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Abstract
A characteristic of malaria in all its forms is the potential for superinfection (that is,
multiple concurrent blood-stage infections). An additional characteristic of Plasmod-
ium vivax malaria is a reservoir of latent parasites (hypnozoites) within the host liver,
which activate to cause (blood-stage) relapses. Here, we present a model of hypno-
zoite accrual and superinfection for P. vivax. To couple host and vector dynamics for
a homogeneously-mixing population, we construct a density-dependent Markov pop-
ulation process with countably many types, for which disease extinction is shown to
occur almost surely. We also establish a functional law of large numbers, taking the
form of an infinite-dimensional system of ordinary differential equations that can also
be recovered by coupling expected host and vector dynamics (i.e. a hybrid approxi-
mation) or through a standard compartment modelling approach. Recognising that the
subset of these equations that model the infection status of the human hosts has pre-
cisely the same form as the Kolmogorov forward equations for a Markovian network
of infinite server queues with an inhomogeneous batch arrival process, we use physical
insight into the evolution of the latter process to write down a time-dependent multi-
variate generating function for the solution.We use this characterisation to collapse the
infinite-compartment model into a single integrodifferential equation (IDE) governing
the intensity of mosquito-to-human transmission. Through a steady state analysis, we
recover a threshold phenomenon for this IDE in terms of a parameter R0 expressible
in terms of the primitives of the model, with the disease-free equilibrium shown to
be uniformly asymptotically stable if R0 < 1 and an endemic equilibrium solution
emerging if R0 > 1. Our work provides a theoretical basis to explore the epidemiology
of P. vivax, and introduces a strategy for constructing tractable population-level mod-
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els of malarial superinfection that can be generalised to allow for greater biological
realism in a number of directions.

Mathematics Subject Classification 92D30 · 37N25 · 60J28

1 Introduction

Malaria is a parasitic, vector-borne disease with a staggering pulic health burden. The
overwhelming majority of malaria cases (98%) are attributed to the parasite Plas-
modium falciparum, particularly in Africa (WHO 2021). Plasmodium vivax, however,
exhibits a broader geographical distribution, driving much of the malaria burden in
South East Asia, the Americas, the Western Pacific and the Eastern Mediterranean
(WHO 2021). While an estimated 4.5 million malaria cases were attributed to P.
vivax in 2020 alone (WHO 2021), morbidity arising from P. vivax infections remains
“obscure and insidious” (Battle and Kevin Baird 2021). The transmission of malaria
parasites to humans is mediated by Anopheles mosquito vectors. During the course
of a bloodmeal, an infected mosquito can transmit parasites (sporozoites) to a human
host. Following a period of liver-stage development (exoerythrocytic schizogony),
parasites are released into the bloodstream, giving rise to a blood-stage infection that
is sustained by the replication of parasites in invaded red blood cells (Venugopal et al.
2020). A key epidemiological characteristic of malaria is the phenomenon of superin-
fection (that is, multiple concurrent blood-stage infections). Since the circulation and
replication of (pre-existing) parasites in the bloodstream does not preclude further
blood-stage infection, an individual can concurrently harbour multiple co-circulating
broods of blood-stage parasites. In the context of P. falciparum, we define each blood-
stage ‘brood’ to derive from a single infective bite. The interpretation of a blood-stage
‘brood’ for P. vivax is more nuanced, in light of its ability to cause relapsing infec-
tions following the accrual of a “hypnozoite reservoir” (White et al. 2014; White and
Imwong 2012). Notably, a P. vivax parasite (sporozoite) injected into a human host
has two possible fates: it either gives rise to a primary (blood-stage) infection within
approximately 9 days of the bite itself (Mikolajczak 2015), or develops into a hypno-
zoite (Mueller et al. 2009). Hypnozoites undergo indeterminate latency periods, often
lasting weeks or months, during which they are undetectable using standard tech-
niques (Schäfer et al. 2021). The activation of each hypnozoite, however, can trigger
an additional blood-stage infection, known as a relapse (Mueller et al. 2009). For P.
vivax, each primary infection and relapse is defined to comprise a separate blood-stage
brood.

We define the multiplicity of broods (MOB) to be the number of co-circulating
blood-stage broods in a host at a given point in time, with superinfection taken to be
a collective term for blood-stage infections with MOB > 1. As such, superinfection
arises from temporally proximate reinfection (that is, infective bites) and, in the case
of P. vivax, hypnozoite activation events. With epidemiological data indicating the
preponderance of relapses over primary infections (Commons et al. 2020) and evidence
of P. vivax superinfection even in the absence of reinfection (Popovici 2018), analysis
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of the statistics of superinfection for P. vivax warrants careful consideration of the
hypnozoite reservoir.

The classical framework of malarial superinfection for P. falciparum, proposed ini-
tially byMacdonald (1950) and formulatedmathematically by Bailey (1957), assumes
independent clearance of each brood, without imposing an upper bound on the MOB.
Under this setting, a natural construction to describe the within-host dynamics of
superinfection is an infinite-server queue with a time dependent arrival rate given
by the intensity of mosquito-to-human transmission (Dietz et al. 1974; Nedelman
1984; Smith and Hay 2009; Henry 2020). Hereafter, we refer to the mosquito-to-
human transmission intensity, as quantified by the infective bite rate per human, as the
force of reinfection (FORI). For P. vivax, introducing the additional assumption that
the dynamics of each hypnozoite are governed by independent stochastic processes
(White et al. 2014), we have recently extended this idea to characterise within-host
and superinfection dynamics using an open network of infinite-server queues with
geometrically-distributed batch arrivals at a time-dependent rate given by the FORI
(Mehra et al. 2021, 2022). InMehra et al. (2022), we derive a time-dependent generat-
ing function for the state of the queueing network, which can be inverted analytically
to recover marginal distributions for MOB and the hypnozoite burden, amongst other
quantities of epidemiological interest, on a within-host scale.

Mathematical modelling of superinfection and hypnozoite dynamics at the
population-level can be challenging, owing to the potential difficulty of carrying out
computational procedures for infinite-compartment models stratified by MOB and
the hypnozoite burden (White 2018). As we note in Mehra et al. (2022), a common
approach in the construction of transmissionmodels ofP. vivax has been to consolidate
hypnozoite carriage into a single state, with an accompanying parametric form for the
time to first relapse for hypnozoite-positive individuals (Aguas et al. 2012; Chamchod
and Beier 2013; Ishikawa et al. 2003; Robinson 2015; Roy et al. 2013; White et al.
2016). The binarisation of hypnozoite carriage, however, obscures the relationship
between transmission intensity and hypnozoite accrual: there is no variation in the
risk of relapse based on hypnozoite density, the limitations of which are discussed
in Mehra et al. (2022). Explicit variation in the hypnozoite burden is captured in the
deterministic models of White et al. (2014), White (2018), and Anwar et al. (2022).
While the ‘batch’ model ofWhite (2018) captures ‘broods’ of hypnozoites in the liver,
it ignores variation in parasite inoculum sizes. On the other hand, both Anwar et al.
(2022) and White et al. (2014) take hypnozoite densities into account. To account
for superinfection, White et al. (2014) employ a “pseudoequilibrium approximation”
for the (blood-stage) infection recovery rate, adopting the functional form derived by
Dietz et al. (1974). This functional form, which was derived in the absence of hypno-
zoite accrual, has been embedded in multiple transmission models for P. falciparum
as a proxy for superinfection (Alonso et al. 2019; Gemperli et al. 2006; Reto Hag-
mann et al. 2003; Smith et al. 2007). However, we argue that this functional form,
as embedded by White et al. (2014) in a model for P. vivax, is not appropriate in a
model that takes hypnozoite accrual into account (see Appendix C for details). The
multiscale model of Anwar et al. (2022) is intended to serve as a re-formulation of
the infinite-compartment model proposed in White et al. (2014). To incorporate hyp-
nozoite accrual in a simple population-level framework, it draws on the relapse rate,
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conditional on the absence of blood-stage infection, derived in Mehra et al. (2022), to
derive a numerically tractable system of integrodifferential equations (IDEs). How-
ever, while the above-mentioned conditional relapse rate is derived under a framework
that explicitly allows for superinfection, the population-level model of Anwar et al.
(2022) does not have separate compartments for different values of the MOB (see
Appendix D for details, and a proposed correction to Anwar et al. (2022) that has been
adopted in subsequent work (Anwar et al. 2023)).

To the best of our knowledge, the thesis of Mehra (2022)—which forms of the
basis of this paper—derives the first model that characterises both superinfection and
hypnozoite dynamics for P. vivax. The model assumptions, building on the work of
White et al. (2014), are detailed in Sect. 2. Here, we re-visit the queueing frame-
work introduced in Mehra et al. (2022) to characterise within-host superinfection and
hypnozoite dynamics as a function of the FORI; Mehra et al. (2022) is the source
of the within-host model which we embed in the population. We then construct a
density-dependent Markov population process to couple host and vector dynamics
in a homogeneously-mixing population, whilst allowing for superinfection and the
accrual of the hypnozoite reservoir in the absence of human demographics in Sect. 3,
proving that disease extinction occurs almost surely (Theorem 3.1). Using the work
of Barbour and Luczak (2012), we obtain a functional law of large numbers (FLLN),
that takes the form of an infinite-dimensional system of ordinary differential equa-
tions (ODEs) (Sect. 3.2) for which the model of Bailey (1957) arises as a special case
(Appendix E). By drawing on our previous analysis of the within-host model, we
show that the FLLN can be reduced to a single IDE governing the time evolution of
the FORI; the dynamics of superinfection and the hypnozoite reservoir in the human
population can be recovered as a function of the FORI solving this IDE (Sect. 4.2).
We then establish a threshold phenomenon for the reduced IDE, with the disease-free
equilibrium shown to be uniformly asymptotically stable if R0 < 1, and an endemic
equilibrium solution emerging iff R0 > 1 (Theorem 4.1, Sect. 4.3).

A recurrent theme in our analysis of population-level models is the utility of a phys-
ical understanding of the within-host model, governing the hypnozoite/MOB burden
within a single human as a function of the intensity of mosquito-to-human transmis-
sion. In Sect. 5, we discuss how the ideas presented in this manuscript constitute a
general strategy that can be employed to construct tractable population-level models
of malarial superinfection, with appropriate constraints on the underlyingmodel struc-
ture. In brief, the starting point of this approach is a within-host model characterised
as a Markovian network of infinite server queues. Embedding this within-host model
in a population framework—either as the FLLN limit for a Markov population pro-
cess (Barbour and Luczak 2012); under a standard compartment modelling approach;
or under a “hybrid approximation” (Henry 2020; Naasell 2013)—yields an infinite
dimensional system of ODEs. Next, we make the observation that the host part of
the population model has an identical form to the Kolmogorov forward differential
equations for the queueing network. By exploiting the independence property of infi-
nite server queues, we use physical insight to derive an integral expression for the
infectivity of hosts to the vector population, conditional on the FORI. Substituting this
integral expression back into the vector part of the population model then yields an
integrodifferential framework that is amenable to further analysis.
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2 Modelling within-host hypnozoite and superinfection dynamics
using an open network of infinite server queues with batch arrivals

White et al. (2014) construct a within-host model for short-latency (tropical) strains
of P. vivax, predicated on the following set of assumptions:

• Each infective mosquito bite immediately gives rise to a primary (blood-stage)
infection and establishes a batch of hypnozoites in the liver.

• Hypnozoite batch sizes Ni (for the i th bite) which are independent and identically-
distributed (i.i.d.) across bites, are geometrically-distributed with probability mass
function

P(Ni = n) = 1

1 + ν

( ν

1 + ν

)n
(1)

for n ∈ Z≥0 and mean E[Ni ] = ν.
• Each hypnozoite in the liver undergoes activation at constant rate α, which gives
rise to the host suffering a (blood-stage) relapse; but each hypnozoite is also subject
to death at constant rate μ.

• Hypnozoites behave independently; that is, the dynamics of eachof thehypnozoites
is described by an independent stochastic process.

We extend the framework of White et al. (2014) to explicitly allow for superinfec-
tion. Specifically, we make the assumption that each blood-stage infection (relapse or
primary) is naturally cleared at constant rate γ , with independent dynamics for each
hypnozoite and blood-stage infection; as such, the existence of a previous blood-stage
infection does not preclude further blood- and liver-stage infections, nor alter the rate
of clearance for subsequent blood-stage infections.

We first examine the within-host dynamics of superinfection and the hypnozoite
reservoir as a function of the FORI. In Mehra et al. (2022), we construct an open
network of infinite server queues with batch arrivals to concurrently describe hypno-
zoite accrual and the burden of blood-stage infection (allowing for superinfection) as
a function of mosquito-to-human transmission intensity. The formulation of Mehra
et al. (2022) can be extended to account for long-latency phenotypes, which are pre-
dominantly found in temperate regions (Mehra et al. 2020; White et al. 2014), and
the administration of drug treatment at a pre-determined sequence of times. Here, we
consider the simplest case of themodel presented inMehra et al. (2022), restricting our
attention to short-latency phenotypes (characteristic of tropical transmission settings)
(White et al. 2014) in the absence of drug treatment.

We begin by delineating the set of possible states that a single hypnozoite can
occupy:

• H indicates a hypnozoite that is currently present in the liver;
• A indicates a hypnozoite that has activated to give rise to a relapse that is currently
in progress;

• C indicates a hypnozoite that has previously given rise to a relapse, which has
since been cleared;

• D indicates a hypnozoite that has died, rather than activating.
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Hypnozoites in the liver (state H ) undergo activation at rate α and death at rate μ.
Relapses (state A) are cleared from the bloodstream at rate γ . This model, introduced
in Mehra et al. (2022), is a simple extension of the short-latency model of White et al.
(2014) that accounts for the clearance of blood-stage infection. A continuous-time
Markov chain model that captures the above dynamics has non-zero transition rates

q(H , A) = α q(H , D) = μ q(A,C) = γ

with absorbing states C and D.
We denote by ps(t) the probability that a hypnozoite is in state s ∈ {H , A,C, D} :=

Sh at time t after inoculation. In practice, we would expect the mean duration of hyp-
nozoite carriage 1/(α +μ) to exceed the mean duration of each blood-stage infection
1/γ . It is straightforward to establish that when α + μ �= γ ,

pH (t) = e−(α+μ)t (2)

pA(t) = α

(α + μ) − γ

(
e−γ t − e−(α+μ)t) (3)

pC (t) = α

α + μ

(
1 − e−(α+μ)t)− α

(α + μ) − γ

(
e−γ t − e−(α+μ)t) (4)

pD(t) = μ

α + μ

(
1 − e−(α+μ)t) (5)

as in Eqs. (13) to (16) of Mehra et al. (2022).
Likewise, we delineate the state space for each primary infection:

• P indicates a primary infection that is currently in progress;
• PC indicates a primary infection that has been cleared from the bloodstream.

We assume that each bite necessarily triggers a primary infection that is cleared
naturally from the bloodstream at the constant rate γ , yielding a continuous-time
Markov chain model with transition rates

q(P, PC) = γ q(PC, P) = 0.

To embed our model for a single hypnozoite in an epidemiological framework,
we construct an open network of infinite server queues, labelled H , A,C, D, P, PC
(Fig. 1). The arrival process, comprising mosquito bites, is governed by non-
homogeneous Poisson process with a time-dependent rate λ(t), such that

∫ t

0
λ(τ)dτ < ∞ for all t ≥ 0.

Each bite leads to the arrival of a single ‘individual’ in queue P (that is, a primary
infection), in addition to a geometrically-distributed batch (with PMF (1)) in queue H
(representing the hypnozoite reservoir). Hypnozoites in queue H follow the dynamics
described above in moving to queues A, C or D. A primary infection in queue P
moves to queue PC at rate γ .
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Fig. 1 Schematic of the open network of infinite server queues governing the within-host hypnozoite and
MOB burden, as a function of the intensity of mosquito-to-human transmission. Adapted from Figure 3 of
Mehra et al. (2022) as a special case (short-latency hypnozoites, no drug treatment)

Denote by Ns(t) the number of ‘individuals’ (either hypnozoites or infections) in
queue s ∈ {H , A,C, D, P, PC} := S at time t . From Eq. (39) of Mehra et al. (2022),
given

NH (0) = NA(0) = ND(0) = NC (0) = NP (0) = NPC (0) = 0,

the joint PGF for N(t) = (NH (t), NA(t), ND(t), NC (t), NP (t), NPC (t))

G(t, z) := E
[∏
s∈S

zNs (t)
s

]

= exp

{
−
∫ t

0
λ(τ)
[
1 − e−γ (t−τ)zP + (1 − e−γ (t−τ))zPC

1 + ν
(
1 −∑s∈Sh zs · ps(t − τ)

)
]
dτ

}
(6)

is guaranteed to converge in the domain z ∈ [0, 1]6.
Explicit formulae for quantities of epidemiological interest—including marginal

distributions forMOBand thehypnozoite burden; the proportionof recurrences that are
expected to be relapses and the cumulative burden of blood-stage infection over time—
are provided in Mehra et al. (2022). There the marginal distributions for MOB and
the hypnozoite burden are expressed in terms of partial exponential Bell polynomials.
We can equivalently formulate recurrence relations to compute marginal distributions
of interest following the approach of Willmot and Drekic (2001), or compute joint
distributions using the recurrence relations we derive in Mehra and Taylor (2023).
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3 AMarkov population process with countably many types

To couple vector and human dynamics, whilst accounting for superinfection and the
hypnozoite reservoir in the absence of human demographics (that is, without allowing
for births/deaths in the human population), we construct a density-dependent Markov
population process with countably many types. We consider a closed, homogeneously
mixing population, with fixed numbers of humans PH and mosquitoes PM , where:

• Each mosquito bites humans at constant rate β.
• When an uninfected mosquito bites a blood-stage infected human (that is, a human
with at least one ongoing relapse or primary infection), human-to-mosquito trans-
mission occurs with probability q.

• When an infectedmosquito bites any human in the population,mosquito-to-human
transmission occurs with probability p. This involves the establishment of:

– a primary (blood-stage) infection, which increases theMOB of the human host
by one; and

– a batch of hypnozoites in the liver, where the batch sizes are geometrically-
distributed with PMF (1) and are i.i.d. across bites.

• Within a human, each hypnozoite and primary infection is governed by an inde-
pendent stochastic processes.

• Within a human, each hypnozoite undergoes activation at rate α and death at rate
μ.

• Within a human, each primary infection or relapse (triggered by a hypnozoite
activation event) is cleared independently at constant rate γ .

• Each infected mosquito is replaced by an uninfected mosquito at rate g.

We can formulate the state space of theMarkov chain in several ways. One approach
is to label each human with a hypnozoite/MOB state, and each mosquito with a binary
infection state. Specifically, we can denote the state at time t as (u(t), v(t)) where

• u(t) is a PH -dimensional vector whose r th component itself is a vector giving
the number of ‘individuals’ in compartment H , and the sum of individuals in
compartments A and P in Fig. 1 for the r th human; and

• v(t) is a is a PM -dimensional vector whose sth component is 1 if the sth mosquito
is infected and zero otherwise,

yielding the state space

χ ′ = (Z≥0 × Z≥0)
PH × {0, 1}PM .

We adopt this formulation of the state space to construct a coupling argument, relative
to an ensemble of independent queueing networks, that allows us to characterise the
steady state behaviour of the Markov chain (see the proof of Theorem 3.1).

Alternatively, we can formulate the state space to count the number of humans and
mosquitoes in each respective infection state. At time t , define

• hi, j (t), i, j ∈ Z≥0 to be the number of humans with a hypnozoite reservoir of
size i and MOB precisely j , and
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• mi (t), i ∈ {0, 1} to be the number of uninfected and infected mosquitoes respec-
tively.

We can thus denote the state of the Markov chain at time t to be (h(t),m(t)) where

h(t) = (h0,0(t), h0,1(t), h1,0(t), h0,2(t), h1,1,(t), h2,0(t), . . . )

m(t) = (m0(t),m1(t)).

The state space is then

χ = {(h,m) ∈ [0, PH ]N × [0, PM ]2 : |h|1 = PH , |m|1 = PM
}
,

where the
( 1
2 (i + j + 1)(i + j) + i + 1

)th term of h(t) corresponds to hi, j (t). For

notational convenience, we denote by ei,j the
( 1
2 (i + j + 1)(i + j) + i + 1

)th (unit)
coordinate vector in RN.

We proceed with the state description (h(t),m(t)) to obtain a density-dependent
Markov population process, for which we can recover a FLLN using the work of
Barbour and Luczak (2012) (Theorem 3.2). The transition rates are

q(h,m),(h−ei,j+ei,j−1,m) = γ jhi, j , i ≥ 0, j ≥ 1 (7)

q(h,m),(h−ei,j+ei−1,j,m) = μihi, j , i ≥ 1, j ≥ 0 (8)

q(h,m),(h−ei,j+ei−1,j+1,m) = αihi, j , i ≥ 1, j ≥ 0 (9)

q(h,m),(h−ei,j+ei+k,j+1,m) = β pνk

(ν + 1)k+1

m1

PM
hi, j , i ≥ 0, j ≥ 0 (10)

q(h,m),(h,m−e1+e0) = gm1 (11)

q(h,m),(h,m−e0+e1) = βq
( ∞∑

i=0

∞∑
j=1

hi, j
PH

)
m0 (12)

which can be understood as follows:

• q(h,m),(h−ei,j+ei,j−1,m): a human with hypnozoite reservoir size i andMOB j clears
a single brood.

• q(h,m),(h−ei,j+ei−1,j,m): a single hypnozoite dies in a human with hypnozoite reser-
voir size i and MOB j .

• q(h,m),(h−ei,j+ei−1,j+1,m): a single hypnozoite activates, thereby giving rise to a
relapse (that is, a blood-stage infection with one additional brood), in a human
with hypnozoite reservoir size i and MOB j .

• q(h,m),(h−ei,j+ei+k,j+1,m): a human with hypnozoite reservoir size i and MOB j
gains an additional batch of k hypnozoites, in addition to a primary infection (that
is, a blood-stage infectionwith one additional brood) through the bite of an infected
mosquito.

• q(h,m),(h,m−e1+e0): an infected mosquito dies to give rise to uninfected progeny.
• q(h,m),(h,m−e0+e1): an uninfected mosquito is infected by taking a bloodmeal from
an infected human.
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Weset the ratio of the human andmosquito population sizes to be v := PM
PH

, allowing
us to write the transition rates given by Eqs. (7) to (12) in the form

q(h,m),(h+Jh ,m+Jm ) = PM · ω(Jh ,Jm )

( h
PM

,
m
PM

)

where ωJh ,Jm : R → R are given by

ω(ei,j−1−ei,j,0)(H,M) = γ j Hi, j , i ≥ 0, j ≥ 1 (13)

ω(ei−1,j−ei,j,0)(H,M) = μi Hi, j , i ≥ 1, j ≥ 0 (14)

ω(ei−1,j+1−ei,j,0)(H,M) = αi Hi, j , i ≥ 1, j ≥ 0 (15)

ω(ei+k,j+1−ei,j,0)(H,M) = β pνk

(ν + 1)k+1 M1Hi, j , i ≥ 0, j ≥ 0 (16)

ω(0,e0−e1)(H,M) = gM1 (17)

ω(0,e1−e0)(H,M) = βqv
( ∞∑

i=0

∞∑
j=1

Hi, j

)
M0. (18)

As such, we have defined a density-dependent Markov process with size parameter
PM .

3.1 Steady state behaviour

The disease-free state is necessarily absorbing. However, since we have a density-
dependent Markov population process with countably many types, absorption in the
disease-free state is not guaranteed a priori since the mean MOB and/or hypnozoite
reservoir size in the population can drift to infinity (Luchsinger 2001).

In Theorem 3.1 below, we show that the process does, in fact, reach the disease
free state with probability one. To do this, we adopt the state description (u(t), v(t))
whereby each human is labelled with a hypnozoite/MOB state, and each mosquito is
assigned a binary infection state.

If the arrivals of blood stage infections and batches of hypnozoites to the humans
and infections to themosquitoes were independent Poisson processes, then the process
(u(t), v(t)) could be regarded as modelling PH independent batch arrival infinite
server queueing processes with a structure as in Fig. 1 and PM independent on-off
processes whose sth component tells us whether the sth mosquito is infected or not.

However this is not quite the case. An ‘arrival’ of an infection to a human depends
on the number of infected mosquitoes and conversely, an ‘arrival’ of an infection to a
mosquito depends on the number of infected humans.

To overcome this, we couple the actual process (u(t), v(t)) with a second process
(u′(t), v′(t)) in which humans (mosquitoes) become infected at constant rates inde-
pendent of the number of mosquitoes (humans) that are infected. Specifically, in the
process (u′(t), v′(t)), in modelling the rate at which humans become infected, we
assume that all the mosquitoes are infected all of the time and, in modelling the rate
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at which mosquitoes become infected, we assume that all the humans are infected
all of the time. This amount of infection in the process (u′(t), v′(t)) can be shown
to dominate the amount of infection in (u(t), v(t)). Furthermore, we can recognise
(u′(t), v′(t)) as an independent network of infinite server queues for which a stability
criterion is known, and hence establish that this criterion must apply to (u(t), v(t)) as
well.

The details are given below.

Theorem 3.1 With probability one, disease is eventually eliminated, that is,

lim
t→∞(u(t), v(t)) = (0, 0),

and the time to disease elimination has finite expectation.

Proof To show that absorption in the disease-free state (u(t), v(t)) = (0, 0) occurs
almost surely, with a finite expected time to absorption, we adopt a coupling argument.

Consider an ensemble of PH independent networks of infinite server queues, as
defined in Sect. 2, each with homogeneous arrival rate β pPM/PH . Define the random
vector u’(t) ∈ (N×N)PH to be the vector whose r th component is a vector encoding
the numbers of individuals in compartment H , and the sum of individuals in compart-
ments A and P of network or ‘human’ r at time t . Further, consider PM independent
continuous-timeMarkov chains, each with state space {0, 1} and transition rate matrix

Q :=
(−βq βq

g −g

)

and let the vector v′(t) ∈ {0, 1}PM denote the state of each chain or ‘mosquito’
s = 1, . . . , PM at time t .

We generate a coupling of the processes {(u(t), v(t)) : t ≥ 0} and {(u′(t), v′(t)) :
t ≥ 0} as follows. Consider PM × PH independent homogeneous Poisson processes
{Brs(t) : t ≥ 0}, each of rate β(p+ q)/PH . We take Brs(t) to govern the sequence of
interaction times between human r andmosquito s under both processes {(u(t), v(t)) :
t ≥ 0} and {(u′(t), v′(t)) : t ≥ 0}. The consequences of each human/mosquito
interaction, however, can vary:

• With probability p/(p+q), a point in the Poisson process Brs(t) models a poten-
tial transmission event from mosquito s to human r . If mosquito s is infected at
time t in the process {(u(t), v(t)) : t ≥ 0}, that is, vs(t) = 1, then there is a coin-
cident mosquito-to-human transmission event to human r across both processes
{(u(t), v(t)) : t ≥ 0} and {(u′(t), v′(t)) : t ≥ 0}, with an equal hypnozoite batch
size and an identical time course for each inoculated hypnozoite/primary infection.
If, in contrast, vs(t) = 0, then there is an arrival of a geometrically-distributed
hypnozoite batch and a single primary infection (with an associated time course)
into human r under the process {(u′(t), v′(t)) : t ≥ 0} only.

• Otherwise, the point in the Poisson process Brs(t)models a potential transmission
event fromhuman r tomosquito s. If human r is blood-stage infected at time t in the
process {(u(t), v(t)) : t ≥ 0}, that is, (ur )2(t) ≥ 1, then mosquito s immediately
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enters the infected state, where it remains for a common exponentially-distributed
period of mean length 1/g under both processes {(u(t), v(t)) : t ≥ 0} and
{(u′(t), v′(t)) : t ≥ 0}. If, in contrast, (ur )2(t) = 0, then mosquito s enters
the infected state in the process {(u′(t), v′(t)) : t ≥ 0} only.
Under this setting, we necessarily have

(u(0), v(0)) ≤ (u′(0), v′(0)) 	⇒ (u(t), v(t)) ≤ (u′(t), v′(t)) for all t ≥ 0.

In particular,

(u′(t), v′(t)) = (0, 0) 	⇒ (u(t), v(t)) = (0, 0),

and as such, the hitting time

T(u0,v0) := inf
{
τ ≥ 0 : (u′(τ ), v′(τ )) = (0, 0) | (u′(0), v′(0)) = (u0, v0)

}

yields an upper bound for the time to absorption in the disease-free state under the
process {(u(t), v(t)) : t ≥ 0} with initial condition (u(0), v(0)) = (u0, v0).

Using Corollary 4.1.1 of Mehra and Taylor (2023), since the expected network
occupation time for each hypnozoite/primary infection is finite and the hypnozoite
batch size has finite mean, each component {u′

r (t) : t ≥ 0}, r = 1, . . . , PH is ergodic.
Further, since each Markov chain {v′

s(t) : t ≥ 0}, s = 1, . . . , PM is irreducible and
possesses a finite state space, it is also ergodic.

Each component {u′
r (t) : t ≥ 0} and {v′

s(t) : t ≥ 0} is positive recurrent and thus
possesses a stationary distribution. The components evolve independently, therefore
the stationary distribution for the multidimensional product {(u′(t), v′(t)) : t ≥ 0}
should be given by the product of stationary distributions of each individual compo-
nent. Since {(u′(t), v′(t)) : t ≥ 0} is non-explosive, it follows that it must be positive
recurrent. This establishes that each state (u0, v0) ∈ χ ′ is positive recurrent and the
return time to the disease-free state has finite expectation E[T(0,0)] < ∞.

Any state (u0, v0) ∈ χ ′ can be reached from the disease-free state (0, 0) with
positive probability p(u0, v0) > 0 prior to return to the disease-free state through a
concerted series of mosquito-inoculation events, with appropriate constraints on the
time course of each infection and mosquito lifetimes. Consequently,

E
[
T(u0,v0)

] ≤
∞∑
n=1

p(u0, v0)
(
1 − p(u0, v0)

)n−1 · nE[T(0,0)] = E[T(0,0)]
p(u0, v0)

< ∞,

that is, the expected hitting time for the disease-free state under the process
{(u′(t), v′(t)) : t ≥ 0} has finite mean, irrespective of the initial condition (u0, v0) ∈
χ ′.

Since the time to absorption in the disease free state under the process {(u(t), v(t)) :
t ≥ 0}with intial condition (u0, v0) ∈ χ ′ is bounded above by T(u0,v0), it immediately
follows that
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lim
t→∞(u′(t), v′(t)) = (0, 0) a.s 	⇒ lim

t→∞(u(t), v(t)) = (0, 0) a.s.,

and that the time to disease elimination, moreover, has finite expectation. ��

3.2 A functional law of large numbers

We now use the work of Barbour and Luczak (2012) to obtain a FLLN for the density-
dependentMarkov population process. In Theorem3.2 below,we show that the sample
paths of the continuous time Markov chain converge to the solution of

d(H,M)

dt
=
∑
J∈J

ωJ (H,M) (19)

in the limit PM → ∞. The mode of convergence, and the relevant space of conver-
gence, are made explicit in Theorem 3.2.

Here, we define the η-norm

||(H,M)||η := |M0| + |M1| +
∞∑
i=0

∞∑
j=0

(i + j + 1)|Hi, j |

and the set

Rη := {(H,M) ∈ (R+)N × (R+)2 : ||(H,M)||η < ∞}.

To show that the the semilinear problem (19) with initial condition (H(0),M(0)) ∈
Rη has a unique mild solution in the interval [0,∞), we use the results of Barbour and
Luczak (2012) (which draw on Theorem 1.4, Chapter 6 of Pazy (2012)), bounding the
η-norm of (H,M) using the expected occupancy of nodes H , A and P of the network
introduced in Sect. 2 (Appendix A.2). To show the convergence of sample paths to
the semilinear problem (19), we use Theorem 4.7 of Barbour and Luczak (2012) after
verifying a series of semigroup and transition rate assumptions (Appendices A.1 and
A.3).

Theorem 3.2 The semilinear problem (19) with initial condition (H(0),M(0)) ∈ Rη

has a unique mild solution in the interval [0,∞). For each T > 0, ∃K (1)
T , K (2)

T , K (3)
T

such that if

||P−1
M (h(0),m(0)) − (H(0),M(0))||η ≤ K (1)

T

√
log PM
PM

for PM large enough, then

P
[

sup
0≤t≤T

||P−1
M (h(t),m(t)) − (H(t),M(t))||η > K (2)

T

√
log PM
PM

]
≤ K (3)

T
log PM
PM

.
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4 A deterministic population-level model

Wedevote the present section to the analysis of the semilinear systemgiven byEq. (19),
which arises as the FLLN limit (Barbour and Luczak 2012) for the density-dependent
Markov population process detailed in Sect. 3.

4.1 A countable system of ODEs

It is instructive to write out the components of the vector equation (19), rescaled to
consider the proportion of humans in each hypnozoite/MOB state. At time t , define

• Hi, j (t) to be the proportion of humans with hypnozoite reservoir size i and MOB
j ;

• IM (t) to be the proportion of infected mosquitoes.

Then we obtain the the infinite-dimensional system of ODEs

dHi, j

dt
= − aIM Hi, j + aIM

i∑
k=0

Hk, j−1
1

ν + 1

( ν

ν + 1

)i−k

− i(μ + α)Hi, j − jγ Hi, j + (i + 1)μHi+1, j + (i + 1)αHi+1, j−1

+ ( j + 1)γ Hi, j+1 (20)

d IM
dt

= − gIM + b
( ∞∑

i=0

∞∑
j=1

Hi, j

)
(1 − IM ) (21)

where, for notational convenience, we have set

a = PM
PH

β p b = βq.

The case ν = 0 yields the classical model of superinfection for P. falciparum, as
formulated by Bailey (1957) (Appendix E).

Equation (20) constitutes a deterministic compartmental model for a vector that has
total ‘mass’ one. If we ignore the coupling to Eq. (21) and think of (20) as a system
of equations driven by the time-varying function IM (t), we observe that they have a
form identical to the Kolmogorov forward differential equations for a continuous-time
Markov chain model with state space Z2, where Hi, j (t) has the interpretation that the
Markov chain is in state (i, j) at time t and aIM (t) is the time-varying input of a
Poisson process. This model is precisely the open network of infinite server queues
governing within-host superinfection and hypnozoite dynamics that we discussed in
Sect. 2, and Eq. (20) is indeed the forward Kolmogorov differential equation for this
Markov chain.

In the population model, the process of mosquito-to-human transmission is not
Poisson because of coupling between the human and mosquito populations. However,
since the host part of the population model has an identical form to the Kolmogorov
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forward differential equations of the queueing network, it must have the same time-
dependent generating function. Rather than solving the system of ODEs (20) directly
for some time dependent function IM (t), we can draw on a physical understanding
of the queueing network to derive a generating function for the time dependent state
probabilites Hi, j (t) as a function of IM (τ ), τ ∈ [0, t). In particular, from Eq. (6),
given the absence of liver- and blood-stage infection in the human population at time
zero, that is,

H0,0(0) = 1, Hi, j (0) = 0 for all i + j > 0

it follows that

H(x, y, t) :=
∞∑
i=0

∞∑
j=0

Hi, j (t)x
i y j

= exp
{

− a
∫ t

0
IM (τ )

(
1 − 1 + (y − 1)e−γ (t−τ)

1 + ν(1 − x)pH (t − τ) + ν(1 − y)pA(t − τ)

)
dτ
}
,

(22)

where Eq. (22) is guaranteed to converge in the domain (x, y) ∈ [0, 1]2 for any
fixed t .

We can exploit the functional dependence (22) between the generating function for
the state probabilities Hi, j (t) of the human population at time t , and the proportion of
infected mosquitoes IM (τ ) for τ ∈ [0, t) to aid analysis of the infinite-compartment
model given by Eqs. (20) and (21).

4.2 A reduced integrodifferential equation

Upon examination of the deterministic model structure, we note that the coupling
between human and mosquito dynamics is completely determined by the time evolu-
tion of

• the prevalence of blood-stage infection in the human population (that is, humans
with MOB at least one), which can be written

IH (t) :=
∞∑
i=0

∞∑
j=1

Hi, j (t);

• the FORI aIM (t).

The utility of our observation in Sect. 4.1 emerges in the characterisation of the func-
tional dependence between IH (t) and the FORI aIM (τ ) for τ ∈ [0, t). Specifically,
given

H0,0(0) = 1, Hi, j (0) = 0 for all i + j > 0, (23)
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we can readily write

IH (t) = 1 − H(1, 0, t) = 1 − exp
{

− a
∫ t

0
IM (τ )

(e−γ (t−τ) + ν pA(t − τ)

1 + ν pA(t − τ)

)
dτ
}

(24)

using the generating function (22).
Substituting the integral equation (24) into the ODE (21) yields the IDE

d IM
dt

= −gIM + b(1 − IM )

(
1 − exp

{
− a
∫ t

0
IM (τ )

(e−γ (t−τ) + ν pA(t − τ)

1 + ν pA(t − τ)

)
dτ
})

.

(25)

When the human population is initially blood- and liver-stage infection-naive (that
is, initial condition (23) holds), the time evolution of the FORI aIM (t) is equivalent
under the IDE (25), and the infinite-dimensional system of ODEs given by Eqs. (20)
and (21).

As a function of the FORI aIM (τ ), τ ∈ [0, t)which solves the IDE (25), we can use
the generating function (22) to recover the population-level distribution of hypnozoite
and superinfection states in the human population at time t . The recurrence relations
provided in Mehra and Taylor (2023) can be used to obtain the proportion of humans
Hi, j (t) in each hypnozoite/MOB state. The time-evolution of various quantities of
biological interest can be recovered using the formulae provided inMehra et al. (2022).

4.3 The steady state distribution

Steady state analysis for the countably infinite system of ODEs given by Eqs. (20) and
(21) is not straightforward. Instead, we characterise the existence and asymptomatic
stability of equilibria for the IDE (25).

Upon inspection, we find that an equilibrium solution I ∗
M of the IDE (25) must

satisfy the integral equation

gI ∗
M

b(1 − I ∗
M )

= 1 − exp
{

− aI ∗
M

∫ ∞

0

(e−γ τ + ν pA(τ )

1 + ν pA(τ )

)
dτ
}
. (26)

The disease-free equilibrium I ∗
M = 0 clearly satisfies Eq. (26). On the domain I ∗

M ∈
[0, 1], we note that the LHS of (26) is a monotonically increasing, convex function
of I ∗

M that approaches infinity in the limit I ∗
M → 1 while the RHS is monotonically

increasing, concave. The existence of a second solution to Eq. (26) therefore depends
on the limiting slope as IM → 0. It exists if and only if the derivative of the LHS is
less than the derivative of the RHS at I ∗

M = 0 (see Fig. 2).
This allows us to identify a bifurcation parameter

R0 :=
√
ab

g

( ∫ ∞

0

e−γ τ + ν pA(τ )

1 + ν pA(τ )
dτ
)
, (27)
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Fig. 2 Schematic of the geometric argument to establish the existence of a non-zero solution to Eq. (26)

with R0 > 1 a necessary and sufficient condition for the existence of an endemic
equilibrium I ∗

M > 0.
We can readily interpret the integral expression in Eq. (27). The probability of a

current blood-stage infection time τ after an infective bite is given by the integrand

z(τ ) := 1 − (1 − e−γ τ )

︸ ︷︷ ︸
no ongoing primary

infection

· 1

1 + ν pA(τ )︸ ︷︷ ︸
no ongoing relapses
(geometric batch)

.

The integral

∫ ∞

0
z(τ )dτ =

∫ ∞

0

e−γ τ + ν pA(τ )

1 + ν pA(τ )
dτ

therefore yields the expected cumulative duration of blood-stage infection attributable
to a single infective bite. The functional form of the bifurcation parameter R0 is
analogous to that of a reproduction number (Diekmann et al. 1990).

Using the stability criterion of Brauer (1978), whereby the IDE (25) is linearised
about each equilibrium solution, we can also establish sufficient conditions for equi-
librium solutions I ∗

M to be uniformly asymptotically stable. The threshold behaviour
of the IDE (25) is summarised in Theorem 4.1 below, with a proof provided in
Appendix B.

Theorem 4.1 (Threshold behaviour for the IDE (25))

1. If R0 < 1, then the disease-free equilibrium I ∗
M = 0 is uniformly asymptotically

stable and no endemic equilibrium solution exists.
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2. If R0 > 1, there exists precisely one endemic equilibrium I ∗
M > 0, given by the

non-trivial solution to the equation

1 − gI ∗
M

b(1 − I ∗
M )

− e− g
b R

2
0 I

∗
M = 0 (28)

This endemic equilibrium I ∗
M > 0 is uniformly asymptotically stable if

I ∗
M >

1 + b
b+g −

√(
1 − b

b+g

)2 + 4 b
b+g

1
R2
0

2
.

5 A general strategy for constructing tractable models of malarial
superinfection

Our conceptual approach for modelling superinfection and hypnozoite dynamics for
vivax malaria has been three-fold.

To establish a functional relationship between the intensity of mosquito-to-human
transmission, and the dynamics of superinfection and hypnozoite accrual on the
within-host scale (Sect. 2), we construct an open network of infinite server queues
that accounts for stochasticity in:

• the temporal sequence of mosquito-to-human transmission events, modelled with
a non-homogeneous Poisson process;

• parasite inocula and consequently hypnozoite batch sizes, assumed to be
geometrically-distributed for each bite (White et al. 2014); and

• the time course of each hypnozoite and primary infection, governed by independent
stochastic processes.

The independence structure of the queueing network enables us to characterise the
occupancy distribution through relatively straightforward physical arguments (Mehra
et al. 2022).

We model population level dynamics by constructing a Markov population process
to address the dependence between the burden of blood-stage infection in the human
population, and the intensity of mosquito-to-human transmission (Sect. 3). To char-
acterise the steady state behaviour, we couple the Markov population process to an
independent ensemble of queueing networks, with the same structure as the within
host model and a known stability criterion (Theorem 3.1). Re-formulation of the state
space to count the number of humans and mosquitoes in each permissible infection
state, followed by a rescaling argument, yields a density-dependent Markov popula-
tion process for which a FLLN limit, taking the form of a countably-infinite system
of ODEs, is recovered using the work of Barbour and Luczak (2012) (Theorem 3.2).

We pay particular attention to the FLLN limit, recognising that it takes a form
identical to what could be derived using a deterministic compartmental model of
the type that are ubiquitous in mathematical epidemiology (Sect. 4). By recognising
that those parts of the compartmental model that relate to the infection status of the
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human population are identical to the Kolmogorov forward differential equations for
a network of infinite-server queues, we propose, to the best of our knowledge, a novel
reduction to collapse the countable system of ODEs into a reduced IDE that is more
amenable to analysis, and for which a threshold phenomenon can be characterised
(Theorem 4.1).

A common vein in the analysis of population-level models through the course of
this manuscript is the utility of a physical understanding of the underlying within-host
model. We now seek to illustrate how the ideas presented in this manuscript can be
adopted more generally to construct tractable models of malarial superinfection, with
appropriate constraints on the model structure.

5.1 From a countable system of ODEs to a reduced integrodifferential equation

We arrived at the countable system of ODEs given by Eqs. (20) and (21) by recover-
ing a FLLN for an appropriately-scaled density dependentMarkov population process.
Following a standard compartment modelling approach, however, we can view this
system as a natural extension of the Ross-Macdonald framework to allow for super-
infection (Bailey 1957) and hypnozoite accrual (White et al. 2014).

We can also derive Eqs. (20) and (21) under the “hybrid approximation”, as
delineated by Naasell (2013); Henry (2020). Equation (20), which captures the time
evolution of the within-host PMF, can also be interpreted as the governing equation
for the expected frequency distribution in the human population, as a function of the
FORI. Similarly, Eq. (21) is precisely the Kolmogorov forward differential equation
governing the time evolution of the probability that each mosquito in the population
is infected—which can likewise be interpreted as the expected proportion of infected
mosquitoes—as a function of the prevalence of blood-stage infection in the human
population. The premise of the “hybrid approximation” is to allow for stochasticity
within the human andmosquito populations respectively, but to couple host and vector
dynamics through expected values (Henry 2020; Naasell 2013); the hybrid approxi-
mation to the present model of hypnozoite accrual and superinfection yields precisely
Eqs. (20) and (21). Parallels between the FLLN and hybrid approximation have been
noted previously in the literature: according to Hadeler and Dietz (1983), Rost (1979)
proves that hybrid andmean-field approximations are equivalent,1 while Lewis (1975)
establishes similar results through simulation.

Irrespective of the derivation of the infinite-compartment model it is the observation
that Eq. (20) constitutes the Kolmogorov forward differential equations for an open
network of infinite server queues (Sect. 4.1) that constitutes the crux of our analysis.
Rather than solving the system of ODEs (20) directly, we use a physical understand-
ing of the queueing structure to derive the PGF (22). From the PGF, we extract the
prevalence of blood-stage infection as a function of the FORI—which underpins the
coupling between host and vector dynamics, and enables the derivation of a single IDE
governing the FORI; in addition to quantities of biological interest, the time evolution
of which can be recovered as a function of the FORI solving the aforementioned IDE.

1 We have only been able to find the citation for Rost (1979), but not the actual conference paper.
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Challenges posed by infinite-dimensional systems of ODEs for simulation and
analysis have prompted the development of methods like the pseudoequilibrium
approximation to yield finite-dimensional systems of ODEs in the presence of super-
infection (Dietz et al. 1974; Henry 2020). Our IDE reduction offers an alternative
construction that yields an identical FORI to the original system of ODEs, under the
assumption that the human population is initially uninfected.

Relative to the countable system of ODEs which served as our starting point, the
reduced IDE is more amenable to steady state analysis. For compartment models with
finitely many types (comprising finite-dimensional systems of ODEs), the next gen-
eration matrix method of Diekmann et al. (2010) is routinely used to characterise
threshold phenomena: the basic reproduction number R0—which quantifies the num-
ber of additional cases stemming from an index case—is computed as the spectral
radius of a “next generation operator”, with the key implication that R0 < 1 is a nec-
essary and sufficient condition for the stability of the trivial (disease-free) equilibrium
(Heffernan et al. 2005). While the notion of a reproduction number and spectral bound
generalises to epidemic models with countably many types (Thieme 2009), computa-
tion is not straightforward. In the present manuscript, we apply the stability criterion
of Brauer (1978) to perform an asymptotic stability analysis for the reduced IDE, but
are unaware of readily-verifiable stability criteria applicable to the countable system
of ODEs.

5.2 Analyticity at the within-host scale

The strategy delineated above is underpinned by the fact that the within-host model is
analytically-tractable. The critical assumption is that consequences of each mosquito-
to-human transmission event are governed by independent stochastic processes, for
which a time-dependent PGF can be derived. We can accommodate multiple ‘types’
of incoming parasites/infections (here, we distinguish hypnozoites from immediately
developing parasite forms, represented by a primary infection), and occupancy times
for eachparasite/lifecycle stage donot necessarily have to beMarkovian (that is,we can
allow for general service time distributions). Tractable extensions to the within-host
model that permit the IDE reduction proposed here encompass the class of models
analysed in Mehra and Taylor (2023), comprising open networks of infinite server
queues with nonhomogeneous multivariate batch Poisson arrivals. They are applicable
when the evolution of ‘individuals’ (hypnozoites or blood-stage infections in this
case) occurs independently. Importantly, this is not the case when there is competition
or another form of interaction between parasite broods. Further, while service time
distributions and arrival rates can vary deterministically with time, they should not
be dependent on the within-host state, barring the consideration of certain forms of
immunity.

Nonetheless, our work provides a theoretical basis to explore the epidemiology of
malarial superinfection, with natural extensions to allow for greater biological realism.
A generalisation of the present framework, allowing for long-latency hypnozoites
(White et al. 2014; Mehra et al. 2020); time-varying transmission parameters, and
the acquisition of transmission-blocking and antidisease immunity for P. vivax, is
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presented in Mehra et al. (2022). There, we derive an infinite compartment model
under a “hybrid approximation” (Henry 2020; Naasell 2013), comprising an infinite-
dimensional system of ODEs, from which we derive a reduced system of IDEs using
the approach detailed in Sect. 4. Analyses of both steady state solutions and transient
dynamics under this generalised deterministic model are tractable using the within-
host distributions derived in Mehra et al. (2022).
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A A functional law of large numbers

We now verify the conditions for the FLLN (Barbour and Luczak 2012) of theMarkov
population process governing hypnozoite and superinfection dynamics, as described
in Sect. 3. The scaled transition rates ωJ are given by Eqs. (13) to (18). We define

R := (R+)N × (R+)2

with each (H,M) ∈ R indexed in the form

(H,M) =
(
(H0,0, H0,1, H1,0, H0,2, H1,1, H2,0, . . . ), (M0, M1)

)
,

in addition to the subset

R0 := {(H,M) ∈ R : Hi, j = 0 for all but finitely many i, j}.
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Let J be the set of jumps with non-zero transition rates. Jumps are of “bounded
influence” in the sense ofBarbour andLuczak (2012), in that atmost two compartments
are affected. Further,

∑
J∈J

ωJ (H,M) < ∞ for all (H,M) ∈ R0.

Therefore, Assumptions 1.2 and 1.3 of Barbour and Luczak (2012) are satisfied, with
the implication that Markov process with transition rates given by Eqs. (13) to (18) is
a “pure jump process, at least for some non-zero length of time” (Barbour and Luczak
2012).

In the notation of Barbour and Luczak (2012), we write the proposed limit as a
semilinear equation

d(H,M)

dt
=
∑
J∈J

ωJ (H,M) = A · (H,M) + F
(
(H,M)

)

where A is a constant (that is, not dependent on time) matrix, with non-zero terms

AHi, j ,Hi, j = −i(μ + α) − jγ

AHi−1, j ,Hi, j = iμ

AHi, j−1,Hi, j = jγ

AHi−1, j+1,Hi, j = iα

AM1,M1 = −g

AM0,M1 = g,

while F has components

FHi,0 = −β pM1Hi,0

FHi, j = −β pM1Hi, j + β pM1

i∑
k=0

Hk, j−1
1

ν + 1

( ν

ν + 1

)i−k

FM0 = −βqv
( ∞∑

j=1

∞∑
i=0

Hi, j

)
M0

FM1 = βqv
( ∞∑

j=1

∞∑
i=0

Hi, j

)
M0.

A.1 Assumption 2.1 of Barbour and Luczak (2012)

We recapitulate and verify Assumption 2.1 of Barbour and Luczak (2012) below, with
changes in notation/exposition in line with the current manuscript.
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We begin by introducing the set

X+ :=
{
(H,M) ∈ (Z≥0)

N × (Z≥0)
2 : M0 + M1 +

∞∑
i=0

∞∑
j=0

Hi, j < ∞
}
.

By assigning a ‘size’ to each human and mosquito infection state through a fixed
vector η = (η(h), η(m)) ∈ R, such that

η
(h)
i, j , η

(m)
k ≥ 1 lim

i+ j→∞ η
(h)
i, j = ∞, (29)

we can construct an empirical moment analogue

Sr
(
(H,M)

) = (η(m)
0

)r
M0 + (η(m)

1

)r
M1 +

∞∑
i=0

∞∑
j=0

(
η

(h)
i, j

)r
Hi, j , (H,M) ∈ R0.

To bound these empiricalmoments, Barbour and Luczak (2012) introduce the quan-
tites

Ur
(
(H,M)

) =
∑
J∈J

ωJ (H,M) ·
{
J (m)
0

(
η

(m)
0

)r + J (m)
1

(
η

(m)
1

)r +
∞∑
i=0

∞∑
j=0

J (h)
i, j

(
η

(h)
i, j

)r}

Vr
(
(H,M)

) =
∑
J∈J

ωJ (H,M) ·
{
J (m)
0

(
η

(m)
0

)r + J (m)
1

(
η

(m)
1

)r +
∞∑
i=0

∞∑
j=0

J (h)
i, j

(
η

(h)
i, j

)r}2
.

In a similar vein, we set

Wr
(
(H,M)

) =
∑
J∈J

ωJ (H,M) ·
∣∣∣∣J (m)

0

(
η

(m)
0

)r + J (m)
1

(
η

(m)
1

)r +
∞∑
i=0

∞∑
j=0

J (h)
i, j

(
η

(h)
i, j

)r ∣∣∣∣.

Assumption 2.1 of Barbour and Luczak (2012) then reads as follows.

Assumption 1 There exists η ∈ R satisfying condition (29) and r (1)
max, r

(2)
max ≥ 1 such

that the following conditions hold:

1. For all (H,M) ∈ X+

Wr

(
|M|−1

1 (H,M)
)

< ∞, 0 ≤ r ≤ r (1)
max.

2. ∃ non-negative constants krl such that, for all (H,M) ∈ R with |H|1 =
1/v, |M|1 = 1,

U0
(
(H,M)

) ≤ k01S0
(
(H,M)

)+ k04

U1
(
(H,M)

) ≤ k11S1
(
(H,M)

)+ k14

Ur
(
(H,M)

) ≤ {kr1 + kr2S0
(
(H,M)

)} · Sr
(
(H,M)

)+ kr4, 2 ≤ r ≤ r (1)
max.
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3. ∃ non-negative constants krl and a function p(r) with 1 ≤ p(r) ≤ r (1)
max for

1 ≤ r ≤ r (2)
max, such that, for all (H,M) ∈ R with |H|1 = 1/v, |M|1 = 1

V0
(
(H,M)

) ≤ k03S0
(
(H,M)

)+ k05

Vr
(
(H,M)

) ≤ kr3Sp(r)
(
(H,M)

)+ kr5.

Claim 1 Assumption 1 holds for η = (η(h), η(m)) ∈ R with

η
(h)
i, j = i + j + 1, η

(m)
k = 1, (30)

and arbitrarily large r (1)
max, r

(2)
max.

Proof Given our choice of η, we can write

Sr
(
(H,M)

) =M0 + M1 +
∞∑
i=0

∞∑
j=0

(i + j + 1)r Hi, j

Ur
(
(H,M)

) =
∞∑
i=0

∞∑
j=0

(γ j + μi
)
Hi, j
[
(i + j)r − (i + j + 1)r

]

+ β pM1

∞∑
i=0

∞∑
j=0

Hi, j

∞∑
k=0

1

ν + 1

( ν

ν + 1

)k · [(i + j + k + 2)r − (i + j + 1)r
]

Vr
(
(H,M)

) =
∞∑
i=0

∞∑
j=0

(γ j + μi
)
Hi, j
[
(i + j)r − (i + j + 1)r

]2

+ β pM1

∞∑
i=0

∞∑
j=0

Hi, j

∞∑
k=0

1

ν + 1

( ν

ν + 1

)k · [(i + j + k + 2)r − (i + j + 1)r
]2

Wr
(
(H,M)

) =
∞∑
i=0

∞∑
j=0

(γ j + μi
)
Hi, j
[
(i + j + 1)r − (i + j)r

]

+ β pM1

∞∑
i=0

∞∑
j=0

Hi, j

∞∑
k=0

1

ν + 1

( ν

ν + 1

)k · [(i + j + k + 2)r − (i + j + 1)r
]
.

We begin by noting that

U0
(
(H,M)

) = V0
(
(H,M)

) = 0.

In the case r = 1, we can simplify these expressions substantially to yield the
bounds

U1
(
(H,M)

) =
∞∑
i=0

∞∑
j=0

[
β p(ν + 1)M1 − γ j − μi

]
Hi, j ≤ β p(ν + 1)

v

V1
(
(H,M)

) =
∞∑
i=0

∞∑
j=0

[
β p(1 + 3ν + 2ν2)M1 + γ j + μi

]
Hi, j
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≤ β p(1 + 3ν + 2ν2)

v
+ (γ + μ)S0

(
(H,M)

)

for all (H,M) ∈ R with |H|1 = 1/v, |M|1 = 1.
For r ≥ 1 and (H,M) ∈ R with |H|1 = 1/v, |M|1 = 1, we obtain the bounds

Ur
(
(H,M)

) ≤ β pM1 ·
∞∑
i=0

∞∑
j=0

Hi, j (i + j + 1)r ·
{ ∞∑
k=0

1

1 + ν

( 1

1 + ν

)k(
1 + k + 1

i + j + 1

)r}

≤ β pE
[(
Hb + 2

)r ] · Sr
(
(H,M)

)

Vr
(
(H,M)

) ≤
∞∑
i=0

∞∑
j=0

Hi, j (i + j + 1)2r
[
γ j+μi+β pM1 ·

{ ∞∑
k=0

1

1+ν

( 1

1+ν

)k(
1+ k + 1

i + j + 1

)2r}]

≤
{
(γ + μ) + β pE

[(
Hb + 2

)2r ]} · S2r+1
(
(H,M)

)

where Hb is a geometrically-distributed random variable with mean ν and state space
Z≥0, noting that E[H p

b ] < ∞ for all p ≥ 0.
Likewise, for a given value (H,M) ∈ X+,

Wr

(
|M|−1

1 (H,M)
)

≤
{
(γ + μ) + β pE

[(
Hb + 2

)r ]} ·
∞∑
i=0

∞∑
j=0

Hi, j

|M|1 (i + j + 1)r+1 < ∞

for all r > 0 since the RHS constitutes a finite sum. We thus see that Assumption 1 is
satisfied for arbitrarily large r (1)

max, r
(2)
max ≥ 1. ��

A.2 Existence of a unique weak solution to the semilinear equation (19)

We now establish the existence and uniqueness of weak solutions to the semilinear
equation (19) (which can be written explicitly as the system of ODEs given by Eq.
(20) and (21) after re-scaling Hi, j by a factor of v).

We first verify Assumption 3.1 of Barbour and Luczak (2012), by noting that:

AHi, j ,Hk,� ≥ 0 for all (i, j) �= (k, �); AMk ,M�
≥ 0 for all k �= �; AHi, j ,Mk = AMk ,Hi, j = 0

∑
(k,�) �=(i, j)

AHi, j ,Hk,� = (α + μ)i + γ j < ∞ for all i, j ≥ 0.

We are then required to fix μ ∈ R with μ
(h)
i, j , μ

(m)
k ≥ 1, with the constraint that:

1. there exists r ≤ r (2)
max such that supi, j≥0{μ(h)

i, j /(η
(h)
i, j )

r } < ∞ (Assumption 4.2.1 of
Barbour and Luczak (2012));

2. ATμ ≤ wμ for some w ≥ 0 (Assumption 3.2 of Barbour and Luczak (2012)).
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Since Assumption 1 is satisfied for arbitrarily large r (2)
max, it suffices to set μ = η,

in which case we can choose w = max{α + μ, γ, g}. We thus define the η-norm

||(H,M)||η := |M0| + |M1| +
∞∑
i=0

∞∑
j=0

(i + j + 1)|Hi, j |

on the set

Rη := {(H,M) ∈ R : ||(H,M)||η < ∞}.

The conditions of Theorem 3.1 of Barbour and Luczak (2012) are thus satisfied.
The implications of this theorem are as follows. As in Barbour and Luczak (2012),
denote by P(·) “the semigroup of Markov transition matrices corresponding to the
minimal process associated with Q”, where

QHi, j ,H�,k = AT
Hi, j ,Hk,�

(k + � + 1

i + j + 1

)
− wδ{(i, j),(k,�)}

QHi, j ,Mk = QMk ,Hi, j = 0

QMk ,M�
= AT

Mk ,M�
− wδ{k,�}

and set

RT
Hi, j ,H�,k

= ewt PHi, j ,Hk,� (t)
(k + j + 1

k + � + 1

)

RT
Hi, j ,Mk

= ewt PHi, j ,Mk (t)
(
i + j + 1

)

RT
Mk ,Hi, j

= ewt PMk ,Hi, j (t)
( 1

i + j + 1

)

RT
Mk ,M�

= ewt PMk ,M�
(t).

Then R is a strongly continuous semigroup on Rη, with A = R′(0) and R′(t) =
R(t)A for all t ≥ 0.

It remains to verify Assumption 4.1 of Barbour and Luczak (2012), whichmandates
that F is locally-Lipschitz in the η-norm. For (H(1),M(1)) �= (H(2),M(2)) such that

∣∣∣∣F((H(1),M(1))
)∣∣∣∣

η
,
∣∣∣∣F((H(2),M(2))

)∣∣∣∣
η

≤ z,

using the inequality

|ax − by| ≤ |a||x − y| + |b − a||y|

we can show that
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∣∣∣∣F((H(1),M(1))
)− F

(
(H(2),M(2))

)∣∣∣∣
η

= 2βqv

∣∣∣∣M (1)
0

( ∞∑
j=1

∞∑
i=0

H (1)
i, j

)
− M (2)

0

( ∞∑
j=1

∞∑
i=0

H (1)
i, j

)∣∣∣∣

+ β p
∞∑
i=0

(i + 1) ·
∣∣∣H (1)

i,0 M
(1)
1 − H (2)

i,0 M
(2)
1

∣∣∣

+ β p
∞∑
j=1

∞∑
i=0

(i + j + 1) ·
∣∣∣H (1)

i, j M
(1)
1 − H (2)

i, j M
(2)
1

+
i∑

k=0

1

ν + 1

( ν

ν + 1

)i−k{
H (1)
k, j−1M

(1)
1 − H (2)

k, j−1M
(2)
1

}∣∣∣

≤ [2βqv + β p] · z · ∣∣∣∣(H(1),M(1)) − (H(2),M(2))
∣∣∣∣

η

+ β p
∞∑
j=1

∞∑
k=0

(
ν + j + k + 1

) ·
∣∣∣H (1)

k, j−1M
(1)
1 − H (2)

k, j−1M
(2)
1

∣∣∣

≤ [β p(ν + 3) + 2βqvz
] · z · ∣∣∣∣(H(1),M(1)) − (H(2),M(2))

∣∣∣∣
η

where we have interchanged the order of summation and used the geometric summa-
tion. Therefore,

sup
(H(1),M(1))�=(H(2),M(2))

F(((H(1,2),M(1,2))))||η≤z

∣∣∣∣F((H(1),M(1))
)− F

(
(H(2),M(2))

)∣∣∣∣
η∣∣∣∣(H(1),M(1)) − (H(2),M(2))

∣∣∣∣
η

≤ [β p(ν + 3) + 2βqv
]
z

whereby Assumption 4.1 of Barbour and Luczak (2012) is satisfied.
Using Theorem 1.4, Chapter 6 of Pazy (2012), Barbour and Luczak (2012) then

conclude that the semilinear problem (19) with initial condition (H(0),M(0)) ∈ Rη

has a unique mild solution

(H(t),M(t)) = R(t)(H(0),M(0)) +
∫ t

0
R(t − s)F

(
(H(s),M(s))

)
ds (31)

on the interval [0, tmax), tmax > 0, with

tmax < ∞ 	⇒ ∣∣∣∣(H(1),M(1)) − (H(2),M(2))
∣∣∣∣

η
→ ∞ as t → tmax.

To establish a bound on the η-norm of (H(t),M(t)), we draw on Sect. 4.1, recog-
nising Eq. (20) as the Kolmogorov forward differential equation for the network of
infinite server queues detailed in Sect. 2. Since the FORI—or equivalently, the infec-
tive bite rate experienced by each human—is bounded above by a := β pv, using the
generating function given by Eq. (22), we see that for all t ≥ 0
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||(H(t),M(t))||η = M0 + M1 +
∞∑
i=0

∞∑
j=0

(i + j + 1)Hi, j (t)

= 2 + 1

v

[
∂H

∂x
(1, 1, t) + ∂H

∂ y
(1, 1, t)

]

{IM (τ )=1}

= 2 + β p
∫ t

0

(
ν[pH (t − τ) + pA(t − τ)

]+ e−γ (t−τ)
)
dτ

≤ 2 + β p
[ ν(α + γ )

γ (α + μ)

(α
γ

+ μ − γ

α + μ

)
+ 1

γ

]
.

Hence,

lim
t→∞ ||(H(t),M(t))||η < ∞ 	⇒ tmax = ∞.

A.3 Assumption 4.2.2 of Barbour and Luczak (2012)

We now verify Assumption 4.2.2 of Barbour and Luczak (2012), reproduced below
with modifications in notation/exposition as appropriate.

Assumption 2 There exists ζ ∈ R with ζ
(h)
i, j , ζ

(m)
k ≥ 1 such that

Y :=
∑
J∈J

ωJ

(
|M|−1

1 (H,M)
)

·
{ ∑

k=0,1

∣∣J (m)
k

∣∣ζ (m)
k +

∞∑
i=0

∞∑
j=0

∣∣J (h)
i, j

∣∣ζ (h)
i, j

}

≤{k1|M|−1
1 Sr
(
(H,M)

)+ k2
}b

for some 1 ≤ r := r(ζ ) ≤ r (2)
max and some b = b(ζ ) ≥ 1, and that

Z :=
∞∑
i=0

∞∑
j=0

η
(h)
i, j

(∣∣AHi, j ,Hi, j

∣∣+ 1
)

√
ζ

(h)
i, j

+
∑
k=0,1

η
(m)
k

(∣∣AMk ,Mk

∣∣+ 1
)

√
ζ

(m)
k

< ∞.

Claim 2 Fix v = |M|1/|H|1. Assumption 2 holds for ζ = (ζ (h), ζ (m)) ∈ R, such that

ζ
(h)
i, j = (i + j + 1)9, ζ

(m)
k = 1,

with b(ζ ) = 1 and r(ζ ) = 10.

Proof For our choice of ζ ∈ R, we have

Y = g + βqv

∞∑
j=1

∞∑
i=1

Hi, j

|M|1 +
∞∑
i=0

∞∑
j=0

(γ j + μi
) Hi, j

|M|1
[
(i + j)9 + (i + j + 1)9

]

+ β p
M1

|M|1
∞∑
i=0

∞∑
j=0

Hi, j

|M|1
∞∑
k=0

1

ν + 1

( ν

ν + 1

)k · [(i + j + k + 2)9 + (i + j + 1)9
]
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≤ g + βq + 2(γ + μ)

∞∑
i=0

∞∑
j=0

Hi, j

|M|1 (i + j + 1)10

+ 2β p
∞∑
i=0

∞∑
j=0

Hi, j

|M|1 (i + j + 1)9E
[
(Hb + 2)9

]

≤ g + βq +
(
γ + μ + β pE

[
(Hb + 2)9

])
S10
(
|M|−1

1 (H,M)
)

where Hb is a geometrically-distributed random variable with mean ν and state space
Z≥0. Further,

Z := 1 + g +
∞∑
i=0

∞∑
j=0

(i + j + 1)−7/2(1 + (α + μ)i + jγ
)

≤ 1 + g + (γ + α + μ + 1)
∞∑
i=0

∞∑
j=0

(i + j + 1)−5/2 < ∞,

so Assumption 2 is satisfied. ��

B Proof of Theorem 4.1

Proof Denote by I ∗
M the steady state FORI. For notational convenience, we set

y(τ ) = e−γ τ + ν pA(τ )

1 + ν pA(τ )

and note that

c1 :=
∫ ∞

0
y(τ )dτ < ∞ c2 :=

∫ ∞

0
τ y(τ )dτ < ∞.

From the IDE (25),wededuce that each equilibriumsolution I ∗
M necessarily satisfies

gI ∗
M

b(1 − I ∗
M )

= 1 − e−ac1 I ∗
M . (32)

The disease free equilibrium I ∗
M = 0 clearly satisfies Eq. (32). We begin by charac-

terising the existence of endemic equilibria, following analogous reasoning to Mehra
et al. (2022). On the domain I ∗

M ∈ [0, 1], we observe that:
• f1(I ∗

M ) := gI ∗
M

b(1−I ∗
M )

is monotonically increasing, convex with f1(I ∗
M ) → ∞ as

I ∗
M → 1.

• f2(I ∗
M ) := 1 − e−ac1 I ∗

M is monotonically increasing, concave.

123



7 Page 30 of 36 S. Mehra et al.

Define F(I ∗
M ) := f ′

1(I
∗
M ) − f ′

2(I
∗
M ). Then F ′(I ∗

M ) > 0 for all I ∗
M ∈ [0, 1], so F(I ∗

M )

is monotonically increasing on the interval I ∗
M ∈ [0, 1]with F(I ∗

M ) → ∞ as I ∗
M → 1.

We thus consider two cases:

• Case 1: F(0) > 0 Here, it follows that F(I ∗
M ) > 0 for all I ∗

M ∈ [0, 1] 	⇒
( f1 − f2) is monotonically increasing and thus non-zero for all I ∗

M ∈ (0, 1].
• Case 2: F(0) < 0 By the intermediate value theorem, there exists M0 ∈ (0, 1)
such that F(I ∗

M ) < 0 for all I ∗
M ∈ [0, M0) and F(I ∗

M ) > 0 for all I ∗
M ∈ (M0, 1]. So

( f1 − f2) is monotonically decreasing on the interval [0, M0) and monotonically
increasing on the interval (M0, 1). Since ( f1− f2)(0) = 0 and ( f1− f2)(I ∗

M ) → ∞
as I ∗

M → 1, it follows there exists uniqueM1 ∈ (M0, 1) such that ( f1− f2)(M1) =
0.

Therefore, an endemic equilibrium solution exists iff

F(0) < 0 ⇐⇒ R0 :=
√
abc1
g

> 1,

and given R0 > 1, this endemic equilibrium is unique.
We now characterise the asymptotic stability of the disease-free and endemic equi-

libria. By Theorem 2 of Brauer (1978), an equilibrium solution IM (t) = I ∗
M is

uniformly asymptotically stable if the trivial solution u(t) = 0 to the first-order linear
IDE

du

dt
= −[g + b

(
1 − e−ac1 I ∗

M
)] · u(t) + ab(1 − I ∗

M )e−ac1 I ∗
M

∫ t

0
u(t − τ)y(τ )dτ

is uniformly asymptotically stable. By Theorem 1 of Brauer (1978), since y(τ ) is
continuous and non-negative for all τ ∈ [0,∞), it follows that u(t) = 0 is uniformly
asymptotically stable if and only if

−[g + b
(
1 − e−ac1 I ∗

M
)]+ abc1(1 − I ∗

M )e−ac1 I ∗
M < 0. (33)

Equation (33) serves as a sufficient condition for a steady state solution I ∗
M to be

uniformly asymptotically-stable. Noting that any steady state solution I ∗
M must solve

Eq. (32), we derive the equivalent condition

h(I ∗
M ) := (I ∗

M )2 −
(
1 + b

b + g

)
I ∗
M + b

b + g

(
1 − 1

R2
0

)
< 0. (34)

Using Eq. (34), it immediately follows that the disease-free equilibrium I ∗
M = 0 is

uniformly asymptotically stable in the case where R0 < 1.
When R0 > 1, we have h(0) > 0 and h(1) < 0, so there exists precisely one root

h(x) = 0 in the domain x ∈ (0, 1) and

h(I ∗
M ) < 0 ⇐⇒ I ∗

M >

1 + b
b+g −

√(
1 − b

b+g

)2 + 4 b
b+g

1
R2
0

2
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serves as a sufficient condition for the endemic equilibrium to be uniformly asymp-
totically stable. ��

C The pseudeoquilibrium approximation to the superinfection recov-
ery rate proposed byWhite et al. (2014)

White et al. (2014) construct a deterministic compartmental model, consisting of
an infinite-dimensional system of ODEs monitoring the hypnozoite burden and the
absence or presence of blood-stage infection. Superinfection is captured through a
“pseudoequilibrium approximation” for the rate of recovery from blood-stage infec-
tion, conditional on the size of the hypnozoite reservoir. Below, we characterise this
construction in detail.

The pseudoequilibrium approximation to the rate of recovery from (super)infection
was initially proposed by Dietz et al. (1974). For an M/M/∞ queue with homoge-
neous arrival rate λ and service rate γ—which describes within-host superinfection
dynamics for P. falciparum in a constant transmission setting—Dietz et al. (1974) note
that the expected duration of each busy period, or ‘superinfection’ at steady state is

E[superinfection] = e
λ
γ − 1

λ
.

Therefore, as a function of the FORI λ(t) = λ at time t , Dietz et al. (1974) argue
that the rate of recovery from superinfection at time t can be approximated to be

ρ(λ) = λ

e
λ
γ − 1

. (35)

This argument essentially replaces a rate of recovery, which necessarily depends
on the MOB, with its expectation taken under steady-state conditions with the arrival
rate taken to be constant. While this might be a reasonable thing to do if there is no
better option, as we show in this paper, the model is still tractable when the MOB
is included in the state space. It might be that the pseudoequilibrium approximation
yields reasonable results when changes in the FORI occur on a slower time scale than
the clearance of blood-stage infection; it has, however, been critiqued on the basis
of its inability to capture MOB dynamics following abrupt changes in transmission
intensity (Smith and Hay 2009).

To account for superinfection, White et al. (2014) suggest that the recovery rate
from blood-stage infection, conditional on the hypnozoite burden i should be

ρi (λ) = λ + iα

e
λ+iα

γ + 1
(36)

where λ represents the FORI. For an individual with a hypnozoite reservoir of size i ,
additional blood-stage infections are acquired at rate λ+ iα—with primary infections
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occurring at rate λ due to mosquito inoculation, and each hypnozoite in the liver acti-
vating independently at rate α to give rise to a relapse. Equation (36) is a modification
of Equation (35) accounting for the additional contribution of hypnozoite activation to
the blood-stage infection burden. However, like the approximation (35) it still arises
from replacing a recovery rate that depends on the current value of the MOB with
its expectation under steady-state conditions, in which case the MOB would have a
Poisson distribution with parameter (λ + iα)/γ .

If a single hypnozoite were established through each infective bite, then the distri-
bution of MOB conditional on the size of the hypnozoite reservoir would be Poisson;
for a network of infinite server queues with single arrivals, the numbers of busy servers
in each queue follow independent Poisson distributions at each time t (William and
Massey andWardWhitt, 1993). The batch structure in hypnozoites established through
each infective bite, however, breaks this construction; indeed, Boucherie and Taylor
(1993) show that the only open networks of queues that have transient product form
distributions are networks of Mt/M/∞ queues.

The distribution of MOB, conditional on the size of the hypnozoite reservoir, can
be recovered using the within-host queueing model introduced in Mehra et al. (2022)
(see Sect. 2 for a summary). Suppose the time evolution of the FORI λ(t) is known.
Recall that NH (t) represents the size of the hypnozoite reservoir at time t and let
NB(t) = NA(t) + NP (t) denote the MOB at time t . By Xekalaki (1987), it follows
that

E
[
yNB (t)|NH (t) = i

] = ∂nH

∂xn
(0, y, t)

/
∂nH

∂xn
(0, 1, t)

where H denotes the generating function given by Eq. (22). Following similar rea-
soning to Naasell (2013), given a hypnozoite reservoir of size i , the rate of recovery
from (super)infection can be written

ρi (t) = γ
P(NB(t) = 1|NH (t) = i)

P(NB(t) > 0|NH (t) = i)
.

Explicit formulae for the rate of recovery from superinfection, in terms of partial
Bell polynomials, can be recovered using Leibniz’s integral rule and Faa di Bruno’s
formula (Xu and Cen 2011); the resultant expressions, however, are unwieldy and are
therefore omitted here. A simpler framework—formulated in terms of a recovery rate
corrected for superinfection—is detailed in Appendix D.

DA correction to themodel of Anwar et al. (2022)

Anwar et al. (2022) construct a multiscale transmission model for P. vivax, allowing
for explicit variation in the hypnozoite burden. The objective of Anwar et al. (2022) is
to capture the model structure proposed by White et al. (2014), whilst alleviating the
computational difficulties associated with infinite-dimensional compartmental mod-
els. The premise of Anwar et al. (2022) is to embed the probabilistic distributions
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derived on the within-host scale in Mehra et al. (2022) in a transmission model with
finitely-many compartments, with the human population stratified by the presence or
absence of liver- and/or blood-stage infection.

In particular, as a function of the FORI λ(t), Anwar et al. (2022) derive a system
of IDEs governing the time evolution of the prevalence of blood-stage infection IH (t)
in a homogeneous population. To do so, Anwar et al. (2022) draw on the relapse rate,
conditional on the absence of blood-stage infection, that we derive at the within-host
level in Mehra et al. (2022).

This within-host framework is designed to capture the joint dynamics of superin-
fection and the hypnozoite reservoir. As a function of the FORI λ(τ) in the interval
τ ∈ [0, t), using Equation (77) of Mehra et al. (2022), the relapse rate r(t) conditional
on the absence of blood-stage infection at time t can be written

r(t) := αE[NH (t)|NA(t) + NP (t) = 0] = να

∫ t

0

λ(τ)pH (t − τ)
(
1 − e−γ (t−τ)

)

[1 + ν pA(t − τ)]2 dτ.

While this relapse rate is derived under a framework that takes superinfection into
account, the population-level framework proposed in Anwar et al. (2022) does not
track the proportion of individuals in the population that have specific values of the
MOB, that is it does not account for superinfection in modelling the recovery rate of
individuals. In fact, all blood-stage infected individuals are assumed to recover from
infection at a constant rate γ . The inclusion of superinfection in the work of Anwar
et al. (2022) would necessitate the derivation of the recovery rate from (super)infection
under the within-host framework of Mehra et al. (2022). As in Naasell (2013), the rate
of recovery from (super)infection could be written in terms of the within-host PMF
for the MOB NA(t) + NP (t) at time t (given by Equations (81) and (82) of Mehra
et al. (2022)):

ρ(t) = γ P(NA(t) + NP (t) = 1)

P(NA(t) + NP (t) > 0)
=

γ
∫ t
0 λ(τ)

e−γ (t−τ )+ν pA(t−τ)

[1+ν pA(t−τ)]2 dτ

exp
{ ∫ t

0 λ(τ)
e−γ (t−τ )+ν pA(t−τ)

1+ν pA(t−τ)
dτ
}

− 1
, (37)

which, in turn, is a function of the FORI λ(τ) in the interval τ ∈ [0, t). A rigorous
characterisation of superinfection would yield the ODE

d IH
dt

= (r(t) + λ(t)
)
(1 − IH ) − ρ(t)IH ,

rather than

d IH
dt

= (r(t) + λ(t)
)
(1 − IH ) − γ IH ,

which appeared in Anwar et al. (2022).
However, rather than formulating a model in terms of the relapse rate and the rate

of recovery from (super)infection, a simpler but equivalent approach is to directly
consider the (integral) expression for the expected prevalence of blood-stage infection
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in the human population over time under the within-host framework of Mehra et al.
(2022), as we have done in this paper.

While the proposed correction to the framework of Anwar et al. (2022) is some-
what subtle, it has important implications. As discussed in Anwar et al. (2022), the
omission of superinfection at the population-level leads to discrepancies relative to the
framework of White et al. (2014), the re-formulation of which was the primary aim;
these discrepancies are evident at high transmission intensities, where superinfections
would be expected. The deterministic model introduced in Sect. 4, in contrast, serves
as an extension of the framework of White et al. (2014) to allow for superinfection.
The omission of superinfection at the population-level in Anwar et al. (2022) means
that a number of key epidemiological parameters that are analytically tractable at the
within-host level do not make sense at the population-level. A key example is the
expected contribution of relapse vs primary infection to the overall burden of recur-
rence (which includes the case of overlapping relapses and primary infections, as in
Mehra et al. (2022)).

E Themodel of Bailey (1957)

In the case ν = 0 (that is, the absence of hypnozoite accrual), Eqs. (20) and (21) reduce
to the classical (deterministic) model of superinfection for P. falciparum formulated
by Bailey (1957).

In the case ν = 0, Eq. (20) yields the Kolmogorov forward differential equations
for the Mt/M/∞ queue. By Eick et al. (1993), it follows that the MOB in the human
population at time t necessarily has a Poisson distribution. The mean MOB

mb(t) := a
∫ t

0
IM (τ )e−γ (t−τ)dτ = − log(1 − IH (t))

can be written a function of the FORI aIM (τ ) in the interval [0, t), with the final
equality following from Eq. (24).

In this case, we can collapse the infinite-dimensional system of ODEs given by
Eqs. (20) and (21) into the two-dimensional system

d IH
dt

= [aIM + γ log(1 − IH )
]
(1 − IH ) (38)

d IM
dt

= −gIM + bIH (1 − IM ) (39)

by differentiating Eq. (24). When the MOB in the human population is initially
Poisson-distributed, the time evolution of FORI is equivalent under the two-
dimensional system of ODEs given by Eqs. (38) and (39), and the countable system
of ODEs proposed by Bailey (1957) (Eqs. (20) and (21) in the case ν = 0).

Noting the functional dependence between themeanMOBmb(t) and the prevalence
of blood-stage infection IH (t) at time t , we observe that the system of ODEs given
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by Eqs. (38) and (39) is equivalent to the “hybrid approximation” proposed by Nåsell
(1991), whereby host and vector dynamics are coupled through expected values.
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