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Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer that currently has
minimally effective treatments. Like other cancers, immunosuppression by the PD-
L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells
evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are
recruited to the glioma microenviroment, also contribute to the immunosuppressed
GBM microenvironment by suppressing T cell functions. In this paper, we propose a
GBM-specific tumor-immune ordinary differential equations model of glioma cells,
T cells, and MDSCs to provide theoretical insights into the interactions between these
cells. Equilibrium and stability analysis indicates that there are unique tumorous and
tumor-free equilibria which are locally stable under certain conditions. Further, the
tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate
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by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs,
and the T cell death rate. Bifurcation analysis suggests that a treatment plan that
includes surgical resection and therapeutics targeting immune suppression caused by
the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free
equilibrium. Using a set of preclinical experimental data, we implement the approxi-
mate Bayesian computation (ABC) rejection method to construct probability density
distributions that estimate model parameters. These distributions inform an appropri-
ate search curve for global sensitivity analysis using the extended fourier amplitude
sensitivity test. Sensitivity results combinedwith the ABCmethod suggest that param-
eter interaction is occurring between the drivers of tumor burden, which are the tumor
growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two
modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC
suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in com-
bination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be
explored.

Keywords Immune checkpoint · Immunosuppression · Mathematical oncology ·
Approximate Bayesian computation · Sensitivity analysis

Mathematics Subject Classification 92C50 · 92-10 · 92-08 · 92-05 · 34A12 · 34D20

1 Introduction

Glioblastoma (GBM) is themost common and aggressive type of primary brain cancer,
claiming tens of thousands of lives each year. Within 5 years of diagnosis, less than
10% of GBM patients survive, and most succumb to the tumor within 15 months
of diagnosis—even with treatment (Ostrum et al. 2015, Fernandes et al. 2017). The
current standard of care includes surgical resection followed by radiotherapy and
chemotherapy with temozolomide (TMZ) (Stupp et al. 2005, Fernandes et al. 2017),
but the minimally effective results demonstrate a need to look for new treatment
strategies. The highly complex and immune suppressed tumor microenvironment of
GBMmakes treatment difficult, thus immunotherapy, which has shown to be effective
in some cancer types, holds promise (Brown et al. 2018).

In the last decade, an increasing number of immunotherapies have been developed
for GBM (Yu and Quail 2021, Bausart et al. 2022, Bryukhovetskiy 2022). Anti-PD-1
is a standard immunotherapy that has proven to be beneficial in treating other cancers,
such as melanoma (Postow et al. 2015), Hodgkin’s lymphoma (Ansell et al. 2015),
colon (Duraiswamy et al. 2013), cervical (Chung et al. 2019), and non-small cell lung
cancer (NSCLC) (Brahmer et al. 2015), although it has failed as a monotherapy in
GBM phase III clinical trials (Preusser et al. 2015, Reardon et al. 2017, Lim et al.
2018). Cancer can evade the immune system by expressing the marker PD-L1, which
downregulates the cytotoxic response of activated T cells by binding to their PD-1
receptor. Treatment with anti-PD-1 unmasks the tumor by binding to PD-1, thereby
facilitating tumor recognition by T cells and enhancing the immune response. The
failure of anti-PD-1 monotherapy in GBM might potentially be explained by addi-
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tional mechanisms of immune suppression, such as the infiltration of myeloid-derived
suppressor cells (MDSCs), which are cells that suppress T cell activity.

Gliomas mediate recruitment of CCR2+ MDSCs by releasing chemokines such
as CCL2 and CCL7, which are cognate ligands of the CCR2 receptor (Takacs et al.
2021, Takacs et al. 2022). Higher expression of CCL2 and CCL7, as well as CCR2,
within the tumor microenvironment all correlate with a worse prognosis for gliomas
(Korbecki et al. 2020, Chang et al. 2016). Once the MDSCs enter the tumor microen-
vironment, they suppress T cells through a variety of mechanisms including, but not
limited to, inducing apoptosis in activatedT cells (Saio et al. 2001), producing enzymes
(such as arginase) which metabolize amino acids needed for T cell proliferation (Con-
damine andGabrilovich 2011), and secreting other factorswhichmodulate the immune
response (NO, TGF-β, TNF-α, H2O2) (Monu and Frey 2012, Markowitz et al. 2017).
Thesemechanisms, alongwithMDSCpromotion of angiogenesis (Vetsika et al. 2019),
lead to rapid tumor progression. Treating with a CCR2 antagonist aids the immune
response by reducing MDSC recruitment and thus sequestering the MDSC popula-
tion to the bone marrow. Flores-Toro et al. (2020) reported improved survival of two
murine glioma models (KR158 and 005 GSC) with combination treatment of a CCR2
antagonist (CCX872) and anti-PD-1.

Although MDSCs play a significant role in glioma progression, there are few
published mathematical models of tumor–immune dynamics that incorporate these
cells. Allahverdy et al. (2019) presents a discrete agent-based model of MDSCs in
the context of a general tumor and simulates treatment with the chemotherapeutic
agent 5-fluorouracil (5-FU). Similar to Allahverdy et al. (2019), the ODE model of
Shariatpanahi et al. (2018) for a general tumor also simulates treatment with 5-FU.
Further, they include treatment with L-arginine since the model considers production
of arginase I as the primary mechanism by which MDSCs suppress T cells. Liao et al.
(2014) highlights a mechanism of MDSC recruitment by developing a PDE model
which focuses on the role of interleukin-35 (IL-35) in MDSC recruitment and tumor
growth. Lai et al. (2018) used a PDE model of breast cancer to determine the influ-
ence of the immune checkpoint inhibitor, anti-CTLA-4, on M2 macrophages within
the tumor site. Although they did not specifically model MDSCs, their work implied
that these conclusions apply to MDSCs because a subset of monocytic MDSCs dif-
ferentiate into M2 macrophages. Kreger et al. (2023) developed a stochastic delay
differential equations model of a metastasizing breast cancer to evaluate MDSC influ-
ence on tumor progression. Although the model is fitted to patient response data to
immune checkpoint inhibitors, the model itself does not include a mechanism to rep-
resent an immune checkpoint. Each of these models include MDSCs and provide a
foundation to incorporate the PD-L1-PD-1 immune checkpoint. Furthermore, we aim
to develop a model specifically for GBM instead of a general tumor.

Mathematical models of tumor–immune dynamics range from modeling general
tumors (Lai and Friedman 2017, Nikolopoulou et al. 2018, Eftimie et al. 2011,
Mahlbacher et al. 2019, Shi et al. 2021, Radunskaya et al. 2018, Khyat and Jang 2022)
to specific cancers including GBM, non-small lung cancer (NSCLC), melanoma, and
breast cancer (Storey et al. 2020, Yu and Jang 2019, Butner et al. 2021, Lai et al. 2018,
Banerjee et al. 2015, Özköse et al. 2022, Mirzaei et al. 2021, Khajanchi and Banerjee
2017,Khajanchi 2021, Jafarnejad et al. 2019, Perlstein et al. 2019,Bitsouni andTsilidis
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2022). Similar to Lai et al. (2018), Yu and Jang (2019) modelled the CTLA-4 immune
checkpoint and included anti-CTLA-4 therapy, but restricted their focus to a four equa-
tion ODEmodel of tumor cells, CD4+ T cells, IFN-γ , and CTLA-4. Two years earlier,
Lai and Friedman (2017) modelled a different immune checkpoint, the PD-L1-PD-1
complex, by developing a PDE model of a general tumor which included additional
cells and molecules like dendritic cells, CD4+/CD8+ T cells, IL-2, and IL-12. Their
model was used to simulate treatment with anti-PD-1 and a cancer vaccine, GVAX.
This work was later reduced to an ODE model by Nikolopoulou et al. (2018) which
focused on tumor and T cells with intermittent and continuous anti-PD-1 treatment.
Shi et al. (2021) and Nikolopoulou et al. (2021) extended this work by establishing the
global dynamics of the model along with a generalized version. Storey et al. (2020)
applied these models to GBM by estimating parameters from in vivo murine experi-
mental data. Their ODE model divided the immune compartment into the categories
of innate and adaptive immune cells and modeled treatment with anti-PD-1 and an
oncolytic viral therapy. Radunskaya et al. (2018) deviated from modeling the typical
immune checkpoint inhibitor, anti-PD-1, by considering treatment with anti-PD-L1
in their model of general tumor-immune dynamics, which compartmentalized inter-
actions to be within the spleen, blood, and tumor site. While each of these previous
papers focused on a specific immune checkpoint, Butner et al. (2021) developed an
ODE model which was not necessarily specific to the type of immune checkpoint or
the type of tumor. Using this model along with patient data, Butner et al. (2021) pre-
dicted the long-term tumor burden for a variety of patients being treated with different
immune checkpoint inhibitors.

In this paper, we develop a GBM-specific ODE model of cancer and T cell inter-
actions by incorporating the PD-L1-PD-1 immune checkpoint along with tumor
recruitment of MDSCs. Parameter values are estimated from the literature and via
comparison with experimental in vivo murine data.

Our paper unfolds as follows: in Sect. 2, we describe the GBM-immune dynam-
ics model. In Sect. 3, we perform equilibrium and solution analysis and emphasize
these findings through bifurcation analysis. Section4 analyzes the parameter space by
implementing the Approximate Bayesian Computation (ABC) method used in con-
junction with the extended Fourier Amplitude Sensitivity Test (eFAST). Numerical
simulations alongside experimental data are also provided. In Sect. 5, we conclude
with a discussion of our results and future directions.

2 Mathematical model

The glioblastoma (GBM)–immune model focuses on the dynamics within the glioma
microenvironment and is based on the previous work of Nikolopoulou et al. (2018),
Storey et al. (2020), and Shariatpanahi et al. (2018). A diagram of the biological inter-
actions implemented is illustrated in Fig. 1, and Table 1 lists the biological meaning of
the model’s parameters with their respective units and representative range of values.

Letting C be the number of tumor cells, T the number of activated T cells (all cells
that have the CD3+ marker, which includes both CD4+ and CD8+ T cell subsets),
and M be the number of myeloid-derived suppressor cells (MDSCs), we arrive at the
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Fig. 1 Tumor-immune interactions in glioblastoma. Flowchart created with BioRender.com

following system of equations:

dC

dt
= λCC

(
1 − C

Cmax

)
︸ ︷︷ ︸

logistic
growth

− ηTC︸︷︷︸
killed by
T cells

, (1a)

dT

dt
= (

aT︸︷︷︸
activation

+ sT TC︸ ︷︷ ︸
stimulation

) 1

1 + ρT (T + εCC)︸ ︷︷ ︸
inhibition by
PD-L1-PD-1

− rT M︸ ︷︷ ︸
inhibition
by MDSCs

− dT T︸︷︷︸
death

, (1b)

dM

dt
= sMC︸︷︷︸

stimulation by
CCL2/CCL7

+α
C

q + C︸ ︷︷ ︸
expansion
of MDSCs

− dMM︸ ︷︷ ︸
death

. (1c)

In Eq. (1a), we assume the tumor cells exhibit logistic growth with a carrying
capacity of Cmax. T cells, which are the main drivers of tumor cell death, kill glioma
cells at a rate of η, as in Nikolopoulou et al. (2018).
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Equation (1b) is of the same form as in Lai and Friedman (2017), Nikolopoulou
et al. (2018), and Storey et al. (2020). The first term represents T cells activation at a
constant rate aT , potentially due to the cytokine IL-12 which is explicitly represented
in the previous models, and the recruitment (or stimulation) of T cells to the tumor
site by the presence of a glioma at a rate sT . Once in the glioma microenvironment,
T cells are exhausted by the formation of the PD-L1-PD-1 complex, which binds PD-
L1 present on glioma cells and T cells with PD-1 on T cells. Assuming (T + εCC)

characterizes the level of free PD-L1 in the tumor microenvironment, the PD-L1-PD-1
complex is represented by T (T +εCC) since only T cells express PD-1. As T cells and
tumor cells increase, more PD-L1-PD-1 complexes form, thus decreasing the overall
fraction to represent T cell inhibition. The parameterρ results fromcombiningmultiple
parameters in Lai and Friedman (2017), Nikolopoulou et al. (2018), and Storey et al.
(2020) due to their structural non-identifiability. The remaining terms of (1b) represent
T cells suppressed/deactivated by MDSCs (Gabrilovich and Nagaraj 2009) by a rate
r and T cells dying at a rate dT .

In Eq. (1c), the first term represents glioma recruitment ofMDSCs to themicroenvi-
ronment by secreting the chemokinesCCL2andCCL7,which are ligands for theCCR2
receptor expressed by MDSCs. This results in a chemotactic effect, drawing MDSCs
from the bonemarrow to the gliomamicroenvironment, where here we are specifically
focusing on monocytic M-MDSCs as opposed to granulocytic PMN-MDSCs. Since
these chemokines are produced by glioma cells, this recruitment increases as glioma
cells increase. We assume that the presence of a tumor also results in the expansion of
splenic MDSCs (Liu et al. 2007, Fig. 2), using the same fractional term as the model
of Shariatpanahi et al. (2018) in the second term of (1c), thus indirectly causing more
MDSCs to accumulate in the tumor. The last term represents MDSCs dying at a rate
dM .

Ourmodel is distinct frompreviousmodels in that it combines both the PD-L1-PD-1
immune checkpoint, such as incorporated in Lai and Friedman (2017), Nikolopoulou
et al. (2018), and Storey et al. (2020), and MDSCs, such as in Shariatpanahi et al.
(2018), and it additionally was developed specifically for GBM. Though Storey et al.
(2020) also focused on GBM, while the other studies were for general tumors or
tumors different than GBM, their study included oncolytic viral therapy treatment.
Shariatpanahi et al. (2018) differs fromourmodel in thatMDSCdynamics aremodeled
in the spleen instead of the tumor site and they incorporated chemotherapy treatment.
Here, we integrate an immune checkpoint mechanism and MDSCs to study each of
these immunotherapy targets in GBM.

3 Equilibrium and solution analysis

We describe the equilibria and stability of system (1) in this section to verify that
our model is biologically reasonable and to determine suitable target parameters for
treatment. Since the functions on the right hand side of the equations in system (1)
are continuously differentiable, solutions exist and are unique by standard ordinary
differential equations theory.

123
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We begin by confirming that our system will neither veer into negative cell counts
nor increase to infinity over time but will be realistically bounded. First, we show that
solutions with positive initial conditions remain positive for all time.

Theorem 1 (Positivity) Solutions of (1) that start positive remain positive.

Proof Assume C(t0) > 0, T (t0) > 0, and M(t0) > 0 for some initial time t0. Without
loss of generality, assume t0 = 0.

In order to have T (t) ≤ 0 for some t > 0, it is necessary to have dT /dt ≤ 0 for
T = 0. However, when T = 0, (1b) becomes dT /dt = aT > 0. Thus, T (t) > 0 for
all t > 0.

Assuming that C and T exist on some interval [0, t) for t > 0, when we integrate
(1a), we arrive at

C(t) = C(0) exp

(∫ t

0
λC

(
1 − C(s)

Cmax

)
− ηT (s)ds

)
, (2)

which is always positive since C(0) > 0.
Lastly, when M = 0, (1c) becomes

dM

dt
= sMC + α

C

q + C
. (3)

Since we proved that C(0) > 0 implies C(t) > 0 for all t > 0 and because all the
parameters are positive, we conclude that for M = 0, dM/dt > 0. Thus, M(t) > 0
for all t > 0. ��

Next, we show that solutions of system (1) with positive initial conditions are
bounded.

Theorem 2 (Boundedness) Solutions of (1) that start positive are bounded.

Proof Assume C(t0) > 0, T (t0) > 0, and M(t0) > 0 for some initial time t0. Without
loss of generality, assume t0 = 0.

Since all parameters are positive and C and T are positive by Theorem 1, by
comparison we can bound (1a) by

dC

dt
< λCC

(
1 − C

Cmax

)
. (4)

Since logistic growth is bounded, C(t) is bounded as well. Specifically,

C(t) ≤ Ĉ := max{C(0),Cmax}, (5)

for all t ≥ 0.
For the T cells, note that (1b) can be bounded as

dT

dt
≤ g(T ) − dT T , where g(T ) := aT + sT T Ĉ

1 + ρT 2 . (6)
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g(T ) achieves an absolute maximum at

Tm =
√

ρ
(
ρa2T + (sT Ĉ)2

)
ρsT Ĉ

− aT
sT Ĉ

. (7)

Hence, (6) can be further bounded as

dT

dt
≤ g(Tm) − dT T . (8)

Using a standard comparison argument,

lim sup
t→∞

T (t) ≤ g(Tm)

dT
. (9)

Thus, for all t ≥ 0,

T (t) ≤ max

{
T (0),

g(Tm)

dT

}
. (10)

For the MDSCs, since C is bounded (5), (1c) can be bounded as

dM

dt
< sMC + α − dMM ≤ sMĈ + α − dMM . (11)

By a standard comparison argument,

lim sup
t→∞

M(t) <
sMĈ + α

dM
. (12)

Therefore, for all t ≥ 0,

M(t) ≤ max

{
M(0),

sMĈ + α

dM

}
. (13)

Hence, system (1) is bounded. ��
The system (1) admits two categories of fixed points: tumor-free equilibria of the

form (C, T , M) = (0, T ∗
0 , M∗

0 ) and tumorous equilibria of the form (C, T , M) =
(C∗, T ∗, M∗). We first show that there exists one unique tumor-free equilibrium.

Theorem 3 (Uniqueness of tumor-free equilibrium) The system (1) has a unique
tumor-free equilibrium (C, T , M) = (0, T ∗

0 , 0), where T ∗
0 is increasing with respect

to aT and decreasing with respect to dT and ρ.

Proof Assume that there is no tumor present, i.e., C = 0. Setting dM/dt = 0 in (1c)
implies that M∗

0 = 0.

123



10 Page 10 of 33 H. G. Anderson et al.

When dT /dt = 0, (1b) implies that dT T ∗
0 (1 + ρT ∗

0
2) = aT . Let

f (T ) = dT ρT 3 + dT T − aT . (14)

According to Descartes’ rule of signs, the number of sign changes in front of the
coefficients of a polynomial corresponds to the number of positive zeros. Since there
is exactly one sign change because all the parameters are positive, there is exactly
one positive zero, T ∗

0 . Thus, a biologically relevant tumor-free equilibrium (0, T ∗
0 , 0)

exists and is unique.
Note that as aT increases, the graph of f (T ) shifts down, resulting in a larger T ∗

0 .
As dT and ρ increase, f ′(T ) = 2dT ρT 2 + dT increases for T > 0, which results in
a narrowed curve and thus a smaller T ∗

0 .
Lastly, when we solve for T ∗

0 using the cubic formula, we obtain

T ∗
0 = 3

√√√√(
aT

2dT ρ

)
+

√(
aT

2dT ρ

)2

+
(

1

3ρ

)3

+ 3

√√√√(
aT

2dT ρ

)
−

√(
aT

2dT ρ

)2

+
(

1

3ρ

)3

.

(15)
��

Next, we determine conditions for the stability of the tumor-free equilibrium
(0, T ∗

0 , 0).

Theorem 4 (Stability of tumor-free equilibrium) When λC < ηT ∗
0 , the tumor-free

equilibrium, (0, T ∗
0 , 0), is locally asymptotically stable. However, when λC > ηT ∗

0 ,
(0, T ∗

0 , 0) is a saddle point.

Proof The Jacobian evaluated at the tumor-free equilibrium is

J (0, T ∗
0 , 0) =

⎛
⎜⎝

λC − ηT ∗
0 0 0

−aT εCρT ∗
0

(1+ρT ∗
0
2)2

+ sT T ∗
0

1+ρT ∗
0

−2aT ρT ∗
0

(1+ρT ∗
0
2)2

− dT −rT ∗
0

sM + α
q 0 −dM

⎞
⎟⎠ , (16)

and the eigenvalues are

λ1 = λC − ηT ∗
0 , λ2 = −2aT ρT ∗

0

(1 + ρT ∗
0
2)2

− dT < 0, λ3 = −dM < 0. (17)

Therefore, when λC < ηT ∗
0 , the tumor-free equilibrium (0, T ∗

0 , 0) is locally asymp-
totically stable. However, when λC > ηT ∗

0 , λ1 > 0, so the tumor-free equilibrium is
a saddle point. ��

Biologically, the condition λC < ηT ∗
0 guaranteeing local stability of the tumor-free

equilibrium indicates that T cells kill cancer cells faster than the cancer cells can mul-
tiply during the onset of tumor initiation. As for treatment, the worst patient scenario
would be a saddle tumor-free equilibrium, as this would suggest that the patient will
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most likely relapse regardless of their proximity to the disease-free condition. Thus,
by varying λC , η, or T ∗

0 (15) (which depends on aT , dT , and ρ), a patient’s tumor-free
equilibrium could shift from a saddle to a locally stable point. These parameters would
likely be affected in an immune-compromised individual, and in particular, treatment
with an immune checkpoint inhibitor to decrease ρ could be an effective strategy.

In Appendix A, we establish conditions for the uniqueness (Theorem 6) and local
stability (Theorem7) of the tumorous equilibrium.We conclude our discussion here by
determining conditions for the global stability of the tumor-free equilibrium (0, T ∗

0 , 0).

Theorem 5 (Global stability of tumor-free equilibrium) The system (1) has a glob-
ally stable tumor-free equilibrium when λC < ηβ, where β := aT /(1 + ρT̂ (T̂ +
εCĈ))(r M̂ + dT ) and Ĉ, T̂ , and M̂ are the upper bounds for glioma cells (5), T
cells (10), and MDSCs (13), respectively, as determined in Theorem 2.

Proof From Theorems 1–2, we have that C(t), T (t), and M(t) are bounded above
with upper bounds denoted by Ĉ , T̂ , and M̂ > 0, respectively, and below by 0. By
these bounds,

dT

dt
≥ γ − (r M̂ + dT )T , where γ := aT

1 + ρT̂ (T̂ + εCĈ)
. (18)

Thus, using a standard comparison argument,

lim inf
t→∞ T (t) ≥ β > 0, where β := γ

r M̂ + dT
. (19)

If λC < ηβ, then for all s > 0 sufficiently large,

λC − ηT (s) < 0, (20)

which, taking the limit of (2), implies that

lim
t→∞C(t) = C(0) lim

t→∞ exp

(∫ t

0
(λC − ηT (s)) − λC

C(s)

Cmax
ds

)
= 0. (21)

Bounding T (t) in the tumor cell equation (1a), we have

λCC

(
1 − C

Cmax

)
− ηT̂ C ≤ dC

dt
≤ λCC

(
1 − C

Cmax

)
, (22)

which, taking the limit as t → ∞, implies that dC/dt → 0. Now, using (21),

dM

dt
≤ ε − dMM(t), (23)

where ε → 0 as t → ∞. A standard comparison argument reveals that

lim sup
t→∞

M(t) ≤ ε

dM
, (24)
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for any ε > 0. Thus, since M(t) is nonnegative for all t ≥ 0, M(t) → 0 as t → ∞,
and hence, dM/dt → 0 as t → ∞.

Since T is bounded above and below and since C(t) → 0 and M(t) → 0 as
t → ∞, the limiting equation of (1b) is dT /dt = G(T ), where

G(T ) := aT
1 + ρT 2 − dT T , (25)

and we note that G(T ∗
0 ) = 0. Since

G(T ) − εt ≤ dT

dt
≤ G(T ) + εt , (26)

where εt → 0 as t → ∞, using a comparison argument,

T ∗
0 − εt ≤ T (t) ≤ T ∗

0 + εt . (27)

Thus, T (t) → T ∗
0 as t → ∞, and dT /dt → G(T ∗

0 ) = 0 as t → ∞.
This allows us to conclude that the tumor-free equilibrium point, (0, T ∗

0 , 0), is
globally stable in R

+
0 × R

+
0 under the condition that λC < ηβ. ��

The best patient scenario is one in which the tumor will tend toward the tumor-
free equilibrium regardless of size. While satisfying the global stability condition in
Theorem 5 is unlikely in reality, as we shall see in Sect. 4.3, the condition provides
additional targets for treatment, such as εC , r , and Cmax. These parameters could be
targeted through treatment with anti-PD-1/PD-L1, L-arginine, and surgical resection,
respectively. Through parameter analysis in Sect. 4, we will narrow our search for
therapeutic targets.

3.1 Bifurcation analysis

We validate the tumor-free equilibrium global stability conditions (Theorem 5) with
a bifurcation analysis. Figure 2 indicates that the tumor growth rate (λC ), T cell kill
rate of tumor cells (η), and T cell inhibition rate by PD-L1-PD-1 (ρ) and MDSCs (r )
are reasonable targets for treatment, since shifting these parameters can result in the
system tending toward the tumor-free equilibrium. Varying the remaining parameters
cannot considerably relieve the tumor burden (Fig. S1 (Online Resource 1, Sect. 5))
and thus are unlikely to be advantageous treatment targets.

RegardingMDSC infiltration and suppression, Fig. 2 suggests that targetingMDSC
recruitment, death, and their inhibition of T cells can increase the cytotoxic immune
response; however, only by directly targeting immune suppression by MDSCs, r , can
tumor cells be reduced to zero. Thus, therapeutics which prevent T cell inhibition
by MDSCs should be used to relieve the tumor burden. These should be used in
combination with immunotherapies targeting T cell inhibition by PD-L1-PD-1 (ρ),
such as anti-PD-1 or anti-PD-L1, since varying ρ also minimized the tumor size
(Fig. 2).
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Fig. 2 Bifurcation diagrams for the tumor growth rate (λC ), T cell kill rate of tumor cells (η), T cell
inhibition rate by PD-L1-PD-1 (ρ) and MDSCs (r ), and MDSC recruitment (sM ) and death rate (dM ). The
minimum/maximum tumor (C), T cell (T ), and MDSC (M) cell counts are shown in solid blue/dashed red,
respectively. While all parameters can decrease the immune response, only varying λC , η, ρ, and r can
eliminate the tumor cells, indicating their potential as therapeutic targets (color figure online)

4 Parameter analysis

In this section, we analyze the parameter space and its effect on system (1) by
implementing the Approximate Bayesian Computation (ABC) rejection method
(Sect. 4.2) to compare with experimental data (Sect. 4.1), plotting numerical simula-
tions (Sect. 4.3), and performing global sensitivity analysis using the extended Fourier
Analysis Sensitivity Test (eFAST) (Sect. 4.4). Section4.5 contains an examination of
the results.

4.1 Experimental data

The model of GBM–immune dynamics (1) developed in this study is applied to a set
of experimental data from a high-grade murine glioma cell line, KR158.

Mice were anesthetized and surgically implanted with 35,000 glioma cells through
an incision in the skull. At several time points (7, 13, 20, 24, 27, and 34 days after
glioma cell implantation), 1–4micewere euthanized followedby resection of the brain.
2D images of the glioma tissue were used to determine tumor, T cell, and MDSC cell
counts (Fig. 3 and Online Resource 2).

For a more detailed description of the experimental setup, image analysis pipeline,
and data conversion from a 2D section to a 3D spherical tumor, see Online Resource
1 (Sects. 1 and 2).
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Fig. 3 Fluorescent images of brain tissue in a glioma-bearing mouse at day 34 after implantation. CD3
is a marker for T cells, while MDSCs are identified by the CCR2 and CXC3R1 markers. The white, red,
and green fluorescent labels denote CD3+, CCR2+, and CX3CR1+ cells, respectively, while the blue
fluorescent label denotes all viable cells. The bottom four images are overlaid in the top right image, which
is then magnified (top left). A dotted white line marks the glioma’s location. Notice that MDSCs are largely
absent from surrounding normal brain tissue (color figure online)

4.2 Approximate Bayesian computation

Deterministic approaches, like the gradient descent method, are commonly used to
estimate a single set of parameter values which optimally represent the given data
(Allmaras et al. 2013). This optimization is computed by minimizing error between
the numerical simulation and data points. However, depending on the initial guesses
of these parameters, this method can converge to different local error minima, making
it difficult to uncover a set of parameter estimates which is globally optimal. Addi-
tionally, these approaches do not quantify uncertainty in the parameter estimation and
generally may not give reliable fits for small data sets. To remedy these issues, we
utilize the Approximate Bayesian Computation (ABC) rejection method (Sunnåker
et al. 2013, Liepe et al. 2014). This algorithm produces probability distributions of
the parameter values, which can indicate a range of near-optimal values for each
parameter. These distributions provide more detailed information should additional
data be made available for a more precise data fitting. In recent years, the use of the
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ABC rejection method in the study of complex biological systems has been increasing
(Browning et al. 2017, Stepien et al. 2019, Xiao et al. 2021, da Costa et al. 2018).

The first step of the ABC rejection method is to specify a prior distribution for each
of the parameters. Consequently, we generate 1 million parameter sets, i.e., 1 million
13-dimensional vectors, where each vector forms a parameter set

{λC , Cmax, η, aT , sT , ρ, εC , r , dT , sM , α, q, dM }.

The values for each parameter were chosen uniformly from the ranges shown as the
bounds of the horizontal axes in Fig. 4.

Next, we calculate the relative error of a single parameter set,

E = 1

n

n∑
i=1

|di − xi |
di

, (28)

where di is the experimental data point and xi is the simulated value at the i th time
point. We set di to be the average cell count for the i th time point, where the time
points were days 7, 13, 20, 24, 27, and 34. The relative errors for tumor cells (EC ),
T cells (ET ), and MDSCs (EM ) are calculated individually and the total error is
Etotal = EC + ET + EM .

Lastly, we specify an error threshold, R: if the error of a parameter set is less
than the threshold, the set is accepted (i.e., the simulation is sufficiently close to the
experimental data), but if it is greater than the threshold, the parameter set is rejected.
Since we observed that parameter sets that matched the tumor cell and MDSC data
well often did not match the T cell data, we set error thresholds separately for each cell
type. In particular, we set RC = 0.75 for the tumor cell error threshold, RT = 0.72
for the T cells, and RM = 0.78 for the MDSCs. For a parameter set to be accepted,
we required EC ≤ RC , ET ≤ RT , and EM ≤ RM .

Of the 1 million parameter sets sampled, approximately 44,000 sets were accepted.
Visualizations of the resulting posterior distributions are shown in Fig. 4. Along the
diagonal of Fig. 4a are smoothed 1D histograms for parameters exhibiting a right-
skeweddistribution,while Fig. 4b shows the remaining parameters.Below the diagonal
of both of these figures are 2D projections of pairs of parameters. Red shaded areas
correspond with higher frequency of the parameter in the posterior distribution.

Table 2 lists the summary statistics of the posterior distributions as well as the best
fitting probability distribution, which was calculated by minimizing the 1-Wasserstein
metric (earth mover’s distance).

To determine whether our results were robust, we extracted different percentages of
the accepted parameters and compared parameter distributions.Distributions remained
largely unchanged when we analyzed any percentage of our accepted parameters.

Since the posterior distributions for parameters in Fig. 4b have less distinct peaks
(cf. Fig. 4a), this suggests that, given our data, we were unable to attain additional
information on the actual probability distributions for these parameters beyond upper
and lower bounds found in the literature.
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Fig. 4 ABC rejectionmethod: The smoothed histograms for the 1D projections of the posterior distributions
of each parameter along the diagonal and the 2D contour plot projections for pairs of parameters below
the diagonal were produced using the smallest 25% (in terms of the total relative error Etotal (28)) of
the accepted parameter values. Darker red indicates a higher frequency of parameter values. The markers
indicate the parameter sets with the smallest total relative error (Etotal), tumor cell relative error (EC ), T
cell relative error (ET ), and MDSC relative error (EM ) (color figure online)
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Fig. 5 Numerical simulations after implanting 35,000 glioma cells. aWe sampled 10,000 parameters from
the ABC method posterior distributions listed in Table 2. Then, we calculated the mean cell counts at each
hour and standard deviation. The simulations capture nearly all data points within one standard deviation
from the mean. b The maximum, average, and minimum curves represent simulations using the parameter
sets of minimal error found using the ABC rejection method (Table S1 (Online Resource 1, Sect. 4)) with
respect to the maximum, average, and minimum data points at each time step

4.3 Numerical simulations

Since mice were orthotopically implanted with 35,000 KR158 glioma cells in the
experiments (Sect. 4.1), myeloid-derived suppressor cells (MDSCs) are absent from
the brain before tumor introduction, and the number of activated T cells are initially
negligible, the initial conditions for numerical simulations were set to be C(0) =
35, 000, T (0) = 0, and M(0) = 0 cells. We assume that any loss of glioma cells due
to implantation is negligible.

123



Global stability and parameter analysis reinforce... Page 19 of 33 10

We ran 10,000 simulations using parameter sets sampled from the ABC method
posterior distributions listed in Table 2, and illustrate the mean cell counts and cell
counts within standard deviation σ/4, σ/2, 3σ/4, and σ calculated at each hour in
Fig. 5a. We additionally plot the experimental data points for glioma cells, T cells,
and MDSCs and observe that the simulations capture nearly all data points within one
standard deviation from the mean.

The ABC rejection method histograms illustrated in Fig. 4 were produced by calcu-
lating the relative error (28), where di are the cell counts averaged at each time point.
However, we also used the minimum and maximum cell counts for di to evaluate the
relative error in two separate instances of the ABC method. The parameter sets that
gave rise tominimal error from these three different trials are listed in Table S1 (Online
Resource 1, Sect. 4) and numerical simulations are shown in Fig. 5b. A comparison
of their total error values could suggest that our parameter ranges are better suited for
larger gliomas (error: 0.937) rather than smaller gliomas (error: 1.78), while they are
best suited for the average glioma size (error: 0.785). However, these differences in
error could also be explained by the variability in the data.

We find that the parameter sets from these three trials (Table S1 in the Online
Resource 1, Sect. 4) each satisfy the conditions for a saddle tumor-free equilibrium
(Theorem 4), thus corresponding to the worst treatment scenario.We cannot guarantee
the existence of a tumorous equilibrium, (C∗, T ∗, M∗), for the minimum and average
data parameter sets since they fail to fulfill CmaxεCη/λC < 1 in Theorem 6 given in
Appendix A. However, the maximum data parameter set exhibits a tumorous equilib-
riumwhen T ∗ < 5.92×108 = λC/η. Further, if this equilibriumexists, it is guaranteed
to be unique and it is locally asymptotically stable when T ∗ ∈ (11, 2.96 × 108). All
T cell data points are contained within this range, so it is likely that large tumors have
a unique, locally asymptotically stable tumorous equilibrium, making these tumors
difficult to treat as the system tends towards a tumorous state.

4.4 Sensitivity analysis

To determine the influence of parameters on tumor progression, we conducted a sen-
sitivity analysis using the extended Fourier Analysis Sensitivity Test (eFAST) method
outlined in Saltelli et al. (1999) by utilizing the MATLAB code developed by the
Kirshner Lab at the University of Michigan (Kirschner and Panetta 1998, Kirschner
2008). eFAST is a global sensitivity analysis method which neither requires model
linearity nor a monotonic relationship between the output and the parameters (Saltelli
et al. 2008). Similar to the Sobol’ method, it is a variance-based method, but it uses
a monodimensional Fourier expansion of the model to evaluate variance. Because of
this monodimensional transformation, each parameter i can be sampledwithin the unit
hypercube by varying s ∈ (−π, π) along the space-filling search curve, xi , defined by

xi (s) = Gi (sin(ωi s + ϕi )), (29)

where ωi is the angular frequency assigned to parameter i , ϕi is a random phase-shift,
and Gi is a transformation function.
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The ABC posterior distributions of each parameter (Fig. 4 and Table 2) are used to
determine the transformation function, Gi , hence the search curve, xi . For parameters
with right-skewed posterior distributions (Fig. 4a: λC , Cmax, η, ρ, εC , r ), we used the
search curve proposed by Cukier et al. (1973),

xi = ni exp(vi sin(ωi s + ϕi )), (30)

where ni is the nominal value of the i th parameter, set to be the mode of the ABC
posterior distribution, and vi accounts for uncertainty by altering the width of the
parameter range. vi was set to be such that parameters are sampled within the interval
[0, 1] by setting vi = ln(1/ni ).

For the remaining parameters (Fig. 4b: aT , sT , dT , sM , α, q, dM ), we used the
search curve for a uniform distribution that was determined by Saltelli et al. (1999),

xi = 1

2
+ 1

π
arcsin(sin(ωi s + ϕi )). (31)

Using these search curves, we generated 2,049 parameter sets for each 5 resam-
plings, which resulted in a total sample size of 10,245 parameter sets. Details on
how we chose the sample size and number of resamplings are in Online Resource 1
(Sect. 6.1). After parameters were sampled from the unit hypercube, the samples for
each parameter were translated to the ranges shown as the bounds of the horizontal
axes in Fig. 4.

The main effect, or first-order index, Si , describes the effect that a single parameter
i has on the variance of the system independently of other parameters. In contrast, the
total effect index, ST i , is a sum of Si and the higher-order interactions of parameter i
with other parameters. InFig. 6,we illustrate themain effect Si and the total effect index
ST i for each parameter calculated after a simulation time of 40 days (the approximate
time at which an untreated mouse requires euthanasia). The larger the difference
between ST i and Si , the more interaction there is between i and other parameters in
synergistically influencing the variance of the output.

Figure 6 indicates that T cells are sensitive to perturbations in several parameters,
including the kill rate of tumor cells by T cells (η) as well as the inhibition of T cells by
PD-L1-PD-1 (ρ) and MDSCs (r ). Tumor cells express sensitivity to the tumor growth
rate (λC ), tumor carrying capacity (Cmax), and the kill rate by T cells (η). These results
are similar for theMDSCpopulation, however, the death rate (dM ) holds a significantly
larger influence on variations. Also, whileMDSCs and tumor cells display similar total
order indices for η and λC , the first order indices of these parameters are larger for
tumor cells than MDSCs. This is most likely since these parameters directly influence
the tumor cell population but indirectly affect the MDSC population.

Additional sensitivity analyses were run with simulation ending times of 5, 10, 20,
60, 80, and 100 days. Results for days 60, 80, and 100 were qualitatively similar to
Fig. 6, and results for days 5, 10, and 20 are shown in Fig. S2 in Online Resource 1
(Sect. 6.2). Comparing the outputs, we find that each cell population becomes increas-
ingly sensitive to Cmax as time progresses, as limited space and nutrients become
more significant for larger tumors. MDSCs are initially very sensitive to the MDSC

123



Global stability and parameter analysis reinforce... Page 21 of 33 10

Fig. 6 Global sensitivity analysis: The eFAST method was used to calculate the main effect, Si , and total
effect, ST i , of each parameter on tumor cells (C), T cells (T ), and MDSCs (M) at t = 40 days. Parameters
λC , Cmax, η, ρ, εC , and r were sampled using (30), while the remaining were sampled uniformly using
(31)

recruitment rate (sM ), but this decreased with time and, by day 40, its influence is
surpassed by dM . This result suggests that a CCR2 antagonist should be used as soon
as possible, and if the tumor is in its later stages, therapeutics that kill MDSCs at the
tumor site should be considered instead. T cells initially were the most sensitive to ρ

but this switched to η by day 10. Further, T cell sensitivity to r continues to increase
until it surpasses ρ by day 20, where it remains the second most influential parameter.
Therefore, while treatment with an immune checkpoint inhibitor, such as anti-PD-1
or anti-PD-L1, should be beneficial at any time, results indicate that it is best to treat
sooner if possible and to incorporate treatment strategies targeting T cell inhibition by
MDSCs later in treatment.

Since the search curve (30) of Cukier et al. (1973) produces a stronger skew than
our ABC distributions suggest (Fig. 4), we additionally sampled all parameters uni-
formly using (31) (Fig. S3 in Online Resource 1, Sect. 6.2). We assume that the actual
sensitivity indices are within the range produced by the results in Figs. 6 and S3.
Figure S3 shows slightly more interaction occurring between parameters (as seen by
greater differences between Si and ST i ), thus, by utilizing the ABC posterior distribu-
tions to inform the search curve, Fig. 6 more precisely determined which parameters
should be targeted with treatment.
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4.5 Results

In the existing literature, we could find no estimates for the value of sM . From the ABC
posterior distribution, we expect sM to fall within the range of 0.0214–0.0770 day−1

(Table 2). Separately, we approximated sM using data on CCL2 expression in KR158
glioma cells as well as the migratory effect of CCL2 on MDSCs in vitro (Online
Resource 1, Sect. 3.1) and found that KR158 gliomas recruit MDSCs at a rate of
0.0123–0.0144 MDSCs per day per tumor cell. Since this data only included the
effect of CCL2 and not CCL7 on MDSC migration, we expect this range to be an
underestimate for sM . However, as the mode of the sM distribution, 0.0249, is close to
double the experimentally calculated value, we expect that CCL7 will have a similar
effect onMDSCmigration as CCL2, assuming that the interaction between CCL2 and
CCL7 causes an additive effect in recruitment.

In all three populations, the tumor growth rate (λC ), tumor carrying capacity (Cmax),
and the tumor kill rate by T cells (η) are sensitive parameters which exhibit interactions
with other parameters, as seen by large differences between the first and total order
indices. Although the sensitivity analysis indicates this interaction (Fig. 6), it does not
identifywhich parameters are interactingwith each other. By combining the sensitivity
analysis results with the ABC histograms in Fig. 4a, we can conjecture potential
relationships.

There is a considerable inverse relationship between λC and the PD-L1-PD-1
parameters (ρ and εC ),Cmax and the inhibition by PD-L1-PD-1 (ρ and εC ) andMDSCs
(r ), as well as η and r and slightly between η and εC . Although these inverse rela-
tionships could potentially be due to these parameters each exhibiting right-skewed
distributions, the inverse relationships between λC , Cmax, and η themselves are negli-
gible. Therefore, we hypothesize that, although the tumor population is less sensitive
to the immune suppression parameters ρ, εC , and r , targeting these would affect the
tumor’s sensitivity to λC , Cmax, and η. At the very least, according to the T cell sensi-
tivity in Fig. 6, targeting these parameters would increase the immune response, thus
decreasing the tumor population.

Fig. 4a also displays an inverse relationship between the tumor upregulation of
PD-L1 (εC ) and the inhibition of T cells by the PD-L1-PD-1 complex (ρ) and by
MDSCs (r ). The relationship between ρ and εC suggests that as tumor cells express
more PD-L1, the PD-L1-PD-1 complex need not be as effective at inhibition in order
to produce the same outcome. The second relationship suggests that r , although it is
a less sensitive parameter, helps to increase the sensitivity of the system to εC . Thus,
perturbations in the two forms of immunosuppression, the PD-L1-PD-1 complex and
MDSCs, cause greater variance on the tumor together rather than alone.

5 Discussion and future directions

Current treatment paradigms for the highly aggressive brain tumor glioblastoma
(GBM) present limited efficacy. Barriers, such as the highly immune suppressed tumor
microenvironment, make gliomas difficult to treat. To address this barrier, we mathe-
matically model GBM-immune dynamics by considering the role of myeloid-derived

123



Global stability and parameter analysis reinforce... Page 23 of 33 10

suppressor cells (MDSCs) in aiding GBM progression through T cell suppression.
Gliomas recruit CCR2+ MDSCs to the tumor microenvironment by expressing the
chemokines CCL2 and CCL7, which are ligands of the CCR2 receptor. Once at the
tumor site,MDSCs suppressT cells,which are already inhibited by the formation of the
PD-L1-PD-1 complex. This complex forms due to T cell interaction with tumor cells,
and it masks the tumor from identification by T cells. Incorporating these two forms of
immunosuppression prepares our model for future extension to include immunother-
apies and optimize treatments.

Our results reinforce pre-clinical studies by Flores-Toro et al. (2020) which suggest
that MDSCs and the PD-L1-PD-1 immune checkpoint should be targeted together
to increase the immune response and thus decrease the tumor burden. Therefore,
promising therapeutics include immune checkpoint inhibitors, such as anti-PD-1 and
anti-PD-L1, and CCR2 antagonists. Time-dependent sensitivity analysis with eFAST
indicates that treatment with these therapeutics should be used as soon as possible;
however, an immune checkpoint inhibitor should offer some benefit at any time. In
contrast, MDSC recruitment should be blocked by a CCR2 antagonist in the early
stages of a tumor, but immunotherapies which kill MDSCs at the tumor site should
be considered for larger tumors. While CCR2 antagonists prevent MDSC recruitment
(thus targeting the sM parameter), strategies which directly target the parameter r by
decreasing the ability ofMDSCs to inhibit T cells should be explored. Time-dependent
eFAST results suggest that therapies targeting r would be especially useful during the
later stages of tumor development.

Stability analysis of the system (1) established conditions for the existence and
stability of the tumor-free equilibrium, (0, T ∗

0 , 0). This unique equilibrium is cor-
roborated by immunohistochemistry data showing the absence of MDSCs within the
tumor-free mouse brain (Fig. 3). When λC < ηT ∗

0 , i.e., the initial immune response
is greater than the tumor growth rate, the tumor-free equilibrium is locally asymptoti-
cally stable, which is equivalent to results in Nikolopoulou et al. (2018). Further, it is
globally stable when λC (1 + ρT̂ (T̂ + εCĈ))(r M̂ + dT ) < ηaT . This suggests that,
regardless of the initial number of activated T cells, if T cells are activated and kill
tumor cells faster than tumor cells proliferate and faster than T cells are suppressed
and die naturally, then the system will tend to the tumor-free equilibrium.

Bifurcation analysis further illuminates this result by showing that shifting only 4
parameters (λC , η, ρ, r ) can result in the system tending to the tumor-free equilibrium.
As surgical resection of a tumor can decrease the tumor growth rate by disrupting the
influx of nutrients through damage to the vasculature, these results suggest that a
treatment plan including surgery and immunotherapies which target the PD-L1-PD-
1 complex and the immunosuppressive capabilities of MDSCs would minimize the
tumor size.

We obtained estimates of the tumor volume and cell counts from murine GBM
data collected from immunofluorescence imaging. T cell data was more sparse than
the glioma and MDSC data, so future model predictions could be improved by incor-
porating more time-dependent T cell data. Numerical simulations in Fig. 5a show
that our parameter distributions capture nearly all data points (33 of 36 data points)
within one standard deviation from the mean and most (27 of 36) within half of a
standard derivation. In general, more data would improve the predictive capabilities
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of the model, especially if the cell populations within a single mouse could be tracked
over time.

Given the limited data set, we used the Approximate Bayesian Computation (ABC)
rejection method in unison with data to obtain information on the probability distribu-
tion of realistic parameter values. We identified approximate values and quantified the
associated uncertainty for previously unknown parameters, in particular, the recruit-
ment rate of MDSCs (sM ) and the inhibition rate of T cells by MDSCs (r ). By
calculating an estimate of sM using chemokine expression levels on glioma cells
and MDSC migration in response to certain concentrations of the chemokine CCL2
measured from experimental data, we found that the parameter values estimated by
the ABC method were of the same order as calculated from data. Further, we found
that the values estimated for r were noticeably greater than the estimated values for
η (Table 2), suggesting that MDSCs suppress T cells more effectively than T cells
kill tumor cells. This would explain the difficulty T cells experience in overcoming a
glioma. Further biological testing would need to occur to validate this hypothesis.

The ABC parameter distributions (Fig. 4) informed global sensitivity analysis by
identifying a search curve with which to sample parameters for eFAST. Sensitivity
analysis (Fig. 6) indicated that there are several drivers of the system, including the
tumor growth rate (λC ), tumor carrying capacity (Cmax), and T cell kill rate (η), along
with noticeable interaction occurring between parameters to affect the variance of the
system. By comparing the eFAST results with the ABC results, we hypothesize that
interaction could be occurring between these three drivers and parameters represent-
ing immune suppression–namely the tumor upregulation of PD-L1 (εC ) along with
the inhibition by PD-L1-PD-1 (ρ) and by MDSCs (r ), since there appears to be an
inverse relationship between these parameters in Fig. 4a. Further, T cell sensitivity
in Fig. 6 shows that targeting these parameters would increase the immune response
regardless of any interactions. This suggests that the PD-L1-PD-1 complex and inhi-
bition by MDSCs should be therapeutically targeted together to relieve tumor burden
and increase the immune response.

Overall, there is a mutually beneficial relationship between the ABC method and
eFAST. The distributions produced by ABC in accordance with data inform the choice
of search curve when sampling parameters in eFAST. In return, the interaction effects
displayed by eFAST direct us to look for relationships between parameters using the
ABC results. Thus, the two together increase the reliability of results as well as the
inferences that can be made.

Future directions include extending this model to incorporate immunotherapies tar-
geting the PD-L1-PD-1 complex andMDSCs and then optimizing treatment regimens
to minimize tumor burden. Anti-PD-1, which targets PD-1 on T cells, has not been
successful as a monotherapy in part because it requires more activated T cells to be
in the tumor microenvironment (Kleponis et al. 2015). Simulations in Nikolopoulou
et al. (2018) suggest that anti-PD-1 alone is not able to increase the number of T cells
to a tumor eradication threshold. Through inhibition, MDSCs decrease the number
of activated T cells. Treatment with a CCR2 antagonist decreases the recruitment of
MDSCs, which indirectly increases the number of activated T cells, thus improving the
efficacy of anti-PD-1. This improved efficacy is supported by data showing increased
survival rates in glioma-bearingmice treated with anti-PD-1 and the CCR2 antagonist,
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CCX872 (Flores-Toro et al. 2020, Fig. 4). While our results agree with this outcome,
we also propose an additional target. Collectively, our global stability and bifurca-
tion analyses, sensitivity analysis, and ABC method results suggest that it would be
more beneficial to directly target the mechanisms by which MDSCs inhibit T cells
rather than MDSC recruitment. Therefore, therapeutics which prevent MDSC inhibi-
tion of T cells should be tested in combination with immune checkpoint inhibitors like
anti-PD-1.
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Appendix A Additional Theorems

In the following appendix, we establish conditions for the existence and stability of a
unique tumorous equilibrium.
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Theorem 6 (Uniqueness of tumorous equilibrium) The system (1) has a tumorous
equilibrium if λC > ηT ∗ and CmaxεCη/λC < 1. Further, it is unique when εCρ >

η/λC , Cmax ≥ 2, β1/β2 < CmaxεCλC/η, and ρβ1 (λC/η)2 < Cmax
(
sMr − dMsT

)
,

where βi = dT dM + αr + sMr
(
(i + 1)Cmax + q

)
, for i = 1, 2.

Proof Setting the right hand side of the tumor cell Eq. (1a) equal to zero and evaluating
at the tumorous equilibrium implies that

C∗ = Cmax

(
1 − ηT ∗

λC

)
, (A1)

which is positive if
λC > ηT ∗. (A2)

For the MDSCs Eq. (1c), we find that

M∗ = 1

dM

(
sMC∗ + α

C∗

q + C∗

)
, (A3)

which is positive if C∗ is positive.
The T cell Eq. (1b) yields

aT + sT T ∗C∗

1 + ρT ∗(T ∗ + εCC∗)
− rT ∗M∗ − dT T

∗ = 0, (A4)

which, when we substitute (A3) and (A1) and rearrange, becomes a degree-5 polyno-
mial,

a5T
∗5 + a4T

∗4 + a3T
∗3 + a2T

∗2 + a1T
∗ + a0 = 0, (A5)

where

a5 =
(
Cmaxη

λC

)2

rρsM

(
CmaxεCη

λC
− 1

)
, (A6a)

a4 = −Cmaxηρ

λC

[(
CmaxεCη

λC
− 1

) (
dT dM + αr + sMr(2Cmax + q)

) + sMrC2
maxεCη

λC

]
,

(A6b)

a3 = −
(
Cmaxη

λC

)2

(sMr − dMsT ) + dT dMρq

(
CmaxεCη

λC
− 1

)
+ C3

maxsMrρεCη

λC

+
(
2CmaxεCη

λC
− 1

)
Cmaxρ

[
dT dM + αr + sMr(Cmax + q)

]
, (A6c)

a2 = −CmaxεCρ
[
dT dM (Cmax + q) + Cmaxr

(
α + sM (Cmax + q)

)]

+ Cmaxη

λC

[
dT dM + αr + (2Cmax + q)(sMr − dMsT )

]
, (A6d)

a1 = −aTCmaxdMη

λC
− Cmaxαr −

[
Cmax(sMr − dMsT ) + dT dM

]
(Cmax + q), (A6e)

a0 = aT dM (Cmax + q). (A6f)
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We observe that a0 is always positive since all the parameters are positive. Since a0
is positive, when we require a5 to be negative, the number of sign changes is 1 mod 2
regardless of the signs of the coefficients a1, . . . , a4. Therefore, by Descartes’ rule
of signs, there is at least one positive zero for (A5). Thus, a tumorous equilibrium is
guaranteed to exist if we enforce condition (A2) and

CmaxεCη

λC
< 1. (A7)

We derive conditions for uniqueness in the case where ai < 0 for i = 1, . . . , 5. a1
is negative if we require

sMr − dMsT > 0. (A8)

In other words, immunosuppression due to MDSCs must be greater than the recruit-
ment of T cells and death of MDSCs.

For a2 to be negative, under the conditions that

εCρ >
η

λC
, (A9)

it follows that

a2 < −CmaxεCρ

[
dT dM (Cmax + q − 1) + αr(Cmax − 1)

+ sMr
(
Cmax(Cmax + q) − (2Cmax + q)

)
+ dMsT (2Cmax + q)

]
(A10)

When we require
Cmax ≥ 2, (A11)

then
a2 < −CmaxεCρsMrq < 0. (A12)

We shall consider a4 next. When we expand a4 by distributing the term containing
dT dM , it becomes clearer to see that a4 is negative under the condition that

CmaxεCη

λC
>

dT dM + αr + sMr(2Cmax + q)

dT dM + αr + sMr(3Cmax + q)
=: β1

β2
>

2

3
. (A13)

For a3, conditions (A8) and (A7) cause the first and second terms of a3 to be
negative, respectively, while (A13) implies that the last term is positive. Applying
(A7) to the last three terms and simplifying,

a3 < −
(
Cmaxη

λC

)2

(sMr − dMsT ) + C2
maxsMrρ + Cmaxρ

[
dT dM + αr + sMr(Cmax + q)

]

= −
(
Cmaxη

λC

)2

(sMr − dMsT ) + Cmaxρβ1. (A14)
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Thus, a3 is negative under the condition that

ρβ1

(
λC

η

)2

< Cmax
(
sMr − dMsT

)
, (A15)

which is a stronger version of (A8).
Under this condition along with (A7), (A9), (A11), and (A13), we have ai < 0

for i = 1, ..., 5 and a0 > 0. Thus, according to Descartes’ rule of signs, there is one
unique positive zero for T ∗, and correspondingly from (A1) and (A3), one unique C∗
and M∗. Therefore, we have a unique tumorous equilibrium (C∗, T ∗, M∗). ��

There are some biological implications from these conditions. First of all, condi-
tion (A9) can be rewritten as η < λCεCρ. This suggests that the tumor growth rate
(λC ) multiplied by immunosuppression via the PD-L1-PD-1 complex (εCρ) must be
larger than the ability of T cells to kill tumor cells (η). Further, condition (A15) indi-
cates that dMsT < sMr , in other words, immunosuppression due to MDSCs (sMr )
must be greater than the recruitment of T cells (sT ) and death of MDSCs (dM ). Both
implications suggest that the suppression of the immune system has to be substantial
enough for uniqueness of the tumorous equilibrium to be guaranteed.

Next we determine conditions for the stability of the tumorous equilibrium.

Theorem 7 (Stability of tumorous equilibrium) If a tumorous equilibrium, (C, T , M) =
(C∗, T ∗, M∗), exists as determined by the conditions in Theorem 6, it is locally asymp-
totically stable when λC > 2ηT ∗ and ρT ∗2 ≥ 1.

Proof The Jacobian evaluated at the tumorous equilibrium is

J (C∗, T ∗, M∗) =
⎛
⎝ −λC + ηT ∗ −ηC∗ 0

g k −rT ∗
sM + α

q
(q+C∗)2 0 −dM

⎞
⎠ , (A16)

where

g = T ∗(sT (1 + ρT ∗2) − aT ρεC )

(1 + ρT ∗(T ∗ + εCC∗))2
, (A17a)

k = (sT (1 − ρT ∗2) − aT ρεC )C∗ − 2aT ρT ∗

(1 + ρT ∗(T ∗ + εCC∗))2
− rM∗ − dT , (A17b)

and we have substituted (A1) into the (1, 1)-entry to simplify the expression.
When we require

ρT ∗2 ≥ 1, (A18)

k is guaranteed to be negative.
The characteristic polynomial of J (C∗, T ∗, M∗) is

x3 + (dM + λC − ηT ∗ − k)x2 +
(
(λC − ηT ∗ − k)dM + gηC∗ − (λC − ηT ∗)k

)
x
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−ηrT ∗C∗
(
sM + α

q

(q + C∗)2

)
+ dM

(
gηC∗ − (λC − ηT ∗)k

)
. (A19)

A monic polynomial is defined to be Hurvitz if Re(xi ) < 0 for all roots xi ∈ C. By
the Routh-Hurvitz Criterion, a polynomial p(x) = x3 + b1x2 + b2x + b3 is Hurvitz
if and only if bi > 0 for i = 1, 2, 3, and (b1b2 − b3) > 0.

Under conditions (A2) and (A18) it follows that

b1 = dM + λC − ηT ∗ − k > 0. (A20)

If we strengthen condition (A2) to be

λC > 2ηT ∗, (A21)

this allows us to conclude, after substituting g and k and simplifying, that

gηC∗ − (λC − ηT ∗)k >
−aT ρεCηT ∗C∗ + (λC − ηT ∗)aT ρεCC∗

(1 + ρT ∗(T ∗ + εCC∗))2

= (−2ηT ∗ + λC )aT ρεCC∗

(1 + ρT ∗(T ∗ + εCC∗))2
> 0. (A22)

Therefore,

b2 = (λC − ηT ∗)dM + gηC∗ − (λC − ηT ∗)k − dMk > 0. (A23)

Next, since rM∗ < −k, and substituting in M∗ (A3), it follows by condition (A21)
that

b3 > −ηrT ∗dMM∗ + (λC − ηT ∗)dMrM∗ = (λC − 2ηT ∗)dMrM∗ > 0. (A24)

Finally, we shall address the positivity of (b1b2 − b3),

b1b2 − b3 = (dM + λC − ηT ∗ − k)
(
(λC − ηT ∗ − k)dM + gηC∗ − (λC − ηT ∗)k

)

+ ηrT ∗C∗
(
sM + α

q

(q + C∗)2

)
− dM

(
gηC∗ − (λC − ηT ∗)k

)

> (dM + λC − ηT ∗ − k)
(
(λC − ηT ∗ − k)dM + gηC∗ − (λC − ηT ∗)k

)

− dM
(
gηC∗ − (λC − ηT ∗)k

)

= (λC − ηT ∗ − k)(d2M + (λC − ηT ∗ − k)dM + gηC∗ − (λC − ηT ∗)k).
(A25)

Now, λC −ηT ∗ − k > 0 since k < 0 and by condition (A21). Therefore, by condition
(A22),

b1b2 − b3 > (λC − ηT ∗ − k)(dM + λC − ηT ∗ − k)dM > 0. (A26)
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Since bi > 0 for i = 1, 2, 3 and (b1b2 − b3) > 0, the characteristic polyno-
mial (A19) is Hurvitz. Therefore, the tumorous equilibrium is locally asymptotically
stable under the conditions (A18) and (A21). ��

Condition (A18) requires that the T cell inhibition by the PD-L1-PD-1 complex is
at or above a certain level. Condition (A21) effectively assumes that the tumor cell
growth rate is larger than twice the kill rate by the T cell population. We note that
Nikolopoulou et al. (2018) also required a similar condition (λC > ηT ∗) in order to
achieve a stable tumorous equilibrium for their system.
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