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Abstract
Agent-based models (ABMs) are readily used to capture the stochasticity in tumour
evolution; however, these models are often challenging to validate with experimental
measurements due to model complexity. The Voronoi cell-based model (VCBM) is an
off-lattice agent-based model that captures individual cell shapes using a Voronoi tes-
sellation andmimics the evolution of cancer cell proliferation andmovement. Evidence
suggests tumours can exhibit biphasic growth in vivo. To account for this phenomena,
we extend theVCBMto capture the existence of two distinct growth phases. Priorwork
primarily focused on point estimation for the parameters without consideration of esti-
mating uncertainty. In this paper, approximate Bayesian computation is employed to
calibrate the model to in vivo measurements of breast, ovarian and pancreatic cancer.
Our approach involves estimating the distribution of parameters that govern cancer
cell proliferation and recovering outputs that match the experimental data. Our results
show that the VCBM, and its biphasic extension, provides insight into tumour growth
and quantifies uncertainty in the switching time between the two phases of the biphasic
growth model. We find this approach enables precise estimates for the time taken for a
daughter cell to become a mature cell. This allows us to propose future refinements to
the model to improve accuracy, whilst also making conclusions about the differences
in cancer cell characteristics.
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1 Introduction

Cancer is a disease that arises through the progressive alteration of normal cells. Solid
cancers form what is commonly referred to as tumours, which are populations of
cancerous cells joined together with connective tissue (Weinberg andWeinberg 2006).
Over time, these tumours expand and take up residency in healthy tissue. To elucidate
the mechanisms of the cancer pathophysiology, researchers have mainly focused on
the analysis of aberrant cell dynamics within tumour structures. The pivotal role these
abnormal cells play in oncogenesis constitutes a salient focus of these investigations
(Noble 2002; Markowetz 2017).

Mathematical modelling of cancer growth and development has been used to
study the dynamical process of cancer cells for many years (Altrock et al. 2015;
Beerenwinkel et al. 2015; Barbolosi et al. 2016; Tabassum et al. 2019). Deterministic
approaches, such as systems of ordinary differential equations (ODEs) and systems
of partial differential equations (PDEs), have been used successfully to model cancer
growth (Villasana and Radunskaya 2003; Yafia 2011; Tao et al. 2014; Jenner et al.
2020b; Dehingia et al. 2021; Klowss et al. 2022; VandenHeuvel et al. 2022). While
insightful, generally these models do not capture the phenotypical and spatial het-
erogeneity that arises through stochastic processes of tumour growth, or consider the
behaviour at an individual cancer cell level (Irurzun-Arana et al. 2020). In turn, such
models often do not capture dynamical processes such as individual cell prolifera-
tion (Iyer et al. 2011; Sahoo et al. 2011) and cell movement (Groh and Louis 2010).
For instance, Warne et al. (2022) highlight that continuum models need to align with
specific assumptions that can diverge from reality. Specifically, standard deterministic
continuous models that are typically used to represent cell invasions often require cell
motility rates to dominate proliferation rates. Such conditions may not hold true for
slow-growing tumours. In such tumours, pressure-drivenmobility can serve as the prin-
cipal catalyst for tumour growth. Consequently, stochastic discrete models provide a
more adaptable framework formodelling various spatiotemporal patterns, such as clus-
tering. As a result, parameter estimates relating to the proliferation rate of tumor cells
are often underestimates of the true proliferation rate due to spatial clustering inhibiting
growth through contact inhibition. By explicitly modelling the proliferation andmotil-
ity processes of a spatially heterogeneous tumor using an ABM the accurate parameter
estimates and realistic uncertainty quantification can be obtained, even in situations
with spatially irregular boundaries with fingering patterns or multiple local clusters.

More recently, agent-based models (ABMs) have become a popular approach for
capturing the stochastic nature of tumour growth (Ozik et al. 2018;Metzcar et al. 2019;
Macnamara 2021; Klowss et al. 2022). ABMs model cells as agents, and the interac-
tions of cells are governed by probabilistic rules that depend on physically-meaningful
parameters (An 2012). There are two popular paradigms of ABMs: on-lattice and off-
lattice models (Railsback and Grimm 2019). On-lattice models restrict movement of
cells to neighbouring points on a pre-defined lattice. Whereas cell movement in off-
lattice models are governed by interaction forces between neighbouring cells and the
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surrounding environment. Although, one drawback of ABMs is that model simula-
tion can be more computationally expensive than solving a deterministic system of
differential equations.

This work focuses on investigating and extending the Voronoi cell-based model
(VCBM), an off-latticeABMof tumour growth in 2-dimensions based on themodel by
Jenner et al. (2020a), with the concept originally introduced by Kansal et al. (2000b),
Kansal et al. (2000a), Schaller and Meyer-Hermann (2005), Kempf et al. (2010),
Fletcher et al. (2013) and more recently investigated by Cleri (2019), Germano et al.
(2022). Agents are defined as either healthy cells or tumour cells. The movement of
cells through the domain is modelled off-lattice using a force-balance equation based
on Hooke’s law to account for cell adhesive and repulsive forces. Cell boundaries are
then defined by a Voronoi tessellation.

Many growth factors are known to influence cell behaviour in a biphasic manner,
causing an increase or decrease in cellular division contingent upon their concentration
(Konstorum et al. 2013). A biphasic relationship has been observed between the speed
of an invading tumour front and the concentration of collagen in the surrounding gel,
whereby two growth phases can be observed in in vitro or in vivo tumour growth
(Konstorum et al. 2013). This biphasic relationship could be due to the complex
interaction between cell proliferation and migration (Perumpanani and Byrne 1999).
This insight led to the development of mathematical models that could test these
hypotheses (Marchant et al. 2006; Konstorum et al. 2013).

Marchant et al. (2006) successfully devised a theoretical model of malignant inva-
sion that accurately reproduces the biphasic dependency of tumour cell invasion speed
on the density of the surrounding normal tissue. To encapsulate this biphasic phe-
nomenon effectively within the context of the VCBM, we introduce the concept of a
switching time, such as inMurphy et al. (2022). This switching time refers to a specific
point in time in which the tumour evolution transitions between two distinct growth
phases, that is, it reflects transition of tumour growth in vivo from an ‘establishment’
phase, characterized by initial proliferation and localization, to an ‘expansion’ phase,
where rapid and invasive growth occurs (Marchant et al. 2006). This transition point,
derived from in vivomeasurements, provides a biologically significant depiction of the
tumour’s temporal evolution. Thus, such an approach enhances the VCBM’s ability
to simulate the complex dynamics of tumour growth accurately.

Cancer cell proliferation is largely the driving factor of tumour growth and is
impacted by spatial limitations and nutrient sources (Iyer et al. 2011; Sahoo et al. 2011;
Jenner et al. 2020a). As such, the key mechanism of tumour growth in the VCBM is
cancer cell proliferation (Cheng et al. 2012; Benzekry et al. 2014). Calibrating the cel-
lular proliferation parameters to tumour growth measurements would provide a better
understanding of the differences between tumour types. However, obtaining param-
eter estimates for an ABM is not trivial. This work proposes a Bayesian framework
to calibrate cancer cell proliferation in the VCBM and capture the tumour growth in
ovarian, pancreatic and breast tumour cell lines implanted in vivo.

ABMs are simulation-based models, for which inference can be challenging as the
likelihood function for such models is often intractable. Hence, approximate Bayesian
computation (ABC) (Sisson et al. 2018) is proposed to bypass the likelihood function
and estimate the model parameters. ABC requires that the model can be simulated,
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but does not require evaluation of its corresponding likelihood function. ABC has
been previously used to calibrate a small number of biological ABMs. For example,
Lambert et al. (2018) apply ABC to a lattice model and Ross et al. (2017) use ABC to
improve the experimental design of a wound-healing assay by calibrating a cell-cell
adhesion model (Khain et al. 2007; Ross et al. 2015). Rocha et al. (2021) use ABC
to calibrate to identify cell motility parameters using biological experiments in their
ABM developed in PhysiCell (Ghaffarizadeh et al. 2018). However, they use simple
ABC algorithms which require a large number of model simulations, and are thus
computationally expensive when the model simulation is not computationally trivial.
We calibrate the VCBM to tumour growth time series data using sequential Monte
Carlo (SMC)-ABC, specifically the algorithm of Drovandi and Pettitt (2011), since it
is much more efficient than the standard ABC rejection algorithm, and it can easily
take advantage of parallel computing resources.

Understanding the limitations and flexibility of the VCBM is important to be able
to determine its reliability as a predictor of tumour growth. The main contribution of
this paper is to provide an efficient Bayesian approach for fitting off-lattice stochastic
models of tumour growth to time series data of tumour volumes. As a case study, we
extend the VCBM proposed by Jenner et al. (2020a) to a biphasic VCBM, which has
not been previously calibrated to data in the literature. By using an efficient Bayesian
algorithm, we are also able to thoroughly investigate if the VCBM is flexible enough
to recover real tumour volume time series data across a range of cancers. Specifically,
we calibrate the model to in vivo measurements for breast cancer, ovarian cancer
and pancreatic cancer in mice obtained from Wade (2019), Wade et al. (2020) and
Kim et al. (2011). Calibration results suggest that subcutaneous growth leads to less
spatial inhibition as the tumour grows. Biomechanically, this suggests that the growth
dynamics evolve alongside the tumour’s progression. Subcutaneously grown tumours
are known for exhibiting negligible propensity for metastasis due to a lack of spatial
constraints, which is one of the causes of metastases associated within an intra-organ
growth (Schmidt et al. 2016). Furthermore, it is apparent that cellular proliferation
changes over time due to potential cellular mutations that result in faster or slower
cell proliferation (Bozic et al. 2010) or even necrosis from vascular limitations. Our
calibration approach reveals that the model is sufficiently robust in capturing both
monophasic and biphasic growth occurring across data sets.

We now describe the structure of the paper. In Sect. 2, we describe the data we
analyse, explain the VCBM that we calibrate to the data and provide details of the
ABC calibrationmethod that we adopt for fitting the VCBM to data. Section 3 presents
the results of the calibration process. In Sect. 4, we discuss the findings further, the
limitations of our study, and directions for future research.

2 Methods

2.1 Experimental measurements: in vivo tumour volume

Measurements from three independent in vivo cancer datasets (Fig1) are used to
calibrate parameters in the VCBM: breast cancer cells (Kim et al. 2011), ovarian
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cancer cells (Kim et al. 2011), and pancreatic cancer cells (Wade 2019; Wade et al.
2020). In these experiments, tumour volume (mm3) is approximated using caliper
measurements in two-dimensions:

volume = width × length2

2
, (1)

where width (mm) is the longest tumour measurement and length (mm) is the tumour
measurement along a perpendicular axis (Kimet al. 2011).We also generate a synthetic
dataset designed to mirror the quantity of data points present in experimental data.
This approach enables an evaluation of the calibration method’s ability to accurately
recover known parameter values. The synthetic and experimental datasets are briefly
described below. Full details of the experimental data can be found in Kim et al. (2011)
and Wade (2019), Wade et al. (2020).

2.1.1 Breast cancer data

Kim et al. (2011) measure the in vivo breast cancer tumour volume over 66 days,
with measurements being recorded every second day. Each mouse is injected with
Her2/neu-expressing human breast cancer cells MDA-MB435, and tumour volume
measurements commenced when the seeded tumours reach 100–120 mm3. Figure1a
depicts tumour growth data for fourmicewith breast cancer.We removemeasurements
frommouse two from day 58 onward as the tumour volume began to exhibit a decline,
which we deem biologically infeasible for our chosen model assumptions. For more
details, see Kim et al. (2011).

2.1.2 Ovarian cancer data

Kim et al. (2011)measure the in vivo ovarian cancer tumour volume over 25 days, with
measurements being recorded daily in mice injected with SK-OV3 cells. The tumour
volume measurements commence when the seeded tumours reach 100–120 mm3.
Figure1b displays tumour growth data for three mice with ovarian cancer. For more
details, see Kim et al. (2011).

2.1.3 Pancreatic cancer data

Tumour growth measurements in mice seeded with pancreatic cancer cells Mia-PaCa-
2 are collected by Wade (2019), Wade et al. (2020). Figure1c displays the four lines
representing the tumour volume for four different mice over 33 days which were
recorded every day. The cessation of tumour volume measurements occurred once the
volume exceeded a given threshold. Hence, the final observation time varies between
mice.

2.1.4 Synthetic cancer data

In this study, we generate three synthetic datasets using the model with predetermined
parameter values, as outlined in Table S1. Specifically, we generate three synthetic
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Fig. 1 In vivo tumour volume measurements. Tumour growth is measured in vivo for a breast cancer cells
(n = 3) (Kim et al. 2011), b ovarian cancer cells (n = 3) (Kim et al. 2011) and c pancreatic cancer cells
(n = 4) (Wade 2019; Wade et al. 2020). Each mouse is identified by a unique colour and the specific data
measurements are represented by solid points. The ordering of the naming convention for the mice was
chosen randomly. Pancreatic tumour datasets in (c) exhibit a potentially biphasic tumour growth pattern

cancer datasets utilizing a biphasic model with a fixed switching time. To ensure
consistency with actual datasets that exhibit biphasic growth, which we observe to
have a measurement length of 32 days, we set the length of these three synthetic
datasets to 32 days. Additionally, we generate two synthetic datasets demonstrating
monotonic exponential growth in order to validate the original VCBM.

2.2 Voronoi cell-basedmodel (VCBM)

ABMs are popular computational models that model cells as agents with associated
probabilistic sets of rules for the purpose of capturing stochastic cellular dynamics. In
this study, wemodel tumour growth using an ABMas it allows us to capture the spatial
evolution of a tumour. In addition, ABMs enable simulation of an array of stochastic
processes and can account for individual cell behaviours, including low movement
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Fig. 2 An illustration of the Voronoi tessellation used to model the cell’s shape and its neighbourhood: the
boundary of cell i is the line equidistant between the cell’s center point (black dot) and one of its connected
cell’s center points. Cells in the neighbourhood of a particular cell are those sharing a common edge. A
Delaunay trangulation is used to determine neighbouring cells connected to cell i

rates, and their interactions within the surrounding microenvironment. This is a more
detailed description of the tumour compared to an analogous deterministic system
(e.g. ODE or PDE). To enable flexibility in cellular movement processes, we use an
off-lattice ABM. Although on-lattice ABMs (Lundh 2007; Lowengrub et al. 2009;
Cristini and Lowengrub 2010; Voss-Böhme 2012; Wang et al. 2015; Poleszczuk et al.
2016; Norton et al. 2019) are less expensive to simulate, off-lattice ABMs can be more
effective at simulating the heterogeneous nature of the tumour microenvironment.

Here, we describe the VCBM, an off-lattice model developed by Jenner et al.
(2020a), Jenner et al. (2022) that simulates the 2-dimensional cellular dynamics of
tumour formation. In this study, we simplify their model to capture control in vivo
tumour growth only, omitting the treatment-related agents of virus-infected cancer
cells, dead cancer cells, and empty space. As a result, we only investigate three primary
dynamics governing tumour growth: cancer cell proliferation, cell movement, and cell
invasion into healthy tissue. We assume that no cells die during the simulation and
that healthy cells are pushed outward solely by the force of multiplying cancer cells.

2.2.1 Voronoi tessellation

The 2-dimensional spatial position of the i th cell agent at time t is defined by a center
point r i (t) ∈ R

2. We consider a lattice as the set of cell agent points represented by
the vector r(t), where the size of r(t) depends on the number of cells in the domain
at time t . We consider the area of a cell to be the region of space enclosed by a
Voronoi tessellation formed by the cell centre point. A Voronoi tessellation is used to
define the edges of a cell (see Fig. 2), i.e. the boundary of cell i is the line equidistant
between the cell’s centre point and one of its connected cell’s centre points. Voronoi
cells on the boundary have an infinite area, and these cells are not explicitly modelled
as contributing to the VCBM dynamics. Compared to on-lattice models, the VCBM
does not require fixed cell positions. We define the i th cell’s neighbourhood, N (i),
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as the set of cells connected to that cell by a Delaunay trangulation (Van Liedekerke
et al. 2015).

2.2.2 Cancer cell movement

In the VCBM, cancer cell proliferation is the primary driver of cell movement. The
network of forces interacting on cell i is modelled by Hooke’s Law (Fig. 3a), which
computes the effective displacement of the cell and we use this to update the cell’s
position. The force between cell i and its connected neighbour cell j is modelled by
a damped spring (Fig. 3b), and the spring connecting cell i and cell j has a rest length
si, j (t), where we assume the rest length can be a function of time t . The displacement
of the i th cell is given by

mi
d2r i
dt2

=
∑

j

FI
i, j + FV

i , (2)

where mi is the mass of cell i , r i is the position of i th cell’s centre point, FI
i, j is the

interaction force between a neighbourhood cell j connected to cell i and FV
i is the

viscous force acting on cell i .
Following Jenner et al. (2020a),Kansal et al. (2000a),Kansal et al. (2000b), Schaller

and Meyer-Hermann (2005), Kempf et al. (2010), Fletcher et al. (2013), the total
interaction force FI

i (t) acting on cell i at time t is given by the sum of the individual
forces from the neighbourhood connected cells:

FI
i (t) =

∑

j

FI
i, j = μ

∑

∀ j

r i, j (t)

‖r i, j (t)‖ (si, j (t) − ‖r i, j (t)‖), (3)

where μ is the spring constant, r i, j (t) is the vector from the i th point to j th point at
time t , si, j (t) is the spring rest length between cell i and j at time t and ‖r i, j (t)‖ is
the Euclidean norm of r i, j (t). The viscous force acting on cell i is

FI
i = −FV

i = μvi , (4)

(Galle et al. 2005; Macklin et al. 2012; Jenner et al. 2020a) where vi is the velocity
of the i th point. By taking a small time interval �t , the effective displacement of the
i th point is

r i (t + �t) = r i (t) + 1

μ
Fi (t)�t = r i (t) + λ

∑

∀ j

r i, j (t)

‖r i, j (t)‖ (si, j (t) − ‖r i, j (t)‖),

(5)

where μ is the damping constant. This formulation is readily used in other ABM
settings, for example see Murray et al. (2012), Murphy et al. (2019), Browning et al.
(2019).
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2.2.3 Cancer cell proliferation

For modelling cancer cell proliferation, the Euclidean distance, d, between cell i’s
centre point r i (t) and the tumour boundary is used as a proxy for the nutrient source.
The boundary of the tumour is defined as the set of tumour cells that reside on the
tumour periphery (proliferating edge). We assume cell i can proliferate when d <

dmax, where dmax is the maximum radial distance a cell can be from the boundary and
still proliferate. The probability of a cell dividing in a given time step �t is

pd = p0

(
1 − d

dmax

)
, (6)

where p0 is a proliferation constant. In this way, we are defining the probability of
proliferation as a function of a cell’s distance to the tumour boundary/nutrient source,
as has been done similarly in Kansal et al. (2000a), Jiao and Torquato (2011).

Figure3c shows that when cell i divides it creates two daughter cells i and l, which
are placed at a random orientation equidistant from the original cell i’s position. To
simulate the growth of a daughter cell to a full grown cell, the resting spring length
between cell i and cell l is initialised as a value less than s and increases over time
until si,l = s. Consider td is the time since the last cell division, then

si,l(t) =
{

td s
tage

, if time since last division td ≤ tage
s otherwise,

(7)

where s is the mature resting spring length and tage is the time taken for a cell to grow
to its full size. In other words, initially at the first time step immediately after division
td = 1 hour and si,l = s/tage. In the following timestep, the spring length will increase
to si,l = 2 × s/tage. The value for si,l increases for tage time steps, i.e. until td = tage.
In this way, we approximate cell growth from a daughter cell size to an adult size
which takes tage time steps. This variable spring length is what makes the rest spring
length a function of time, i.e. si,l(t). Once it has been tage time steps since division
we have si,l(t) = s. Another factor for cancer cell proliferation is the time taken for a
cell to be able to divide into two daughter cells. In the VCBM, the daughter cells take
gage time steps to be able to divide again. Note that tage < gage.

2.2.4 Cell invasion

Due to the invasiveness of cancer, we assume a cancer cell’s daughter cell can replace
a healthy cell with probability ppsc. In our model, this property refers to the probability
that invasiveness occurs at the boundary of tumour tissue. This assumption is inspired
by previous ABM work by Jiao and Torquato (2011).

2.2.5 Simulation

The model uses a time-step of one hour, i.e.�t = 1, which is based off the knowledge
that the normal cell cycle is about 24h (Bernard and Herzel 2006) and ovarian cancer’s
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Fig. 3 Cancer cell proliferation: a the network of forces interacting at a cell i is governed by Hooke’s Law,
see Eq.4; b Hooke’s law models the motion of connected springs as they are extended and compressed and
captures how these springs return to a rest state or equilibrium. In the VCBM, we model cell movement
using such forces; c (upper) the orange cell represents the newly proliferated cell with the blue cell being
the original proliferating cell, (lower) the green cell represents to an invading tumour cell that has taken the
place of a healthy cell (colour figure online)

cell cycle length is greater than 16h (Fisi et al. 2016). The VCBM simulation is started
by first initialising a square domain with cells arranged in a hexagonal lattice. The cell
closest to the centre of the domain is designated as a cancer cell and the remainder
are designated as healthy cells. The VCBM is then simulated until it reaches a tumour
volume of 100 mm2, which is based off the experiment measurements (Wade 2019;
Kim et al. 2011). Once the tumour reaches this volume, the lattice for healthy and
cancerous cells is stored and this lattice is used to simulate the growth of a tumour
over the required number of days for each simulation of the model. The model evolves
by first checking whether any cancer cell proliferates using Eq.6. For cancer cells that
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are not proliferating in that timestep, they are checked for whether they differentiate
into an invasive cell using ppsc. Following this, all cells (healthy, cancerous) aremoved
using Hooke’s law, Eq.5. The values of the underlying mechanical model (i.e. λ and
μ) were taken from previous estimations in the literature (see Meineke et al. 2001;
Jenner et al. 2020a). Comprehensive descriptions of themodel simulation are available
in (Jenner et al. 2020a, 2022).

2.2.6 Biphasic model

We find for some datasets that the rate of tumour growth appears to change over
time (as shown in Fig. 1c). Here, we use a biphasic model to capture the change of
growth dynamics. To investigate the biphasic tumour growth phenomenon we assume
at time t = τ days, that the parameters can change value. We assume that there
are four parameters, i.e. θ = (p0, ppsc, dmax, gage) in the VCBM. In the biphasic
version of the model, for t < τ , the VCBM is governed by the parameters θ1 =
(p10, p

1
psc, d

1
max, g

1
age), whilst for t > τ the VCBM is governed by the parameters θ2 =

(p20, p
2
psc, d

2
max, g

2
age). If the tumour growth is monophasic, there are four unknown

parameters θ ; if it is biphasic, there are nine unknown parameters (θ1, θ2, τ ).

2.3 Bayesian inference with intractable likelihood

In Bayesian inference, the posterior distribution of the parameters θ is given by

P(θ |y) ∝ P( y|θ)P(θ), (8)

where the prior distribution P(θ) is updated by the observation data y =
(y1, y2, . . . , yT ) with length T via the likelihood function P( y|θ). In this paper, the
parameters for the monophasic VCBM are θ = (p0, ppsc, dmax, gage) and for the
biphasic VCBM are θ1 = (p10, p

1
psc, d

1
max, g

1
age), θ2 = (p20, p

2
psc, d

2
max, g

2
age) and τ .

However, the complexity of the biological data simulating process may render the cor-
responding likelihood function computationally infeasible (Beaumont 2019). When
the likelihood function is intractable, standard Bayesian inference methods cannot be
used to sample the posterior distribution. However, even when the likelihood function
is intractable, it often remains feasible to generate simulations from the model.

2.3.1 Approximate Bayesian computation (ABC)

A method called approximate Bayesian computation (ABC) has been proposed to
solve this problem by avoiding evaluation of the likelihood function (Sisson et al.
2018). The idea is to generate approximate samples from the parameter posterior by
repeatedly simulating data x from the model for different sets of parameter values
and assessing how ‘similar’ it is with the observed data y. Parameter values that
generate simulated data that are similar enough to the observed data are retained in the
posterior sample. There are two main challenges in the successful implementation of
ABC: choosing informative summary statistics (Prangle 2015) and defining a suitable
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distance function (Drovandi and Frazier 2022), ρ( y, x), that measures the ‘closeness’
of observed data with the simulated data. In our paper, the summary statistics are the
observed data itself since the length of tumour growth time series data is short (i.e. T
is small), and we select the distance function as

ρ( y, x) =
T∑

t=1

(
log(yt ) − log(xt )

)2
. (9)

We compare the logarithm of the observed and simulated data since the tumour sizes
tend to increase quickly with time. The approximate posterior implied by ABC is
given by

Pε(θ | y) ∝ P(θ)

∫
Kε

(
ρ( y, x)

)
P(x|θ)dx, (10)

where Kε : R+ �→ R+ is called a kernel function with tolerance parameter ε. Then,
the approximate likelihood

∫
Kε

(
ρ( y, x)

)
P(x|θ)dx can be estimated unbiasedly by

using Monte Carlo via simulating x from the model. Here, the kernel function Kε is
a weighting function that assigns higher weight to simulated data x that is closer to
observed data y. In this paper, we choose the indicator function as the kernel function,
i.e., Kε

(
ρ( y, x)

) = I
(
ρ( y, x) < ε

)
.

Some popular algorithms like the ABC-rejection algorithm (Sisson et al. 2018;
Warne et al. 2019) and Markov Chain Monte Carlo (MCMC)-ABC (Marjoram et al.
2003; Bortot et al. 2007; Sisson and Fan 2011) have been used for parameter estimation
in the context of biology (Beaumont 2010; Csilléry et al. 2010; Sunnåker et al. 2013;
Beaumont 2019). Since ABC rejection usually generates proposed values of θ from
the prior, it can be inefficient if the target posterior differs substantially from the prior.
TheMCMC-ABCmethod is often computationallymore efficient thanABC-rejection,
since it aims to search locally around areas of high posterior probability density.
However, MCMC-ABC can also be computationally costly, since the Markov chain
can become stuck in low posterior regions, and, due to its serial nature, cannot easily
exploit parallel computing architectures. On the other hand, the SMC-ABC algorithm
canbemore efficient since it can easily harness parallel computing, and it only proposes
from the prior in the first iteration, and sequentially improves the proposal distribution.
The SMC-ABC replenishment algorithm of Drovandi and Pettitt (2011) is used in a
cell biology application inCarr et al. (2021), andwe use the same algorithm to calibrate
the VCBM. The SMC-ABC replenishment algorithm is explained in more detail in
the next section.
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Algorithm 1 SMC-ABC replenishment algorithm (Drovandi and Pettitt 2011)
Input: The observed data y, the stochastic model P(x|θ), distance function ρ(·, ·), prior distribution

P(θ), number of particles N , tuning parameters a and c for adaptive selection of discrepancy thresholds
and selecting the number of MCMC iterations in the move steps, target tolerance εT , initial number of trial
MCMC iterations Sinit , minimum acceptable MCMC acceptance rate pmin

Output: Samples, {θ i }Ni=1, from the approximate posterior distribution
1: for i = 1,...,N do
2: θ i ∼ P(θ)

3: xi ∼ P(x|θ i )
4: ρi ← ρ( y, xi )
5: end for
6: Sort {θ i }Ni=1 by {ρi }Ni=1 such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN

7: Na ← �aN�, t ← 2, εt ← ρN−Na , ε1 ← ρN , St ← Sinit
8: while εt−1 > εT do

9: Compute �′ as the sample covariance matrix of {θ i }N−Na
i=1

10: � ← (2.38)2
dim(θ)

�′ � See the footnote in next page

11: Generate {θ i }Ni=N−Na+1 by resampling with replacement {θ i }N−Na
i=1

12: for j = N − Na + 1, . . . , N do
13: for k = 1, . . . , St do
14: p j,k

t , θ j , ρ j ← MCMCMoveStep(�, θ j , y, εt , ρ j )

15: end for
16: end for
17: p̃t ← ∑N

j=N−Na+1
∑St

k=1 p j ,k
t /

(
St (N − Na)

)

18: Rt ← �log(c)/(1 + log(1 − p̃t )
)�

19: for j = N − Na + 1, . . . , N do
20: for k = Rt − St , . . . , Rt do
21: p j,k

t , θ j , ρ j ← MCMCMoveStep(�, θ j , y, εt , ρ j )

22: end for
23: end for
24: p̃acct ← ∑N

j=N−Na+1
∑Rt

k=1 p j ,k
t /

(
Rt (N − Na)

)

25: if p̃acct < pmin then
26: return {θ i }Ni=1 and terminate the algorithm
27: end if
28: St+1 ← �Rt/2�
29: Sort {θ i }Ni=1 by new distance {ρi }Ni=1 such that ρ1 ≤ ρ2 ≤ · · · ≤ ρN

30: Update εt+1 ← ρN−Na , εt ← ρN

31: t ← t + 1
32: end while

2.3.2 SMC-ABC replenishment algorithm

SMC-ABC samples from a sequence of increasingly accurate ABC posteriors based
on defining a sequence of non-increasing tolerances ε1 ≥ ε2 ≥ · · · ≥ εT :

Pεt (θ |S( y)) ∝ P(θ)

∫
I
(
ρ(S( y), S(x)) < εt

)
P(S(x)|θ)dS(x), for t = 1, . . . , T .

(11)

The algorithm first draws N independent samples from the prior P(θ), denoted here as
{θ i }Ni=1. Then, for each draw of θ i (referred to as a particle), we simulate the stochastic
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Algorithm 2MCMC move step
Input: Covariance matrix �, parameter value θ , observed data y, tolerance εt and discrepancy value ρ

Output: MCMC acceptance probability pt , parameter value θ and discrepancy value ρ

1: function MCMCMoveStep(�, θ , y, εt , ρ)
2: θ̃ ∼ N (θ , �)

3: x̃ ∼ P(x|θ̃)

4: ρ̃ ← ρ( y, x̃)

5: pt = min

(
1, P(θ̃)

P(θ)
I(ρ̃ < εt )

)
.

6: With probability pt , set θ = θ̃ and ρ = ρ̃; otherwise, retain the current values of θ and ρ

7: return pt , θ , ρ

8: end function

model and compute its corresponding discrepancy ρi to produce {θ i , ρi }Ni=1. The
particle set {θ i , ρi }Ni=1 is then sorted by the discrepancy ρ such that ρ1 < ρ2 < · · · <

ρN . We then set the first tolerance threshold as ε1 = ρN , i.e. the largest discrepancy
value in the particle set. In order to propagate particles through the sequence of target
distributions, the next tolerance is defined dynamically as εt = ρN−Na (where initially
t = 2) where Na = �Na� and a is a tuning parameter that controls the adaptive
selection of discrepancy thresholds and �·� is the floor function. Effectively, at each
SMC iteration, we discard a × 100% of the particle set with the largest value of the
discrepancy.

After discarding a × 100% of the particle set, there will only be N − Na particles
remaining. In order to rejuvenate the particle set back to size N , we resample Na times
with equal probability and replacement from the kept set of particles {θ i , ρi }N−Na

i=1 ,
where both the parameter and discrepancy values are copied. Although the resampling
step ensures that there are N particles in the set, it creates particle duplication.

In order to diversify the particle set, we apply an MCMC kernel to each of the
resampled particles. The tuning parameters of the MCMC proposal distribution qt (·|·)
can be obtained from the set of the particles following resampling, which are already
distributed according to theABC targetwith tolerance εt . For example, if amultivariate
normal random walk proposal is used, its covariance �t can be tuned based on the
sample covariance computed from the particle set. Defining the current value of a
particle we wish to move as θ , we accept a proposal of parameter θ̃ ∼ N (θ ,�) and
simulated data x̃ ∼ P(x|θ̃) according to the probability

pt = min

(
1,

P(θ̃)

P(θ)
I(ρ( y, x̃) < εt )

)
. (12)

The proposal densities do not appear in the above acceptance probability due to the
symmetry of the multivariate normal random walk proposal.1

However, the above procedure may reject proposals and we may fail to move a
large proportion of the resampled particles. Thus, we propose to apply Rt iterations

1 An optimal scaling of the covariance matrix for symmetric multivariate Gaussian proposals in the
Metropolis–Hastings algorithm is (2.38)2/d where d is the number of parameters. For more information,
see Gelman et al. (1996).
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of the MCMC kernel to each resampled particle, so that there is a high probability of
moving each resampled particle at least once. Specifically, we set Rt = � log(c)

log(1−pacct )
�

where c is a tuning parameter of the algorithm and is, theoretically, the probability
that a particle is not moved in the Rt iterations. Here, pacct is the expected MCMC
acceptance probability at the t th SMC iteration. Since pacct is unknown, we estimate
it from St < Rt trial MCMC iterations. Once it is estimated, we compute Rt and
perform the remaining Rt − St MCMC iterations on each of the resampled particles.
For the next iteration we set the number of trial MCMC iterations to St+1 = �Rt/2�.

There are two ways the algorithm can be stopped. One stopping rule is activated
if some desired tolerance εT is reached, i.e. the maximum discrepancy value in the
particle set is below εT . The second stopping rule is activated when the overall MCMC
acceptance probability at a given SMC iteration falls below some user-defined pacc,
implying that too much computation is required to progress the algorithm further. The
overall acceptance rate can be estimated by

p̂acct =
N∑

j=N−Na+1

Rt∑

k=1

p j,k
t /

(
Rt (N − Na)

)
, (13)

where p j,k
t is the MCMC acceptance rate for particle j at MCMC iteration k and is

obtained based on (12). For our study, we set the tuning parameters to be a = 0.5 and
c = 0.01. We use the MCMC acceptance rate as the stopping rule of the algorithm
and set pmin = 0.005.

2.4 Prior knowledge

The parameters p0 and ppsc are constrained to lie between zero and one as they are the
probabilities of cell proliferation and cell invasion, respectively. Vague independent
priors are used for each of these parameters, which, in each case, is a uniform distri-
bution constrained by 0 and 1. For the switching time τ , we set its prior as a uniform
distribution constrained by 2 and the time the maximum measurement taken. Since τ

refers to the day that switching occuring, we take τ as integer. We assign a uniform
distribution constrained by 0 and the maximum measurement day times 24h as prior
to gage so that the prior has a relatively large variance to create a reasonably vague
prior.

Figure S1–2 depicts the distribution of distances d for the population of tumour
cells based on the volume of the tumour. The d values obtained are proportional to the
volume of the tumour, so as the tumour expands, more cells will be located further
from its edge. It appears that d remains between 0 and 30 for ranges of tumour volumes
relevant to the in vivo datasets. In other words, no cell has a distance greater than about
d = 30. Hence, we assign a uniform distribution constrained by 0 and 50 as the prior
for dmax.
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3 Results

In this section, we investigate the SMC-ABC algorithm’s ability to calibrate the
VCBM. First, the SMC-ABC algorithm is applied to synthetic data generated from the
model with known parameter values. Then, SMC-ABC is applied to three real tumour
growth datasets to explore whether the VCBM can capture the tumour growth pattern
for each type of cancer. The code and data is available via https://github.com/john-
wang1015/Calibration_BVCBM.

We report the details of the computational time required for simulation and infer-
ence, so that extensions to our modeling and/or statistical methods may be considered.
We calculate the computational cost of 1000 simulations, eachwith a time series length
of 32 days, and parameter configurations drawn from the prior distribution. We report
a computational cost range of 1.76–137.27 s per simulation. A significant driver of
computational time is the variable ppsc, which leads to a notable change in computa-
tional time as its value increases. For the inference task, we utilize an Intel(R) Xeon(R)
Gold 6140 CPU at 2.3 GHz, and parallelising across the 16 cores results in the total
computation time for the SMC-ABC algorithm to be approximately 11h when cali-
brating with the ovarian cancer dataset, approximately 34h when calibrating with the
breast cancer dataset, and approximately 9 to 16h (depending on the length of each
dataset) when calibrating with the pancreatic cancer dataset.

3.1 Validation with synthetic data

Prior to applying SMC-ABC to the observed experimental data sets, we first perform
a preliminary investigation using synthetic datasets generated via simulation from
the VCBM. This allows us to verify that the proposed SMC-ABC algorithm is able
to produce expected results under simple settings, i.e. exhibit posterior concentra-
tion around the true values that were used to generate the data and for the posterior
predictive distribution to be consistent with the generated data.

To validate the SMC-ABC method, we generate five sets of synthetic data using
five “true” parameter settings (see Table S1 and plots for time series data in Fig. S4).
Three of the datasets are simulated with biphasic growth and two with monophasic
growth, as the real data (see Fig. 1) appear to exhibit both cases. For example, some
mice in the pancreatic dataset appear to exhibit biphasic growth, whereas the mice in
the breast cancer dataset appear to exhibit monophasic growth. The biphasic datasets
use different values of gage for the two phases. During the generation of simulated
datasets, we initialize the tumour volume at 200 mm3, consistent with the real data.

We use the posterior samples to approximate the posterior predictive distribution
of the tumour volumes. In the supplementary document, we plot the (0.25, 0.75),
(0.1, 0.9) and (0.025, 0.975) posterior predictive intervals. Our results (see Figs. S6a,
S7a, S8a, S9a and S10a) show that SMC-ABC can recover every synthetic dataset
with reasonable accuracy, as the associated tumour volume falls within at least one of
the intervals in the posterior predictive plots.

The estimated univariate posterior distributions of synthetic time series (see Figs.
S6–S10) indicate that gage is the largest driving force for tumour growth in the sense
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that the posterior is substantially more concentrated compared to the prior. However,
the posteriors for p0 and dmax are not substantially different to the prior, and thus
cannot be identified from the data.

Although Eq.6 has been widely used in ABM context to model tumour growth
(Kansal et al. 2000a, b; Jiao and Torquato 2011; Pourhasanzade et al. 2017; Jenner
et al. 2020a), the sensitivity of the parameter dmax requires confirmation through
simulation. Our simulation shows that dmax is only sensitive at a small scale, as seen
in Fig. S3a and S3b, but not for large values, such as 100mm. This insensitivitymay be
due to the spring-based movement of cells, which allows new cells introduced through
proliferation to have minimal impact on cells at the exterior. Consequently, the tumour
edge and volume remain unaffected. As a result, the probability of cell division is not
sensitive, as shown in Figure S1.

3.2 Monotonic tumour growth data

In this section, we use SMC-ABC to estimate parameters of the monophasic VCBM
from the ovarian and breast cancer datasets shown earlier in Fig. 1a and b. We use
only the monophasic model for these data sets, as we find that the standard VCBM
provides a good fit to the data. Furthermore, the computational cost of fitting the
standard VCBM with four parameters is substantially lower than fitting the biphasic
VCBM with nine parameters. The parameter gage appears to be the most sensitive
parameter driving tumour growth in breast and ovarian datasets (see Figs. 4 and 5).
In the supplementary document, we show the posterior distributions and the bivariate
plots for ovarian and breast tumour datasets from Figs. S11–22.

The posterior predictive distributions for the ovarian and breast cancer datasets are
shown in Figs. 4a and 5a, respectively. Firstly, it is evident that the VCBM provides
a good fit to both cancer datasets, as the observed datasets lie comfortably within
the prediction intervals. However, two of three datasets (first and third one) in the
ovarian cancer dataset show a linear trend in volume size whereas the VCBM predicts
exponential growth, and so the model is not as accurate at predicting the volume sizes
at later times.

For both ovarian and breast cancer, the posterior distributions for ppsc and dmax
are very similar to the prior, indicating that the data are not providing any additional
information about these parameters. The posterior distribution for p0 is also similar
to the prior for most datasets, except for some breast and ovarian datasets where there
is some preference for smaller values of p0.

In contrast, the data are providing substantial information about gage, as indicated by
a much more precise posterior distribution compared to the prior as shown in Figs. 4a
and 5b. This indicates that gage strongly drives the dynamics of the VCBM, at least
in terms of the tumour volume it produces. We also find there is positive correlation
between ppsc and gage in Fig. S18, S20 and S22 in the ovarian cancer dataset. This
indicates that as the probability of cell invasion increases, the growth rate of tumour
cell will decrease to compensate.
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Fig. 4 Estimating VCBM parameters for monophasic tumour growth fit using SMC-ABC to the ovarian
cancer measurements. a The posterior predictive plots for each ovarian dataset; b The marginal distribution
of gage corresponding to the posterior predictive plots in (a)

Fig. 5 Estimating VCBM parameters for monophasic tumour growth fit using SMC-ABC to the breast
cancer measurements. a The posterior predictive plots for each breast dataset; b The marginal distribution
of gage corresponding to the posterior predictive plots in (a)
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Fig. 6 Results for pancreatic cancer dataset: a–d represent the results for the first to fourth mouse in
pancreatic cancer dataset. The first plot in a–d shows the posterior predictive distribution, the green line
shows the scaled posterior distribution for τ used to indicate the switching time of tumour growth, the true
density for posterior τ is in final plot of (a)–(d). The second and third plots for a–d show the marginal
posterior for p0 and gage in two phases. The horizontal blue lines represent the prior distribution (colour
figure online)

3.3 Biphasic tumour growth data

In this section, SMC-ABC is employed to analyze the pancreatic cancer datasets,
fitting the data with the biphasic VCBM. As observed in Fig. 1c, the first mouse in the
pancreatic cancer dataset exhibits a change in growth pattern prior to day 15. Given
this, we apply the biphasic VCBM to the entire pancreatic cancer dataset.

The posterior predictive distribution demonstrates that the biphasic VCBM offers
a suitable fit for the four pancreatic datasets, as evidenced by the observed datasets
falling within the prediction intervals as shown in the first column of Fig. 6.
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Our analysis of pancreatic tumor growth using the biphasic VCBM reveals that
gage is an important parameter describing the tumor growth dynamics. Changes in
the gage parameter can reflect alterations in the tumor microenvironment and genetic
or epigenetic alterations in the tumor cells. For the first two mice in the pancreatic
dataset, there is a significant difference in gage between the two phases of growth
(as exhibited by non-overlapping posterior distributions). Furthermore, for these two
mice, the switching time between the two growth phases is reasonably well identified.
For the third and fourth mice in the pancreatic dataset, the posterior distribution of gage
between the two growth phases has significant overlap, and the posterior distribution
of the switching time is close to uniform over the experiment. This suggests that these
two mice exhibit monophasic growth, and demonstrates how the biphasic VCBM can
effectively reduce to a standard VCBM. In the supplementary document, we present
the bivariate plots for parameters in Figs. S23–S26. A follow-up analysis could then
apply the standard VCBM for these two mice, as the extra complexity of the biphasic
VCBM is not warranted for these data sets.

4 Discussion

In this research,we develop a biphasic off-latticeABMbased on aVoronoi tessellation,
which is an extension of Jenner et al. (2020a). We demonstrate the utility of the new
model and the standard VCBM by calibrating them to real world tumour growth time
series data.

The Voronoi Cell-Based model (VCBM) describes the stochastic nature of cancer
cell proliferation and has an intractable likelihood function making it challenging to
fit to data. The SMC-ABC replenishment algorithm suggested by Drovandi and Pettitt
(2011) is suitable for calibrating the VCBM since the likelihood of the VCBM is
intractable. While the SMC-ABC replenishment technique has been widely employed
Carr et al. (2021), Varghese et al. (2020), Vo et al. (2015), Warne et al. (2020), this is
one of the first times that an ABM like this has been calibrated to actual tumour growth
data. The outcome of our calibration not only verifies the conclusion of Jenner et al.
(2020a) that gage is the most sensitive parameter, but also demonstrates the biphasic
VCBM can capture the switching of tumour growth dynamics and precisely estimate
the value of gage in different phases.

In our study, we use breast cancer, pancreatic cancer and ovarian cancer tumour
growth measurements in vivo to examine the robustness and flexibility of the VCBM.
It is evident that dmax and ppsc are not informed by any of the data sets. This is
most likely due to the fact that tumour volume is most impacted by the expansion of
the tumour periphery, which only requires the cells on the periphery to proliferate.
As such, modelling the probability of proliferation as a function of the distance to
the tumour periphery is not informed by simply tumour volume measurements and
requires more informative data collection. In contrast, gage provides rich information
about the average time a cell takes to proliferate.

It is evident that some of the pancreatic datasets appear to have biphasic tumour
growth patterns. To investigate this, we assumed there was some time at which tumour
growth could vary and introduce τ which is a parameter that control the time at which
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the tumour growth dynamics change. Performing SMC-ABC, we saw that dmax and
ppsc are not able to provide any information as the posterior for both phases are close
to the prior. However, the gage posteriors indicate clearly that the average time for
cell proliferation is different based on the two phases. Where it is clear that in the
first phase, the average time to proliferation is slower than in the second phase. This
highlights a shift in tumour growth which may relate to the expansion of the tumour
in the subcutaneous tissue or potentially a mutation in the cell cycling. However, to
conclude the cause of this shift needs more investigation from both an experimental
and modelling point of view.

To reduce computational cost, we implemented the VCBM in only 2-dimensional
space. In this way, we approximate tumour growth in vivo in 2-dimensions which we
feel matched the experimental measurements which are also only in two dimensions.
However, having the third dimensionmeasurement of the tumour in vivowould provide
us with an understanding of the irregularity in tumour volume that we may be missing
by only considering 2-dimensional tumour growth. In future work, we hope to use
3-dimensional tumour volume measurements, such as Magnetic resonance imaging
(MRI), to calibrate the 3-dimensional form of theVCBMand improvemodel accuracy.
This would allow us to recapitulate tumour shape irregularities, which we currently
assume are negligible in the 2-dimensional VCBM.

As our results suggest, the pancreatic cancer data set suggests that biphasic tumour
growth can occur. The next steps for our model are to reformulate the cellular prolifer-
ation to be a function of tumour space, so that as the tumour grows we may be able to
capture multiphasic growth. One idea for this, would be to consider sub-clonal popu-
lations within the tumour that arise stochastically with varying proliferation constants.

While the SMC-ABC is a relatively fast off-line algorithm, it is still computationally
expensive as for every proposed parameter value generated in a Bayesian algorithm, a
full dataset must be simulated. When simulation time is non-trivial, this then creates a
computationally intensive calibration algorithm. On the other hand, online algorithms
can iteratively update model parameter estimates as data are introduced sequentially.
Such an approach would be useful for our application, since we would only need
to simulate data forward one time step at each iteration and future work hopes to
investigate this further.

Overall, given the slow adoption of likelihood-free algorithms that can infer param-
eters in ABMs, we feel our manuscript provides inspiration for others using ABMs
applied in a biological context where data is available to attempt parameter inference.
In turn, our results suggest that not all parameters are practically identifiable in the
VCBM, which is information only gained through attempting to infer these param-
eters to data. Since the underlying structure of the VCBM is used in many different
applications, this finding has a flow-on effect for currently published models, whose
parameters may not be identifiable. It also motivates future experiments that may be
used to identify these parameters, such as time-series flow cytometry measurements
to identify cell proliferation markers. Lastly, the clear ability of our algorithm to iden-
tify the biphasic switching time of in vivo tumour growth suggests biologically that
tumours grown subcutaneously in mice may in reality exhibit two phases. This then
allowsus the understandmoredeeply how in vivo tumour growthmaydiffer from in situ
tumour growth in humans and help inform our understanding of experimental findings.
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In conclusion, we have applied SMC-ABC to calibrate the standard VCBM and
biphasic extensionwith real breast cancer, pancreatic cancer andovarian cancer tumour
growth datasets. It is evident that gage is the informative parameter for the VCBM and
allows it to recapitulate in vivo tumour growth data. Unfortunately, ppsc and dmax
are non-identifiable. We also find the biphasic VCBM shows the ability to extract
information from biphasic tumour growth datasets like a pancreatic tumour.We intend
to extend the VCBM so that it can capture potentially multiphasic tumour growth
pattern and also improve the computational cost of SMC-ABCbymoving the algorithm
online.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00285-024-02045-4.
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