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Abstract
In the present work, we develop a general spatial stochastic model to describe the
formation and repair of radiation-inducedDNAdamage. Themodel is describedmath-
ematically as ameasure-valued particle-based stochastic system and extends in several
directions the model developed in Cordoni et al. (Phys Rev E 103:012412, 2021; Int
J Radiat Biol 1–16, 2022a; Radiat Res 197:218–232, 2022b). In this new spatial for-
mulation, radiation-induced DNA damage in the cell nucleus can undergo different
pathways to either repair or lead to cell inactivation. The main novelty of the work is
to rigorously define a spatial model that considers the pairwise interaction of lesions
and continuous protracted irradiation. The former is relevant from a biological point of
view as clustered lesions are less likely to be repaired, leading to cell inactivation. The
latter instead describes the effects of a continuous radiation field on biological tissue.
We prove the existence and uniqueness of a solution to the above stochastic systems,
characterizing its probabilistic properties. We further couple the model describing the
biological system to a set of reaction–diffusion equations with random discontinuity
that model the chemical environment. At last, we study the large system limit of the
process. The developed model can be applied to different contexts, with radiotherapy
and space radioprotection being the most relevant. Further, the biochemical system
derived can play a crucial role in understanding an extremely promising novel radio-
therapy treatment modality, named in the community FLASH radiotherapy, whose
mechanism is today largely unknown.
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1 Introduction

Radiotherapy is, today, a widely used treatment against cancer (Thariat et al. 2013).
Conventional radiotherapy is based on X-rays, i.e. photons, but in the last decades
constantly increasing attention has been devoted to advanced radiotherapy treatment
with ions (Durante and Paganetti 2016). Ion beams have many essential features mak-
ing them preferable compared to photons, related mostly to the extremely localized
energy released in tissues which can lead to a superior biological effect than X-rays.
The effect of radiation on biological tissue has been studied by the community over
the last decades, and DNA is believed to be the most sensitive target to radiation so
DNA damage is the most relevant biological vehicle that leads to cell killing induced
by radiation (Durante and Loeffler 2010). Despite the potential superiority of hadrons
in theory, additional research is crucial to incorporate this treatment modality into
clinical practice fully. One of the primary obstacles to the widespread use of hadrons
is in fact accurately estimating the biological effect caused by radiation, a crucial
aspect to account for in order to prescribe the best possible treatment. Mathematical
models have thus been developed over the years to understand and accurately predict
the biological effect of ions on biological tissue (Bellinzona et al. 2021; Hawkins
1994; Hawkins and Inaniwa 2013; Kellerer and Rossi 1974; Herr et al. 2015; Pfuhl
et al. 2020; Cordoni et al. 2021), focusing on the DNA damage Double Strand Breaks
(DSB). Such mathematical approaches focus on developing models that describe the
formation, evolution, and interaction of DSB, with the final goal of predicting the
probability that a certain cell survives radiation.

To date, very few models in the context of radiotherapy have a robust mathematical
and probabilistic background even if the community widely acknowledges stochas-
tic effects play a major role in the biological effect of radiation. In fact, despite the
early development of stochastic models for the description of the kinetic repair of
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radiation-induced DNA damages (Sachs et al. 1990; Albright 1989), the radiobio-
logical community soon drifted to developing deterministic models of damage repair
assuming Poisson fluctuations of the number of damages around the average values
(Bellinzona et al. 2021). This type ofmodelization is strictly linked to a linear-quadratic
description of the relation between the logarithmof the cell-survival probability and the
absorbed dose, a physical quantity that describes the energy deposited by the particles
over the mass of the biological tissue traversed by the particles. Although such models
provide a fast way to assess the cell survival fraction, which is a key aspect for the use
of such models in clinical applications in which the run time of a model is extremely
relevant, in recent years, the need has begun to be felt for more robust modeling from
a purely probabilistic point of view. From a mathematical point of view, the Gen-
eralized Stochastic Microdosimetric Model (GSM2) recently introduced in Cordoni
et al. (2021, 2022a, b); Missiaggia et al. (2024), appears to be a general mathemati-
cal model, that includes several relevant stochastic effects emerging in the creation,
repair, and kinetics of radiation-induced DNA-damages (Cordoni et al. 2022a). GSM2

considers two types of DNA lesions X and Y, representing respectively lesions that
can be repaired and lesions that lead to cell inactivation. In the current context, the
specific exact meaning of sub-lessons is left unspecified. This is because there are
mainly two different ways that cells can be affected by radiation. One is the creation
of DNA Double-Strand Breaks (DSB) from two Single-Strand Breaks (SSB), and the
other is the formation of chromosome abnormalities from pairs of chromosome breaks
(Kellerer and Rossi 1974). Both of these mechanisms are important in understanding
how cells respond to radiation and can be described by the model developed in this
work.

The present paper aims at extending GSM2 to include a spatial description allow-
ing for reaction rates that depend on the spatial position, lesion distance, and density.
In fact, a true spatial distribution of DNA damage inside the cell nucleus is today
almost completely missing in existing models. At the same time, it is widely known
in the community that the spatial distribution of DNA damages strongly affects the
probability that a cell repairs the induced damages, so spatial stochasticity plays a
major role in the modelization of the repair of radiation-induced DNA damages. We
will thus model the spatial distribution of DNA damages as a general measure-valued
stochastic particle-based system, characterizing existence and uniqueness as well as
some relevant martingale properties that, as standard, will play a crucial role in the
derivation of the large system limit. Stochastic particle-based systems have been long
studied in the mathematical community (Bansaye and Méléard 2015; Popovic et al.
2011; Pfaffelhuber and Popovic 2015). Recently, a lot of attention has been devoted
to studying the spatial non-local stochastic particle-based system (Bansaye and Tran
2010; Fontbona andMéléard 2015; Champagnat andMéléard 2007; Ayala et al. 2022),
where a measure-valued stochastic process describes the population. The population
can interact according to a specific rate leading to either the creation or removal
of individuals. Mathematically, these systems are described by Stochastic Differen-
tial Equations (SDE) driven by Lévy-type noises that besides a diffusive component
include jump operators in the form of Poisson random measure, that account for the
creation and removal of individuals from the population (Bansaye andMéléard 2015).
Most results focus on birth-and-death spatial processes, meaning that at each time,
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at most, a single individual can be born or die. In this setting, pairwise interactions,
involving either the creation or removal of more than one individual, are not allowed.
Such interactions are relevant in many biological and chemical applications so a gen-
eral mathematical theory that extends and generalizes the birth and death process is
greatly desirable. Recently, few papers appeared that include pairwise reactions (Isaac-
son et al. 2022; Lim et al. 2020; Popovic and Véber 2023), but none of these deal with
the existence and uniqueness or regularity of results for such systems,where instead the
focus is mostly on the large-population limit. However, it is worth highlighting that the
authors discuss useful techniques to show that the system considered is well-defined
(Popovic and Véber 2023, Remark 2.7) or (Isaacson et al. 2022, Remark 5.2).

The developed model includes some key features that make the mathematical treat-
ment of the spatial model non-trivial. First, given the application considered, where
clusters ofDNA lesions aremore difficult to repair by the cell and have been recognized
as one of the main factors that lead to cell inactivation in radiobiology (Kellerer and
Rossi (1974)), we will include pairwise interaction and second-order rates, meaning
that a couple of lesions can interact to create an unrepairable lesion that inactivates the
cell. It is worth stressing that, already, many existing radiobiological models include
parameters to account for the interaction of damages (Hawkins 1994; Sato and Furu-
sawa 2012; Hawkins and Inaniwa 2013; Bellinzona et al. 2021; Cordoni et al. 2021,
2022a). Still, none have a truemathematical spatial formulation and often rely on fixed
domains to limit pairwise interaction within a certain distance neglecting nonetheless
any true spatiality inside a fixed domain. The latter approach can be restrictive and
may lead to overfitting with the inclusion of unnecessary parameters. One of the pro-
posed model’s main strengths is that it considers a true spatial distribution of lesions,
allowing for true pairwise interaction that can depend on the distance between lesions,
which is a novel and important aspect of the model. As mentioned, the existence and
uniqueness results for second-order systems are rare and yet a general theory is miss-
ing, so the derived results represent a novelty both from a radiobiological as well as a
mathematical perspective.

Another key aspect of the studied model is that we explicitly consider the case of
protracted irradiation, that is we consider the situation in which a continuous radiation
field induces a random number of lesions in the cell. Such a situation is non-trivial
from a purely mathematical perspective as the generation of a random number of dam-
ages must be considered. Nonetheless, it is extremely relevant to include protracted
irradiation in a biological model since it allows us to better estimate the kinetics repair
of radiation-induced damage with benefits both in radioprotection and clinical appli-
cation. Existing radiobiological models account to a certain extent for the protracted
irradiation case (Inaniwa et al. 2013; Manganaro et al. 2017), and a similar rate has
already been considered in Cordoni et al. (2021) in a non-spatial setting. In general-
izing the setting to include a spatial description, we need to describe a spatial energy
deposition pattern within the cell nucleus. We will build such a theory properly gen-
eralizing some existing approaches. Nonetheless, a robust theory to account for the
spatial formation of radiation-induced DNA lesions is missing and future efforts will
be made to derive such a theory. In fact, another relevant aspect of the studied model is
the computation of the spatial distribution of radiation-induced DNA damages. Such a
description is relevant both in the protracted case and in the instantaneous irradiation
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case as it describes the initial damage distribution. In particular, the initial damage
distributions, νX0 , and νY0 can be computed using different methods. One possible
approach is the use of Monte Carlo (MC) track structure codes (Nikjoo et al. 2006), to
simulate the passage of charged particles in biological tissue and their energy release
and to estimate the DNA damage distribution caused by radiation. MC track structure
codes have been shown to be effective in accurately characterizing DNA damage for-
mation (Goodhead 1994; Ottolenghi et al. 1995; Cucinotta et al. 2000; Chatzipapas
et al. 2022; Kyriakou et al. 2022; Zhu et al. 2020; Thibaut et al. 2023), however, once
the initial damage distribution is computed, in order to assess the cell survival prob-
ability, these models typically neglect the spatial distribution of damages and focus
on average values described by Ordinary Differential Equations (ODE). The model
developed in this research is unique in that it is able to fully exploit the accuracy of
the spatial distribution of damages as predicted by MC track-structure codes. Further,
since MC track structure codes simulate all the energy released by a particle along its
path, which is referred to in the community as track, as well as all secondary energy
releases associated with the original particle, the computational time is extremely
demanding. To shorten the computational time, a threshold on energy release can be
applied. so that all events that release lower than a certain energy are neglected and
incorporated into the deposition that has originated it. Such an approach is called con-
densed historyMC (Agostinelli et al. 2003), and it provides accurate results of energy
deposition at a lower computational time compared to MC track structure codes.

An alternative approach to MC track-structure codes would be to develop an ana-
lytical model for DNA damage formation and distribution. Such amodel would be less
accurate, but less computationally expensive. Currently, theLocal EffectModel (LEM)
(Friedrich et al. 2012), and the Microdosimetric Kinetic Model (MKM) (Hawkins
1994; Kase et al. 2007), which are the only models used in Treatment Planning Sys-
tems (TPS), take into account the spatial distribution of the absorbed dose without
MC codes. These models are based on the Amorphous Track (AT) model (Kase et al.
2007), which parametrizes the dose distribution around a track of a particle. How-
ever, to eventually assess the cell-survival probability, both models make extensive
use of fixed domain so that a true spatial distribution of damages is again neglected.
It is worth further stressing that, although the AT model can be used to compute the
imparted dose in a fast fashion, it is based on several assumptions, such as the so-
called track-segment condition (assumes tracks do not lose energy when traversing
the cell nucleus) and uniform radiation fields (cylindrical geometry is often assumed
for the cell nucleus and tracks are perpendicular to the cell nucleus). Being the former
approach based on track-structure codes, which are beyond the scope of the present
work, we will focus on the latter one. Nonetheless, future research will focus on devel-
oping a comprehensive analytical model for DNA damage formation that accurately
describes energy and spatial stochasticity.

The developed spatial DNA-damage model is expected to play a relevant role in the
modelization of a novel radiotherapeutic technique, named in the community FLASH
radiotherapy (Favaudon et al. 2014). Up to 2014, most of the mechanisms happen-
ing in the interaction of radiation with biological tissue were believed to be known,
and therefore in the last two decades models focused on specific applied aspects and
general and robust mathematical theories were strongly believed to be unnecessary
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given the overall understanding of the problem at hand. Starting in 2014 a series of
ground-breaking papers (Favaudon et al. 2014; Montay-Gruel et al. 2017; Vozenin
et al. 2019) finally showed that an increase in the rate of delivery of ions at Ultra-High
Dose Rates (UHDR), namely a high amount of energy released in a small fraction of
time, spares healthy tissue and yet maintains the same effect on the tumor. This effect,
which was completely unexpected, represents the final goal of any radiotherapeutic
treatment (Esplen et al. 2020; Griffin et al. 2020). All available models brutally failed
to predict such peculiar effects and hundreds of publications have appeared recently
trying to understand the mechanism at the very core of the FLASH effect (Labarbe
et al. 2020; Abolfath et al. 2020a, b; Liew et al. 2021; Petersson et al. 2020; Battestini
et al. 2023); many physical explanations and mathematical models have been pro-
posed in the last five years, but up to date, no model is believed to be capable neither
of predicting nor understanding the origin of the FLASH effect (Weber et al. 2022).
Two facts are today believed to be at the very core of the FLASH effect: (i) this effect
has its origin in a spatial interaction of ions, that involves besides the physics of ions
and biology, also chemistry, and (ii) nonlocal effects of ions while traversing different
cells and how their spatial interaction affects the overall chemical and biological envi-
ronment. The model developed in the present research could, when coupled with an
adequate description of the chemical environment affected by radiation, help unravel
the mechanism behind the FLASH effect. In order to do that, we couple the spatial
model with a reaction–diffusion equation that describes the evolution of the chemical
system. In the following treatment, we will not specify a particular chemical descrip-
tion. This is because there are several possible choices, and the choice depends on the
specific application. The chemical stage can be broadly divided into two stages: (i)
the heterogenous chemical stage and (ii) the homogeneous chemical stage. The for-
mer is characterized by a heterogeneous spatial distribution and occurs immediately
after particles hit the cell nucleus, i.e. between 10−12 seconds and 10−6 seconds. The
latter is characterized by a homogeneous distribution and occurs after the heteroge-
neous stage, i.e. between 10−6 seconds to 100 seconds. Mathematically, this means
that while the homogeneous stage can be described by ODEs that characterize the
time evolution of the concentration of chemicals within the domain (Labarbe et al.
2020; Abolfath et al. 2020a), the heterogeneous stage requires advanced mathematical
tools since the system is highly nonlinear and the reactions occur locally. Therefore,
most of the literature is devoted to the development of simulation codes (Clifford
et al. 1986; Pimblott et al. 1991; Boscolo et al. 2020; Ramos-Méndez et al. 2020).
To date, there is no general mathematical formulation via local reaction–diffusion
PDEs that exists in literature, even though it could provide an accurate representation
of the system and fast computational time. Also, general results of well-posedness
that cover relevant non-local chemical systems are not available in the literature due
to the highly complex mathematical formulation needed. For these reasons, a deep
mathematical study of such a system is left for future research. Relevant systems to
study could include a spatial non-local version of the homogeneous chemical systems
presented in Labarbe et al. (2020); Abolfath et al. (2020a) or an analytical formulation
in terms of highly dimensional non-local reaction–diffusion PDEs of Boscolo et al.
(2020); Ramos-Méndez et al. (2020). In this paper, we will instead limit ourselves
to considering a general reaction–diffusion PDE with coefficients satisfying rather

123



A spatial measure-valued model for radiation-induced DNA damage… Page 7 of 59 21

general assumptions that could in principle include several relevant examples. In par-
ticular, almost any chemical description includes bimolecular reactions, meaning that
the resulting PDE has quadratic terms. A significant effort has been made in the lit-
erature to study reaction–diffusion PDEs under the most general assumptions on the
coefficients in order to include as many examples as possible (Pierre 2010). In this
direction, a mass control assumption has been typically seen as a general condition
that allows obtaining the existence and uniqueness of the equations in many cases
dropping the standard global Lipschitz condition. For the sake of simplicity, we will
consider the system introduced in Fellner et al. (2020), which allows for quadratic
growth of the coefficients, adding random discontinuity due to the effect of radiation.
Therefore, we prove the existence and uniqueness of a stochastic particle-based sys-
tem coupled with a reaction–diffusion system with random jumps. We will show later
that this system can be generalized to other relevant systems. A future effort will be
devoted to the study of general local reaction–diffusion systems similar to the ones
studied in Isaacson et al. (2022).

At last, we will also characterize the large-system behavior. Such a limiting sys-
tem can be obtained with standard arguments proving the tightness of the measure
and identifying the limiting process, which can be proved to admit a unique solution.
Although the techniques are standard, the result is new in the literature of radiation
biology since no stochastic system allowing for pairwise interaction and creation of
randomnumbers of particles has ever been studied before. In fact, the resulting govern-
ing equation can be useful to study the behavior of the system at high doses, where the
number of damages within the cell increases arbitrarily. It is worth stressing that, the
high-dose case is recognized to be non-trivial and most of the existing models fail to
predict the behavior of the system at high doses. For this reason, often, correction terms
are included in the model to better match experimental data (Bellinzona et al. 2021).

Since the early study of radiation-induced biological damage, it has been under-
stood that the micrometer scale was extremely relevant to both asses and understand
the main mechanism at the origin of DNA damage formation and repair. Among the
first mathematical models developed to link the physics of radiation to the biological
effect, there is the Theory of Dual Radiation Action (Kellerer and Rossi 1974), where
it is conjectured that a site in the order of micrometers is the most relevant domain
to be considered. Nonetheless, experiments immediately emerged suggesting that,
besides a micron scale, a smaller scale in the order of nanometer should be considered
(Goodhead 1982; Goodhead et al. 1978). Such scale could give a better resolution in
accounting for track interaction and damage clustering, pathways that could be lost in
a coarse averaging within fixed domains. This observation led to the development of
the Generalized Theory of Dual Radiation Action (Kellerer and Rossi 1978), where
a damage recombination pathway has been introduced based on the distance between
lesions. Perhaps difficulties in the advanced formalism used and in the experimental
benchmark have severely limited the usage of such a model. Consequently, the com-
munity leaned towards predominantly adopting models grounded in fixed domains, as
they continued to yield results that reasonably matched biological experimental data.
However, recent years have witnessed a significant boost in computational power,
which has greatly promoted the utilization of advanced computational tools capable
of accurately modeling intricate biological targets and simulating biological damage
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with micrometer-level precision. With this resurgence of interest, there arises a crucial
need to formulate advanced mathematical models capable of not only capturing the
temporal repair of damages but also elucidating how this repair process is influenced
by spatial distribution. Such advancements hold the potential not only for enhanced
predictions of specific biological outcomes but, perhaps even more importantly, for a
deeper comprehension of the fundamental biological mechanisms underpinning these
endpoints.
The main contributions of the present paper are:

(i) to provide a general mathematical description of a spatial model governing the
formation and kinetics of radiation induced-damages;

(ii) to study the well-posedness of a measure-valued stochastic particle system with
pairwise interaction and random creation of damages;

(iii) to propose a multi-scale model to couple biology and chemistry that could pos-
sibly describe the FLASH effect;

(iv) to study the large-system limit of the system with pairwise interaction and pro-
tracted irradiation.

2 Themicrodosimetric master equation

Themain goal of the present section is thus to introduce the classic setting for theGSM2

(Cordoni et al. 2021, 2022b). GSM2 models the time-evolution of the probability
distribution of the number of sub-lethal and lethal lesions denoted by (X(t),Y(t)),
where X and Y are two N−valued random variables counting the number of the
lethal and sub-lethal lesion, respectively. In the following, we will consider a standard
complete filtered probability space

(
�,F, (Ft )t≥0 ,P

)
satisfying usual assumptions,

namely right–continuity and saturation by P–null sets.
We thus assume that a sub-lethal lesion X can undergo three different pathways: (i)

at rate r a sub-lethal lesion is repaired, (ii) at rate a a sub-lethal lesion is left unrepaired
by the cell and thus it becomes a lethal lesion and (iii) at rate b two sub-lethal lesion
form a cluster that cannot be repaired by the cell and thus become a lethal lesion. Any
lethal lesion leads to cell inactivation. These three pathways can be summarized as
follows

X
r−→ ∅ ,

X
a−→ Y ,

X + X
b−→ Y .

(1)

Denoting by

p(t, y, x) = P ((Y(t),X(t)) = (y, x)) ,

the probability to have at time t exactly x sub-lethal lesion and y lethal lesions,
following (Cordoni et al. 2021), we can obtain the microdosimetric master equation
(MME)
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⎧
⎪⎨

⎪⎩

∂
∂t p(t, y, x) = (

E0,1 − 1
)
[xrp(t, y, x)] + (

E−1,1 − 1
)
[xap(t, y, x)]

+ (
E−1,2 − 1

)
[x(x − 1)bp(t, y, x)] ,

p(0, y, x) = p0(y, x) ,

(2)

where we have denoted the creation operator as

(
Ei, j − 1

)
[ f (y, x)] := f (y + i, x + j) − f (y, x) .

In Cordoni et al. (2022b) a closed-form solution is derived for the survival prob-
ability as predicted by the MME (2), defined as the probability of having no lethal
lesions Y. Further, GSM2 is closely connected with one of the most used radiobiolog-
ical models to predict the survival probability of cell nuclei when exposed to ionizing
radiation, that is the Microdosiemtric Kinetic Model (MKM) (Hawkins 1994). The
main equations of the MKM describe the time-evolution of the average value ȳ, resp.
x̄ , of the number of lethal, resp. sub-lethal, lesions, and are given by

{
d
dt ȳ(t) = ax̄ + bx̄2 ,
d
dt x̄(t) = −(a + r)x̄ − 2bx̄2 .

(3)

The model further assumes that ȳ is the average of a Poisson random variable so that
by describing the average values we have complete knowledge of all the moments.

To obtain a suitable analytical solution to the Eq. (3), it is often assumed that
(a + r)x̄ >> 2bx̄2, so that above equation is reduced to

{
d
dt ȳ(t) = ax̄ + bx̄2 ,
d
dt x̄(t) = −(a + r)x̄ .

(4)

This highlights why in the high dose case the MKMmust be corrected including addi-
tional terms. In fact, even if it is typically true that (a + r) >> 2b, at sufficiently high
doses, the number of lesions x̄ increases so that (a + r)x̄ does not dominate anymore
2bx̄2 and therefore the omission of the term in Eq. (4) becomes non-negligible.

Further, it has been shown in Cordoni et al. (2021), that the average of the MME
coincides with the MKM equations (3) under a suitable mean-field assumption, that
is

E [X(t)(X(t) − 1)] ≈ E [X(t)]2 ,

which in turn coincides exactly with the requirement that X follows a Poisson dis-
tribution. It has thus been shown in Cordoni et al. (2022a) that the GMS2 is able to
give a more general description of many stochastic effects relevant to the formation
and repair of radiation-induced DNA lesions that play a crucial role in estimating the
surviving probability of a cell nucleus.

It can be further shown (Weinan et al. 2021; Bansaye and Méléard 2015), that
Eq. (2) describes the time evolution for the probability density function associated
with the following stochastic differential equation (SDE)
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{
Y(t) = Y0 + ∫ t

0

∫
R+ f Y(X(s−), z)NY(ds, dz),

X(t) = X0 − ∫ t
0

∫
R+ f X(X(s−), z)NX(ds, dz),

(5)

with

f Y(X(s−), z) = 1{z≤aX(s−)} + 1{aX(s−)≤z≤aX(s−)+bX(s−)(X(s−)−1)}
f X(X(s−), z) = 1{z≤(a+r)X(s−)} + 21{(a+r)X(s−)≤z≤(a+r)X(s−)+bX(s−)(X(s−)−1)}.

(6)

Above in Eq. (5), NY (ds, dz) and N X (ds, dz) are two independent Poisson point
measure with intensity ds dz on R+ × R+, see, e.g. Applebaum (2009). The main
contribution of the present work will be to provide a spatial description of the SDE
(5) so that X and Y are replaced by random measures.

2.1 On the initial distribution

To later generalize the initial damage distribution, we introduce in the current section
the distribution introduced in Cordoni et al. (2021, 2022a, b). For a detailed treatment,
we refer the interested reader to the mentioned papers or to Bellinzona et al. (2021).

Among the most powerful approaches to describe the formation of DNA lesions is
using microdosimetry (Zaider et al. 1996). Microdosimetry is the branch of physics
that investigates the energy deposition in domains comparable to cell nuclei, that is
of the order of some microns. At that scale, energy deposition is purely stochastic, so
the main objects used in microdosimetry are random variable and their corresponding
distributions (Missiaggia et al. 2023, 2020). Over the years many models have been
developed based on microdosimetric principles (Kellerer and Rossi 1974; Zaider et al.
1996), and both the MKM and GSM2 assess the formation of DNA lesions using
microdosimetry (Hawkins 1994; Bellinzona et al. 2021; Cordoni et al. 2021, 2022b).

The main microdosimetric quantity of interest from the point of view of radiobi-
ological models is the specific energy z (Zaider et al. 1996). The specific energy z is
the ratio between energy imparted by a finite number of energy depositions ε over the
mass m of the matter that has received the radiation, that is

z = ε

m
.

The stochastic nature of ε implies that also z is inherently stochastic. The single–
event distribution f1(z) of energy deposition on a domain (Zaider et al. 1996), is the
probability density distribution describing the energy deposition due to a single event,
typically a particle traversing the domain. Such distribution is associated with a ran-
dom variable Z that describes the specific energy imparted on a certain domain of
mass m. The average values of the random variable Z , referred to in the literature as
fluence-average specific energy, that is the mean specific energy deposition, is typi-
cally denoted in literature as zF . By additivity property, the specific energy distribution
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resulting from ν tracks can be computed convolving ν times the single event distribu-
tion (Zaider et al. (1996)). Therefore, the distribution fν of the imparted energy z is
computed iteratively as

f2(z) :=
∫ ∞

0
f1(z̄) f1(z − z̄)dz̄ ,

. . . ,

fν(z) :=
∫ ∞

0
f1(z̄) fν−1(z − z̄)dz̄ .

We denote by pe(ν|D, zF ) a discrete probability density distribution denoting the
probability of registering ν events. Typically such distribution is assumed to be depen-
dent on the total dose absorbed by the mass and the fluence of the incident particles.
The standard assumption is that, since events are in a microdosimetric framework
assumed to be independent, the distribution pe is a Poisson distribution of average D

zF
so that we have

pe(ν|D, zF ) := e
− D

zF

ν!
(
D

zF

)ν

.

Therefore, microdosimetry postulates that the actual energy deposition on a certain
domain can be obtained via the multi-event specific energy distribution

f (z|D) :=
∞∑

ν=0

e
− D

zF

ν!
(
D

zF

)ν

fν(z) .

At last, given a certain specific energy deposition z by ν events, the induced number
of lethal and sub-lethal lesions is again a random variable, with a discrete probability
density function denoted by p. In general the average number of lethal, resp. sub-
lethal, lesions is assumed to be a function of z, namely κ(z), resp. λ(z). Again, by
independence on the number of created lesions, such distribution is assumed to be
a Poisson distribution. Overall, the probability of inducing x sub-lethal and y lethal
lesions can be computed as (Cordoni et al. 2021),

p0(x, y) =
∞∑

ν=0

∫ ∞

0
p(x, y|z)pe(ν|D, zF ) fν(z)dz , (7)

or assuming Poissonian distributions

p0(x, y) =
∞∑

ν=0

∫ ∞

0
e−κ(z) (κ(z))x

x ! e−λ(z) (λ(z))y

y!
e
− D

zF

ν!
(
D

zF

)ν

fν(z)dz , (8)

for suitable functions κ(z) and λ(z). These quantities summarize the free-radical reac-
tions that result in a lesion. It is a function of the type of ionizing particle, details of
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the track structure, radical diffusion, and reaction rates, the point in the cell cycle, and
the chemical environment of the cell. In the following, we will explicitly model these
functions so that they depend on chemical concentration.

The classical assumption, which has been also considered in Cordoni et al. (2021),
is to assume such functions to be linear in z. Notable enough, it has been shown in
Cordoni et al. (2022b) that, also assuming a Poissonian distribution on both pe and
p, the resulting discrete probability density function (8) is not a Poisson distribution;
as a matter of a fact, it has been shown to be a microdosimetric extension of the
so-called Neyman distribution (Neyman 1939), which is a well-known distribution in
radiobiological modeling to treat the number of radiation-induced DNA damages. To
have a better grasp on the distribution (7), a stochastic chain of interconnected events
can describe it: (i) given a certain dose D and fluence average specific energy zF , a
given random number of events ν is registered in a cell nucleus; then (ii) such ν events
deposits a certain random specific energy z = z1 + · · · + zν . At last, (iii) the specific
energy deposited z induces a random number of lethal and sub-lethal lesions y and x .

3 The spatial radiobiological model

The current section aims at generalizing the radiobiological model as introduced in
Sect. 2 to consider a spatialmeasure-valuedprocess.Consider a closed convexbounded
regular enough domain Q ⊂ R

d , d ≥ 1, which should represent a cell nucleus. We
assume that Q has a smooth boundary ∂Q, and denote by n(q) the outward normal
direction to the boundary ∂Q at the point q. It is worth stressing that most of the
subsequent analysis holds true also for non-convex domains. The convexity is required
to ease the treatment regarding some sampling measures used later in the paper.

We consider two possible types of DNA damage, S = {X,Y}, where X denotes
sub-lethal lesions and Y are lethal lesions. We assume sub-lethal and lethal lesions
can undergo three different pathways, a, b, and r , as introduced in Sect. 2.

We consider thus a process that lives in the state space

P := Q × S 	 Pi = (qi , si ) ,

encoding the i-th lesion position qi and type si . For a metric space E , we define by
MF (E) the space of finite measure over E , endowed with the weak topology; given a
regular enough function f : E → R and ameasure ν ∈ MF (E),MF (E) is equipped
with

〈 f , ν〉E :=
∫

E
f (x)ν(dx) .

Also, we denote by M(E) the space of point measure over E , defined as

M(E) :=
{

N∑

i=1

δxi : xi ∈ E , N ∈ N

}

,
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equipped with, for f : E → R and a measure ν ∈ M(E),

〈 f , ν〉E :=
N∑

i=1

f (xi ) .

In general, in the following, we will often consider either E = P or E = Q; if no
confusion is possible, we will omit the subscript in the scalar product.

Fix a finite time horizon T < ∞, for t ∈ [0, T ], we define the concentration
measure of lesion at time t , as

ν(t) :=
N (t)∑

i=1

δPi (t) =
N (t)∑

i=1

δqi (t)δsi , (9)

with

N (t) = 〈1, ν(t)〉 ,

the total number of lesions at time t .We further denote by νX(t) and νY(t) themarginal
distributions

νX(t)(·) := ν(t) ( · ,X) , νY(t)(·) := ν(t) ( · ,Y) . (10)

Analogously to the previous notation, NX(t), resp. NY(t), denote the total number of
lesions of type X, resp. Y, at time t .

Besides lesion concentration, we will often use a vector listing all lesions in the
system; thus, given a system state ν(t), we denote by

H(ν(t)) :=
((

q1;X(t),X
)

, . . . ,
(
qNX(t);X(t),X

)
,

×
(
q1;Y(t),Y

)
, . . . ,

(
qNY(t);Y(t),Y

)
, 0, . . .

)
,

the position and type of all lesions in the system at time t . It is worth stressing that,
since lesions of the same type are indistinguishable, the chosen ordering is arbitrary
and there is no ambiguity in H(ν(t)). We denote for short by Hi (ν(t)) ∈ P, the i−th
entry of the vector H(ν(t)). With a similar notation, we denote

H(νX(t)) :=
(
q1;X(t), . . . , qNX(t);X(t), 0, . . .

)
,

H(νY(t)) :=
(
q1;Y(t), . . . , qNY(t);Y(t), 0, . . .

)
.

the vector containing only the positions of lesions of type X and Y, respectively.
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3.1 Themodel

Each lesion i , characterized by its position and lesion type Pi = (qi , si ), can move
and undergo three different pathways. Such rates can be described by the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

X
r−→ ∅ ,

X
a−→ Y ,

X + X
b−→

{
Y with probability p ∈ [0, 1] ,

∅ with probability 1 − p ∈ [0, 1] ,
.

(11)

and can be characterized as follows:

(i) - Repair each lesion in the class of sub-lethal lesions X can be repaired at a rate

r : Q × R → R+ , r
(
q,

〈
	r
q , ν

〉)
,

that depends on the spatial position of the i−th lesion and on the concentration of
the system via a suitable function 	r

q : Q × S → R+ to be formally introduced
later in the paper. A sub-lethal lesion that repairs disappear from the system. The
repair rate r is associated to a Poisson point measure

Nr(ds, di, dθ) on R+ × N0 × R+ .

The index i ∈ N0 gives the sampled lesion in X to repair. The corresponding
intensity measure associated with N r is

λr(ds, di, dθ) := ds ⊗
⎛

⎝
∑

k≥0

δk(i)

⎞

⎠ ⊗ dθ .

We denote with Ñr the compensated Poisson measure defined as

Ñr(ds, di, dθ) := N(ds, di, dθ) − λr(ds, di, dθ) .

(ii) - Death each lesion in the class of sub-lethal lesions X can die at a rate

a : Q × R → R+ , a
(
q,

〈
	a
q , ν

〉)
,

that depends on the spatial position of the i−th lesion and on the concentration of
the system via a suitable function 	a

q : Q × S → R+ to be formally introduced
later in the paper. A sub-lethal lesion at position q1 ∈ Q that dies generates a
lethal lesion Y at a new position q ∈ Q according to the probability distribution
ma(q|q1).
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The death rate a is associated to a Poisson point measure

Na(ds, di, dq, dθ1, dθ2) on R+ × N0 × Q × R+ × R+ .

The index i ∈ N0 gives the sampled lesion in X to die and become a lethal lesion
in Y in position q sampled from ma(q|qi ), q ∈ Q. The corresponding intensity
measure associated with N a is

λa(ds, di, dθ1, dθ2) := ds ⊗
⎛

⎝
∑

k≥0

δk(i)

⎞

⎠ ⊗ dq ⊗ dθ1 ⊗ dθ2 .

We denote with Ña the compensated Poisson measure defined as

Ña(ds, di, dθ1, dθ2) := Na(ds, di, dθ1, dθ2) − λa(ds, di, dθ1, dθ2) .

(iii) - Pairwise interaction two lesions in the class of sub-lethal lesions X can
interact at a rate

b : Q × Q × R → R+ , b
(
q1, q2,

〈
	b
q1,q2 , ν

〉)
,

that depends on the spatial position of the (i1, i2)−th lesions and on the concen-
tration of the system via a suitable function 	b

q1,q2 : Q × S → R+ to be formally
introduced later in the paper. Two sub-lethal lesions that interact can either (i) die
with probability p, generating a lethal lesion Y at a new position q according to
the distribution mb(q|q1, q2), q ∈ Q, or (ii) repair with probability 1 − p and
disappear from the system. The probability p depends also on the positions of the
sampled lesions, namely

p : Q × Q → [0, 1] , p (q1, q2) .

In the following,we consider three relevant scenarios for the Poisson pointmeasure
associatedwith the pairwise interaction rate b depending on the considered sample
measure mb(q|q1, q2).

(iii).1 if, for any q1 and q2 ∈ Q, the sampling measure mb(·|q1, q2) is absolutely
continuous with respect to the Lebesgue measure, then the pairwise interaction
rate b is associated to two Poisson point measures

Nb;p(ds, di, dq, dθ1, dθ2) on R+ × N0 × N0 × Q × R+ × R+ ,

Nb;1−p(ds, di, dθ) on R+ × N0 × N0 × R+ .

The index i = (i1, i2) ∈ N0×N0 gives the sampled lesions inX to either become
a lethal lesion inY in positionq sampled fromm(q|qi1 , qi2),q , qi1 , qi2 ∈ Q, or
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repair and be removed from the system. The corresponding intensity measures
associated with Nb;p and Nb;1−p are

λb;p(ds, di, dq, dθ1, dθ2) := ds ⊗
⎛

⎝
∑

k≥0

δk(i1) ∧
∑

k≥0

δk(i2)

⎞

⎠ ⊗ dq ⊗ dθ1 ⊗ dθ2 ,

λb;1−p(ds, di, dθ) := ds ⊗
⎛

⎝
∑

k≥0

δk(i1) ∧
∑

k≥0

δk(i2)

⎞

⎠ ⊗ dθ .

We denote with Ñb the compensated Poisson measure defined as

Ñb;p(ds, di, dq, dθ1, dθ2) := Nb;p(ds, di, dq, dθ1, dθ2) − λb;p(ds, di, dq, dθ1, dθ2) ,

Ñb;1−p(ds, di, dθ) := Nb;1−p(ds, di, dθ) − λb;1−p(ds, di, dθ) .

(iii).2 if the sampling measure mb( · |qi1 , qi2) is of the form

m̃b (αqi1 + (1 − α)qi2
)

, α ∈ [0, 1] , (12)

for a probability density function m̃ : [0, 1] → R, then the pairwise interaction
rate b is associated to two Poisson point measures

Nb;p(ds, di, dα, dθ1, dθ2) on R+ × N0 × N0 × [0, 1] × R+ × R+ ,

Nb;1−p(ds, di, dθ) on R+ × N0 × N0 × R+ ,

with corresponding associated intensity measures

λb;p(ds, di, dα, dθ1, dθ2) := ds ⊗
⎛

⎝
∑

k≥0

δk(i1) ∧
∑

k≥0

δk(i2)

⎞

⎠ ⊗ dα ⊗ dθ1 ⊗ dθ2 ,

λb;1−p(ds, di, dθ) := ds ⊗
⎛

⎝
∑

k≥0

δk(i1) ∧
∑

k≥0

δk(i2)

⎞

⎠ ⊗ dθ .

(iii).3 if the sampling measure mb( · |qi1 , qi2) takes positive values over a discrete set
{1, . . . , J }, J < ∞, that is it is of the form

p j := m̃b (α j qi1 + (1 − α j )qi2
)

, α j ∈ [0, 1] and
J∑

j=1

p j = 1 , (13)

then the pairwise interaction rate b is associated to two Poisson point measures

Nb;p(ds, di, dα j , dθ1, dθ2) on R+ × N0 × N0 × {1, . . . , J } × R+ × R+ ,

Nb;1−p(ds, di, dθ) on R+ × N0 × N0 × R+ .
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with corresponding associated intensity measures

λb;p(ds, di, dα j , dθ1, dθ2) := ds ⊗
⎛

⎝
∑

k≥0

δk(i1) ∧
∑

k≥0

δk(i2)

⎞

⎠

⊗
J∑

j=1

δ j (α j ) ⊗ dθ1 ⊗ dθ2 ,

λb;1−p(ds, di, dθ) := ds ⊗
⎛

⎝
∑

k≥0

δk(i1) ∧
∑

k≥0

δk(i2)

⎞

⎠ ⊗ dθ .

Remark 3.1 It is worth stressing that, the three different cases for the samplingmeasure
mb( · |q1, q2) have been chosen to include possible relevant examples. However, other
choice can be made so that the next theory still apply. The choice of restricting to
some particular case has been made to cover specific examples in the application
under study.

In particular, the case in Eq. (12) considers the situation where the new lethal lesion
Y created is on the segment connecting q1 and q2 on a position sampled according
to m̃b. A meaningful choice would be to consider, for instance, m̃b to be the uniform
distribution over [0, 1].

Further, concerning the sampling measure in Eq. (13), it assumes that the new
lethal lesion is generated on some discrete points on the segment connecting q1 and q2
according to a certain probability; in this case,mb is a discrete probability distribution.
In such a scenario, two relevant choices are to consider:

(i) J = 2, α1 = 1 and α2 = 0, so that the new lethal lesion is created at q1; sampling
at position q2 can be assumed with the choice α1 = 0 and α2 = 1;

(ii) J = 1, α1 = α2 = 1
2 , and the new lethal lesion is generated in the middle point

between q1 and q2.

In the following, with a slight abuse of notation, we will use the notation formally
valid for the case (i i i).1, specifying how the notation should be changed accordingly
to consider either case (i i i).2 or (i i i).3.

(iv) - Spatial diffusion each lesion of type X and Y moves around the domain Q
with diffusion term

σX : Q → R
d×d , σX (q) ,

σY : Q → R
d×d , σY (q) ,

and drift term

μX : Q → R
d , μX (q) ,

μY : Q → R
d , μY (q) .
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In the following, we will also denote

X : Q → S+
(
R
d
)

, X (q) := σX (q)
(
σX (q)

)T
,

Y : Q → S+
(
R
d
)

, Y (q) := σY (q)
(
σY (q)

)T
,

with S+
(
R
d
)
the space of symmetric non-negative d × d matrices.

To describe lesion motion, we introduce a countable collection of standard inde-
pendent Brownian motion

(
Wn;X(t)

)
n∈N and

(
Wn;Y(t)

)
n∈N onRd . Brownian motion

is assumed to reflect with normal derivative at the boundary of the domain Q. In par-
ticular, denote by Tn and Tn+1 two successive jump times of the process ν, and assume
that at time Tn we have NX(Tn), resp. NY(Tn), lesions of type X, resp. Y. It is worth
stressing that in t ∈ [Tn, Tn+1), the number of lesions remains constant so that the
process is solely subject to the diffusive component. Thus, for any t ∈ [Tn, Tn+1) each
lesion evolves according to the following SDE with reflection at the boundaries

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

XiX (t) = XiX (Tn) + ∫ t
Tn

σX
(
XiX (s)

)
dWiX;X(s) + ∫ t

Tn
μX

(
XiX (s)

)
ds − κ iX (t) ,

|κ iX |(t) = ∫ t
Tn

1{XiX (s)∈∂Q}d|κ iX |(s) , κ iX (t) = ∫ t
Tn
n
(
XiX (s)

)
d|κ iX |(s) ,

XiX (t) ∈ Q̄ , iX=1, . . . , NX(t) ,

YiY (t) = YiY (Tn) + ∫ t
Tn

σY
(
YiY (s)

)
dWiY;Y(s) + ∫ t

Tn
μY

(
YiY (s)

)
ds − κ iY (t) ,

|κ iY |(t) = ∫ t
Tn

1{YiY (s)∈∂Q}d|κ iY |(s) , κ iY (t) = ∫ t
Tn
n
(
YiY (s)

)
d|κ iY |(s) ,

YiY (t) ∈ Q̄ , iY=1, . . . , NY(t) ,

(14)

where we denoted by dW (t) the integration in the sense of Itô.

Remark 3.2 Above, for the sake of simplicity, we have considered the case where
each lesion moves according to a single Brownian motion and that different Brown-
ian motions are independent. From a purely biological standpoint, it would be more
meaningful to either assume that a certain group of lesions moves according to the
same Brownian motion or to consider correlated Brownian motions. The diffusion of
lesions around the cell nucleus described the drift of DNA filaments inside the cell
nucleus (Nykypanchuk et al. 2002; Serag and Habuchi 2017). The former case can be
straightforwardly included in the treatment done in the paper, whereas for the latter, a
slight modification is needed. In fact (Shreve 2004), using a Cholesky decomposition,
a multidimensional vector of correlated Brownian motions B motion can be written
in terms of uncorrelated Brownian motions as

dB(t) = C(t)dW (t) ,

for a uncorrelated Brownian motion W , being C a lower triangular matrix defined by
the relation

ρ(t) = C(t)CT (t) ,

123



A spatial measure-valued model for radiation-induced DNA damage… Page 19 of 59 21

with ρ the correlation matrix

d〈Bi , B j 〉(t) = ρi j (t)dt .

Therefore, the correlated case can be reduced to the uncorrelated case treated in the
present paper.

In the following, we will consider a filtered and complete probability space(
�,F, (Ft )t∈R+ ,P

)
satisfying standard assumptions, namely right–continuity and

saturation by P–null sets. In particular, (Ft )t∈R+ is the filtration generated by the
processes defined in (i) − (i i) − (i i i) − (iv) as well as a M × M−valued initial
distribution ν0 = (νX0 , νY0 ).

Remark 3.3 Notice that, compared to the original interaction rates as introduced in
Cordoni et al. (2021), we included in the present version of themodel a further possible
pathway, namely

X + X
b−→

{
Y with probability p ∈ [0, 1] ,

∅ with probability 1 − p ∈ [0, 1] ,
.

This is done since, as noted in early versions of advanced radiobiological models
(Sachs et al. 1992), pairwise interaction of damages, can result also in correct repairs;
such a process is called, for instance, in Sachs et al. (1992) as complete exchange. �

Through the paper, we will assume the following hypothesis to hold:

Hypothesis 3.4 1. Jump components:

(2.i) the repair rate r is uniformly bounded over compact subsets, that is for N ≥ 0
it exists r̄ such that

sup
q∈Q

sup
v∈[0,N ]

r(q, v) < r̄ < ∞;

(2.ii) the death rate a satisfies a linear growth condition, that is, there exists a positive
constant ā such that, for all q ∈ Q it holds

0 ≤ a(q, v) ≤ ā(1 + |v|) ;

(2.iii) the pairwise interaction rate b satisfies a linear growth condition, that is, there
exists a positive constant b̄ such that, for all q1 and q2 ∈ Q, it holds

0 ≤ b(q1, q2, v) ≤ b̄(1 + |v|) ;

(2.iv) the pairwise interaction death p is a probability, that is, for all q1 and q2 ∈ Q,
it holds

p(q1, q2) ∈ [0, 1] ;

123



21 Page 20 of 59 F. G. Cordoni

2. Diffusive components:

(2.i) there exist positive constants LX and LY such that, for any q1, q2 ∈ Q, it holds

|σX(q1) − σX(q2)| + |μX(q1) − μX(q2)| ≤ LX|q1 − q2| ,
|σY(q1) − σY(q2)| + |μY(q1) − μY(q2)| ≤ LY|q1 − q2| .

3. Kernel components:

(3.i) for all q , q1 , q2 ∈ Q the functions 	r
q : Q×S → R+, 	a

q : Q×S → R+ and
	b
q1,q2 : Q × S → R+ are continuous and uniformly bounded, that is, there

exist constants 	̄r, 	̄a and 	̄b such that

sup
q∈Q

sup
(q̄,s̄)∈Q×S

	r
q(q̄, s̄) < 	̄r < ∞ ,

sup
q∈Q

sup
(q̄,s̄)∈Q×S

	a
q(q̄, s̄) < 	̄a < ∞ ,

sup
q1 , q2∈Q

sup
(q̄,s̄)∈Q×S

	b
q1,q2(q̄, s̄) < 	̄b < ∞;

(3.ii) the samplingmeasuremb(q|q1, q2) or m̃b(q) is either an absolutely continuous
or discrete probability density, that is

∫

Q
mb(q|q1, q2)dq = 1 ,

∫ 1

0
m̃b(αq1 + (1 − α)q2)dα = 1 ,

J∑

j=1

m̃b(α j q1 + (1 − α j )q2) = 1 .

The sampling measure ma(q|q1) is an absolutely continuous probability den-
sity, that is

∫

Q
ma(q|q1)dq = 1 .

Remark 3.5 It is worth remarking that, slightly adapting the Poisson point measure
introduced in Hypothesis 3.4 (i i) to be

Na(ds, di, dθ1) on R+ × N0 × R+ ,

we could assume that the new lethal lesion is formed at position q ∈ Q where the
reaction a happened, allowing thus to consider the trivial case of the samplingmeasure

ma(q|q1) = δq1(q) .
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For ease of notation, we will not consider this case in the following, following instead
on the case of ma(q|q1) being absolutely continuous with respect to the Lebesgue
measure. �

In the following, we consider the next class of cylindrical test functions: for F ∈
C2b(R×R), that is, F is boundedwith continuous and bounded second order derivative,
and for f X , f Y ∈ C20(Q), that is f X and f Y are continuouswith bounded second order
derivative in the domain variable Q, satisfying ∇q f (q) · n(q) = 0, for ν = (νX, νY),
we consider F( f X, f Y) : M × M → R of the form

F( f X, f Y)(ν) = F
(〈

f X, νX
〉
,
〈
f Y, νY

〉)
. (15)

In the following, we will denote by ∂
∂x , resp.

∂
∂x , the derivative with respect to the

first argument, resp. the second argument, of the function F . Also, ∇, resp. �, resp.
Tr , resp. Hess, denotes the gradient with respect to the space variable q, resp. the
Laplacian operator with respect to the space variable q, resp. the trace operator, resp.
the Hessian matrix. Cylindrical functions (15) are a standard class generating the set
of bounded and measurable functions from M × M into R (Fontbona and Méléard
2015; Champagnat and Méléard 2007; Dawson et al. 1993).

Remark 3.6 (i) The kernels	r
q ,	

a
q and	b

q1.q2 account for changes in the reaction rates
due to the state of the system. The most intuitive case would be to assume that the
system’s mass near the position where the reactions a and r take place affects the
overall rate. A natural choice for the kernel 	r

q and 	a
q would be to assume that

only nearby mass affects the overall rate; in such a case, we have, for q ∈ Q,

	r
q(q̄, s̄) := 1{|q−q̄|<ε}(q̄, s̄) .

Therefore, only lesions at most distant ε from the position q where the reaction
happens to participate in the reaction.
For the biological interpretation of the above kernels, besides the already known
clustered effect of DNA lesions, there is experimental evidence that the repair rate
of DNA lesions created by densely ionizing radiation, such as LET, is different
from the repair of lesions induced by sparsely ionizing radiation, such as X-rays
(Russ et al. 2022; Guerra Liberal et al. 2023). This difference could be imputed
to the different complexity of the created lesions. To date, this dependence of the
repair rate on the type of radiation is often neglected in mechanistic modeling.
The kernels above introduced could be thus used to include such effects in the
pathways considered in the present model.

(ii) Regarding the pairwise interaction rate b, it is natural to assume that b depends
only on the separation distance between two lesions, that is, it exists a function

b̄ : R → R+ , b̄ (q) ,

such that

b (q1, q2) = b (q2, q1) = b̄ (|q1 − q2|) .
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Further, it is natural to assume that the closer two lesions are, the more likely they
interact. Therefore, relevant choices for the rate b are, for instance a step interaction
rate

b̄ (q) := b̂1{|q|<ε} , (16)

or a Gaussian rate

b̄ (q) := b̂√
2πε2

e
− |q|2

2ε2 . (17)

Whereas the former rate (16) models the case where only lesion closer than ε

can interact, the latter rate (17) considers that the rate of interaction decreases
exponentially as the lesions are more distant from each other. At last, as noted
in Kellerer and Rossi (1974), enhanced short-range interaction can be modelled
using

b̄ (q) := b̂1√
2πε21

e
− |q|2

2ε21 + b̂2√
2πε22

e
− |q|2

2ε22 , (18)

for suitable constants, so that the interaction rate declines fast but still has a fat
tail at larger distances. Similarly, it is reasonable to assume that p depends on the
distance between the interacting lesions.

(iii) The sampling measures introduced in Eqs. (12)–(13) can be approximated to
recover the case of absolute continuous measure considered in (i i i).1. Denote
in fact, by mε a standard mollified (Friedrichs 1944), that is a positive, smooth,
and compactly supported function on [0, 1], so that
(i)

∫
Q mε(q)dq = 1;

(ii) limε→0 mε(q) = δ0(q), where δ0 is the Dirac delta centered in 0 and the limit
is taken in the sense of Schwartz distribution.

Equation (12) can be represented compactly as

mb(q|q1, q2) = m̃b(q)δαq1+(1−α)q2(q) , α ∈ [0, 1] .

Therefore, the sampling measure

m̃b(q)δαq1+(1−α)q2(q) ∗ mε(q) ,

where we have defined by ∗ the convolution operator, is absolutely continuous
with respect to the Lebesgue measure, so that it is included in the case (i i i).1 and
converges to m̃b as ε → 0.
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A similar argument holds for the case (i i i).3, where the sampling measure reads
as

mb(q|q1, q2) =
J∑

j=1

p jδα j q1+(1−α j )q2(q) , α j ∈ [0, 1] and
J∑

j=1

p j = 1 ,

and considering

J∑

j=1

p jδα j q1+(1−α j )q2(q) ∗ mε(q) ,

it is possible to approximate mb with an absolutely continuous measure.
(iv) regarding the samplingmeasurema(q|q1), a reasonable choicewould be to assume

that the new particle is generated in an open ball centered around q1, that is

ma(q|q1) = m̃a(q)1{|q−q1|<ε} , ε > 0 ,

for a given probability density m̃a(q). The density m̃a(q) can take for instance two
different assumptions: it can be uniform, implying that a new lesion can occur with
equal probability at any pointwithin a distance of ε from the initial lesion’s position
that initiated the reaction. Alternatively, it can follow a bell-shaped distribution
centered around q1, indicating a higher likelihood of generating a new lesion in
close proximity to the original lesion’s location.

�
With the previous notation,we can thus introduce the followingweak representation

for the spatial radiation-inducedDNA lesion repair model, given f X and f Y ∈ C2
0 (R),

we have
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
f X, νX(t)

〉

= 〈
f X, νX(0)

〉 + ∫ t
0

∑NX(s−)

i=1 σX
(
Hi (νX)

) · ∇ f X
(
Hi (νX)

)
dWi :X(s)+

+ ∫ t
0

∑NX(s−)

i=1 μX
(
Hi (νX)

) · ∇ f X
(
Hi (νX)

)
ds

+ 1
2

∫ t
0

∑NX(s−)

i=1 Tr
[
X

(
Hi (νX)

)
Hess f X

(
Hi (νX)

)]
ds

+ ∫ t
0

∫
N0

∫
R+

[〈
f X, νX(s−) − δHi (νX(s−))

〉
− 〈

f X, νX(s−)
〉]
1{i≤NX(s−)}1{θ≤r(Hi (νX(s−)),〈	r ,ν〉)}Nr(ds, di, dθ)

+ ∫ t
0

∫
N0

∫
R
2+

[〈
f X, νX(s−) − δHi (νX(s−))

〉
− 〈

f X, νX(s−)
〉]

×1{i≤NX(s−)}1{θ1≤a(Hi (νX(s−)),〈	a ,ν〉)}1{θ2≤ma(q|Hi (νX(s−)))}Na(ds, di, dq, dθ1, dθ2)

+ ∫ t
0

∫
N
2
0

∫
Q

∫
R
2+

[〈
f X, νX(s−) − δHi1 (νX(s−)) − δHi2 (νX(s−))

〉
− 〈

f X, νX(s−)
〉]

×1{i1<i2≤NX(s−)}1{
θ1≤p(Hi1 (νX(s−)),Hi2 (νX(s−)))b(Hi1 (νX(s−)),Hi2 (νX(s−)),〈	b,ν〉)}1{

θ2≤mb(q|Hi1 (νX(s−)),Hi2 (νX(s−)))
}

×Nb;p(ds, di1, di2, dq, dθ1, dθ2) ,

+ ∫ t
0

∫
N
2
0

∫
R+

[〈
f X, νX(s−) − δHi1 (νX(s−)) − δHi2 (νX(s−))

〉
− 〈

f X, νX(s−)
〉]

×1{i1<i2≤NX(s−)}1{
θ≤(1−p(Hi1 (νX(s−)),Hi2 (νX(s−))))b(Hi1 (νX(s−)),Hi2 (νX(s−)),〈	b,ν〉)}Nb;1−p(ds, di1, di2, dθ) ,

〈
f Y, νY(t)

〉

= 〈
f Y, νY(0)

〉 + ∫ t
0

∑NY(s−)

i=1 σY
(
Hi (νY)

) · ∇ f Y
(
Hi (νY)

)
dWi :Y(s)+

+ ∫ t
0

∑NY(s−)

i=1 μY
(
Hi (νY)

) · ∇ f Y
(
Hi (νY)

)
ds

+ 1
2

∫ t
0

∑NY(s−)

i=1 Tr
[
Y

(
Hi (νY)

)
Hess f Y

(
Hi (νY)

)]
ds

+ ∫ t
0

∫
N0

∫
R
2+
[〈
f Y, νY(s−) + δq

〉 − 〈
f Y, νY(s−)

〉]

×1{i≤NX(s−)}1{θ1≤a(Hi (νX(s−)),〈	a ,ν〉)}1{θ2≤ma(q|Hi (νX(s−)))}Na(ds, di, dq, dθ1, dθ2)

+ ∫ t
0

∫
N
2
0

∫
Q

∫
R
2+
[〈
f Y, νY(s−) + δq

〉 − 〈
f Y, νY(s−)

〉]

×1{i1<i2≤NX(s−)}1{
θ1≤p(Hi1 (νX(s−)),Hi2 (νX(s−)))b(Hi1 (νX(s−)),Hi2 (νX(s−)),〈	b,ν〉)}

×1{
θ2≤m(q|Hi1 (νX(s−)),Hi2 (νX(s−)))

}Nb;p(ds, di1, di2, dq, dθ1, dθ2) .

(19)

Remark 3.7 For the sake of brevity, Eq. (19) is formulated using the case 3.4(i i i).1.
Nonetheless:

(iii).2 If the sampling measure (12) is considered, then the integral terms with respect
to the Poisson point measure Nb;p becomes

∫ t

0

∫

N
2
0

∫ 1

0

∫

R
2+

[〈
f Y, νY(s−) + δq

〉 − 〈
f Y, νY(s−)

〉]
1{i1<i2≤NX(s−)}

× 1{θ1≤p(Hi1 (νX(s−)),Hi2 (νX(s−)))b(Hi1 (νX(s−)),Hi2 (νX(s−)))}1{θ2≤m̃b(αHi1 (νX(s−))+(1−α)Hi2 (νX(s−)))}
× Nb;p(ds, di1, di2, dα, dθ1, dθ2) .

∫ t

0

∫

N
2
0

∫ 1

0

∫

R
2+

[〈
f Y, νY(s−) + δαHi1 (νX(s−))+(1−α)Hi2 (νX(s−))

〉
− 〈

f Y, νY(s−)
〉]

× 1{i1<i2≤NX(s−)}1{θ1≤p(Hi1 (νX(s−)),Hi2 (νX(s−)))b(Hi1 (νX(s−)),Hi2 (νX(s−)),〈	b,ν〉)}1{θ2≤m(q|Hi1 (νX(s−)),Hi2 (νX(s−)))}
× Nb;p(ds, di1, di2, dq, dθ1, dθ2)

(iii).3 If the sampling measure (13) is considered, then the integral terms with respect
to the Poisson point measure Nb;p becomes
∫ t

0

∫

N
2
0

∫

{1,...,J }

∫

R
2+

[〈
f Y, νY(s−) + δq

〉 − 〈
f Y, νY(s−)

〉]
1{i1<i2≤NX(s−)}

× 1{θ1≤p(Hi1 (νX(s−)),Hi2 (νX(s−)))b(Hi1 (νX(s−)),Hi2 (νX(s−)))}1{θ2≤m̃b(α jHi1 (νX(s−))+(1−α j )Hi2 (νX(s−)))}
× Nb;p(ds, di1, di2, dα j , dθ1, dθ2) .
∫ t

0

∫

N
2
0

∫

{1,...,J }

∫

R
2+

[〈
f Y, νY(s−) + δα jHi1 (νX(s−))+(1−α j )Hi2 (νX(s−))

〉
− 〈

f Y, νY(s−)
〉]

× 1{i1<i2≤NX(s−)}1{θ1≤p(Hi1 (νX(s−)),Hi2 (νX(s−)))b(Hi1 (νX(s−)),Hi2 (νX(s−)),〈	b,ν〉)}
× 1{θ2≤m(q|Hi1 (νX(s−)),Hi2 (νX(s−)))}Nb;p(ds, di1, di2, dq, dθ1, dθ2) .
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Above, to be coherent with the notation employed throughout the paper, we
employed the notation

∫

{1,...,J }
· ,

to denote the summation

J∑

j=1

· .

Definition 3.7.1 We say that ν(t) = (νX(t), νY(t)) as defined in Eqs. 9–10 is a spatial
radiation-induced DNA damage repair model if ν = (ν(t))t∈R+ is (Ft )t∈R+ −adapted
and for any f X and f Y ∈ C2

0 (Q) Eq. (19) holds P−a.s.

The above process is characterized by the following infinitesimal generator (Kallen-
berg 1997, Chapter 12),

LF( f X, f Y)(ν) = Ld F( f X, f Y)(ν) +
∑

h∈{r,a,b}
Lh F( f X, f Y)(ν) , (20)

where Lh F( f X, f Y)(ν) is the infinitesimal generator of the reaction terms, whereas
Ld F( f X, f Y)(ν) is the infinitesimal generator of the diffusive part of Eq. (19).

In particular, we have

LX
d f X(q) = μX (q) · ∇ f X (q) ds + 1

2
Tr

[
X (q)Hess f X (q)

]
,

LY
d f Y(q) = μY (q) · ∇ f Y (q) ds + 1

2
Tr

[
Y (q)Hess f Y (q)

]
.

(21)

It further holds that

Ld F( f X, f Y)(ν) =
〈
LX
d f X, νX

〉 ∂

∂x
F
(〈

f X, ν
〉
,
〈
f Y, ν

〉)

+
〈
LY
d f Y, νY

〉 ∂

∂ y
F
(〈

f X, ν
〉
,
〈
f Y, ν

〉)
+

+
〈
∇T f X σX ∇ f X, νX

〉 ∂2

∂x2
F
(〈

f X, ν
〉
,
〈
f Y, ν

〉)

+
〈
∇T f Y σY ∇ f Y, νY

〉 ∂2

∂ y2
F
(〈

f X, ν
〉
,
〈
f Y, ν

〉)
.

(22)
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Regarding the infinitesimal generator of the reaction terms, it holds

LrF( f X, f Y)(ν)

=
∫

Q
r(q, ν)

[
F( f X, f Y)(ν

X − δq , ν
Y) − F( f X, f Y)(ν)

]
νX(dq) ,

LaF( f X, f Y)(ν)

=
∫

Q

∫

Q
a(q, ν)

[
F( f X, f Y)((ν

X − δq , ν
Y + δq̄ )) − F( f X, f Y)(ν)

]
ma(q̄|q)dq̄νX(dq) ,

LbF( f X, f Y)(ν)

=
∫

Q̃2

∫

Q
p(q1, q2)b(q1, q2, ν)

[
F( f X, f Y)((ν

X − δq1 − δq2 , ν
Y + δq̄ )) − F( f X, f Y)(ν)

]

× mb(q̄|q1, q2)dq̄νX(dq1)ν
X(dq2)+

+
∫

Q̃2
(1 − p(q1, q2)) b(q1, q2, ν)

[
F( f X, f Y)((ν

X − δq1 − δq2 , ν
Y)) − F( f X, f Y)(ν)

]
νX(dq1)ν

X(dq2) ,

(23)

where we have denoted by

Q̃2 := Q2 \ {(q1, q2) : q1 = q2} .

3.2 Stepwise construction of the process

In the present Section, we provide a step-wise construction of the process. Such
construction, besides being relevant from a theoretical point of view, is particularly
important in implementing a simulation algorithm for the process defined in the pre-
vious section. Notice that, using assumptions 3.4, we have that the rates a, b and r
are bounded in the uniform norm. Thus, between the occurrence times of the jump
components, each lesion moves according to the diffusive generator DX and Dy .

1. starts with a random measure

ν0 :=
(
νX0 , νY0

)
:=

⎛

⎝
NX
0∑

i=1

δXi (0),

NY
0∑

i=1

δYi (0)

⎞

⎠ ,

and set t = τ 0 = 0. The initial distribution M0 will be treated explicitly and in
detail in Sect. 2.1;

2. every jump reaction h ∈ {a, b, r} has an exponential clock; set thus the random
time of the first reaction happening

τ 1h := inf

{
t > 0 :

∫ t

0
h̄(ν(s))ds ≥ E1h

}
, h̄ ∈ {

r̄, ā, b̄
}
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with E1h is an exponential random variable with parameter 1. Also, we have defined

r̄(ν(s)) :=
NX(s)∑

i=1

r
(
Hi

(
νX(s)

)
,
〈
	r
Hi(νX(s))

, ν
〉)

,

ā(ν(s)) :=
NX(s)∑

i=1

a
(
Hi

(
νX(s)

)
,
〈
	a
Hi(νX(s))

, ν
〉)

,

b̄(ν(s)) :=
NX(s)∑

i1,i2=1
i1<i2

b
(
Hi1

(
νX(s)

)
,Hi2

(
νX(s)

)
,
〈
	b
Hi1(νX(s)),Hi2(νX(s))

, ν
〉)

.

3. set τ 1 := minh∈{a,b,r} τ 1h and consider h1 ∈ {a, b, r} the reaction that triggers the
random time τ 1

h1
;

4. let any lesion move according to the diffusion and drift coefficients as described
in Eq. (14), until time T ∧ τ1 is reached. If T is reached exit, otherwise go to the
next step;

5. sample the lesions and positions of the lesions that triggered the reaction and, in
case either a or b fired, sample the position q of the new lesion Y created;

6. at time τ 1, if:

6.i r has been triggered, set NX(τ 1) = NX(τ 1−) − 1 and NY(τ 1) = NY(τ 1−) and
remove the i−th component of X, that is we have

(X1(τ 1), . . . ,Xi−1(τ 1),Xi+1(τ 1), . . . ,XN X
(τ 1)) ;

6.ii a has been triggered, set NX(τ 1) = NX(τ 1−) − 1 and NY(τ 1) = NY(τ 1−) + 1,
remove the i−th component of X and create a new lesion Y at q ∈ Q sampled
according to ma. We thus have

(X1(τ 1), . . . ,Xi−1(τ 1),Xi+1(τ 1), . . . ,XNX
(τ 1)) ,

(Y1(τ 1), . . . ,YNY
(τ 1−),YNY+1(τ 1)) .

6.iii b has been triggered, and simulate a number p̃ from a random variable P ∼
U (0, 1), if:

6.iii.a p̃ ≤ p
(
Xi1(τ 1),Xi2(τ 1)

)
, then set NX(τ 1) = NX(τ 1−)−2 and NY(τ 1) =

NY(τ 1−) + 1, remove the i1−th and i2−th component of X and create a
new lesion Y in position q ∈ Q sampled according to mb. We thus have

(X1(τ 1), . . . ,Xi1−1(τ 1),Xi1+1(τ 1), . . . ,Xi2−1(τ 1),Xi2+1(τ 1), . . . ,XNX
(τ 1)) ,

(Y1(τ 1), . . . ,YNY
(τ 1−),YNY+1(τ 1)) .
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6.iii.b p̃ > p
(
Xi1(τ 1),Xi2(τ 1)

)
, then set NX(τ 1) = NX(τ 1−)−2 and NY(τ 1) =

NY(τ 1−), remove the i1−th and i2−th component of X remove lesions i1
and i2 from the system. We thus have

(X1(τ 1), . . . ,Xi1−1(τ 1),Xi1+1(τ 1), . . . ,Xi2−1(τ 1),Xi2+1(τ 1), . . . ,XNX
(τ 1)) ,

(Y1(τ 1), . . . ,YNY
(τ 1−)) .

7. update t = t + τ 1;
8. if t < T , go to step 1 and repeat until T is reached.

3.3 Well-posedness andmartingale properties

In the present Section, we prove the existence and uniqueness of solutions to the
above-introduced model.

Theorem 3.8 Let νX0 and νY0 two independent random measures with finite p−th
moment, p ≥ 1, that is it holds

E

〈
1, νX0

〉p
< ∞ , E

〈
1, νY0

〉p
< ∞ . (24)

Then, under Hypothesis 3.4, for any T > 0, there exists a pathwise unique strong
solution to the system (19) in D ([0, T ],M × M). Also, it holds

E sup
t≤T

〈1, ν(t)〉p < ∞ . (25)

In particular, the process ν in Definition 3.7.1 is well-defined on R+.

Proof Since the jump times are isolated, [Kallenberg (1997), Chapter 12], the con-
struction of νX(t) and νY(t) can be done pathwise inductively along the successive
jump times. In particular, denote by Tm and Tm+1 two successive jump times of the
process ν, and assume that at time Tm we have NX(Tm), resp. NY(Tm), lesions of
type X, resp. Y. As noted above, for t ∈ [Tm, Tm+1) the number of lesions remains
constant so that the process is solely subject to the diffusive component as described
in Eq. (14). Using Hypothesis 3.4, conditionally on FTm , Eq. (14) can be seen as a

purely diffusive SDEwith globally Lipschitz coefficients onRd×NX(Tm )×R
d×NY(Tm ),

so that the process

(
XiX(t),YiY(t)

)

iX=1,...,NX(Tn); iY=1,...,NY(Tn)
,

admits a unique strong solution for t ∈ [Tm, Tm+1).
Define then, for n ≥ 0,

τXn := inf{t ≥ 0 :
〈
1, νX(t)

〉
≥ n} ,
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and set for short τ̄Xn := t ∧ τXn .
We can construct a solution algorithmically in [0, T ). For t ≥ 0, noticing that the

number of lesions in X can only decrease, we have,

sup
s∈[0,τ̄Xn ]

〈
1, νX(s)

〉p ≤
〈
1, νX0

〉p
. (26)

Regarding Y, using Itô formula and taking the supremum over the interval [0, τ̄Yn ],
we have that,

sup
s∈[0,τ̄Yn ]

〈
1, νY(s)

〉p ≤ 〈
1, νY0

〉p

+
∫ τ̄Yn

0

∫

N0

∫

Q

∫

R
2+

[(〈
1, νY(s−)

〉 + 1
)p − 〈

1, νY(s−)
〉p]

× 1{i≤NX(s−)}1{θ1≤a(Hi (νX(s−)),〈	a ,ν〉)}1{θ2≤ma(q|Hi (νX(s−)))}Na(ds, di, dq, dθ1, dθ2)

+
∫ τ̄Yn

0

∫

N
2
0

∫

Q

∫

R
2+

[(〈
1, νY(s−)

〉 + 1
)p − 〈

1, νY(s−)
〉p]

× 1{i1<i2≤NX(s−)}1{
θ1≤b(Hi1 (νX(s−)),Hi2 (νX(s−)),〈	b,ν〉)}1{

θ2≤mb(q|Hi1 (νX(s−)),Hi2 (νX(s−)))
}Nb;p(ds, di1, di2, dq, dθ1, dθ2) .

(27)

Taking the expectation in Eq. (27), using estimate (26) and Hypothesis 3.4, together
with

(1 + y)p − y p ≤ C(1 + y p−1) , ∀ y ≥ 0 .

we have that, for some C > 0 that can take possibly different values,

E sup
s∈[0,τ̄Yn ]

〈
1, νY(s)

〉p ≤ E

〈
1, νY0

〉p

+E

∫ τ̄Yn

0

∫

N0

∫

Q

∫

R
2+

[(〈
1, νY(s−)

〉
+ 1

)p −
〈
1, νY(s−)

〉p]

×1{i≤NX(s−)}1{θ1≤a(Hi (νX(s−)),〈	a ,ν〉)}1{θ2≤ma(q|Hi (νX(s−)))}Na(ds, di, dq, dθ1, dθ2)

+E

∫ τ̄Yn

0

∫

N
2
0

∫

Q

∫

R
2+

[(〈
1, νY(s−)

〉
+ 1

)p −
〈
1, νY(s−)

〉p]

×1{i1<i2≤NX(s−)}1{θ1≤b(Hi1 (νX(s−)),Hi2 (νX(s−)),〈	b,ν〉)}
1{θ2≤mb(q|Hi1 (νX(s−)),Hi2 (νX(s−)))}Nb;p(ds, di1, di2, dq, dθ1, dθ2) ≤

≤ E

〈
1, νY0

〉p + E

∫ τ̄Yn

0

〈
1,νX(s)

〉
∑

i=1

∫

Q

[(〈
1, νY(s−)

〉
+ 1

)p −
〈
1, νY(s−)

〉p]

×a
(
Hi

(
νX(s−)

)
,
〈
	a, ν

〉)
ma

(
q|Hi

(
νX(s−)

))
ds

+E

∫ τ̄Yn

0

〈
1,νX(s)

〉
∑

i1 , i2=1,
i1≤i2

∫

Q

[(〈
1, νY(s−)

〉
+ 1

)p −
〈
1, νY(s−)

〉p]

×b
(
Hi1

(
νX(s−)

)
,Hi2

(
νX(s−)

)
,
〈
	a, ν

〉)
mb(q|Hi1

(
νX(s−)

)
,Hi2

(
νX(s−)

)
)ds ≤

≤ E

〈
1, νY0

〉p + C ā 	̄a
E

〈
1, νX0

〉
E

∫ τ̄Yn

0

(
1 +

〈
1, νY(s−)

〉p−1
) 〈

1, νY(s−)
〉
ds
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+C b̄ 	̄b
E

〈
1, νX0

〉2
E

∫ τ̄Yn

0

(
1 +

〈
1, νY(s−)

〉p−1
) 〈

1, νY(s−)
〉
ds ≤

≤ C

(
1 + E

∫ t

0

〈
1, νY(s ∧ τYn )

〉p)
. (28)

From Gronwall lemma it thus follows that it exists C > 0 depending on p and T
but independent of n, such that

E sup
s∈[0,τ̄Yn ]

〈
1, νY(s)

〉p ≤ C . (29)

Letting thus n → ∞, we have that

τYn → ∞ a.s. . (30)

In fact, if that was not the case, we can find T0 < ∞ such that

P

(
sup
n

τYn < T0

)
= ε(T0) > 0 .

This would in turn yields

E sup
s∈[0,T0∧τYn ]

〈
1, νY(s)

〉p ≥ ε(T0)n
p ,

which contradicts Eq. (29). A similar argument holds for X. Using Fatou’s lemma we
can let n → ∞ as

E lim inf
n→∞ sup

s∈[0,T∧τXn ]

〈
1, νY(s)

〉p ≤ lim inf
n→∞E sup

s∈[0,T∧τXn ]

〈
1, νY(s)

〉p ≤ C < ∞ ,

proving thus (25).
At last, since the above claim holds also for p = 1, we have that

E sup
t≤T

〈1, ν(t)〉 < ∞ , (31)

so that the process ν can be constructed step by step between consecutive jumps and
the sequence of jump times (Tm)m∈N goes to infinity and the process in well-defined.
The proof is thus complete. ��
Remark 3.9 Notice that if, instead of conditions (2.i i) − (2.i i i) in Hypothesis 3.4 we
require the weaker conditions

sup
q∈Q

sup
v∈[0,N ]

a(q, v) < ā < ∞ ,

sup
q1,q2∈Q

sup
v∈[0,N ]

b(q1, q2, v) < b̄ < ∞ ,
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Theorem 3.8 would follow analogously with the only difference that existence and
uniqueness can be proved only up to a sufficiently small finite horizon time T0 < ∞
rather than on the whole real lineR+. In particular, Eq. (30) does not hold. To see that,
consider the truncated death rate and pairwise interaction rate

an(q, v) := a(q, v)1{v≤n} , bn(q, v) := b(q, v)1{v≤n} .

By the boundedness of the rates an and bn , we have that Theorem 3.8 is valid and
existence and uniqueness hold true up to a stopping time τn . We further clearly have
that τn ≤ τn+1, so that, if τn → ∞ as n → ∞, we have the existence and uniqueness
for any time horizon T , whereas if on the contrary we have that τn → T0, we have an
explosion of the solution in finite time. �

The next result states a martingale property for the spatial GSM2introduced in
previous sections.

Theorem 3.10 Assume that Hypothesis 3.4 holds true and that νX0 and νY0 are two
random measures independent with finite p−th moment, p ≥ 2. Then:

(i) ν is a Markov process with infinitesimal generator L defined by (20);
(ii) assume that for F ∈ C2

b (R × R) and for f X , f Y ∈ C20(Q) such that for all
ν ∈ M × M, it holds

|F( f X, f Y)(ν)| + |LF( f X, f Y)(ν)| ≤ C
(
1 + 〈1, ν0〉p

)
. (32)

Then, the process

F( f X, f Y)(ν(t)) − F( f X, f Y)(ν0) −
∫ t

0
LF( f X, f Y)(ν(s))ds , (33)

is a cádlág martingale starting at 0;
(iii) the processes MX and MY defined for f X , f Y ∈ C2

0 by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MX(t) = 〈
f X, νX(t)

〉 − 〈
f X, νX0

〉 − ∫ t
0

〈LX
d f X(x), νX(s)

〉
ds

+ ∫ t
0

∫
Q [r(q, ν) + a(q, ν)] f X(q)νX(s)(dq)ds

+ ∫ t
0

∫
Q̃2 b(q1, q2, ν)( f X(q1) + f X(q2))νX(s)(dq1)νX(s)(dq2)ds

MY(t) = 〈
f Y, νY(t)

〉 − 〈
f Y, νY

〉 − ∫ t
0

〈LY
d f Y(x), νY(s)

〉
ds

− ∫ t
0

∫
Q a(q, ν)

∫
Q ma(q̄|q) f Y(q̄)dq̄νX(s)(dq)ds

− ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)b(q1, q2, ν) f Y(q̄)mb(q̄|q1, q2)dq̄νX(s)(dq1)νX(s)(dq2)ds ,

(34)
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are cádlág L2−martingale starting at 0 with predictable quadratic variation
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
MX

〉
(t) = ∫ t

0

〈∇T f XσX∇ f X, νX
〉
ds

+ ∫ t
0

∫
Q [r(q, ν(s)) + a(q, ν)]

(
f X(q)

)2
νX(s)(dq)ds

+ ∫ t
0

∫
Q̃2 b(q1, q2, ν)( f X(q1) + f X(q2))2νX(s)(dq1)νX(s)(dq2)ds〈

MY
〉
(t) = ∫ t

0

〈∇T f YσY∇ f Y, νY
〉
ds

− ∫ t
0

∫
Q a(q, ν)

∫
Q ma(q̄|q)

(
f Y(q̄)

)2
dq̄νX(s)(dq)ds

− ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)b(q1, q2, ν)

(
f Y(q̄)

)2
mb(q̄|q1, q2)dq̄νX(s)(dq1)νX(s)(dq2)ds .

(35)

Proof (i) to show that ν is a Markov process is standard using the fact Poisson
point processes have independent increments. Then, for any function f X and
f Y ∈ C2

0 (Q), we have the representation given in Eq. (19). By compensation,
we can reformulate Eq. (19) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
f X, νX(t)

〉 = 〈
f X, νX(0)

〉 + ∫ t
0

〈LX
d f X, νX(s)

〉
ds

+ ∫ t
0

〈
[r(·, ν) + a(·, ν)] f X, νX(s)

〉
ds

+ ∫ t
0

〈〈
b(·, ·, ν(s))( f X + f X), νX(s)

〉
, νX(s)

〉
ds

〈
f Y, νY(t)

〉 = 〈
f Y, νY(0)

〉 + ∫ t
0

〈LY
d f Y, νY

〉
ds

− ∫ t
0

〈
a(·, ν)

∫
Q ma(q̄|·) f Y(q̄)dq̄, νX(s)

〉
ds

− ∫ t
0

〈〈∫
Q p(·, ·)b(·, ·) f Y(q̄)mb(q̄|·, ·)dq̄, νX(s)

〉
, νX(s)

〉
ds + M̃Y

(t) ,

(36)

where M̃X
and M̃Y

are local-martingales accounting for the noises W , Nr, Na

and Nb. A straightforward computation shows that for F ∈ C2
b (R×R), dividing

Eq. (36) by t , taking the limit as t ↓ 0 and taking the expectation we finally have
that LF( f X, f Y)(ν) has the expression as given in Eq. (20).

(ii) using condition (32) we have can infer that (33) is integrable and well-defined.
Using point (i) we can finally conclude that (33) is a cádlág martingale.

(iii) notice first that point (ii) holds true for any Ff (ν) = 〈 f , ν〉q , q ∈ {1, . . . , p−1},
since by Eq. (25) it follows the estimate (32). Therefore, choosing q = 1 we
immediately have that MX(t) and MY(t) are martingales. Using p = 2 we
obtain computing Ff (ν) = 〈 f , ν〉2 from equations (22)-(23),

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
f X, νX(t)

〉2 − 〈
f X, νX(0)

〉2

− ∫ t
0

∫
Q

[
2
〈
f X, νX(s)

〉 (
μX

(
q,

〈
	

μ,X
q , ν

〉)
· ∇ f X (q) ds + 1

2 Tr
[
X

(
q,

〈
	

σ,X
q , ν

〉)
Hess f X (q)

])]
νX(s)(dq)ds

− ∫ t
0

∫
Q 2∇T f X(q) σX ∇ f X(q)νX(s)(dq)ds

+ ∫ t
0

∫
Q r(q, ν)

[(
f X(q)

)2 − 2 f X(q)
〈
f X, νX(s)

〉]
νX(s)(dq)ds

+ ∫ t
0

∫
Q a(q, ν)

[(
f X(q)

)2 − 2 f X(q)
〈
f X, νX(s)

〉]
νX(s)(dq)ds

+ ∫ t
0

∫
Q̃2

[(
f X(q1)

)2 + (
f X(q1)

)2 + f X(q1) f X(q2) − 2 f X(q1)
〈
f X, νX(s)

〉 − 2 f X(q2)
〈
f X, νX(s)

〉]

×b(q1, q2, ν)νX(s)(dq1)νX(s)(dq2) ds〈
f Y, νY(t)

〉2 − 〈
f Y, νY(0)

〉2

− ∫ t
0

∫
Q

[
2
〈
f Y, νY(s)

〉 (
μY

(
q,

〈
	

μ,Y
q , ν

〉)
· ∇ f Y (q) ds + 1

2 Tr
[
Y

(
q,

〈
	

σ,Y
q , ν

〉)
Hess f Y (q)

])]
νY(s)(dq)ds

− ∫ t
0

∫
Q 2∇T f Y(q) σY ∇ f Y(q)νY(s)(dq)ds

− ∫ t
0

∫
Q

∫
Q a(q, ν)

[(
f Y(q̄)

)2 + 2 f Y(q̄)
〈
f Y, νY(s)

〉]
ma(q̄|q)dq̄νX(s)(dq)ds

− ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)b(q1, q2, ν)

[(
f Y(q̄)

)2 + 2 f Y(q̄)
〈
f Y, νY(s)

〉]
mb(q̄|q1, q2)dq̄νX(s)(dq1)νX(s)(dq2)ds .

(37)
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At the same time, applying Itô formula to compute 〈 f , ν〉2, Eq. (32) yields that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
f X, νX(t)

〉2 − 〈
f X, νX0

〉2

− ∫ t
0

∫
Q

[
2
〈
f X, νX(s)

〉 (
μX

(
q,

〈
	

μ,X
q , ν

〉)
· ∇ f X (q) ds + 1

2 Tr
[
X

(
q,

〈
	

σ,X
q , ν

〉)
Hess f X (q)

])]
νX(s)(dq)

+ ∫ t
0

∫
Q [r(q, ν) + a(q, ν)] f X(q)

〈
f X, νX(s)

〉
νX(s)(dq)ds

+ ∫ t
0

∫
Q̃2 b(q1, q2, ν)( f X(q1) + f X(q2))

〈
f X, νX(s)

〉
νX(s)(dq1)νX(s)(dq2)ds

〈
f Y, νY(t)

〉 − 〈
f Y, νY0

〉

− ∫ t
0

∫
Q

[
2
〈
f Y, νY(s)

〉 (
μY

(
q,

〈
	

μ,Y
q , ν

〉)
· ∇ f Y (q) ds + 1

2 Tr
[
Y

(
q,

〈
	

σ,Y
q , ν

〉)
Hess f Y (q)

])]
νY(s)(dq)ds

− ∫ t
0

∫
Q a(q, ν)

∫
Q ma(q̄|q) f Y(q̄)dq̄

〈
f Y, νY(s)

〉
νX(s)(dq)ds

− ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)b(q1, q2, ν) f Y(q̄)mb(q̄|q1, q2)dq̄

〈
f Y, νY(s)

〉
νX(s)(dq1)νX(s)(dq2)ds − MY(t) ,

(38)

is a cádlág martingale. Comparing equations (37) and (38) implies Eq. (35).
��

3.4 On the initial distribution

As clear by the description given in Sect. 2.1, the initial distribution considered lacks
any spatial distribution on the dose andon the formation of the lesion in the cell nucleus.
To compute the initial lesion distribution ν0, we need to generalize the treatment
given in Sect. 2.1 to include in Eq. (7) a spatial description. A possible mathematical
formulation of the initial lesion computation would be the following. For a better
understanding, we will provide a step-wise construction of such distribution:

(i) given a certain dose D and fluence average specific energy zF , a random num-
ber of events ν in a cell nucleus is sampled from a distribution pe. A typical
assumption would be, due to the independence of events, to assume pe a Pois-
son distribution with average D

zF
;

(ii) the ν events are distributed randomly over the cell nucleus. Under an isotropic
and uniform random field, the distribution can be assumed to be uniform over
the domain, or in a more general setting, the distribution can be sampled from
an a priori calculated distribution of tracks using a condensed historyMC code
(Agostinelli et al. 2003). A similar distribution has been for instance calculated
in Missiaggia et al. (2021, 2022);

(iii) for any event i , i = 1, . . . , ν, a certain specific energy zi is sampled according
to the single-event microdosimetric specific energy distribution f1(z);

(iv) for any event i , i = 1, . . . , ν, with specific energy deposition zi , the number ξXi
and ξYi of sub-lethal and lethal lesion respectively is sampled from a distribution
p. A typical assumption would be to assume such distribution the product of
two independent Poisson distributions of average κ(zi ) and λ(zi ) respectively,
for some suitable functions κ and λ;

(v) denote by ξX := ∑ν
i=1 ξXi and ξY := ∑ν

i=1 ξYi the number of sub-lethal and

lethal lesion respectively. Thus sample the positions (qX, qY) ∈ Q|(ξX,ξY)|,
according to a distribution ζξ (qX, qY

∣∣ ξX, ξY). A reasonable choice for such
distribution would be to distribute zi spatially around the track using the Amor-
phous Track model (Kase et al. 2007), which is a parametrization of the radial
dose distribution around a particle track. In particular, denoting by ATi (q) the
normalized radial dose distribution representing the probability of depositing a
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certain dose in a domain, for any Q1 ⊂ Q, the relative dose absorbed in Q1 is
thus given by

zi

∫

Q1

ATi (q)dq .

Then, the probability density distribution describing the probability of creating
a lesion in Q1 is given by

ν∑

i=1

zi

∫

Q1

ATi (q)dq .

Remark 3.11 As mentioned in the introduction, a further choice would be to use track
structure code to simulate the spatial distribution of lesions within a cell nucleus.
Several papers have been published in the literature showing how this can be achieved
(Chatzipapas et al. 2022; Kyriakou et al. 2022; Zhu et al. 2020; Thibaut et al. 2023).
Nonetheless, none of these papers then asses the biological effect of given radiation
using a true spatial biological model, so the accuracy in describing the geometry of
the biological target is lost.

4 The protracted irradiation

In the present Section, we assume a further rate besides the interaction rates described
in Sect. 3. Such a rate accounts for the formation of a new random number of both
lethal and sub-lethal lesions due to protracted irradiation. We thus have the following
system of possible pathways

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X
r−→ ∅ ,

X
a−→ Y ,

X + X
b−→

{
Y with probability p ∈ [0, 1] ,

∅ with probability 1 − p ∈ [0, 1] ,
,

∅ ḋ−→
{

ξX X ,

ξY Y ,
.

(39)

where ξX and ξY are two suitable (possibly correlated) N−valued random variables.
The last pathway, namely the dose-rate ḋ is reasonable to be assumed strictly positive
up to a certain time horizon Tirr , representing the irradiation period.

We thus have the following:

(v) - protracted irradiation at a certain dose rate ḋ a random number ξX and ξY

sub-lethal and lethal lesions, respectively, are created in Q. This process can be

123



A spatial measure-valued model for radiation-induced DNA damage… Page 35 of 59 21

described by a spatial compound random measure

ζ = (ζX, ζY) =
⎛

⎝
ξX∑

i=0

δqXi
,

ξY∑

j=0

δqYj

⎞

⎠ ∈ M × M .

We assume that the random measure ζ admits a probability measure of the form

ζξ (q
X, qY

∣
∣∣ ξX, ξY)p(ξX, ξY) ,

with p(ξX, ξY) a discrete probability distribution onN2 representing the probabil-
ity of inducing (ξX, ξY) sub-lethal and lethal lesions and ζξ a spatial distribution
representing the probability of creating (ξX, ξY) sub-lethal and lethal lesions at
positions (qX, qY) ∈ Q|(ξX,ξY)|. We will further denote for short the marginal
distributions by

ζξX(qX
∣∣∣ ξX) , pX(ξX) ,

ζξY(qY
∣
∣∣ ξY) , pY(ξY) .

The protracted irradiation rate ḋ is associated to a Poisson point measure

Nḋ(ds, dξX, dξY, dq, dθ1, dθ2) on R+ × N
2 × Q|(ξX,ξY)| × R × R .

The corresponding intensity measure associated to Nḋ is

λḋ(ds, dξX, dξY, dq, dθ1, dθ2) := ds ⊗ dp(ξX, ξY) ⊗ dq ⊗ dθ1 ⊗ dθ2 .

We denote with Ñb the compensated Poisson measure defined as

Ñḋ(ds, dξX, dξY, dq, dθ1, dθ2) := Nḋ(ds, dξX, dξY, dq, dθ1, dθ2)

−λḋ(ds, dξX, dξY, dq, dθ1, dθ2) .

Remark 4.1 The protracted irradiation can be interpreted as an improved description
of the initial distribution. In particular, if ḋ is sufficiently large and Tirr is sufficiently
small, only the creation of new damages due to the protracted irradiation happens
before any of the other pathways can happen. This is typically the case in the clinical
scenario, where the dose rate usually dominates the biological interaction rates; such a
situation is referred to as conventional dose rate. In this case, it is reasonable to assume
that the initial distribution of lesions νX0 and νY0 in the instantaneous irradiation, that
is ḋ = 0, coincides with the distribution of lesions under protracted irradiation at time
T0. For this reason, a typical distribution ζ can be obtained following the description
provided in Sect. 2.1 in the particular case of a single event hitting the domain, that
is ν = 1. It is further worth stressing that there are some relevant situations where an
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explicit treatment of the effect of protracted irradiation can play a relevant role: (i)
a split dose irradiation treatment, where the treatment is split into several treatments
with a smaller dose to favorite normal tissue recovery between treatments, (ii) space
radioprotection, characterized by extremely low dose rates exposure over a long period
and (iii) FLASH radiotherapy. Both (i) and (ii) are situations where it is fundamental to
model the entire spatial distributionof radiation-induceddamages over a relatively long
time period so that the inclusion of a specific protracted irradiation rate is necessary.
The case that concerns (iii) will be explicitly treated in Sect. 4.1. �

We will assume the following to hold.

Hypothesis 4.2 4. protracted dose rate components:

(4.i) the protracted irradiation rate ḋ is positive and finite;
(4.ii) for any ξX , ξY ∈ N, ζξ is a probability measure, i.e.

∫

Q|(ξX,ξY)|
ζξ (q

X, qY
∣∣∣ ξX, ξY)dqX dqY = 1 ;

(4.iii) the random measure p admits finite p−moments, that is, for p ≥ 1, it holds

∫

N2

(
ξX

)p
dp(ξX, ξY) < ∞ ,

∫

N2

(
ξY

)p
dp(ξX, ξY) < ∞ .

Therefore, the resulting process is characterized by the process defined in Eq. (19)
with the addition of the random measure Nḋ. In particular, denote for short by LX

B
and LY

B the process introduced in equation (19), then the process under the effect of
protracted irradiation is characterized by the following weak representation, given f X

and f Y ∈ C2
0 (R), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
f X, νX(t)

〉 = LX
BνX(t)

+ ∫ t
0

∫
N2

∫
Q|(ξX ,ξY)|

∫
R

∫
R

[〈
f X, νX(s−) + ∑ξX

i=1 δqi

〉
− 〈

f X, νX(s−)
〉]

×1{θ1≤ḋ}1{θ2≤ζξ (qX,qY|ξX,ξY)}Nḋ(ds, dξX, dξY, dq, dθ1, dθ2) ,
〈
f Y, νY(t)

〉 = LY
BνY(t)

+ ∫ t
0

∫
N2

∫
Q|(ξX ,ξY)|

∫
R

∫
R

[〈
f Y, νY(s−) + ∑ξY

i=1 δqi

〉
− 〈

f Y, νY(s−)
〉]

×1{θ1≤ḋ}1{θ2≤ζξ (qX,qY|ξX,ξY)}Nḋ(ds, dξX, dξY, dq, dθ1, dθ2) .

(40)

We thus augment the probability space with the processes defined in (v). We thus
have the following definition.

Definition 4.2.1 We say that ν(t) = (νX(t), νY(t)) as defined in equations 9–10 is a
spatial radiation-induced DNA damage repair model under protracted irradiation if
ν = (ν(t))t∈R+ is (Ft )t∈R+ −adapted and for any f X and f Y ∈ C2

0 (Q) Eq. (40) holds
P−a.s.

We thus have the following well-posedness result.

123



A spatial measure-valued model for radiation-induced DNA damage… Page 37 of 59 21

Theorem 4.3 Let νX0 and νY0 two random measures with finite p−th moment, p ≥ 1,
that is it holds

E

〈
1, νX0

〉p
< ∞ , E

〈
1, νY0

〉p
< ∞ . (41)

Then, under Hypothesis 3.4–4.2, for any T > 0 it exists a unique strong solution
in D ([0, T ],M × M) to the system (19). Also, it holds

E sup
t≤T

〈1, ν(t)〉p < ∞ . (42)

Proof The proof proceeds with similar arguments as in the proof of Theorem 3.8,
taking into account the protracted irradiation term.

For t ≥ 0, we have,

sup
s∈[0,τ̄Xn ]

〈
1, νX(s)

〉p ≤ 〈
1, νX0

〉p +

+
∫ τ̄Yn

0

∫

N0

∫

Q

∫

R
2+

[(〈
1, νY(s−)

〉 + 1
)p − 〈

1, νY(s−)
〉p]

× 1{i≤NX(s−)}1{θ1≤a(Hi (νX(s−)),〈	a ,ν〉)}1{θ2≤ma(q|Hi (νX(s−)))}Na(ds, di, dq, dθ1, dθ2)

+
∫ τ̄Yn

0

∫

N
2
0

∫

Q

∫

R
2+

[(〈
1, νY(s−)

〉 + 1
)p − 〈

1, νY(s−)
〉p]

× 1{i1<i2≤NX(s−)}1{
θ1≤b(Hi1 (νX(s−)),Hi2 (νX(s−)),〈	b,ν〉)}1{

θ2≤mb(q|Hi1 (νX(s−)),Hi2 (νX(s−)))
}Nb;p(ds, di1, di2, dq, dθ1, dθ2)

+
∫ τ̄Xn

0

∫

N2

∫

Q|(ξX ,ξY )|

∫

R

∫

R

⎡

⎣
〈

f X, νX(s−) +
ξX∑

i=1

δqi

〉

− 〈
f X, νX(s−)

〉
⎤

⎦

p

× 1{θ1≤ḋ}1{θ2≤ζξ (qX ,qY |ξX ,ξY)}Nḋ(ds, dξX, dξY, dq, dθ1, dθ2) .

(43)

Notice that, for any positive integer x and y it holds

(x + y)p − y p ≤ Cpy
p−1x p , (44)

so that, using Eq. (44) into equation (43), we have that, for some C > 0 that can take
possibly different values, and using the bound proven in equation (28),

E sup
s∈[0,τ̄Xn ]

〈
1, νX(s)

〉p

≤ E
〈
1, νX0

〉p

+ CE

∫ τ̄Yn

0

(
1 + 〈

1, νY(s−)
〉p−1

) 〈
1, νY(s−)

〉
ds

+ C ḋE
∫ τ̄Xn

0

∫

N2

∫

Q|(ξX ,ξY )|

(
ξX

)p 〈
1, νX(s−)

〉p−1
ζξ (q

X, qY
∣∣ ξX, ξY)dqX dqY dp(ξX, ξY)ds ≤

≤ C

(
1 + E

∫ t

0

〈
1, νX(s ∧ τYn )

〉p
)

.

(45)
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Gronwall lemma implies that there exists C > 0 depending on p and T but inde-
pendent of n, such that

E sup
s∈[0,τ̄Xn ]

〈
1, νX(s)

〉p ≤ C . (46)

Similar arguments can be used to prove that

E sup
s∈[0,τ̄Yn ]

〈
1, νY(s)

〉p ≤ C . (47)

The proof thus follows in a straightforward manner proceeding as in the proof of
Theorem 3.8. ��

The above process is characterized by the following infinitesimal generator

LF( f X, f Y)(ν) = Ld F( f X, f Y)(ν) +
∑

h∈{r,a,b,ḋ}
Lh F( f X, f Y)(ν) , (48)

where Ld F( f X, f Y)(ν) and Lh F( f X, f Y)(ν), h ∈ {r, a, b, ḋ}, are the infinitesimal gen-
erators introduced in equations (22)–(23), whereas Lḋ is defined as

LḋF( f X, f Y)(ν) = ḋ
∫

N2

∫

Q|(ξX ,ξY )|

⎡

⎣F( f X, f Y)

⎛

⎝νX +
ξX∑

i=1

δqXi
, νY +

ξY∑

i=1

δqYi

⎞

⎠ − F( f X, f Y)(ν)

⎤

⎦

×ζξ (q
X, qY

∣∣ ξX, ξY)dqX dqYdp(ξX, ξY) . (49)

We thus have the martingale properties and representation corresponding to Theo-
rem 3.10.

Theorem 4.4 Assume that Hypothesis 3.4–4.2 holds true and that νX0 and νY0 are two
random measures independent with finite p−th moment, p ≥ 2. Then:

(i) ν is a Markov process with infinitesimal generator L defined by (48);
(ii) assume that for F ∈ C2

b (R × R) and for f X , f Y ∈ C20(Q) such that for all
ν ∈ M × M, it holds

|F( f X, f Y)(ν)| + |LF( f X, f Y)(ν)| ≤ C
(
1 + 〈1, ν0〉p

)
. (50)

Then, the process

F( f X, f Y)(ν(t)) − F( f X, f Y)(ν0) −
∫ t

0
LF( f X, f Y)(ν(s))ds , (51)

is a cádlág martingale starting at 0;
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(iii) the processes MX and MY defined for f X , f Y ∈ C2
0 by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MX(t) = 〈
f X, νX(t)

〉 − 〈
f X, νX0

〉 − ∫ t
0

〈LX
d f X(x), νX(s)

〉
ds

+ ∫ t
0

∫
Q [r(q, ν) + a(q, ν)] f X(q)νX(s)(dq)ds

+ ∫ t
0

∫
Q̃2 b(q1, q2, ν)( f X(q1) + f X(q2))νX(s)(dq1)νX(s)(dq2)ds

− ∫ t
0

∫
N

∫
Q̃ξX ḋ

(∑ξX

i=1 f X(qXi )
)

ζξX (qX
∣∣ ξX)dqXdp(ξX, ξY)ds ,

MY(t) = 〈
f Y, νY(t)

〉 − 〈
f Y, νY

〉 − ∫ t
0

〈LY
d f Y(x), νY(s)

〉
ds

− ∫ t
0

∫
Q a(q, ν)

∫
Q ma(q̄|q) f Y(q̄)dq̄νX(s)(dq)ds

− ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)b(q1, q2, ν) f Y(q̄)mb(q̄|q1, q2)dq̄νX(s)(dq1)νX(s)(dq2)ds

− ∫ t
0

∫
N

∫
Q̃ξY ḋ

(∑ξY

i=1 f Y(qYi )
)

ζξY (qY
∣∣ ξY)dqYdp(ξX, ξY)ds ,

(52)

are cádlág L2−martingale starting at 0 with predictable quadratic variation
given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
MX

〉
(t) = ∫ t

0

〈∇T f XσX∇ f X, νX
〉
ds

+ ∫ t
0

∫
Q [r(q, ν) + a(q, ν)]

(
f X(q)

)2
νX(s)(dq)ds

+ ∫ t
0

∫
Q̃2 b(q1, q2, ν)( f X(q1) + f X(q2))2νX(s)(dq1)νX(s)(dq2)ds

− ∫ t
0

∫
N

∫
Q̃ξX ḋ

(∑ξX

i=1 f X(qXi )
)2

ζξX (qX
∣∣ ξX)dqXdp(ξX, ξY)ds ,

〈
MY

〉
(t) = ∫ t

0

〈∇T f YσY∇ f Y, νY
〉
ds

− ∫ t
0

∫
Q a(q, ν)

∫
Q ma(q̄|q)

(
f Y(q̄)

)2
dq̄νX(s)(dq)ds

− ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)b(q1, q2, ν)

(
f Y(q̄)

)2
mb(q̄|q1, q2)dq̄νX(s)(dq1)νX(s)(dq2)ds

− ∫ t
0

∫
N

∫
Q̃ξY ḋ

(∑ξY

i=1 f Y(qYi )
)2

ζξY (qY
∣∣ ξY)dqYdp(ξX, ξY)ds ,

(53)

Proof The proof is analogous to the proof of Theorem 3.10. ��

4.1 The bio-chemical system under protracted irradiation

Asmentioned above, before focusing on amacroscopic limit of the spatial DNA repair
model, we will consider a different setting relevant to the considered application. As
commented in Sect. 2.1, the functions κ and λ usually include information regarding
the chemical environment and radical formation. In the following treatment, we make
this assumption explicit, assuming that the formation of new damages depends on the
chemical environment described by a set of reaction–diffusion equations. It is worth
stressing that in general, the energy deposition of the particle also affects the chemical
environment so the above-mentioned reaction–diffusion equation also includes a term
dependent on the energy deposition. As the chemical evolves on a much faster time
scale, the concentration of chemical species will be described by a set of parabolic
PDE, with a random discontinuous inhomogeneous term due to the effect of radiation.
We will not consider a specific model for the chemical environment, but on the con-
trary, we will assume a general mass control hypothesis that includes many possible
systems proposed in the literature. Future investigation will be specifically devoted to
analyzing and implementing the highly dimensional chemical system, including the
homogeneous chemical stage also the heterogeneous one.
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Assume a set of L chemical species, then, for i = 1, . . . , L , the concentration of
the i−th species ρi evolves according to

⎧
⎪⎨

⎪⎩

∂
∂t ρi (q, t) = Di�qρi (q, t) + fi (ρ) + Gi (q) , in Q × [0, T ] ,

∇qρi · n(q) = 0 , in ∂Q × (0, T ) ,

ρi (0, q) = ρ0;i (q) , in Q .

(54)

We consider the following.

(v′) − protractedirradiation at a certain dose rate ḋ a random number ξX and
ξY sub-lethal and lethal lesions, respectively, are created in Q. This process is
described by a random measure that depends on chemical concentration

ζ = (ζX, ζY) =
⎛

⎝
ξX∑

i=0

δQi ,

ξY∑

i=0

δQi

⎞

⎠ ∈ M × M .

We assume that the random measure ζ admits a decomposition of the form

ζξ (q
X, qY

∣∣∣ ξX, ξY)p
(
ξX, ξY

∣∣∣ ρ(q, t)
)

,

with p(ξX, ξY) a discrete probability distribution on N
2.

(vi) − chemicalenvironment for all i = 1, . . . , L , the random discontinuous
inhomogeneous term G is defined as

Gi : � × Q → R+ , � × Q 	 (ω, q) �→
∞∑

k=1

Zk;i (q, ω)δτ k
ḋ(ω)

.

Remark 4.5 The random function Zi represents the energy deposited by an event
and can be computed as described in Sect. 2.1. Regarding the dependence of p on
the chemical environment, several possible choices can be made. What is currently
known is that the actual number of damages created by certain radiation depends on the
chemical environment. Therefore, considering the description of the initial damage
distribution given in Sect. 2.1, a meaningful choice would be to assume that given
a certain specific energy deposition, the average number of induced lethal and sub-
lethal lesions described in (iv) depends on the chemical environment, that is we have
λ(zi , ρ) and κ(zi , ρi ). �

We will assume the following to hold.

Hypothesis 4.6 5. chemical environment components:

(5.i) for all i = 1, . . . , L , the random initial condition ρ0;i is bounded and non-
negative P−a.s., that is

ρ0;i (q, ω) ∈ L∞(Q) , and ρ0;i (q, ω) ≥ 0 , for a.e. q ∈ Q , P − a.s. ,
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and has finite p−th moment, p ≥ 1, that is

E
∥∥ρ0;i

∥∥p
∞ < ∞ .

(5.ii) there exist constants C0 and C1 such that

L∑

i=1

fi (ρ) ≤ C0 + C1

L∑

i=1

ρi ;

(5.iii) for all i = 1, . . . , L , fi is locally Lipschitz and

fi (ρ) ≥ 0 , for all ρ = 0 ;

(5.iv) for all i = 1, . . . , L , there exist ε > 0 and K > 0 such that

| fi (ρ)| ≤ K (1 + |ρ|2+ε) ;

(5.v) for all i = 1, . . . , L , the random function Zi is bounded and non-negative
P−a.s., that is

Zi (q, ω) ∈ L∞(Q) , and Zi (q, ω) ≥ 0 , for a.e. q ∈ Q , P − a.s. ,

and has finite p−th moment, p ≥ 1, that is

E

∥∥∥Zi
∥∥∥
p

∞ < ∞ .

Remark 4.7 As mentioned in the Introduction, we will not focus on specific examples
of chemical environments. Nonetheless, since almost any chemical model contains
second-order reaction rates, we are forced to consider more general assumptions than
the standard global Lipschitz condition. For this reason, we rather consider a mass
control condition in Hypothesis 4.6(ii). Such assumptions can be immediately seen to
hold in a reaction–diffusion description of the systems introduced in Abolfath et al.
(2020a); Labarbe et al. (2020). �
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Therefore, the resulting process is characterized by the process defined in Eq. (40)
with the addition of the chemical system as defined in Eq. (54). We thus have the
following representation

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
f X, νX(t)

〉 = LX
BνX(t)

+ ∫ t
0

∫
Q|(ξX ,ξY)|

∫
N2

∫
R

∫
R

[〈
f X, νX(s−) + ∑ξX

i=1 δqXi

〉
− 〈

f X, νX(s−)
〉]

×1{θ1≤ḋ}1{
θ2≤ζXξ (qX,qY|,ξX,ξY,ρ)

}Nḋ(ds, dq, dξX, dξY, dθ1, dθ2) ,

〈
f Y, νY(t)

〉 = LY
BνY(t)

+ ∫ t
0

∫
Q|(ξX ,ξY)|

∫
N2

∫
R

∫
R

[〈
f Y, νY(s−) + ∑ξY

i=1 δqYi

〉
− 〈

f Y, νY(s−)
〉]

×1{θ1≤ḋ}1{θ2≤ζξ (qX,qY|,ξX,ξY,ρ)}Nḋ(ds, dq, dξX, dξY, dθ1, dθ2) ,

ρi (q, t) = ρ0;i (q) + ∫ t
0

(
Di�qρi (q, s) + fi (ρ)

)
ds + ∑

s<t
∑∞

k=1 Z
k(q)1{

s=τ k
ḋ

} .

(55)

Augment then the filtration with the processes defined in (v′) − (vi).

Definition 4.7.1 We say that ν(t) = (νX(t), νY(t)) as defined in equations 9–10 is a
spatial radiation-induced DNA damage repair model under protracted irradiation if
ν = (ν(t))t∈R+ is (Ft )t∈R+ −adapted and for any f X and f Y ∈ C2

0 (Q) Eq. (55) holds
P−a.s.

We thus have the following well-posedness result.

Theorem 4.8 Let νX0 and νY0 two random measures with finite p−th moment, p ≥ 1,
that is it holds

E

〈
1, νX0

〉p
< ∞ , E

〈
1, νY0

〉p
< ∞ . (56)

Then, underHypothesis 3.4–4.2–4.6, for any T > 0 it exists a unique strong solution

of the system (19) in D
(
[0, T ],M × M × (L∞(Q))L

)
. Also, it holds

E sup
t≤T

〈1, ν(t)〉p < ∞ , E sup
t≤T

sup
i=1 ,...,L

‖ρi‖p∞ < ∞ . (57)

Proof The main step of the proof follows alike Theorems 3.8–4.3, noticing that
between consecutive jump times Tm and Tm+1, under Hypothesis 4.6 using (Fell-
ner et al. 2020, Theorem 1.1), equation (54) admits a unique strong solution in

C
(
[Tm, Tm+1); (L∞(Q))L

)
. In fact, since Z is bounded and non-negative P−a.s.

we can infer that for any jump time Tm it holds

ρi (q, Tm) := lim
t↑Tm

ρi (q, t) + Z(q) ,

ρi (q, Tm, ω) ∈ L∞(Q) , and ρi (q, Tm, ω) ≥ 0 , for a.e. q ∈ Q , P − a.s. .

The rest of the proof follows Theorems 3.8–4.3. ��
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Remark 4.9 It is worth noticing that, using (Fellner et al. 2020, Theorem1.1), we
can infer that, between consecutive jump times Tm and Tm+1, it holds ρ ∈
C
(
(Tm, Tm+1);

(
C2
0 (Q)

)L)
. Nonetheless, since we cannot require Z to be smooth,

we cannot conclude that ρ ∈ D
(
(0, T ); (C2

0 (Q)
)L)

as at the jump times Tm , ρ(Tm, q)

can only be shown to be bounded. �

5 The large population limit

In the following, we assume the model coefficients depend on a parameter K and study
the behavior of the measure-valued solution νK = (

νX;K, νY;K) studied in previous
Sections as K → ∞.

We thus consider a sequence of the initial measure so that 1
K

(
ν
X;K
0 , ν

Y;K
0

)
→

(
uX0 , uY0

)
and we assume that the rates of the model as introduced in Sects. 3–4 are

rescaled as follows

aK(q, v) := a
(
q,

v

K

)
, rK(q, v) := r

(
q,

v

K

)
,

bK(q1, q2, v) := 1

K
b
(
q1, q2,

v

K

)
, ḋK := Kḋ .

Remark 5.1 The typical assumption for the dose rate is ḋ = D
Tirr

1
zF

(Cordoni et al.
2021). Since the single event mean specific energy zF is defined as energy over mass,
it decreases with the increase of the mass, so it is reasonable to assume that ḋ scale
with the parameter K. Nonetheless, other reasonable choices can be made, such as
assuming that ḋ is independent of K. This assumption would imply that the limiting
equation is no longer deterministic as the quadratic variation of the process would not
vanish, and the irradiation times remain discrete. Such a case could be relevant for the
case of extremely low dose rates and low doses considered in space radioprotection.
Nonetheless, in such a case it would be more relevant to look at less severe biological
endpoints than DSB and clustered DSB, where particular interest would be on SSB
or potentially cancerogenic mutations. For this reason, the case of ḋ independent of
K will be left for a future study.

We thus aim at characterizing the limit as K → ∞ of the rescaled measure

uK(t) := 1

K

N (t)∑

i=1

δQi (t)δsi = 1

K
νK(t) . (58)

As above we also define for short the marginal distributions

uX;K(t)(·) := uK(t) ( · ,X) , uY;K(t)(·) := uK(t) ( · ,Y) . (59)
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Analogous arguments to the one derived in Sects. 3–4 show that
(
νX;K(t),

νY;K(t)
)
t≥0 is a Markov process with infinitesimal generator of the form

LKF( f X, f Y)(ν) = LK
d F( f X, f Y)(ν) +

∑

h∈{r,a,b,ḋ}
LK
h F( f X, f Y)(ν) , (60)

with

LK
d F( f X, f Y)(ν) =

〈
LX
d f X, νX

〉 ∂

∂x
F
(〈

f X, νX X
〉
,
〈
f Y, νX X

〉)

+
〈
LY
d f Y, νY

〉 ∂

∂ y
F
(〈

f X, ν
〉
,
〈
f Y, ν

〉)

+
〈
∇T f X σX ∇ f X, νX

〉 1

K

∂2

∂x2
F
(〈

f X, ν
〉
,
〈
f Y, ν

〉)

+
〈
∇T f Y σY ∇ f Y, νY

〉 1

K

∂2

∂ y2
F
(〈

f X, ν
〉
,
〈
f Y, ν

〉)
,

(61)

and

LK
r F( f X, f Y)(ν)

= K
∫

Q
r(q, ν)

[
F( f X, f Y)

(
νX − 1

K
δq , ν

Y
)

− F( f X, f Y)(ν)

]
νX(dq) ,

LK
a F( f X, f Y)(ν)

= K
∫

Q

∫

Q
a(q, ν)

[
F( f X, f Y)

(
νX − 1

K
δq , ν

Y + 1

K
δq̄

)
− F( f X, f Y)(ν)

]
ma(q̄|q)dq̄νX(dq) ,

LK
b F( f X, f Y)(ν)

= K2
∫

Q̃2

∫

Q
p(q1, q2)b(q1, q2, ν)

[
F( f X, f Y)

(
νX − 1

K
δq1 − 1

K
δq2 , ν

Y + 1

K
δq̄

)
− F( f X, f Y)(ν)

]

× mb(q̄|q1, q2)dq̄νX(dq1)ν
X(dq2)

+
∫

Q̃2
(1 − p(q1, q2)) b(q1, q2, ν)

[
F( f X, f Y)

(
νX − 1

K
δq1 − 1

K
δq2 , ν

Y
)

− F( f X, f Y)(ν)

]
νX(dq1)ν

X(dq2) ,

LK
ḋ
F( f X, f Y)(ν)

= ḋ
∫

N2

∫

Q|(ξX ,ξY )|

⎡

⎣F( f X, f Y)

⎛

⎝νX + 1

K

ξX∑

i=1

δqXi
, νY + 1

K

ξY∑

i=1

δqYi

⎞

⎠ − F( f X, f Y)(ν)

⎤

⎦

× ζξ ( q
X, qY

∣∣ ξX, ξY)dp(ξX, ξY)dqX dqY .

(62)

We thus can infer from Theorem 4.4 the following martingale property for the
rescaled system.

123



A spatial measure-valued model for radiation-induced DNA damage… Page 45 of 59 21

Lemma 5.2 ConsiderK ≥ 1 fixed, assume that Hypothesis 3.4–4.2 holds true and that
νX0 and νY0 are two random measures independent with finite p−th moment, p ≥ 2.
Then, the processesMX and MY defined for f X , f Y ∈ C2

0 by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MX(t) = 〈
f X, uX;K(t)

〉 −
〈
f X, uX;K

0

〉
− ∫ t

0

〈LX
d f X(x), uX;K(s)

〉
ds

+ ∫ t
0

∫
Q

[
rK(q, ν) + aK(q, ν)

]
f X(q)uX;K(s)(dq)ds

+ ∫ t
0

∫
Q̃2 bK(q1, q2, ν)( f X(q1) + f X(q2))uX;K(s)(dq1)uX;K(s)(dq2)ds

− ∫ t
0

∫
N

∫
Q̃ξX ḋK

(∑ξX

i=1 f X(qXi )
)

ζξX (qX
∣∣ ξX)dqXdpX(ξX)ds ,

MY(t) = 〈
f Y, uY;K(t)

〉 − 〈
f Y, uY;K 〉 − ∫ t

0

〈LY
d f Y(x), uY;K(s)

〉
ds

− ∫ t
0

∫
Q aK(q, ν)

∫
Q ma(q̄|q) f Y(q̄)dq̄uX;K(s)(dq)ds

− ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)bK(q1, q2, ν) f Y(q̄)mb(q̄|q1, q2)dq̄uX;K(s)(dq1)uX;K(s)(dq2)ds

− ∫ t
0

∫
N

∫
Q̃ξY ḋK

(∑ξY

i=1 f Y(qYi )
)

ζξY (qY
∣
∣ ξY)dqYdpY(ξY)ds ,

(63)

are cádlág L2−martingales starting at 0 with predictable quadratic variation given
by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
MX

〉
(t) = 1

K

∫ t
0

〈∇T f XσX∇ f X, uX;K 〉 ds
+ 1

K

∫ t
0

∫
Q

[
rK(q, ν) + aK(q, ν)

∫
Q ma(q̄|q)dq̄

] (
f X(q)

)2
uX;K(s)(dq)ds

+ 1
K

∫ t
0

∫
Q̃2

∫
Q p(q1, q2)bK(q1, q2, ν)( f X(q1) + f X(q2))2mb(q̄|q1, q2)dq̄uX;K(s)(dq1)uX;K(s)(dq2)ds

+ 1
K

∫ t
0

∫
Q̃2 (1 − p(q1, q2)) bK(q1, q2, ν)( f X(q1) + f X(q2))2uX;K(s)(dq1)uX;K(s)(dq2)ds

− 1
K

∫ t
0

∫
N

∫
Q̃ξX ḋK

(∑ξX

i=1 f X(qXi )
)2

ζξX ( qX
∣
∣ ξX)dqXdpX(ξX)ds ,

〈
MY

〉
(t) = 1

K

∫ t
0

〈∇T f YσY∇ f Y, uY;K 〉 ds
− 1

K

∫ t
0

∫
Q aK(q, ν)

∫
Q ma(q̄|q)

(
f Y(q̄)

)2
dq̄uX;K(s)(dq)ds

− 1
K

∫ t
0

∫
Q̃2

∫
Q p(q1, q2)bK(q1, q2, ν)

(
f Y(q̄)

)2
mb(q̄|q1, q2)dq̄uX;K(s)(dq1)uX;K(s)(dq2)ds

− 1
K

∫ t
0

∫
N

∫
Q̃ξY ḋK

(∑ξY

i=1 f Y(qYi )
)2

ζξY ( qY
∣∣ ξY)dqYdpY(ξY)ds .

(64)

Proof The proof is analogous to the proof of Theorem 3.10. ��
We assume the following.

Hypothesis 5.3 6. rescaled system:

(6.i) the initial measure uK0 = (uX;K
0 , uY;K

0 ) converges in law for the weak topology
on MF(Q) × MF(Q) to some deterministic finite measure u0 = (uX0 , uY0 ) ∈
MF(Q) × MF(Q); also we assume supK E

〈
1, uK0

〉3
< ∞;

(6.ii) all the parameters rK, aK and bK are continuous on the corresponding space,
that is either Q×R or Q×Q×R and they are Lipschitz continuous w.r.t. the
last variable, that is there exist positive constants L r, La and Lb such that, for
all q , q1 , q2 ∈ Q and v1 , v2 ∈ R it holds

|r(q, v1) − r(q, v2)| ≤ L r |v1 − v2| ,

|a(q, v1) − r(q, v2)| ≤ La |v1 − v2| ,

|b(q1, q2, v1) − r(q1, q2, v2)| ≤ Lb |v1 − v2| .

Next is the main result of the present section.
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Theorem 5.4 Assume that Hypothesis 3.4–4.2–5.3 holds and consider uK as defined
in Eq. (58). Then for all T > 0, the sequence

(
uK

)
K∈N converges in law

in D ([0, T ];MF(Q)) to a deterministic continuous measure-valued function in
C ([0, T ];MF(Q)), which is the unique weak solution of the following non-linear
integro-differential equation, f X , f Y ∈ C2

0 ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
f X, uX(t)

〉 = 〈
f X, uX0

〉 + ∫ t
0

〈LX
d f X(x), uX(s)

〉
ds

− ∫ t
0

∫
Q [r(q, u) + a(q, u)] f X(q)uX(s)(dq)ds

− ∫ t
0

∫
Q̃2 b(q1, q2, u)( f X(q1) + f X(q2))uX(s)(dq1)uX(s)(dq2)ds

+ ∫ t
0

∫
N

∫
Q̃ξX ḋ

(∑ξX

i=1 f X(qXi )
)

ζξX (qX
∣∣ ξX)dqXdpX(ξX)ds ,

〈
f Y, uY(t)

〉 = 〈
f Y, uY

〉 + ∫ t
0

〈LY
d f Y(x), uY(s)

〉
ds

+ ∫ t
0

∫
Q a(q, u)

∫
Q ma(q̄|q) f Y(q̄)dq̄uX(s)(dq)ds

+ ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)b(q1, q2, u) f Y(q̄)mb(q̄|q1, q2)dq̄uX(s)(dq1)uX(s)(dq2)ds

+ ∫ t
0

∫
N

∫
Q̃ξY ḋ

(∑ξY

i=1 f Y(qYi )
)

ζξY (qY
∣∣ ξY)dqYdpY(ξY)ds .

(65)

Further, u satisfies

sup
t∈[0,T ]

〈1, u(t)〉 < ∞ . (66)

The steps of the proof of Theorem 5.4 are standard in the literature (Popovic and
Véber 2023; Bansaye and Méléard 2015), or also (Isaacson et al. 2022) for the case
of a bimolecular reaction. However, it is worth noting that comprehensive results
encompassing the case addressed in this paper are not yet fully accessible. For instance
(Isaacson et al. 2022) cannot account for zeroth-order reactions. The most extensive
findings in this context have been established in Popovic and Véber (2023), although it
is important tomention that the randomgenerationof lesions has not been incorporated.
For this reason, we will in the next Sections prove the large-population limit for the
spatial model developed in Sect. 4. As customary, for the sake of readability the proof
of Theorem 5.4 will be divided into four steps.

5.1 Step 1: uniqueness of solution

The first result concerns the proof of the uniqueness of the limiting process (65).

Theorem 5.5 There exists a unique solution to the Eq. (65) in C ([0, T ];MF(Q)).

Proof Arguments similar to the proof in Theorem 4.3 imply that neglecting negative
terms and using Grownall’s lemma, the following estimate holds

sup
t∈[0,T ]

〈
1, uX(t)

〉
≤ C , sup

t∈[0,T ]

〈
1, uY(t)

〉
≤ C .
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Consider then two different solutions u1 = (uX1 , uY1 ) and u2 = (uX2 , uY2 ) to the
Eq. (65), satisfying

sup
t∈[0,T ]

〈
1, uX1 (t) − uX2 (t)

〉
< C(T ) < ∞ .

‘ TX and TY the semigroups generated by the operators LX
d and LY

d . We thus have for
any bounded and measurable functions f such that ‖ f ‖∞ ≤ 1,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
f X, uX(t)

〉 = 〈
TX(t) f X, uX0

〉

− ∫ t
0

∫
Q

[
r(q, u) + a(q, u)

∫
Q

]
TX(t − s) f X(q)uX(s)(dq)ds

− ∫ t
0

∫
Q̃2 b(q1, q2, u)TX(t − s)( f X(q1) + f X(q2))uX(s)(dq1)uX(s)(dq2)ds

+ ∫ t
0

∫
N

∫
Q̃ξX ḋ

(∑ξX

i=1 f X(qXi )
)

ζξX ( qX
∣∣ ξX)dqXdpX(ξX)ds ,

〈
f Y, uY(t)

〉 = 〈
TY(t) f Y, uY

〉

+ ∫ t
0

∫
Q a(q, u)

∫
Q ma(q̄|q)TY(t − s) f Y(q̄)dq̄uX(s)(dq)ds

+ ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)b(q1, q2, u)TY(t − s) f Y(q̄)mb(q̄|q1, q2)dq̄uX(s)(dq1)uX(s)(dq2)ds

+ ∫ t
0

∫
N

∫
Q̃ξY ḋ

(∑ξY

i=1 f Y(qYi )
)

ζξY ( qY
∣
∣ ξY)dqYdpY(ξY)ds .

(67)

We thus have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∣
∣〈 f X, uX1 (t) − uX2 (t)

〉∣∣ ≤ ∫ t
0

∣
∣∣
∫
Q [r(q, u1) + a(q, u1)] TX(t − s) f X(q)

(
uX1 (s)(dq) − uX2 (s)(dq)

)∣∣∣ ds

+ ∫ t
0

∣
∣∣
∫
Q̃2 b(q1, q2, u1)TX(t − s)( f X(q1) + f X(q2))

(
uX1 (s)(dq1)uX1 (s)(dqq ) − uX2 (s)(dq1)uX2 (s)(dq1)

)∣∣∣ ds

+ ∫ t
0

∣
∣∣
∫
N

∫
Q̃ξX ḋ

(∑ξX

i=1 T
X(t − s) f X(qXi )

)
ζξX ( qX

∣∣ ξX)dpX(ξX)dqX
∣
∣∣ ds

+ ∫ t
0

∣∣
∣
∫
Q

[
r(q, u2) + a(q, u2) − r(q, u1) − a(q, u1)

∫
Q

]
TX(t − s) f X(q)uX2 (s)(dq)

∣∣
∣ ds

+ ∫ t
0

∣
∣
∣
∫
Q̃2 (b(q1, q2, u2) − b(q1, q2, u1)) TX(t − s)( f X(q1) + f X(q2))uX2 (s)(dq1)uX2 (s)(dq1)

∣
∣
∣ ds .

(68)

Since it holds that ‖TX(t − s) f X(q)‖∞ ≤ 1, we have that

∣∣
∣[r(q, u1) + a(q, u1)] T

X(t − s) f X(q)

∣∣
∣ ≤ r̄ + ā(1 + |v|) ≤ C ,

∣
∣∣b(q1, q2, u1)TX(t − s)( f X(q1) + f X(q2))

∣
∣∣ ≤ b̄(1 + |v|) ≤ C ,

∣∣∣
∣∣∣
ḋ

⎛

⎝
ξX∑

i=1

TX(t − s) f X(qXi )

⎞

⎠

∣∣∣
∣∣∣
≤ C ,

∣∣∣[r(q, u2) + a(q, u2) − r(q, u1) − a(q, u1)] T
X(t − s) f X(q)

∣∣∣

≤ C sup
‖ f X‖∞≤1

〈1, u1(t) − u2(t)〉 ,

∣∣∣(b(q1, q2, u2) − b(q1, q2, u1)) T
X(t − s)( f X(q1) + f X(q2))

∣∣∣

≤ C sup
‖ f X‖∞≤1

〈1, u1(t) − u2(t)〉 .

(69)
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We therefore can infer, using estimates (69) in Eq. (68), that

∣∣
∣
〈
f X, uX1 (t) − uX2 (t)

〉∣∣
∣ ≤ C

∫ t

0
sup

‖ f X‖∞≤1

〈
f X, u1(s) − u2(s)

〉
ds .

Using thus Gronwall’s lemma, we can finally conclude that for all t ≤ T ,

sup
‖ f X‖∞≤1

〈
f X, u1(s) − u2(s)

〉
= 0 ,

from which the uniqueness follows. ��

5.2 Step 2: propagation of moments

Lemma 5.6 Assume that Hypothesis 3.4–4.2–5.3 holds, then for any T > 0, there
exists a constant C := C(T ) > 0 which depends on T such that the following
estimates hold

sup
K

E sup
t∈[0,T ]

〈
1, uX,K(t)

〉3 ≤ C , sup
K

E sup
t∈[0,T ]

〈
1, uY,K(t)

〉3 ≤ C . (70)

In particular, we further have

sup
K

E sup
t∈[0,T ]

〈
f X, uX,K(t)

〉3 ≤ C , sup
K

E sup
t∈[0,T ]

〈
f Y, uY,K(t)

〉3 ≤ C . (71)

Proof The proof follows from computations similar to what is done in the proof of
Theorem 4.3 obtaining a similar estimate as in Eq. (29). That is we have,

E sup
t∈[0,T∧τXn ]

〈
1, uX,K(t)

〉3 ≤ C , E sup
t∈[0,T∧τYn ]

〈
1, uY,K(t)

〉3 ≤ C .

Taking the limit τXn and τYn as K → ∞, Fatou’s lemma implies Eq. (70). Estimate
(71) thus follows from the fact that f X and f Y are bounded. ��

5.3 Step 3: tightness

In the following, we will denote by �K the law of the process uK = (uX;K, uY,K).
We then have the following.

Theorem 5.7 Assume Hypothesis 3.4–4.2–5.3 hold, then the sequence of laws(
�K

)
K∈N on D ([0, T ];MF) is tight when endowed with the vague topology.

Proof We equip MF with the vague topology; to prove the tightness of the sequence
of laws �K, using Roelly-Coppoletta (1986), it is enough to show that the sequence
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of laws of the processes
〈
f X, uX;K〉 and

〈
f Y, uY;K〉 are tight in D ([0, T ];R) for any

function f X and f Y. As standard, in order to accomplish this, we employ the Aldous
criterion (Aldous 1978) and Rebolledo criterion (Joffe and Métivier 1986).

Notice first that, using the fact that f X and f Y are bounded, we have already proved
estimates (71). Consider thus δ > 0 and two stopping times (τ1, τ2) satisfying a.s.
0 ≤ τ1 ≤ τ2 ≤ τ2 + δ ≤ T . Using Doob’s inequality, together with estimate (70) and
the martingale representation given in Lemma 5.2,

E

[〈
MX

〉
(τ2) −

〈
MX

〉
(τ1)

]
≤ CδE

[

1 + sup
t∈[0,T ]

〈
1, uX;K〉3 + sup

t∈[0,T ]

〈
1, uY;K〉3

]

,

E

[〈
MY

〉
(τ2) −

〈
MY

〉
(τ1)

]
≤ CδE

[

1 + sup
t∈[0,T ]

〈
1, uX;K〉3 + sup

t∈[0,T ]

〈
1, uY;K〉3

]

.

Similarly, denoting by

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AX(t) := ∫ t
0

〈LX
d f X(x), uX;K(s)

〉
ds

− ∫ t
0

∫
Q

[
rK(q, ν(s)) + aK(q, ν)

]
f X(q)uX;K(s)(dq)ds

− ∫ t
0

∫
Q̃2 bK(q1, q2, ν)( f X(q1) + f X(q2))uX;K(s)(dq1)uX;K(s)(dq2)ds

+ ∫ t
0

∫
N

∫
Q̃ξX ḋK

(∑ξX

i=1 f X(qXi )
)

ζξX (qX
∣∣ ξX)dqXdpX(ξX)ds ,

AY(t) := ∫ t
0

〈LY
d f Y(x), uY;K(s)

〉
ds

+ ∫ t
0

∫
Q aK(q, ν)

∫
Q ma(q̄|q) f Y(q̄)dq̄uX;K(s)(dq)ds

+ ∫ t
0

∫
Q̃2

∫
Q p(q1, q2)bK(q1, q2, ν) f Y(q̄)mb(q̄|q1, q2)dq̄uX;K(s)(dq1)uX;K(s)(dq2)ds

+ ∫ t
0

∫
N

∫
Q̃ξY ḋK

(∑ξY

i=1 f Y(qYi )
)

ζξY (qY
∣
∣ ξY)dqYdpY(ξY)ds ,

(72)

the finite variation part of
〈
f X, uX;K(τ2)

〉 − 〈
f X, uX;K(τ1)

〉
and

〈
f Y, uY;K(τ2)

〉 −〈
f Y, uY;K(τ1)

〉
we have that

E

[〈
AX

〉
(τ2) −

〈
AX

〉
(τ1)

]
≤ CδE

[

1 + sup
t∈[0,T ]

〈
1, uX;K〉3 + sup

t∈[0,T ]

〈
1, uY;K〉3

]

,

E

[〈
AY

〉
(τ2) −

〈
AY

〉
(τ1)

]
≤ CδE

[

1 + sup
t∈[0,T ]

〈
1, uX;K〉3 + sup

t∈[0,T ]

〈
1, uY;K〉3

]

.

The claim thus follows. ��

5.4 Step 4: identification of the limit

Theorem 5.8 Assume Hypothesis 3.4–4.2–5.3 hold, denote by � the limiting law of
the sequence of laws

(
�K

)
K∈N. Denote by u the process with law �. Then u is a.s.

strongly continuous and it solves Eq. (65).
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Proof The fact that u is a.s. strongly continuous follows from the fact that

sup
t∈[0,T ]

sup
‖ f X‖∞≤1

∣
∣∣
〈
f X, uX;K(t)

〉
−

〈
f X, uX;K(t−)

〉∣∣∣ ≤ 1

K
.

Consider t ≤ T , f X, f Y and u = (uX, uY) ∈ D ([0, T ],MF × MF); define the
functionals

�X : D ([0, T ],MF × MF) → R ,

as

�X
t, f X(uX, uY) =

〈
f X, uX(t)

〉
−

〈
f X, uX0

〉
−

∫ t

0

〈
LX
d f X(x), uX(s)

〉
ds

+
∫ t

0

∫

Q
[r(q, u) + a(q, u)] f X(q)uX(s)(dq)ds

+
∫ t

0

∫

Q̃2
b(q1, q2, u)( f X(q1) + f X(q2))u

X(s)(dq1)u
X(s)(dq2)ds

−
∫ t

0

∫

N

∫

Q̃ξX
ḋ

⎛

⎝
ξX∑

i=1

f X(qXi )

⎞

⎠ ζξX(qX
∣∣
∣ ξX)dqXdpX(ξX)ds ,

�Y
t, f Y(uX, uY) =

〈
f Y, uY(t)

〉
−

〈
f Y, uY

〉
−

∫ t

0

〈
LY
d f Y(x), uY(s)

〉
ds

−
∫ t

0

∫

Q
a(q, u)

∫

Q
ma(q̄|q) f Y(q̄)dq̄uX(s)(dq)ds

−
∫ t

0

∫

Q̃2

∫

Q
p(q1, q2)b(q1, q2, u) f Y(q̄)mb(q̄|q1, q2)dq̄uX(s)(dq1)u

X(s)(dq2)ds

−
∫ t

0

∫

N2

∫

Q̃ξY
ḋ

⎛

⎝
ξY∑

i=1

f Y(qYi )

⎞

⎠ ζξY(qY
∣
∣∣ ξY)dqYdpY(ξY)ds .

We aim to show that, for any t ≤ T ,

E

∣∣∣�X
t, f X(uX, uY)

∣∣∣ = E

∣∣∣�Y
t, f Y(uX, uY)

∣∣∣ = 0 .

Using Lemma 5.2 we have that

MX(t) = �X
t, f X(uX;K, uY;K) , MY(t) = �Y

t, f Y(uX;K, uY;K) .
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Using thus Lemma 5.2 together with estimate (70) and Hypothesis 3.4–4.2–5.3, we
have that

E

∣
∣∣MX;K(t)

∣
∣∣
2 = E

〈
MX;K〉 (t) ≤ C

K
,

E

∣∣∣MY;K(t)
∣∣∣
2 = E

〈
MY;K〉 (t) ≤ C

K
,

which goes to 0 as K → ∞. Therefore, we have

lim
K→∞E

∣∣∣�X
t, f X(uX;K, uY;K)

∣∣∣ = 0 ,

lim
K→∞E

∣∣∣�Y
t, f X(uX;K, uY;K)

∣∣∣ = 0 .

Since u is a.s. strongly continuous and the functions f X and f Y are bounded,
then the functionals �X

t, f X
and �Y

t, f Y
are a.s. continuous at u. Also, for any

D ([0, T ],MF × MF) we have

∣∣∣�X
t, f X(uX;K, uY;K)

∣∣∣ ≤ C sup
s∈[0,T ]

(
1 +

〈
1, uX(s)

〉2 +
〈
1, uY(s)

〉2)
,

∣∣∣�Y
t, f X(uX;K, uY;K)

∣∣∣ ≤ C sup
s∈[0,T ]

(
1 +

〈
1, uX(s)

〉2 +
〈
1, uY(s)

〉2)
.

Therefore the sequences
(
�X

t, f X
(uX;K, uY;K)

)

K∈N and
(
�Y

t, f Y
(uX;K, uY;K)

)

K∈N
are uniformly integrable so that

lim
K→∞E

∣∣∣�X
t, f X(uX;K, uY;K)

∣∣∣ = E

∣∣∣�X
t, f X(uX, uY)

∣∣∣ ,

lim
K→∞E

∣∣
∣�Y

t, f Y(uX;K, uY;K)

∣∣
∣ = E

∣∣
∣�Y

t, f Y(uX, uY)

∣∣
∣ ,

which concludes the proof. ��

Theorem 5.9 Assume Hypothesis 3.4–4.2–5.3 hold, then the sequence of laws(
�K

)
K∈N on D ([0, T ];MF) is tight when endowed with the weak topology.

Proof Using Méléard and Roelly (1993), since the limiting process is continuous,
repeating the above calculations with f X = f Y = 1, we obtain that the sequences(〈
1, uX;K〉)

K and
(〈
1, uY;K〉)

K converge to
〈
1, uX

〉
and to

〈
1, uY

〉
in D ([0, T ];R). ��

5.5 Step 5: proof of the convergence theorem

proof of Theorem 5.4 Putting together Theorems 5.5–5.8–5.9, the claim follows.
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6 Numerical results

The present Section is devoted to the implementation of the spatial radiation-induced
DNA damage repair model defined above.

For the sake of simplicity, we will implement the model for a circular domain
Q ⊂ R

2 of radius 5 μm, the case of a more realistic scenario of a domain in R
3 of

arbitrary shape is straightforward. We assume that the radiation field is perpendicular
to the cell nucleus, with a total absorbed dose of 10 Gy.We consider the radiation field
generated by a monoenergetic beam of carbon ions at 40 Mev, with a fluence average
specific energy zF = 0.04 Gy; a microdosimetric description of such radiation field
has been considered for instance in Missiaggia et al. (2024). We simulate the number
of impinging lesions according to a Poisson distribution of average D

zF
. The radiation

field is assumed isotropic and uniform so that each tract is thus distributed uniformly on
the nucleus. Then for each track, specific energy is sampled from the microdosimetric
single-event distribution f1(z) and distributed spatially around the track according
to the amorphous track model as described in Kase et al. (2007), which prescribes a
radial dose distribution as

D(ρ) =

⎧
⎪⎨

⎪⎩

Cc ρ ≤ Rc ,

Cp 1
ρ2 Rc < ρ ≤ Rp ,

0 otherwise ,

where ρ is the distance from the center of the track, Rc is the core around the track
characterized by a higher energy deposition outside which the dose decreases as ρ−2

until the radius of the penumbra Rp after which no energy deposition is registered.
The constants considered are as defined in Kase et al. (2007) for the case of low-
energy carbon ions considered. Thus, a random number of sub-lethal lesions, resp.
lethal lesions are sampled around each track according to a Poisson random variable
of average κzi , resp. λzi , with κ = 50 Gy−1, resp. λ = κ10−2 Gy−1.

Regarding the model, the following parameters have been chosen

r(q, v) = r

(

1 + 1
〈
1{|q−q̄|<rd }(q̄, s̄), ν

〉 + 1

)

,

a(q, v) = a

(

1 − 1
〈
1{|q−q̄|<rd }(q̄, s̄), ν

〉 + 1

)

,

b(q1, q2, v) = b1{|q1−q2|<rd } ,

(73)

with r = 4 h−1 , a = 0.1 h−1 and b = 0.1 h−1. Regarding these last constants, they
agree with standard values calibrated in Missiaggia et al. (2024). Concerning instead
Eq. (73), we assumed that the repair rate decreases, resp. the death rate increases,
as the number of damages within a radius rd = 0.5μm increases. We also assume
a constant pairwise interaction only for the lesions within rd distance. It is worth
stressing that such aspects are among the major strengths of the proposed model,
where rates depend on the local concentration of damages. At last, we assume that
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Fig. 1 (top left panel) Dose deposited over the cell nucleus, light yellow regions represent high local dose
depositions around the core of a track whereas dark purple regions represent low local dose deposition.
(top right) Sub-lethal lesions (blue) and tracks hit (red). (bottom left) Sub-lethal lesions (blue) and a high
local concentration of lesions within a 1.5 μm domain (red dashed circle). (bottom right) Discretization of
sub-lethal lesions (blue) within fixed domains and a high local concentration of lesions across four different
discrete domains (red dashed circle) (color figure online)

in the case of pathway a, the new lethal lesion is created in the same position as the
sub-lethal lesion was, whereas in the case of b the new lethal lesion is created in the
middle point between the two interacting sublethal lesions.

Figure 1 top left panel shows the normalized dose deposited over the cell nucleus,
where a highly localized dose is deposited around the particle tracks, as depicted by
lighter colors. In Fig. 1 top right panel the initial spatial distribution of sublethal lesions
(in blue) and the position of track hit (in red) are depicted. It can be clearly seen how
damages can be localized around tracks but some lesion clusters also emerge far from
tracks. Figure 1 bottom panels show the initial spatial distribution of lesion in the
left panel and a possibly discretized version in the right panel. A red circle highlights
a dense region with a high number of lesions within a 1.5 μm radius. In a discrete
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Fig. 2 Time evolution, from left to right, of sub-lethal lesions (blue) and lethal lesion (orange) (color figure
online)

domain formulation such cluster can be diluted between different domains, reducing
the probability that these lesions interact via a pairwise interaction pathway leading
to cell inactivation; on the contrary, in the continuous formulation no fixed domain is
considered so that pairwise interaction is truly accounted based on the lesions spatial
position. Since the pairwise interaction pathways is nonlinear, dividing the number of
sublethal lesions in different domain ignoring their true spatial distribution can play a
significant role in assessing the overall cell faith.

Figure 2 shows a time evolution, from left to right, on the sublethal and lethal lesions:
blue dots represent sublethal lesions whereas yellow dots represent lethal lesions. It is
worth noticing how lethal lesions are effectively formed around the cluster highlighted
in red in the bottom panels of Fig. 1, so that again considering the real distance between
lesions can change the predicted cell faith and cell survival probability.

7 Discussion and conclusions

In the present paper, we introduced a general stochastic model that describes the
formation and repair of radiation-induced DNA damage. The derived model general-
izes the previously studied model (Cordoni et al. 2021, 2022a, b), including a spatial
description, allowing for pairwise interaction of cluster damages that might depend
on the distances between damages, as well as a general description of the effect of
radiation on biological tissue under a broad range of irradiation condition. We studied
the mathematical well-posedness of the system and we characterized the large system
behavior.

The implemented model represents an innovation in the field of theoretical radio-
biology that can have a direct impact on radiotherapy. Indeed, from a theoretical point
of view, various models to describe the formation and repair of radiation-induced
DNA damage have been developed over the years, showing how various stochastic
effects influence the two processes. However, the stochasticity of the spatial inter-
action of lesions close to each other, despite being recognized in the community to
play a key role in the cell’s ability to repair the damage, had never been studied and
modeled in a general and rigorous way. Therefore, the developed model is among the
first mathematical models capable of providing a general and robust description of
the processes of radiation-induced damage formation and repair. Furthermore, it was
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shown in the work how different time scales can be included in a single mathematical
model, which then, in addition to the temporal and spatial stochasticities governing
DNAdamage repair, can also include different time scales thus providing an extremely
general model.

A direct impact of the proposedmodel may occur in radiation therapy, where efforts
have been made over the years to develop accurate models that could describe and
predict the effect of radiation on biological tissue. The ultimate goal is to be able
to implement optimal treatment plans that maximize the lethal effect of radiation on
tumor tissue while minimizing undesirable effects on healthy tissue. This last aspect
is indeed crucial: while the effect of the tumor is well studied, the undesirable and
unavoidable effects on healthy tissue are much more difficult to predict. In fact, in
areas far from the tumor, the radiation that is seen by the biological tissue is very
heterogeneous, a fact that implies that the effects of such a varied radiation field are
inherently stochastic.However, having a thoroughknowledge of the effects of radiation
in such areas is critical to increasing the long-term quality of life of patients undergoing
radiation therapy. Themodel developed could have an impact on radiotherapy planning
precisely because, given its extreme generality, it allows for knowledge and prediction
of possible undesirable effects in areas more peripheral to the tumor. The possibility
to also account for a continuous irradiation field could further improve the treatment
modalities, since fractionation schemes,meaning that treatments are split and delivered
over time, are nowadays commonly used in clinics to allow the healthy tissue to recover
between consequent treatments.

Further, we believe that the derived model could play a role in describing an effect
of recent interest in radiobiology, called the FLASH effect. In particular, at extremely
high rates of particle delivery, it has been empirically seen that the unwanted effects of
radiation on healthy tissue decrease while the killing effect on the tumor is maintained.
Although numerous studies on the topic, the physical and biological mechanism at the
very core of this effect is today largely unknown. It is nonetheless believed that spatial
interactions of particles can play a major role in the origin of this effect. Therefore, the
model introduced in the present research can have the generality to provide a stochastic
description of the effect that spatial interdependence between particles can have on
biological tissue.
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