γ ′

i −
∑

j �=i

κ ′
i j

⎞

⎠ +
∑

i, j �=i

v jwi

vw
κ ′
i j , (18)

where we used Eq. (17) and the explicit forms of ai j , the elements of the matrix A,
according to Eq. (7). Provided that all the parameters depend on ρ, condition (16)
results in:

0 > μ′ �⇒ 0 >
∑

i

viwi
(
λ′
i − γ ′

i

) + wi

∑

j �=i

(v j − vi )κ
′
i j for all ρ > 0 , (19)

While we cannot give an explicit general expression for the dominant eigenvectors
v,w, this condition is sufficiently fulfilled if each term of the sum on the right-hand
side of Eq. (19) is negative. More restrictively, we have Eq. (19) sufficiently fulfilled
if,

⎧
⎪⎨

⎪⎩

λ′
i ≤ 0, γ ′

i ≥ 0 for all i

λ′
i < 0 or γ ′

i > 0 at for least one i

κ ′
i j = 0 for all i, j

for ρ > 0 . (20)

Thismeans that, excluding rates that are zero,which are biologicallymeaningless, if no
state transitions within a cell type are subject to crowding feedback (κ ′

i j = 0), while all
(non-zero) cell division rates depend negatively on ρ (λ′

i < 0), and differentiation rates
depend positively (γ ′

i > 0), for all attainable levels of ρ, then dynamical homeostasis
is ensured.

Alternatively, we can rewrite Eq. (19) as

0 >
∑

i

viwi

vw

⎛

⎝λ′
i − γ ′

i −
∑

j �=i

κ ′
i j +

∑

j �=i

v j

vi
κ ′
i j

⎞

⎠ for all ρ > 0 , (21)

which, due to
v j
vi

> 0, implies another sufficient condition for dynamic homeostasis:
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⎧
⎪⎨

⎪⎩

λ′
i ≤ 0, γ ′

i ≥ 0 for all i

λ′
i < 0 or γ ′

i > 0 at for least one i

κ ′
i j ≤ 0 with |∑ j κ

′
i j | ≤ γ ′

i − λ′
i for all i, j

. (22)

This condition is less strict than Eq. (20), allowing for some non-zero crowding feed-
back dependency of state transition rates κi j , as long as the crowding feedback strength
of the total outgoing transition rate of each state does not outweigh the feedback on
proliferation and differentiation rate of that state.

3.2 Necessary condition for strict homeostasis

We now consider the circumstances under which a strict homeostatic is maintained,
that is, when a non-negative steady state of the cell population exists and is asymptot-
ically stable.

From thePerron-Frobenius theoremand the assumptionsmade inSect. 2.2 it follows
that there exists a non-negative eigenvectorρ∗ with A(ρ∗)ρ∗ = 0,which can be chosen
by normalisation to fulfil

∑
i∈S ρ∗

i = ρ∗. Thus, ρ∗ is a fixed point (steady state) of
the cell population system (5). Hence, we need to establish what is required for this
state to be asymptotically stable.

To start with, we give the Jacobian matrix J of the system (5) at the fixed point ρ∗,
defined by its elements Ji j as,

[J ]i j = ∂[A(ρ)ρ]i
∂ρ j

∣
∣
∣
∣
ρ=ρ∗

= ai j (ρ
∗) + ηi , (23)

in which ai j = [A]i j is the i, j-th element of matrix A and

ηi =
∑

k

a′
ikρ

∗
k . (24)

Here and in the following, we assume the derivatives to be taken at the steady state,
i.e. a′

i j := dai j
dρ

|ρ=ρ∗ . The eigenvalues of the Jacobian matrix J at ρ∗ determine the
stability of the steady state ρ∗: it is asymptotically stable if and only if the real part of
all eigenvalues of J (ρ∗) is negative.

To establish under which conditions the eigenvalues of J have all negative real
parts, we note that the eigenvalues are the roots of J ’s characteristic polynomial. The
Routh-Hurwitz theorem (Franklin et al. 2014) states that for a polynomial to have only
roots with negative real part, all its coefficients must necessarily be positive. Thus, a
necessary condition for ρ∗ to be asymptotically stable is that the coefficients of the
characteristic polynomial of J are all positive.

Let us start by considering a self-renewing cell type with exactly two cell states
being at the apex of a lineage hierarchy. This system has a 2 × 2 dynamical matrix A
and Jacobian J , whereby A is irreducible and has dominant eigenvalue μA = 0. The
characteristic polynomial of a generic 2×2 matrix, M , is,

123



Homeostatic regulation of renewing tissue cell populations… Page 13 of 35 47

PM (s) = s2 + pM1 s + pM0 . (25)

with pM1 = −tr(M) and pM0 = det(M). In particular, since A has an eigenvalue zero,

pA
0 = det(A) = a11a22 − a12a21 = 0. (26)

From this follows that the right and left eigenvectors to the matrix A associated
with the dominant eigenvalue μA = 0, w and v, are:

w =
(−a22

a21

)

and v = (−a22 a12
)

. (27)

For the Jacobian matrix J , we get equivalently,

pJ
0 = det(J ) = (a21 − a22)(−a22η1 + a12η2)

a22
= vη

|w|
a22

, (28)

with the L1-norm |w| = w1 + w2 = −a22 + a213. Here we used the form of J in
Eq. (23) with η = (η1, η2) from (24), as well as the relations (26) and (27), and we
factorised the determinant.

From Eq. (18), we can further establish:

μ′ =
∑

i j

viw j

vw
a′
i j =

∑

i j

|w|
ρ∗

viρ
∗
j

vw
a′
i j = |w|

ρ∗
vη

vw
(29)

= − a22 pJ
0

ρ∗ pJ
1 a22

. (30)

Here, we used that ρ∗ is a dominant right eigenvector, and thus ρ∗ = ρ∗
|w|w, and

furthermore we used the definition of ηi = ∑
j a

′
i jρ

∗
j , we substituted Eq. (28), and

used that vw = a222 + a12a21 = −pA
1 a22. Finally, we get:

pJ
0 = −μ′ρ∗ pA

1 . (31)

Notably, we can show that this relation also holds for higher dimensions by explicitly
computing the coefficients of characteristic polynomials pA,J

i , the eigenvalues and
eigenvectors, and then evaluating both sides of the equation. For systems with three
states, this can be done analytically, by substituting right hand and left hand sides of
Eq. (31) and checking for algebraic equality (see section Sect.A.2). For systems with
4,5, and 6 states we tested relation (31) numerically by generating N =1000 random
matrices with entries chosen from a uniform distribution4. In each case, this relation

3 Note that aii is always negative or zero
4 The diagonal elements of the randommatrix are tuned using a local optimiser (fmincon function ofMatab)
so that the matrix has a zero dominant eigenvalue.
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was fulfilled. Hence we are confident that this relation holds up to 6 states, and it is
reasonable to expect this to hold also for larger systems.

Since A has a simple dominant eigenvalue μA = 0, we can factorise one term from
the characteristic polynomial of A, PA(s) = sQA(s) knowing that all roots of QA(s)
are negative. Applying the Routh-Hurwitz necessary condition to QA(s), it follows
that the coefficients of the polynomial Q are all negative, 0 > pQi = pA

i+1, where
i = 0, 1, . . . , n−1. Thus, pA

1 > 0 and considering that ρ∗ > 0 by definition, then for
having pJ

0 > 0 we must require μ′ < 0. Therefore, a necessary condition for a stable,
strict homeostatic state is

0 > μ′ �⇒ 0 >
∑

i

viwi
(
λ′
i − γ ′

i

) + wi

∑

j �=i

(v j − vi )κ
′
i j

∣
∣
∣
∣
ρ=ρ∗

, (32)

where on the right-hand side, we used Eq. (19). This condition is bound to the validity
of Eq. (31), that is, we can show it analytically for up to three states and numerically
up to 6 states. Nonetheless, we also expect this to be true for larger systems.

One way to satisfy this necessary condition is if at ρ = ρ∗

⎧
⎪⎨

⎪⎩

λ′
i ≤ 0, γ ′

i ≥ 0 for all i

λ′
i < 0 or γ ′

i > 0 at for least one i

κ ′
i j = 0

. (33)

Notably, the conditions (32) and (33) only differ from the sufficient conditions for
dynamic homeostasis, Eqs. (19) and (20), by needing to be fulfilled only at the steady-
state cell density ρ∗, whereas to ensure dynamic homeostasis, those should be valid
for a sufficiently large range of ρ.

3.3 Sufficient condition for strict homeostasis

Now we assess under which circumstances a strict homeostatic state is assured to
prevail.

First of all, the assumptions from Sect. 2.2 and the necessary conditions from above
need to be fulfilled. In particular, the parameter functions αi (ρ) must have a sufficient
range so that μ(ρ) has a root, ρ∗, with μ(ρ∗) = 0, from which the existence of a
steady state follows. The question now is whether we can find sufficient conditions
assuring that the fixed point ρ∗ with

∑
i ρ

∗
i = ρ∗ is asymptotically stable.

To this end, let us define a matrix function B(x), x = (x1, . . . , xm) with bi j (x) =
[B]i j (x) = a∗

i j + xi . Hence, B(x) interpolates between B(x = 0) = A(ρ∗) and
B(x = η) = J , where J , the Jacobian matrix, and η = (η1, η2, . . . , ηm) are defined
according to (23) and (24), respectively. We consider now the dominant eigenvalue as
function of the entries of B, μ[B] := μ({bi j }|i, j=1,...,m), where the square brackets
are chosen to denote the difference from the function μ(ρ). For sufficiently small ηi ,
we can then express the dominant eigenvalue of the Jacobian matrix J , μ[J ], relative
to the dominant eigenvalues of A∗ := A(ρ∗) as,
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μ[J ] = μ[A∗] +
∑

i

∂μ

∂xi

∣
∣
∣
∣
xi=0

ηi + O(η2) (34)

=
∑

i

∂μA

∂ai j
ηi + O(η2i ) (35)

where we used that μ[A∗] = μA(ρ∗) = 0, and

∂μ

∂xi

∣
∣
∣
∣
xi=0

=
∑

i j

∂μ

∂bi j

∂bi j
∂xi

∣
∣
∣
∣
xi=0

=
∑

i j

∂μ

∂ai j

∣
∣
∣
∣
B=A∗

=
∑

i j

∂μA

∂ai j
, (36)

since for x = 0, bi j = ai j for all i, j . Hence, since according to (17), ∂μA
∂ai j

> 0,

the condition for asymptotic stability of the steady state ρ∗, μ[J ] < 0 is sufficiently
fulfilled if ηi < 0 for all i , and if |ηi | is sufficiently small, e.g., so that for all i ,
|O(η2i )| < | ∂μA

∂ai j
ηi |, which is achievable since O(η2i )/ηi → 0 for ηi → 0. Thus, we

get a sufficient condition for asymptotic stability of the steady state ρ∗:

0 > ηi = ρ∗
i (λ′

i − γ ′
i ) +

∑

k �=i

(κ ′
kiρ

∗
k − κ ′

ikρ
∗
i ) > −εi for all i (37)

where εi > 0 is sufficiently small. As this is an asymptotically stable steady state,
it corresponds to a strict homeostatic state. In this case, even if the cell numbers
are disturbed to some degree, the cell population is regulated to return to the strict
homeostatic state.

Notably, condition (37) is fulfilled if,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ′
i ≤ 0, γ ′

i ≥ 0 for all i

λ′
i < 0 or γ ′

i > 0 at for least one i

κ ′
i j = 0

and |λ′
i |, |γ ′

i |,< ε′
i

(38)

where ε′
i = εi

2ρ∗
i
. Furthermore, we may soften the condition on κi j to

κ ′
i j

κ ′
j i

<
ρ∗
j

ρ∗
i
to allow

also some degree of feedback in κi j .
Crucially, in addition to the qualitative nature of the feedback, determined by the

signs of λ′
i , γ

′
i , the ‘strength’ of the crowding feedback, i.e. the absolute values of

λ′
i , γ

′
i play a role here. Whilst according to the results shown in Sect. 2.3 and those

in “Appendix A”, asymptotic stability is ensured for arbitrary feedback strength for
systems with a single or two cell states, i.e. εi = ∞, for larger systems crowding feed-
backmust not be ‘too strong’, that is, smaller than εi (or ε′

i , respectively). Moreover, as
shown in “Appendix A”, for systems with three cell states, we can assure that εi = ∞
if certain further conditions are met (see Eq. (A13)). Otherwise, εi can be determined
implicitly from the roots of a quadratic form, Eq. (A14), and thus stability may depend
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on the strength of the feedback. In principle, such bounds can also be found for larger
systems, but this becomes unpractical due to the algebraic complexity to achieve this.

Note, that the conditions (38) are similar to the sufficient conditions for dynamic
homeostasis, (20), but here these conditions only need to be fulfilled at ρ = ρ∗, and
we have the additional constraint on the feedback strength.

3.4 Robustness to perturbations and failures

Now, we wish to assess the robustness of the above crowding control mechanism, i.e.
what occurs if it is disrupted, for example, by the action of toxins, other environmental
cues, or by cell mutations. More precisely, we will study what happens if one or more
feedback pathways, here characterised as parameters αi with α′

i �= 0 fulfilling the
conditions for (dynamic or strict) homeostatic control, are failing, that is, they become
α′
i = 0.We will first address the case of globally disrupting factors, i.e. those affecting

all cells, and then the case of single-cell mutations. In the latter case, only a single
cell would initially show a dysregulated behaviour, yet, if this confers a proliferative
advantage, it can lead to hyperplasia and possibly cancer (Tomasetti et al. 2013; Colom
and Jones 2016; Rodilla and Fre 2018).

First, we note that the sufficient condition for strict homeostasis, given by Eq. (38),
may possess redundancies if λ′

i < 0 and γ ′
i > 0 for more than one i . Then, if the

feedback is removed for one or more of these parameters (changing to λ′
i = 0 or

γ ′
i = 0), the sufficient condition for a strict homeostatic state can remain fulfilled
as long as at least one λ′

i or γ ′
i remains non-zero. This possible redundancy confers

a degree of robustness, meaning that feedback responses can be removed—setting
α′
i = 0—without losing homeostatic control. Since the necessary condition, Eq. (32),

is even less restrictive, tissue homeostasis may tolerate more severe disruptions that
reverse some feedback pathways, e.g. switching from λ′

i < 0 to λ′
i > 0, as long as

other terms in the sum on the right-hand side of (32) compensate for this changed sign,
ensuring that the sum as a whole is negative. In any case, it is important to remind the
underlying assumption for which a non-trivial steady state exists. If the variability of
the kinetic parameters is not sufficient to assure the condition μ(ρ∗ = 0), the tissue
will lose homeostasis as well.

From the above considerations, we conclude that if crowding control applies to
more than one parameter αi , that is, α′

i �= 0 with appropriate sign and magnitude,
homeostasis is potentially robust to the disruption of feedback response pathways.
This may include a simple variation of the feedback function α′

i but also complete
feedback failure, leading to α′

i = 0.
An illustrative example of this situation is shown in Fig. 2. Here, the time evolution

of the cell density is shown for a three-state cell fate model, which has been com-
puted by integration of the dynamical system (5) (the details of this model are given
in “Appendix B” as Eq. (B15) and illustrated in Fig. 6). Four kinetic parameters are
regulated via crowding control satisfying the sufficient condition for strict homeosta-
sis, (38). Then, starting from this homeostatic configuration, feedback disruption is
introduced at a time equal to zero. In one case (“Single failure”), a single parameter
suffers a complete failure of the type α′

i = 0. In this case, the remaining feedback
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Fig. 2 Simulation of robustness. Cell dynamics in terms of cell density, scaled by the steady state in the
homeostatic case, as a function of time (left) and the corresponding variation of the dominant eigenvalue μ

(right). Time is scaled by the inverse of ᾱ = mini α∗
i . The homeostatic model is perturbed at a time equal to

zero to include feedback failure by setting α′
i = 0 for some i . In the case where only one feedback failure

occurs (“Single failure”), the system is able to attain a new homeostatic state, characterised by a constant
cell density and μ = 0. In case more than one feedback fails (“Multiple failures”), the cell dynamics are
unstable since a steady state does not exist and μ > 0 for all ρ. The simulated model corresponds to model
(B15) with parameters given in Table 1 and Table 2

functions compensate for this failure, attaining a new homeostatic state. In contrast,
in the second case (“Multiple failures”), failures are applied so that three of the four
parameters lose feedback response.5 Notably, the only feedback function left satis-
fies the condition for asymptotic stability, (38). Nevertheless, the variability of this
kinetic parameter is not sufficient to assure the existence of a steady state, since, in
this case, the function μ(ρ) does not possess any root. Hence, μ > 0 for all ρ, leading
to an indefinite growth of the cell population. Additional test cases are presented in
“Appendix B.2”.

So far, we modelled the feedback dysregulation as acting on a global scale, thus
changing the whole tissue’s dynamics behaviour. However, dysregulation can also act
at the single-cell level, for example, when DNA mutations occur. In this case, the
impact of the dysregulation is slightly different, as explained in the following.

Suppose, upon disruption of crowding control in a single cell, for example, by
DNA mutations, a sufficient number of crowding feedback pathways remain so that
there is a steady state and the sufficient condition (38) is still fulfilled. In that case,
homeostasis is retained, just as when this occurs in a tissue-wide disruption. However,
if the homeostatic control of that single cell fails such that the cell becomes hyper-
proliferative, μ > 0, or declining, μ < 0, the tissue may still remain homeostatic.
If μ < 0, the single mutated cell and its progeny will be lost, upon which only a
population of crowding-controlled cells remain; that is the population remains home-
ostatic. If μ > 0 in a single cell, hyper-proliferation is not inevitable either: while
the probability for mutated cells to grow in numbers is larger than to decline, there
remains a non-zero (and possibly large) probability that the initial single mutated cell
is nonetheless lost, out of ’bad luck’, which results in the extinction of the dysregulated

5 Only in this example, feedback control fails upon multiple failures; in general, multiple failures could
still be compensated to maintain homeostatic control.
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Fig. 3 Numerical simulation results of a stochastic version of the model used in Fig. 2 upon disruption of
crowding control in a single cell, mimicking a DNAmutation. At a time equal to 0, the initially homeostatic
model is disrupted with a single cell presenting multiple failures in the feedback control, as in Fig. 2. Two
instances of simulations run with identical parameters are presented. The rescaled cell density ρ/ρ∗ is
shown as a function of the time, scaled by the inverse of ᾱ = mini α∗

i . Whilst the mutated cell and its
progeny go extinct in one instance (#1), in the other (#2), mutated cells prevail and hyper-proliferate so that
tissue homeostasis is lost. The simulation stops when the clone goes extinct or when instability is detected.
Full details of the simulation are provided in “Appendix B.3”

mutant.6 In that case, the mutant cells go extinct, and the tissue remains homeostatic
despite the disruption of homeostatic control in the mutated cells; a stark contrast to
disruption on the tissue level. Otherwise, if the mutant clone (randomly) survives, it
will continue to hyper-proliferate and eventually dominate the tissue, thus rendering
it non-homeostatic. However, the tissue divergence time scale may be much longer
than in the case where the same dysregulation occurs in all cells.

To assess the impact of a single-cell mutation on tissue dynamics we choose a
stochastic version of the model (B15), as the deterministic model, according to (5),
cannot predict random extinction events. To that end, we implemented this situa-
tion as a Markov process with the same rates as the tissue cell population dynamics
model7 (see “Appendix B.3” for more details). In Fig. 3, we show numerical simula-
tion results, depicted in terms of tissue cell density as a function of time. Here, two
possible realisations of the same stochastic process are presented. We note that the ini-
tially homeostatic tissue exhibits stochastic fluctuations of the cell density, which are
around a constant average. At a time equal to zero, a single cell in this tissue switches
behaviour, presenting multiple failures which, if applied to all the cells, would deter-
mine the growth of the tissue (corresponding to "Multiple Failures" curve in Fig. 2). In
one instance of the stochastic simulation, however, themutated clone goes extinct after
some time, leaving the tissue globally unaffected by the mutation. In another instance,
the mutated clone prevails, leading to the growth of the tissue cell population. The
fact that vastly different macroscopic outcomes can occur with the same parameters

6 For example, in the case of a single state with cell division rate λ and loss rate γ—a simple branching
process—the probability for a mutant with μ > 0, that is, λ > γ , to establish is 1− γ /λ, which is less than
certain.
7 While a Markov process is an approximation which not necessarily reflects the probability distribution
of subsequent event times realistically, it is often sufficient to assess the qualitative behaviour of a system
with low numbers, subject to random influences from the environment.
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Fig. 4 Sketch representative of the quasi-dedifferentiation scenario. A homeostatic system enclosed in the
black box comprises two cell types: a stem cell type, S, (blue) and a committed cell type, C , (green). In
the unperturbed homeostatic scenario, S is a stem cell, characterised by a growth parameter at the steady
state μ∗

s = 0, and C is transient, with a growth parameter at the steady state μ∗
c < 0. Both cell types are

subject to crowding control, fulfilling both conditions (20), and (38). By removing the stem cell type XS ,
the committed cell type becomes an apex-type, and thus acquires self-renewing property through crowding
control, effectively becoming a stem cell type (see Fig. 5)

and starting conditions demonstrates the impact of stochasticity on large-scale tissue
dynamics in the case of a single-cell mutation.

3.5 Quasi-dedifferentiation

Disruption of the tissue may not be restricted to the dysregulation of pathways, but in
extreme cases, caused for example by toxins or radiation, the stem cell population as
a whole may be depleted. In this context, many studies about tissue regeneration after
injury report evidence of cell plasticity (Tetteh et al. 2015, 2016), when committed
cells regain the potential of the previously depleted stem cells, generally referred to
as dedifferentiation (Tata and Rajagopal 2016; Merrell and Stanger 2016; Tata et al.
2013; Puri et al. 2015).

In the following, we assess how committed progenitor cells respond to the depletion
of the stem cell pool if they are under crowding feedback control. For this purpose,
we consider in addition to an apex cell type (S), representing a stem cell type, also a
non-apex cell type (C), representing committed cells, which resides below type S in the
hierarchy, that is, cells of type S can differentiate into type C, as depicted in Fig. 4. We
consider the scenario that both cell types are separately subject to crowding control:
as in previous sections, S-cells are supposed to reside in a niche and their dynamical
parameters αi only depend on the density of S-cells. On the other hand, dynamics of C-
cells may depend on both the densities of S-cells and of C-cells. Note that Assumption
(1) in Sect. 2.2 is generalized here to be applicable also to the committed progenitors.
The dynamics of density of the C-cells can therefore be expressed as,

d

dt
ρc = Ac(ρs, ρc)ρc + u(ρs) , (39)

where ρs = (ρ1, ρ12, .., ρms ) and ρc = (ρms+1, ρms+2, .., ρms+mc ) are the cell den-
sities of S- and C-types, respectively, with ms being the number of states of S. Ac

is the part of the matrix A that is restricted to states in the C-type (corresponding to
B2 in (8)) and u with ui = ∑ms

j=1 κ j iρ j is the total rate of S-cells differentiating into
C-cells.
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We further assume that both, the S- and C-type, fulfil the sufficient conditions for
dynamic homeostasis, (20), and for stable, strict homeostasis, (38), with respect to
cell densities of their own type, and we also assume that both cell types can divide
through at least one cell state (i.e. λi , λ j > 0 for at least one i ∈ S and one j ∈ C),
that is, C-cells are committed progenitor cells.

Due to crowding control, the density of S-cells, ρs , is in a stable steady state. Hence,
ρs = ρ∗

s can be seen as constant and the dynamics of C can be written as,

d

dt
ρc = A∗

c(ρc)ρc + u∗ , (40)

where A∗
c(ρc) = Ac(ρ

∗
s , ρc) and u∗

i = ∑ms
j=1 κ j iρ

∗
j ,

Since ρ∗
s is constant, independently of the state of C-cells, for the Jacobian matrix

we only need to consider variations in ρc, that is, we write the Jacobian matrix as

J =
[

∂A∗(ρc)ρc
∂ρ j

]

j=ms+1,...,ms+mc
, which has the same form as a cell type at the apex

of the hierarchy, since u∗ does not depend on the densities ρms+1,...,ms+mc . From this
follows that if C-cells are regulated by crowding control, fulfilling the conditions (38),
then also the population of C-cells is stable around a steady state ρ∗

c , albeit with a
dominant eigenvalue μc(ρ

∗
c ) < 0.8

We now consider the scenario where all stem cells are depleted at some point, as
was experimentally done in Tata et al. (2013), Tetteh et al. (2016). This would stop any
replenishment of C-cells through differentiation of S-cells, corresponding to setting
u∗ = 0 in (40). Hence, we end up with the dynamics ρ̇c = A∗∗(ρc)ρc, in which
A∗∗(ρc) = A(ρs = 0, ρc). We assume here that the function μc(ρ) has sufficient
range so that μc(ρ

∗∗
c ) = 0 for some ρ∗∗

c , and that A∗∗(ρc) is under crowding control
fulfilling the sufficient conditions for asymptotic stability of a steady state. Therefore,
following our arguments from Sect. 3.3, the population of C-cells will attain a stable
steady state, with μA∗∗(ρ∗∗

c ) = 0. In other words, those previously committed cells
(non-apex type) become stem cells—an apex type with stable steady state population.

Hence, under crowding control, previously committed progenitor cells (committed
cells that can divide) will automatically acquire stem cell characteristics if the original
stem cells are depleted. Commonly, such a reversion of a committed cell type to a
stem cell type would be called ‘dedifferentiation’ or ‘reprogramming’. However, in
this case, no genuine reversion of cell states occurs; previously committed cells do not
transition back to states associated with the stem cell type. Instead, they respond by
crowding feedback and rebalance their dynamical rates so that μ becomes zero, hence
attaining a self-renewing cell type. Crucially, this new stem cell type is fundamentally
different to the original stem cells and still most similar to the original committed type.
We call this process quasi-dedifferentiation. The quasi-dedifferentiation follows the
same reversion of proliferative potential as in ‘genuine’ dedifferentiation but without
explicit reversion in the cell state trajectories.

8 This can be seen when multiplying the steady state condition for (40), A∗
c (ρs , ρc)ρc + u∗ = 0 with a

positive left dominant eigenvector v, giving, μcvρ∗
c + vu∗ = 0. Since ρ∗ and v have all positive entries

and u∗ is non-negative, this equation can only be fulfilled for μc < 0.
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Fig. 5 Simulation of quasi-dedifferentiation. Cell dynamics of an initially committed cell type C (μ < 0)
upon removal of all stem cells. (Left) Cell density scaled by the steady-state density as a function of
time. (Right) Corresponding variation of the dominant eigenvalue μc . Time is scaled by the inverse of
ᾱ = mini α∗

i . It is assumed that a stem cell type, S, initially resides in the lineage hierarchy above the
committed cell type (as in Fig. 4). S cells differentiate into C cells, which is modelled as a constant cell
influx of C-cells (S is not explicitly simulated). At a time equal to zero, a sudden depletion of S cells is
modelled by stopping the cell influx. After some transitory phase, the cell population stabilises around a
new steady state and becomes self-renewing with μc = 0. The full description of the dynamical model,
which corresponds to model (B15) with parameters given in Table 1, is reported in “Appendix B.4”

The following numerical example illustrates this situation. We focus on the cell
dynamics of a single C-type regulated via crowding feedback (detail of the model are
provided in “AppendixB.4”). The cell density as a function of the time, shown in Fig. 5,
is obtained by integrating the corresponding cell population model according to Eq.
(5). The system is initially in a homeostatic condition, meaning that there is a constant
influx of cells through differentiation from some upstream stem cell type, which is
assumed to be subject to appropriate crowding control, such that this cell influx is
constant over time. At a time point t = 0, all stem cells are removed, which means
that the cell influx becomes suddenly zero. Notably, a new homeostatic condition is
achieved after a transitory phase thanks to the crowding feedback acting on the C-type.
This example demonstrates how an initially committed cell type, i.e. with μc < 0,
that is regulated via crowding feedback, can become a stem cell type upon removal of
the previous stem cell population.

4 Discussion

For maintaining healthy adult tissue, the tissue cell population must be maintained
in a homeostatic state. Here, we assessed one of the most common generalised reg-
ulation mechanisms of homeostasis, which we refer to as crowding feedback. Based
on this, progenitor cells (stem cells and committed progenitors) adjust their propen-
sities to divide, differentiate, and die, according to the surrounding density of cells
of their type, which they sense via biochemical or mechanical signals. For this pur-
pose, we used a generic mathematical model introduced before in reference Parigini
and Greulich (2020), Greulich et al. (2021), which describes tissue cell population
dynamics in the most generic way, including cell divisions, cell state transitions, and
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cell loss/differentiation. Based on this model, we rigorously define what is meant
when speaking of a ‘homeostatic state’, introducing two notions: strict homeostasis
is a non-negative steady state of the tissue cell population dynamics, while dynamical
homeostasis allows, in addition to strict homeostasis, for oscillations and fluctuations,
as long as these variations are bounded and a finite long-term average cell population
is maintained (such as the endometrium during the menstrual cycle).

By analysing this dynamical system, we find several sufficient and necessary condi-
tions for homeostasis. These conditions are formulated in terms of how the propensities
of cell division, differentiation, and cell state changes, of cells whose type is at the
apex of an adult cell lineage hierarchy, may depend on their cell density. We find that
when, for a wide range of cell density values, the cell division propensity of at least
one state decreases with cell density or the differentiation propensity increases with
it, while other propensities (e.g. of cell state transitions) are not affected by the cell
density, then dynamic homeostasis is assured to prevail (20). For strict homeostasis
to be assured, this only needs to be fulfilled at the steady state itself, but in addition,
the magnitude of the feedback strength may not be too large (38). We can derive
explicit and implicit expressions for this limit on feedback strength for systems of
two and three-cell states but cannot do so for arbitrary systems.9 Furthermore, we find
that a necessary condition for strict homeostasis is that the conditions for dynamic
homeostasis are met at least at the steady state cell density.

Adirect consequence of the conditionswe found is that they allow for a considerable
degree of redundancy when more than one propensity depends appropriately on the
cell density. Hence feedback pathways, that is, cell dynamics parameters depending on
the cell density, may serve as ‘backups’ to each other if one fails. We demonstrate that
this confers robustness to the homeostatic system: sometimes one or more crowding
feedback pathways may fail, yet the tissue remains in homeostasis.

Finally, we assess how crowding feedback regulation affects the response of com-
mitted progenitor cells—which are dividing cells, but are not self-renewing as stem
cells are—to a complete depletion of all stem cells. We showed that committed cells
which can divide and are under appropriate crowding feedback control (that is, meet-
ing the sufficient conditions (20) and (38) with respect to the density of that cell type),
will necessarily, without additional mechanisms or assumptions, reacquire stem cell
identity, that is, become self-renewing and being at the apex of the lineage hierarchy.
Notably, while this process resembles that of dedifferentiation, it does not involve
explicit reprogramming, in that the cell state transitions are reversed. Instead, only the
cell fate propensities adjust to the changing environment by balancing proliferation
and differentiation as is required for self-renewal. While these are purely theoretical
considerations, and such a process has not yet been experimentally found, we predict
that it must necessarily occur under the appropriate conditions. This can be measured
by assessing the gene expression profiles (e.g. via single-cell RNA sequencing) of cells
that ‘dedifferentiate’, i.e. reacquire stemness after depletion of stem cells. Moreover,
those considerations yield further, more general insights:

9 Note that since this is a sufficient and not a necessary condtion, homeostasis may prevail even if feedback
is stronger than this limit, but it cannot be sufficiently assured through the conditions we found. Other, less
restrictive conditions, could possibly be found in the future.
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• Stem cell identity (also called stemness) is neither the property of individual cells
nor is it strictly associated with particular cell types, since the same cell type can,
through possibly minor adjustments of the pacing of cell division and differentia-
tion, behave as a stem cell or as a committed cell, depending on its environment.

• Instead, we can define stem cell potential as the ability of a progenitor cell to
respond to its environment via feedback, so that its population is held in a stable
steady state (for example by crowding feedback, but other feedback mechanisms
may provide this as well). This way, if there are no other cell types higher up in the
lineage hierarchy, then it acquires stem cell characteristics, otherwise, it behaves
as a committed progenitor cell. Any cell that (1) can divide and differentiate,
committed or not, and (2) which responds appropriately to its environment (e.g.
by being subject to crowding control) can become a stem cell and thus has ‘stem
cell potential’.

• From the latter follows that stemness is a property determined by the environment,
not the cell itself.

• ‘Cell plasticity’ might need to be seen in a wider context. Usually, cell plasticity
is associated with a change of a cell’s type when subjected to environmental cues,
which involves a substantial remodelling of the cell’smorphology and biochemical
state. However, we see that a committed cell may turn into a stem cell simply by
adjusting the pace of the cell cycle and differentiation processes. This may not
require substantial changes in the cell’s morphology or gene expression patterns.

This exemplifies that homeostatic control through crowding feedback is not only a
way to render homeostasis stable and robust, but also to create stem cell identities as
a collective property of the tissue cell population.
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Appendix A Asymptotic stability assessment based on Routh-Hurwitz

A.1 Background

In control system theory, a commonly used method for assessing the stability of a
linear system is the Routh-Hurwitz (RH) criterion (Franklin et al. 2014). It is an
algebraic criterion providing a necessary and sufficient condition on the parameters of
a dynamic system of arbitrary order to ensure the dynamics are asymptotically stable.
In particular, the criterion defines a set of conditions on the coefficients, pi , of the
characteristic polynomial, P(s), written as

P(s) = sn +
n∑

i=1

pi s
n−i , (A1)

in which n corresponds to the dimension of the system. Note that the notation used
in this section, based on that from Franklin et al. (2014), is different from that of the
main text, where pi is the polynomial coefficient of i th order.

A first result of the RH criterion is that a necessary condition for the dynamical
system to be asymptotically stable is that all the coefficients must be positive, that is,

pi > 0, for all i . (A2)

Additional conditions on the polynomial coefficients are added for a necessary and
sufficient condition. These conditions are based on Routh’s array, written as

⎡

⎢
⎢
⎢
⎢
⎣

1 p2 p4 · · · 0
p1 p3 · · ·
b1 b2 · · ·
c1
· · ·

⎤

⎥
⎥
⎥
⎥
⎦

, (A3)

in which the first two rows contain all the coefficients of the characteristic polynomial,
and the following ones are recursively computed as

bi = −
det

(
1 p2i
p1 p2i+1

)

p1
, (A4)

ci = −
det

(
p1 p2i+1
b1 bi

)

b1
, (A5)

and so on until a zero is encountered. The RH criterion states that the system is
asymptotically stable if and only if the elements in the first column of Routh’s array
are positive.
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Based on that, it can be easily shown that for a second-order polynomial, the nec-
essary condition (A2) is also sufficient for asymptotic stability (a.s.) since b1 = p1 p2,
which means that

The system is a. s. ⇐⇒ pi > 0, for i = 1, 2. (A6)

Instead, the necessary and sufficient condition for a polynomial of order three results
in

The system is a. s. ⇐⇒ pi > 0, for i = 1, 2, 3 and p1 p2 − p3 > 0. (A7)

The same reasoning can be applied to higher-order dynamics to derive additional
conditions on the coefficients pi .

A.2 Verification of the necessary condition for asymptotic stability

The Matlab code for verifying (31) is provided in https://github.com/cp4u17/
Feedback.git.

The strategy used is to evaluate each term in Eq. (31) and simply compare the left
and right-hand sides of the equation. We followed a symbolic approach (based on the
Matlab symbolic toolbox) for an arbitrary three-statemodel.Anumerical approachwas
used instead for higher-order dynamics, specifically 4, 5 and 6 state cell fate models.
To do so, we randomly defined the cell dynamicalmatrix at the steady state, A(ρ∗), and
its derivative with respect to ρ. Entries were chosen from a uniform distribution and,
for assuring a zero dominant eigenvalue for A(ρ∗), a local optimiser (fmincon function
of Matlab) was used to find appropriate diagonal elements. For each dimension of the
cell fate model, we tested up to 1000 random cases.

A.3 Sufficient condition for asymptotic stability

In this section, we will indicate with the superscripts A and J the coefficients of
the characteristic polynomial expressed as Eq. (A1) respectively of the matrix of the
dynamical system, Eq. (6), and those of the Jacobian matrix, Eq. (23).

For a two and three-state system, the following relations can be algebraically
derived

pJ
1 = pA

1 −
∑

i

ηi . (A8)

where ηi is according to Eq. (24). Again, considering that pA
1 > 0, if all ηi ≤ 0 then

pJ
1 > 0.
Hence, the above relation implies that in a two-state system, the RH criterion given

by Eq. (A6) is fulfilled when η ≤ 0, with at least one negative component (otherwise
J = A) and therefore the system is asymptotically stable. We recall that asking ηi ≤ 0
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without further constraints is equivalent to the previously derived condition (38) with
εi = ∞.

For applying the RH criterion to a three-state cell dynamic system, given by Eq.
(A7), we need to evaluate the sign of pJ

2 and then that of pJ
1 p

J
2 − pJ

3 . To do so, we
first write

pJ
2 = pA

2 −
∑

i

fiηi , (A9)

in which fi = ∑
j a ji − Tr(A) for i = 1, 2, 3. Since the off-diagonal elements are

non-negative, and the trace of A is negative, then fi > 0 for i = 1, 2, 3. This means
that if all ηi ≤ 0 then pJ

2 > 0. Concerning the term pJ
1 p

J
2 − pJ

3 , this can be written
as a quadratic form in η = (

η1, η2, η3
)
as,

pJ
1 p

J
2 − pJ

3 = Q(η) = ηT AQη + bTQη + cQ, (A10)

in which

AQ =
⎛

⎝
f1 f1 f1
f2 f2 f2
f3 f3 f3

⎞

⎠ , (A11)

bQ = −pA
1

⎛

⎝
f1
f2
f3

⎞

⎠ − pA
2

vw

⎛

⎝
v3(w3 − w1) + v2(w2 − w1)

v3(w3 − w2) + v1(w1 − w2)

v2(w2 − w3) + v1(w1 − w3)

⎞

⎠ , (A12)

and cQ = pA
1 pA

2 . Here, v = (v1, v2, v3) is a left dominant eigenvector and w =
(w1, w2, w3) a right dominant eigenvector.

We now note that the matrix AQ is semidefinite positive since two eigenvalues are
zero (the rows are two-fold degenerate) and one is positive, equal to Tr(AQ) = ∑

i fi ,
and cQ > 0. We now distinguish two cases, depending on the sign of bQ elements.
First, if bQ ≤ 0, then Q(η) > 0 for any η ≤ 0. Since fi , pA

1 , pA
2 , vw > 0, we get a

sufficient condition for bQ ≤ 0, namely,

0 ≤ v3(w3 − w1) + v2(w2 − w1)

0 ≤ v3(w3 − w2) + v1(w1 − w2)

0 ≤ v2(w2 − w3) + v1(w1 − w3). (A13)

In that case, asymptotic stability and thus crowding feedback control is assured for
any η < 0, and thus the bound for feedback strength is εi = ∞ for i = 1, 2, 3.

Otherwise, if there is at least one positive element in bQ , then Q(η) > 0 only if
|ηi | < εi , where ε = (ε1, ε2, ε3) are the absolute values of the solutions to the equation
Q(η) = 0, that is—given that ηi are negative—the solution to,

0 = εT AQε − bTQε + cQ . (A14)
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Importantly, we note that the elements of bQ depend uniquely on the properties of the
dynamical system and therefore, they can be determined without requiring the knowl-
edge of the parameter derivatives, i.e. the specific crowding feedback dependencies.

The Matlab code for verifying (A8), (A9) and (A10) is provided in https://github.
com/cp4u17/Feedback.git.

Appendix B Test case

B.1 Asymptotic stability

This section reports the details of the model used for numerical examples presented
in the main text. The cell dynamics correspond to the following three-state cell fate
model

X1
λ1−→ X1 + X1, X1

ω13−−→ X3, X1
γ1−→ ∅

X2
ω21−−→ X1, X2

ω23−−→ X3, X2
γ2−→ ∅

X3
λ3−→ X3 + X3, X3

ω31−−→ X1, X3
ω32−−→ X2,

(B15)

whose network is shown in Fig. 6. In such a model, for simplicity, we only consider
symmetric self-renewing divisions so that κi j = ωi j . Also, we apply the crowding
feedback to division rates, λi , and differentiation rates γi . In this way, it is straightfor-
ward to apply the sufficient condition (38) for asymptotic stability since κ ′

i j = 0 for
all i, j .

Hence, each kinetic parameter of the type αi ∈ {λ j , γ j } j=1,...,3 is expressed as a
function of ρ, whilst those of the type αi ∈ {κ jk} j,k=1,...,3 are constant. In particular,
we chose aHill function (Lei et al. 2014) whereαi (ρ) = ci +kiρni /(Kni

i +ρni ) in case
αi is a differentiation rate, so thatα′

i = ∂αi/∂ρ > 0, andαi (ρ) = ci+ki/(K
ni
i +ρni ) in

case it is a proliferation rate, so that α′
i < 0. According to (38) this choice assures that,

Fig. 6 Cell state network representing a cell type composed of three states. The links represent direct
transitions, ωi j ; symmetric divisions occur with rates λi and differentiation with rate γi , where subscripts
i, j = 1, 2, 3 indicate the corresponding cell state, as per model (B15)
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Table 1 Values of the Hill function parameters describing the kinetic parameters in case of homeostasis
regulation via crowding feedback for the cell fate model (B15). The generic kinetic parameters (represented
as αi in the right columns of the table) are a function of the total cell density, ρ, and are given by γi (ρ) =
c+kρn/(Kn +ρn) and λi (ρ) = c+k/(Kn +ρn)with i = 1, 2, 3. A common value c = 0.05 is assumed.
State transition rates ωi j , are constant and equal to κi j . For such a cell fate dynamics, the steady state is
ρ∗ = 1. The unit of the kinetic parameter is arbitrary and therefore omitted. Unless specified otherwise,
these values apply to all the numerical examples presented in this work

k K n α∗ α′

λ1 0.74 0.57 2.00 0.61 −0.84

λ3 7.79 2.07 2.00 1.53 −0.56

γ1 3.07 1.22 2.00 1.28 1.48

γ2 2.28 0.43 2.00 1.97 0.61

κ13 – 0.95 0.00

κ21 – 1.44 0.00

κ23 – 1.71 0.00

κ31 – 2.03 0.00

κ32 – 1.35 0.00

if there is a value ρ = ρ∗ for which μ(ρ∗) = 0, this corresponds to an asymptotically
stable steady state.

The parameter values used in our example are reported in Table 1, and the profiles of
the proliferation and differentiation rates as a function of ρ are shown in Fig. 7. Based
on these values, the steady state corresponds to ρ∗ = 1 (arbitrary unit). As expected,
the dominant eigenvalue of the Jacobian at the steady state is negative (μJ = −1.21).

To test the dynamical behaviour of the tissue cell population, we numerically solved
the system of ODEs (5) for different initial conditions based on the explicit Runge–
Kutta Dormand–Prince method (Matlab ode45 function). The results are shown in
Fig. 8 as the time evolution of ρ, normalised by the steady-state ρ∗, (left panels),
and of the dominant eigenvalue, μ (right panels). The label H indicates an initial
condition corresponding to the self-renewing state ρ∗, that is, the system is initially
in homeostasis. In the simulations labelled as P− and P+, we applied perturbation in
the initial state ρ∗ = (ρ∗

1 , ρ
∗
2 , ρ

∗
3 ), which are, respectively,

(
0.8ρ∗

1 , 0.75ρ
∗
2 , 0.85ρ

∗
3

)

and
(
1.5ρ∗

1 1.1ρ∗
2 1.2ρ∗

3

)
. As expected, in all these cases, the feedback’s effect is

stabilising the system so that it returns to the steady state upon perturbation, ρ → ρ∗,
(asymptotic stability) and thus regains self-renewal property, μ → 0, over time.
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Fig. 7 Proliferation and differentiation rates (left panels, with α as a generic placeholder for parameters),
and their derivative with respect to ρ (right panels) as functions of cell density normalised by the steady-
state ρ∗ for the cell fate model (B15) schematised in Fig. 6. The profiles in the left panel correspond to Hill
functions defined in Table 1

Fig. 8 Effect of perturbation of homeostasis under crowding control, when feedback parameters are
according to Table 1. (Left) Cell density ρ, scaled by the steady-state ρ∗, as a function of time. (Right)
Corresponding variation of the dominant eigenvalue μ. Time is scaled by the inverse of ᾱ = mini α∗

i .
Three different initial condition are tested: H, corresponds to the steady state ρ∗ = (ρ∗

1 , ρ∗
2 , ρ∗

3 ), P− to
(
0.8ρ∗

1 , 0.75ρ∗
2 , 0.85ρ∗

3
)
and P+ to

(
1.5ρ∗

1 , 1.1ρ∗
1 , 1.2ρ∗

1
)
. Since the steady state is asymptotically stable,

thanks to crowding control, the cell population remain in, or return to, a homeostatic state characterised by
μ = 0

B.2 Failure of feedback function

Based on the cell fatemodel regulated via crowding feedback described in the previous
section,we assess the impact of failure in one ormore feedback functions. In particular,
the failure of the crowding regulation is modelled, assuming one or more kinetic
parameters as a constant. Five different failure test cases are assessed. For doing so,
we chose αi = (1 + C)α∗

i being constant instead of depending on ρ, in which α∗ is
the value at the steady state when there are no failures (reported in Table 1) and C is
a constant (reported in Table 2). Five test cases, indicated as F1−5, are assessed.

In test case F1, only one feedback fails. Three of the four kinetic parameters fail
in cases F2−4. Finally, F5 represents a case where all the feedback functions fail.
The corresponding variability of the dominant eigenvalue, μ, as a function of the
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Table 2 Value of the constant C in the feedback failure test cases. Whenever a failure in the feedback of
one kinetic parameter α occurs, that parameter is modelled as a constant, α = (1 + C)α∗, for which the
steady-state value, α∗, is reported in Table 1. Test cases F1 and F2 correspond to those presented in the
main text (Fig. 2)

Parameter F1 F2 F3 F4 F5

λ1 +5% +5% +5% −20% −5%

λ3 – +5% +5% −20% −5%

γ1 – −5% – +20% −5%

γ2 – – −5% – −5%

cell density is shown in Fig. 9. It is clear that whilst F1−4 cases satisfy the sufficient
condition for strict homeostasis, (38), in test case F5, the dominant eigenvalue being
constant means that there is no homeostatic regulation. Importantly, there is no steady
state in test cases F2,4 since the dominant eigenvalue is always positive in one case or
negative in the other.

Based on these assumptions, we numerically solved the system of ODEs (5) using
the explicit Runge–Kutta Dormand–Prince method (Matlab ode45 function). The fail-
ure test cases start at time t = 0 from an initially homeostatic condition,H. The results
are shown in Fig. 10 as the time evolution of ρ, normalised by the homeostatic steady-
state ρ∗, (left panels), and of the dominant eigenvalue, μ (right panels). Note that
the cases F1,2 correspond respectively to the Single failure and Multiple failures
reported in the main text (Fig. 2).

In two cases, F1,3, despite a single or multiple feedback functions failing, a new
homeostatic condition is reached after some time, where then μ = 0. However, sup-
pose a different set of feedback fails, like in F2,4, such that the dominant eigenvalue is
respectively positive or negative for all ρ. In that case, no steady state can be attained,
and the tissue cell population will hyper-proliferate or decline in the long term. Hence,
even if the condition for asymptotic stability is met, there is no steady state. Finally, if
homeostasis is not regulated at all, as in F5, then the population dynamics only depend
on the value of the dominant eigenvalue (the cell dynamical model (5) turns linear).
In the case shown, μ > 0 and therefore, the cell population diverges.

B.3 Single cell mutation scenario

To assess the tissue dynamics with a single-cell mutation, as presented in the main
text, we modelled the clonal dynamics, namely, the dynamics of single cells and their
progeny. For doing so, we considered the model (B15) as a Markov process with the
same numerical rates as before, but now events are treated as stochastic. Then, we run
numerical simulations using the Gillespie algorithm (Gillespie 1977) to evaluate this
model. In particular, the results presented in this work are based on 100 independent
instances, where each instance is a possible realisation of the stochastic process. We
chose a total cell number N0 = 5000 as the initial condition (cell density is based on
unitary volume). In real tissues, the number of cells could be a few orders of magnitude
larger. However, this number is sufficiently large to avoid the extinction of the process
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Fig. 9 Variation of the dominant eigenvalueμ as a function of the cell density,ρ, normalised by the reference
homeostatic state value, ρ∗. The curve H corresponds to the reference homeostatic model presented in
“Appendix B.1”. The other curves, F1−5, represent different sets of feedback failure, as reported in Table 2

Fig. 10 Failure of feedback control for test cases F1,2,3,4. (Left) Cell density, scaled by the steady state in
the homeostatic case, as a function of time. (Right) Corresponding variation of the dominant eigenvalue μ.
Time is scaled by the inverse of ᾱ = mini α∗

i . The homeostatic model, H, is perturbed at a time equal to
zero to include the feedback failure reported in Table 2. Whilst in F1,3, the regulation is able to achieve and
maintain a new homeostatic state (μ = 0), the remaining cases fail to regulate the cell population, leading
to an indefinite growth or shrinking of the tissue

in the time scale analysed, so once rescaled, these dynamics are representative of those
in the tissue. All the simulations are stopped when the mutated clone goes extinct or
divergence of the dynamics is detected, defined as reaching N = 5N0.

From an implementation point of view, we consider a cell fate model represented
by two disconnected cell state networks to model the tissue dynamics, including the
mutated cell. One network corresponds to the unperturbed test case H, and the other
to the dysregulated one, F2 (both described in “Appendix B.2”). The simulation starts
with N0 cells in theH network, distributed in each state proportionally to the expected
steady-state distribution in the tissue, and no cells in the F2 network. Thus, since the
two networks are disconnected, F2 remains empty, and the simulation represents the
tissue dynamics before the dysregulation. At a time equal to zero, we moved one cell
from a random state in the H network to the corresponding state in the F2 one. This
simulation represents the tissue dynamics, including the single mutated cell.
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Fig. 11 Results of numerical simulations of the stochastic process representing the cell dynamics, according
to Sect. B.3. The cell density, scaled by the steady state in the homeostatic case, as a function of the time is
shown for 100 random instances. Each shown trajectory is the result of a different instance of the stochastic
process. At a time equal to zero, the cell mutation is modelled as a switch of a single random cell from
the homeostatic H cell dynamics to the F2 model assessed in “Appendix B.2”. On the left panel, only the
trajectories for which the mutated clone goes extinct are shown. The right panel shows the trajectories in
which the mutated clone prevails. Dynamics are scaled by ᾱ = mini {α∗

i }

In Fig. 11 (left), all the trajectories where the mutated clones go extinct are shown.
In these cases, the tissue dynamics remain globally unaffected by the mutation. Due
to the stochastic nature of the process, mutant clones can go extinct even if the growth
parameter is positive. That is, even in cases where divergence would be observed for
the tissue-wide disruption. However, this does not occur in all the instances. The right
panel of the same figure shows those instances where the mutated clone does not go
extinct and eventually prevails, resulting in diverging cell population dynamics. For
the chosen parameters, this divergence of the mutated clone is detected in 6% of all
cases. Surprisingly, only a few clones survive despite a proliferative advantage, but
this is plausible for a small fitness advantage (For example, in the case of a single state
with cell division rate λ and loss rate γ—a simple branching process (Haccou et al.
2005)—the probability for the a mutant with μ > 0, that is, λ > γ , to establish is
1 − γ /λ, which can be very low for λ ≈ γ ).

In the main text (Fig. 3), only one profile for each scenario is shown, respectively.
They correspond to instance #24 for the homeostatic case and instance #43 for the
diverging case.

B.4 Quasi-dedifferentiation

The numerical example presented in the main text is based on the same cell fate model
described in “Appendix B.1”. We assume that the generic kinetic parameter, αi , is
a function of the total cell density. This is αi (ρ) = αi (ρs + ρc), where ρs and ρc
are the cell density respectively of the stem and committed cell types. This model
represents a typical situation where the competition of growth signalling factors dries
the proliferative and differentiation rates.

Tomodel the dynamics of a committed cell type, we choose a constant non-negative
u = (

0.02 0.07 0.06
)T to model for the cell influx. We also consider that the global
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differentiation rate of stem cells into committed cells is unitary so that ρ∗
s = u. For

such a model, the steady state, ρ∗
c , is asymptotically stable.

The figures presented in the main text are based on the numerical integration of
the system of ordinary differential equation (40). In particular, we used the explicit
Runge–Kutta Dormand–Prince method (Matlab ode45 function).
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