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Abstract
In this paper, we rigorously study the problem of cost optimisation of hybrid (mixed)
institutional incentives, which are a plan of actions involving the use of reward and
punishment by an external decision-maker, for maximising the level (or guaranteeing
at least a certain level) of cooperative behaviour in a well-mixed, finite population of
self-regarding individuals who interact via cooperation dilemmas (Donation Game or
Public Goods Game). We show that a mixed incentive scheme can offer a more cost-
efficient approach for providing incentives while ensuring the same level or standard
of cooperation in the long-run. We establish the asymptotic behaviour (namely neutral
drift, strong selection, and infinite-population limits). We prove the existence of a
phase transition, obtaining the critical threshold of the strength of selection at which
the monotonicity of the cost function changes and providing an algorithm for finding
the optimal value of the individual incentive cost. Our analytical results are illustrated
with numerical investigations. Overall, our analysis provides novel theoretical insights
into the design of cost-efficient institutional incentive mechanisms for promoting the
evolution of cooperation in stochastic systems.
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1 Introduction

Literature review.EvolutionaryGameTheorymade its debut in 1973with JohnMay-
nard Smith’s and George R. Price’s work on the formalisation of animal contests, thus
successfully using Classical Game Theory to create a new framework that could pre-
dict the evolutionary outcomes of the interaction between competing individuals. Ever
since, it has been widely used to study myriad questions in various disciplines like
Evolutionary Biology, Ecology, Physics, Sociology and Computer Science, includ-
ing what the mechanisms underlying the emergence and stability of cooperation are
(Nowak 2006) and how to mitigate climate change and its risks (Santos and Pacheco
2011).

Cooperation is the act of paying a cost in order to convey a benefit to somebody else.
Although it initially seems against the Darwinian theory of natural selection, coopera-
tion has been, is, and will be a vital part of life, from cellular clusters to bees to humans
(Sigmund 2010; Nowak and Highfield 2011). Several mechanisms for promoting the
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evolution of cooperation have been identified, including kin selection, direct reci-
procity, indirect reciprocity, network reciprocity, group selection and different forms
of incentives (Nowak 2006; Sigmund 2010; Perc et al. 2017; Rand and Nowak 2013;
Van Lange et al. 2014). The current work focuses on institutional incentives (Sasaki
et al. 2012; Sigmund et al. 2010; Wang et al. 2019; Duong and Han 2021; Cimpeanu
et al. 2021; Sun et al. 2021; Van Lange et al. 2014; Gürerk et al. 2006), which are a plan
of actions involving the use of reward (i.e., increasing the payoff of cooperators) and
punishment (i.e., reducing the payoff of defectors) by an external decision-maker, in
particular, how they can be used in combination (i.e. hybrid or mixed incentives) in a
cost-efficient way for maximising the levels of cooperative behaviour in a well-mixed,
finite population of self-regarding individuals.

Promoting and implementing cooperation via incentives is costly to the incentive-
providing institution, such as the United Nations or the European Union (Ostrom
2005; Van Lange et al. 2014). Thus, it is crucial to understand how to minimise the
said cost while ensuring a desirable standard of cooperation. In this work, players
interact via cooperation dilemmas, both the pairwise Donation Game (DG) and its
multi-player version, the Public Goods Game (PGG) (Sigmund 2010; Nowak 2006).
These games have been widely adopted to model social dilemma situations in which
collective rationality leads to individual irrationality.

Several theoretical models studied how to combine institutional reward and punish-
ment for enhancing the emergence and stability of cooperation (Chen and Perc 2014;
Góis et al. 2019; Berenji et al. 2014; Hilbe and Sigmund 2010; Sun et al. 2021; Gürerk
et al. 2006). However, little attention has been given to addressing the cost optimi-
sation of providing incentives. Chen et al. Sasaki et al. (2015) looked at a rewarding
policy that switches the incentive from reward to punishment when the frequency of
cooperators exceeds a certain threshold. This policy establishes cooperation at a lower
cost and under a wider range of conditions than either reward or punishment alone,
in both well-mixed and spatial populations. Others have applied the ‘carrot and stick’
idea to criminal recidivism and rehabilitation as now the justice system is switching
its focus to reintegrating wrongdoers into society after the penalty has been served.
Berenji et al.’s work (Berenji et al. 2014) studied the game where players decide to
permanently reform or continue engaging in criminal activity, eventually reaching a
state where they are considered incorrigible. Since resources may be limited, they
fixed the combined rehabilitation and penalty costs per crime. The most successful
strategy in reducing crime is to optimally allocate resources so that after being having
served the penalty, criminals are reintroduced into society via impactful programs.
Wang et al. (2019) explored the optimal incentive that not only minimises the total
cost, but also guarantees a sufficient level of cooperation in an infinite and well-mixed
population via optimal control theory.

This work however does not take into account various stochastic effects of evo-
lutionary dynamics such as mutation and non-deterministic behavioural update. In a
deterministic system of cooperators and defectors, once the latter disappear, there is
no further change in the system and hence no further interference is needed. When
mutation is present, defectors can reappear and become numerous over time, requiring
the external institution to spend more on providing further incentives. Moreover, the
intensity of selection - how strongly an individual bases their decision to copy another
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individual’s strategy on their fitness difference - is overlooked.When selection isweak,
providing incentives would make little difference in causing behavioural change as no
individualwould bemotivated to copy another and all changes in strategywould be due
to noise. When selection is strong, incentives that ensure a minimum fitness advantage
to cooperators would ensure a positive behavioural change as the players would be
more likely to copy one another. Recently, in Zhang et al. (2022) by simulating the
weak prisoner’s dilemma in finite populations, the authors find that a combination of
appropriate punishment and rewardmechanisms can promote cooperation’s prosperity
regardless of how large or small the temptation to defect is.

Whilst the aboveworkswere concernedwithwell-mixed populations, the following
two studies dealwith spatial ones. Szolnoki andPerc (2013) looked atwhether there are
evolutionary advantages in correlating positive and negative reciprocity, as opposed
to adopting only reward or punishment. Their work supports others that use empirical
data. In those studies, the data fails to support the central assumption of the strong
reciprocity model that negative and positive reciprocity are correlated. In a different
work (Szolnoki and Perc 2017), the authors showed how second-order free-riding on
antisocial punishment restores the effectiveness of prosocial punishment, providing an
evolutionary escape from adverse effects of antisocial punishment. Both these works
use Monte Carlo simulations.

Moreover, several works have provided insights into how best to promote the emer-
gence of collective behaviours such as cooperation and fairness while also considering
the institutional costs of providing incentives (Liu et al. 2018; Chen and Perc 2014;
Duong and Han 2021; Cimpeanu et al. 2021, 2019; Han and Tran-Thanh 2018; Cim-
peanu et al. 2023), see also (Wang et al. 2021) for a recent survey on these papers.
Indeed, most relevant to our work are Duong and Han (2021) and Han and Tran-Thanh
(2018), which derived analytical conditions for which a general incentive scheme can
guarantee a given level of cooperation while at the same time minimising the total cost
of investment. These results are highly sensitive to the intensity of selection. They also
studied a class of incentive strategies that make an investment whenever the number
of players with a desired behaviour reaches a certain threshold t ∈ {1, . . . , N − 1} (N
is the population size), showing that there is a wide range of values for the threshold
that outperforms standard institutional incentive strategies - those which invest in all
players, i.e. the threshold is t = N − 1 (Sasaki et al. 2015). These works however did
not study the cost-efficiency of the mixed incentive scheme, which is the focus of the
present work.
Overview of contribution of this paper. As mentioned above, in this work, we
consider a well-mixed, finite population of self-regarding individuals where players
interact via cooperation dilemmas (DG and PGG) and rigorously study the problem
of cost optimisation of hybrid institutional incentives (combination of reward and
punishment) for maximising the levels of cooperative behaviour (or guaranteeing at
least a certain levels of cooperation). This problem is challenging due to the num-
ber of parameters involved such as the number of individuals in the population, the
strength of selection, the game-specific quantities, as well as the efficiency ratios of
providing the corresponding incentive. In particular, the Markov chain modelling the
evolutionary process is of order equal to the population size, which is large but finite.
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The calculation of the entries of the corresponding fundamental matrix is intricate,
both analytically and computationally.

Our present work provides a rigorous and delicate analysis of this problem, com-
bining techniques from different branches of Mathematics including Markov chain
theory, polynomial theory, and numerical analysis. The main results of the paper can
be summarised as follows (detailed and precise statements are provided in Sect. 2).

(i) We show that a mixed incentive scheme can offer a more cost-efficient approach
for providing incentives while ensuring the same level or standard of cooperation
in the long-run.

(ii) We obtain the asymptotic behaviour of the cost function in the limits of neutral
drift, strong selection as well as infinite population sizes.

(iii) We prove the existence of a phase transition for the cost function, obtaining the
critical threshold of the strength of selection at which the monotonicity of the
cost function changes and finding the optimal value of the individual incentive
cost.

Furthermore, we provide numerical simulations to illustrate the analytical results.

Organisation of the paper

The rest of the paper is organised as follows. In Sect. 2 we present the model, methods,
and the main results. Our main results include Proposition 1 on the efficiency of
the combined reward and punishment incentives compared to implementing them
separately, Theorem 1 on the asymptotic behaviour (neutral drift, strong selection,
and infinite population limits) of the cost function, and Theorem 2 on the optimal
incentive. In Sect. 3 we provide detailed computations and proofs of Theorem 2. Proof
of Theorem 1 is given in Sect. 4. Summary and further discussions are provided in
Sect. 5. Finally, Sect. 6 contains the proof of Proposition 1, detailed computations, and
proofs for the technical results.

2 Model, methods, andmain results

In this section, we present the model, methods, and main results of the paper. We first
introduce the class of games, namely cooperation dilemmas, that we are interested in
throughout this paper.

2.1 Cooperation dilemmas

We consider a well-mixed, finite population of N self-regarding individuals (players)
who engage with one another using one of the following one-shot (i.e. non-repeated)
cooperation dilemmas, theDonationGame (DG) or its multi-player version, the Public
Goods Game (PGG). Strategy wise, each player can choose to either cooperate (C) or
defect (D).

Let �C ( j) be the average payoff of a C player (cooperator) and �D( j) that of a
D player (defector), in a population with j C players and (N − j) D players. As can
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be seen below, the difference in payoffs δ = �C ( j) − �D( j) in both games does not
depend on j . For the two cooperation dilemmas considered in this paper, namely the
Donation Games and the Public Goods Games, it is always the case that δ < 0. This
does not cover some weak social dilemmas such as the Snowdrift Game, where δ > 0
for some j , the general prisoners’ dilemma, and the collective risk game (Sun et al.
2021), where δ depends on j . We will investigate these games in future research (see
Sect. 5 for further discussion).

Donation game (DG)

TheDonationGame is a formofPrisoners’Dilemma inwhich cooperation corresponds
to offering the other player a benefit B at a personal cost c, satisfying that B > c.
Defection means offering nothing. The payoff matrix of DG (for the row player) is
given as follows

( C D

C B − c −c
D B 0

)
.

Denoting πX ,Y the payoff of a strategist X when playing with a strategist Y from the
payoff matrix above, we obtain

�C ( j) = ( j − 1)πC,C + (N − j)πC,D

N − 1
= ( j − 1)(B − c) + (N − j)(−c)

N − 1
,

�D( j) = jπD,C + (N − j − 1)πD,D

N − 1
= j B

N − 1
.

Thus,

δ = �C ( j) − �D( j) = −
(
c + B

N − 1

)
.

Public goods game (PGG)

In a Public Goods Game, players interact in a group of size n, where they decide to
cooperate, contributing an amount c > 0 to a common pool, or to defect, contributing
nothing to the pool. The total contribution in a group is multiplied by a factor r , where
1 < r < n (for the PGG to be a social dilemma), which is then shared equally among
all members of the group, regardless of their strategy. Intuitively, contributing nothing
offers one a higher amount of money after redistribution.

The average payoffs,�C ( j) and�D( j), are calculated based on the assumption that
the groups engaging in a public goods game are given by multivariate hypergeometric
sampling. Thereby, for transitions between two pure states, this reduces to sampling,
without replacement, from a hypergeometric distribution. More precisely, we obtain
(Hauert et al. 2007)
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�C ( j) =
n−1∑
i=0

(
j − 1

i

)(
N − j

n − 1 − i

)
(
N − 1

n − 1

)
(

(i + 1)rc

n
− c

)

= rc

n

(
1 + ( j − 1)

n − 1

N − 1

)
− c,

�D( j) =
n−1∑
i=0

(
j

i

)(
N − 1 − j

n − 1 − i

)
(
N − 1

n − 1

) jrc

n
= rc(n − 1)

n(N − 1)
j .

Thus,

δ = �C ( j) − �D( j) = −c

(
1 − r(N − n)

n(N − 1)

)
.

2.2 Cost of institutional reward and punishment

To reward a cooperator (respectively, punish a defector), the institution has to pay
an amount θ/a (resp., θ/b) so that the cooperator’s (defector’s) payoff increases
(decreases) by θ , where a, b > 0 are constants representing the efficiency ratios
of providing the corresponding incentive.

In an institutional enforcement setting, we assume that the institution has full infor-
mation about the population composition or statistics at the time of decision-making.
That is, given thewell-mixed population setting, we assume that the number j of coop-
erators in the population is known. Thus, if both reward and punishment are feasible
options (i.e., mixed incentives), the institution can minimise its cost by choosing the
minimumof j

a and
N− j
b . Thus, the key question here is:what is the optimal value of the

individual incentive cost θ that ensures a sufficient desired level of cooperation in the
population (in the long-run) while minimising the total cost spent by the institution?

Note that, as discussed above, this mixed incentive, also known as the ‘carrot and
stick’ approach, has been shown efficient for promoting cooperation in both pairwise
and multi-player interactions (Sasaki et al. 2015; Hilbe and Sigmund 2010; Sun et al.
2021; Góis et al. 2019; Gürerk et al. 2006). However, these works have not studied cost
optimisation and have not shown whether this approach is actually more cost-efficient
and by how much.

Deriving the expected cost of providing institutional incentives

In this model, we adopt the finite population dynamics with the Fermi strategy update
rule (Traulsen and Nowak 2006), stating that a player X with fitness fX adopts the
strategy of another player Y with fitness fY with a probability given by PX ,Y =(
1 + e−β( fY− fX )

)−1
, where β represents the intensity of selection. We compute the

expected number of times the population contains j C players, 1 ≤ j ≤ N − 1.
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For that, we consider an absorbing Markov chain of (N + 1) states, {S0, ..., SN },
where S j represents a population with j C players. S0 and SN are absorbing states.
Let U = {ui j }N−1

i, j=1 denote the transition matrix between the N − 1 transient states,
{S1, ..., SN−1}. The transition probabilities can be defined as follows, for 1 ≤ i ≤
N − 1:

ui,i±k = 0 for all k ≥ 2,

ui,i±1 = N − i

N

i

N

(
1 + e∓β[�C (i)−�D(i)+θ])−1

,

ui,i = 1 − ui,i+1 − ui,i−1. (1)

The entries nik of the so-called fundamental matrix N = (nik)
N−1
i,k=1 = (I − U )−1 of

the absorbing Markov chain gives the expected number of times the population is in
the state S j if it is started in the transient state Si (Kemeny 1976). As a mutant can
randomly occur either at S0 or SN , the expected number of visits at state Si is thus,
1
2 (n1i + nN−1,i ). The total cost per generation is

θ j = min
( j

a
,
N − j

b

)
× θ.

Hence, the expected total cost of interference for mixed reward and punishment is

Emix (θ) = θ

2

N−1∑
j=1

(n1 j + nN−1, j )min
( j

a
,
N − j

b

)
. (2)

As a comparison, we recall the cost for reward and punishment incentives, Er and Ep,
respectively, when being used separately (Duong and Han 2021)

Er (θ) = θ

2

N−1∑
j=1

(n1 j + nN−1, j )
j

a
, Ep(θ) = θ

2

N−1∑
j=1

(n1 j + nN−1, j )
N − j

b
. (3)

By comparing (2) and (3) one clearly expects that the efficiency ratios a and b
strongly affect the incentive cost. In the cost functions Er and Ep, they are just scaling
factors and do not affect the analysis of these functions. This is not the case in the
combined incentive. One of the main objectives of this paper is to reveal explicitly
the influence of a and b on the cost function. From a mathematical point of view, the
presence and interplay of a and b make the analysis of the combined incentive much
harder than that of the separate ones.

Remark (On the interference scheme) In the mixed incentive setting being considered
in this paper, the institution either rewards every cooperator or punishes every defector,
depending on which one is less costly. Although being rather unsophisticated, this
incentive strategy is typically considered in the literature of institutional incentives
modelling. However, other interference schemes are also investigated in many works,
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for instance, the institution only rewardsCplayerswhenever their frequency or number
in the population does not exceed a given threshold t , where 1 ≤ t ≤ N − 1. The
scheme studied in this paper corresponds to the case where t = N − 1. We refer the
reader to Han and Tran-Thanh (2018) and references therein for more information
about different interference schemes. We plan to generalise the results of this paper to
more complicated incentive strategies in future work, see Sect. 5 for further discussion.

Cooperation frequency

Since the population consists of only two strategies, the fixation probabilities of a
C (D) player in a homogeneous population of D (C) players when the interference
scheme is carried out are, respectively, Novak (2006)

ρD,C =
(
1 +

N−1∑
i=1

i∏
k=1

1 + eβ(�C (k)−�D(k)+θ)

1 + e−β(�C (k)−�D(k)+θ)

)−1

,

ρC,D =
(
1 +

N−1∑
i=1

i∏
k=1

1 + eβ(�D(k)−�C (k)−θ)

1 + e−β(�D(k)−�C (k)−θ)

)−1

.

Computing the stationary distribution using these fixation probabilities, we obtain
the frequency of cooperation

ρD,C

ρD,C + ρC,D
.

Hence, this frequency of cooperation can be maximised by maximising

max
θ

(
ρD,C/ρC,D

)
. (4)

The fraction in Equation (4) can be simplified as follows (Nowak 2006)

ρD,C

ρC,D
=

N−1∏
k=1

ui,i−1

ui,i+1
=

N−1∏
k=1

1 + eβ[�C (k)−�D(k)+θ]

1 + e−β[�C (k)−�D(k)+θ]

= eβ
∑N−1

k=1 (�C (k)−�D(k)+θ)

= eβ(N−1)(δ+θ). (5)

In the above transformation, ui,i−1 and ui,i−1 are the probabilities to decrease or
increase the number of C players (i.e. i) by one in each time step, respectively.

We consider non-neutral selection, i.e. β > 0 (under neutral selection, there is no
need to use incentives as no player is likely to copy another player and any changes in
strategy that happen are due to noise as opposed to payoffs). Assuming that we desire
to obtain at least an ω ∈ [0, 1] fraction of cooperation, i.e. ρD,C

ρD,C+ρC,D
≥ ω, it follows
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from equation (5) that

θ ≥ θ0(ω) = 1

(N − 1)β
log

(
ω

1 − ω

)
− δ. (6)

Therefore it is guaranteed that if θ ≥ θ0(ω), at least anω fraction of cooperation can
be expected. This condition implies that the lower bound of θ monotonically depends
on β. Namely, when ω ≥ 0.5, it increases with β and when ω < 0.5, it decreases with
β.

To summarise, we obtain the following constrained minimisation problem

min
θ≥θ0

Emix (θ). (7)

Remark (On the formula of the cost of the mixed incentive) In the derivation of the
cost function (2), we assumed that the population is equally likely to start in the
homogeneous state S0 aswell as in the homogeneous state SN .However, in general, this
might not be correct. For example, if cooperators are very likely to fixate in a population
of defectors, but defectors are unlikely to fixate in a population of cooperators, mutants
are on average more likely to appear in the homogeneous cooperative population (that
is in SN ). Similarly, the population might also be likely to appear in S0 rather than SN .
In general, in the long-run, the population will start at i = 0 (i = N , respectively)
with probability equal to the frequency of D (C) computed at the equilibrium, fD =
1/(r + 1) ( fC = r/(r + 1), respectively), where r = eβ(N−1)(δ+θ). Thus generally,
the expected number of visits at state Si will be fDn1i + fCnN−1,i . Therefore, instead
of (2), in the general setting the formula for the cost function should be

Emix =
N−1∑
j=1

( fDn1 j + fCnN−1, j )min
( j

a
,
N − j

b

)
.

In practice, in many works based on agent-based simulations (Chen and Perc 2014;
Cimpeanu et al. 2023; Szolnoki and Perc 2017; Han et al. 2018; Sasaki et al. 2015),
it is often assumed that mutation is negligible and simulations end whenever the pop-
ulation fixates in a homogeneous state. Moreover, these simulations usually assume
that the initial population starts at a homogeneous state or has a uniform distribution
of different types. In this work, we thus assume an equal likelihood that the population
starts at one of the homogeneous states and our formula (2) captures such scenarios.
This assumption enables us to analytically study the cost function and its behaviour. As
will be clear in the subsequent sections, the analysis is already very complicated in this
simplified setting. Our results encapsulate the intermediate-run dynamics, an approx-
imation that is valid if the time-scale is long enough for one type to reach fixation, but
too short for the next mutant to appear. Our findings might thus be more practically
useful for the optimisation of the institutional budget for providing incentives on an
intermediate timescale.

We will study this problem in the most general case, where the initial population
can start at an arbitrary state, in future work. The cost function can be obtained from
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extensive agent-based simulations of the evolutionary process. However, this approach
is very computationally expensive especially when one wants to analytically study the
cost function as a function of the individual incentive cost for large population sizes,
which is the focus of this paper. Previousworks have already shown that outcomes from
our adopted evolutionary processes (small-mutation limit) are in line with extensive
agent-based simulations, e.g. in Han (2013); Van Segbroeck et al. (2012); Hauert et al.
(2007); Sigmund et al. (2010).

2.3 Main results of the present paper

Proposition 1 (Combined incentives vs separate ones) It is always more cost efficient
to use the mixed incentive approach than a separate incentive, reward or punishment,

Emix ≤ min{Er , Ep}.

If b
a ≤ 1

N−1 , then Emix (θ) = Er (θ). If b
a ≥ N − 1, then Emix (θ) = Ep(θ). That

is, if providing reward for a cooperator is much more cost-efficient for the institution
than punishing a defector, i.e., when b/a ≥ N − 1, then it is optimal to use reward
entirely. Symmetrically, if punishment is much more efficient, i.e. a/b ≥ N − 1, then
it is optimal to use punishment entirely. Otherwise, a mixed approach is more cost-
efficient. Note however that the mixed approach require the institution to be able to
observe the population composition (i.e. the number of cooperators in the population,
j ).

The proof of this Proposition will be given in Sect. 6.2 and see Fig. 2 for an illustration.
The following number is central to the analysis of this paper

HN ,a,b =
N−1∑
j=1

1

j(N − j)
min

( j

a
,
N − j

b

)
. (8)

It plays a similar role as the harmonic number HN in Duong and Han (2021),
where a similar cost optimisation problem but for a separate reward or punishment
incentive is studied. However, unlike the harmonic function, which has a growth of
ln N +γ (where γ is the Euler-Mascheroni constant) as N → +∞, we will show that
HN ,a,b is always bounded and its asymptotic behaviour is given by (see more details
in Proposition 4)

Ha,b := lim
N→+∞ HN ,a,b = 1

a
ln
(a + b

b

)
+ 1

b
ln
(a + b

a

)
.

Now, our second main result below studies the asymptotic behaviour (neutral drift
limit, strong selection limit, and infinite population limit) of the cost function Emix (θ).
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Theorem 1 (Asymptotic behaviour of the cost function)

(i) (Growth of the cost function) The cost function satisfies the following lower and
upper bound estimates

N 2θ

2

(
HN ,a,b + 1

max(a, b)(N − 1)

)
≤ Emix (θ)

≤ N (N − 1)θ
(
HN ,a,b + 1

min(a, b)� (N−1)
2 	

)
.

In particular, since HN ,a,b is uniformly bounded (with respect to N), it follows
that the cost function grows quadratically with respect to N.

(ii) Neutral drift limit:

lim
β→0

Emix (θ) = θN 2HN ,a,b.

(iii) Strong selection limit:

lim
β→+∞ Emix (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N2θ
2

(
HN ,a,b + 1

a(N−1)

)
, for θ < −δ,

N A
2

[
2NHN ,a,b + 1

a(N−1) + 1
b(N−1)

−min(2/a,(N−2)/b)
2(N−2) − min((N−1)/a,1/b)

N−1

]
, for θ = −δ,

N2θ
2

[
HN ,a,b + 1

b(N−1)

]
for θ > −δ.

(iv) Infinite population limit:

lim
N→+∞

Emix (θ)

N2θ
2 Ha,b

=
{
1 + e−β|θ−c| for DG,

1 + e−β|θ−c(1− r
n )| for PGG.

(9)

It is worth noticing that the neutral drift and strong selection limits of the cost function
do not depend on the underlying games, but the infinite population limit does.

The proof of this Theoremwill be given in Sect. 4. Figures4 and 5 provide numerical
simulations of the neutral drift and strong selection limits and the infinite population
one.

The following result provides a detailed analysis for the minimisation problem
(7) for a = b. Note that since N ≥ 2, this case belongs to the interesting regime
where 1

N−1 ≤ b
a ≤ N − 1, see Proposition 1 above. Mathematically, this case is

distinguishable since it gives rise to many useful and beautiful symmetric properties
and cancellations, see Sect. 3. We also numerically investigate the case a 
= b and
conjecture that the result also holds true.
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Theorem 2 (Optimisation problems and phase transition phenomenon)

1. (Phase transition phenomena and behaviour under the threshold) For a = b, there
exists a threshold value β∗ given by

β∗ = − F∗

δ
> 0,

with

F∗ = min{F(u) : u > 1},

where F(u) := Q(u)
uP(u)

− log(u) for

P(u) := (1 + u)

[( N−2∑
j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=1

ju j−1
)

−
( N−2∑

j=1

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
ju j−1

)( N−1∑
j=0

u j
)]

−
( N−2∑

j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=0

u j
)

(10)

and

Q(u) := (1 + u)
( N−2∑

j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=0

u j
)
, (11)

with u := ex , such that θ �→ Emix (θ) is non-decreasing for all β ≤ β∗ and it is
non-monotonic when β > β∗. As a consequence, for β ≤ β∗

min
θ≥θ0

Emix (θ) = Emix (θ0). (12)

2. (Behaviour above the threshold value) For β > β∗, the number of changes of sign
of E ′

mix (θ) is at least two for all N and there exists an N0 such that the number
of changes is exactly 2 for N ≤ N0. As a consequence, for N ≤ N0, there exist
θ1 < θ2 such that for β > β∗, Emix (θ) is increasing when θ < θ1, decreasing
when θ1 < θ < θ2, and increasing when θ > θ2. Thus, for N ≤ N0,

min
θ≥θ0

Emix (θ) = min{Emix (θ0), Emix (θ2)}.

The proof of this Theorem is detailed in Sect. 3.
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2.4 Algorithms

Based on the results above, we describe below an algorithm for the computation of
the critical threshold β∗ of the strength selection.

Algorithm 1 (Finding optimal cost of incentive θ
)
Inputs: i) N ≤ N0: population size, ii) β: intensity of selection, iii) game and

parameters: DG (c and B) or PGG (c, r and n), iv) ω: minimum desired cooperation
level, v) a and b: reward and punishment efficiency ratios.

(1) Compute δ
{
inDG : δ = −(c + B

N−1 ); in PGG: δ = −c
(
1 − r(N−n)

n(N−1)

) }
.

(2) Compute θ0 = 1
(N−1)β log

(
ω

1−ω

)
− δ;

(3) Compute

F∗ = min{F(u) : u > 1},

where F(u) is defined in (31).
(4) Compute β∗ = − F∗

δ
.

(5) If β ≤ β∗:

θ∗ = θ0, min Emix (θ) = Emix (θ0).

(6) Otherwise (i.e. if β > β∗)

(a) Compute u2 that is the largest root of the equation F(u) + βδ = 0.
(b) Compute θ2 = log u2

β
− δ.

• If θ2 ≤ θ0: θ∗ = θ0, min Emix (θ) = Emix (θ0);
• Otherwise (if θ2 > θ0):

– If Emix (θ0) ≤ Emix (θ2): θ∗ = θ0, min Emix (θ) = Emix (θ0);
– if E(θ2) < E(θ0): θ∗ = θ2, min Emix (θ) = Emix (θ2).

Output: θ∗ and Emix (θ
∗).

Fig. 1 We use Algorithm 1 to find the optimal cost per capita θ , denoted by θ∗ (represented by the red line
in the figures), that minimises Emix (θ)while ensuring a minimum level of cooperation ω, where N = 3 for
DG with B = 2, c = 1. The left image illustrates the behaviour of the cost function for β = 1, the middle
one for β = 5, while the right one for β = 10. The critical threshold value for the strength of selection is
β∗ = 3.67 and the desired level of cooperation isω = 0.7. The numerical results obtained are in accordance
with Theorem 2: for β ≤ β∗, the cost function increases, while for β > β∗ it is not monotonic (colour
figure online)
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Fig. 2 Comparison of the total costs for mixed incentives (blue), only reward (orange), and only punishment
(green) as a function of the cost per capita θ , for different values of N and β for DG with B = 2, c = 1.
The first row illustrates the behaviour of the different cost functions when N = 3 with β = 0.01, 0.5, 1
respectively, while the second row presents the comparison between the cost functions for N = 10 with
β = 0.01, 0.5, 1, respectively. As proven in Proposition 1, mixed incentives are less costly than either
reward or punishment (colour figure online)

3 The expected cost function, phase transition, and theminimisation
problem

In this section, we study in detail the cost function, establishing the phase transition
phenomena and solving the minimisation problem 7 of finding the optimal incentive,
thus proving Theorem 2.

We consider the case

1

N − 1
<

b

a
< N − 1,

and focus on the most important case when a = b. This is due to Proposition 1, when
b
a is not in this interval, the mixed incentive problem reduces to either the reward or
the punishment problem that has been studied in Duong and Han (2021).

3.1 The cost function and its derivative

In this section, we provide the explicit computation for the cost function and its
derivative. The class of cooperation dilemmas, namely DG and PGG, introduced in
Sect. 2 are of crucial importance in the analysis of this paper. This is because, as
already mentioned, the difference in payoffs between a cooperator and a defector,
δ = �C (i) − �D(i), does not depend on the state i , which gives rise to explicit
and analytically tractable formulas for the entries of the fundamental matrixN of the
absorbing Markov chain describing the population dynamics. These entries are given
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in the following lemma, whose detailed proof can be found in Duong and Han (2021).

Lemma 1 The entries n1,i and nN−1,i , i = 1, . . . , N − 1, of the fundamental matrix
N (see its definition underneath (1)) are given by

n1,i = N 2

(N − i)i

(e(N−1)x−e(i−1)x )(1+ex )

eNx − 1
, nN−1,i = N 2

(N − i)i

(eix−1)(1+ex )

eNx − 1
,

where x = x(θ) := β(θ + δ).

Using Lemma 1, we obtain a more explicit formula for the cost function as follows:

Emix (θ) = θ

2

N−1∑
j=1

(n1 j + nN−1, j )min
( j

a
,
N − j

b

)

= θ

2

N−1∑
j=1

N 2

(N − j) j

(
(W−1)1 j + (W−1)N−1, j

)
min

( j

a
,
N − j

b

)

= N 2θ(1 + ex )

2(eNx − 1)

N−1∑
j=1

e(N−1)x − e( j−1)x + e jx − 1

j(N − j)
min

( j

a
,
N − j

b

)

= N 2θ(1 + ex )

2(eNx − 1)

[(
e(N−1)x − 1

) N−1∑
j=1

1

j(N − j)
min

( j

a
,
N − j

b

)
+

+ (ex − 1)
N−1∑
j=1

e( j−1)x

j(N − j)
min

( j

a
,
N − j

b

)]

= N 2θ(1 + ex )

2(1 + ex + . . . e(N−1)x )

[(
1 + ex + . . .

+ e(N−2)x) N−1∑
j=1

1

j(N − j)
min

( j

a
,
N − j

b

)
+

+
N−1∑
j=1

e( j−1)x

j(N − j)
min

( j

a
,
N − j

b

)]
.

To study themonotonicity of the cost function, in the following lemma, we compute
the derivative of Emix (θ) with respect to θ .
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Lemma 2 The total cost of interference for the mixed institutional incentive is given
by

Emix (θ) = N 2θ(1 + ex )

2(1 + ex + . . . e(N−1)x )

[(
1 + ex + . . . + e(N−2)x)

N−1∑
j=1

1

j(N − j)
min

( j

a
,
N − j

b

)

+
N−1∑
j=1

e( j−1)x

j(N − j)
min

( j

a
,
N − j

b

)]
.

Its derivative is given by

E ′
mix (θ) = N 2

2g(x)2
[Q(u) − (x − βδ)uP(u)] ,

where P(u) = f (x)g′(x) − f ′(x)g(x) and Q(u) = f (x)g(x) for f (x) = (1 +
u)
∑N−2

j=0 u j
(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j+1)(N− j−1)

)
and g(x) = ∑N−1

j=0 u j with u = ex .

See Sect. 6.3 for a proof of this lemma.

3.2 The polynomial P

This section contains details about

P(u) := (1 + u)

[( N−2∑
j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=1

ju j−1
)

−
( N−2∑

j=1

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
ju j−1

)( N−1∑
j=0

u j
)]

−
( N−2∑

j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=0

u j
)
.

The following proposition studies the properties of P .

Proposition 2 Let P(u) be the polynomial defined in (29). Then it is a polynomial of
degree 2N − 4,

P(u) =
2N−4∑
k=0

pku
k,
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where the leading coefficient p2N−4 is positive. When a = b, the coefficients of P are
anti-symmetric, that is we have

pk = −p2N−4−k < 0 for k = 0, . . . , N − 3, and pN−2 = 0.

As a consequence, when a = b, P has exactly one positive root, which is equal to 1.

The proof of this proposition is lengthy and delicate. The case a = b is special since
it gives rise to many useful symmetric properties and nice cancellations. To focus on
the main points here, we postpone the proof to the Appendix, see Sect. 6.4.

3.3 The derivative of F

In this section, we study the derivative of the function F defined in (31). The analysis
of this section will play an important role in the study of the phase transition of the
cost function in the next section.

We have

F ′(u) = uQ′(u)P(u) − Q(u)(P(u) + uP ′(u))

u2P(u)2
− 1

u
=: M(u)

u2P(u)2
,

where

M(u) := uQ′(u)P(u) − Q(u)(P(u) + uP ′(u)) − uP(u)2. (13)

The sign of F ′(u) (thus, themonotonicity of F) is the same as that of the polynomial
M . The next proposition presents some properties of M .

Proposition 3 The following statements hold

1. M is a polynomial of degree 4N − 6,

M(u) =
4N−6∑
i=0

miu
i ,

where the leading coefficient is

m4N−6 = aN−2aN−3 > 0.

2. When a = b, the coefficients of M are symmetric, that is for all i = 0, . . . , 4N −6

mi = m4N−6−i .

3. M has at least two positive roots, one is less than 1 and the other is bigger than
1. For sufficiently small N , namely N ≤ N0, M has exactly two positive roots, u1
and u2, where u1 < 1 < u2. As a consequence, for 1 < u < u2, F ′(u) < 0, thus
F is decreasing. While for u2 < u, F ′(u) > 0, thus F is increasing.
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The proof of this proposition is presented in Sect. 6.5. We conjecture that the sequence
of M has exactly two changes of signs, and thus M has exactly two positive roots.

3.4 The phase transition and theminimisation problem

In this section, we study the phase transition problem, which describes the change in
the behaviour of the cost function when varying the strength of selection β, and the
optimal incentive problem, thus proving Theorem 2. We focus on the case a = b.

Proof of Theorem 2 It follows from Proposition 2 that for 0 < u, P(u) > 0 if and only
if u > 1.

Thus according to the argument at the end of Sect. 3.1, if u ≤ 1 then E ′
mix > 0

(thus Emix is increasing); and for u > 1 we have (see (32))

E ′
mix (θ) = N 2

2g(x)2
(uP(u))

( Q(u)

uP(u)
− log(u) + βδ

)
= N 2

2g(x)2
(uP(u))(F(u) + βδ),

where the function F is (see (31))

F(u) = Q(u)

uP(u)
− log(u).

Since Q(u) is a polynomial of degree 2N − 2 and uP(u) is a polynomial of degree
2N − 3 and their leading coefficients are both positive,

lim
u→+∞ F(u) = +∞ = lim

u→1+ F(u).

This, together with the fact that F is smooth on (1,+∞), we deduce that there exists
a global minimum of F in the interval (1,+∞)

F∗ := min{F(u), u > 1}.

Let

β∗ := − F∗

βδ
= − F∗

δ
.

Then it follows from the above formula of E ′
mix (θ) that forβ ≤ β∗, E ′

mix (θ) ≥ 0. Thus
for β ≤ β∗, Emix (θ) is always increasing. For β > β∗, the sign of E ′

mix (θ) depends
on the sign of the term F(u) + βδ. For arbitrary N , the equation F(u) = −βδ has at
least two roots, thus the sign of the term F(u) + βδ changes at least twice, therefore
E is not monotonic. In particular, for N ≤ N0, since F is decreasing in (1, u2) and
increasing in (u2,+∞), where F∗ = F(u2) < −βδ, the equation F(u) = −βδ

has two roots 1 < ū1 < u2 < ū2, and F(u) + βδ < 0 when ū1 < u < ū2 while
F(u) + βδ ≥ 0 when u ∈ (1, ū1] ∪ [ū2,+∞), see Fig. 3 for an illustration.
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Fig. 3 Behaviour of F and determination of the critical threshold β∗. For sufficiently small N, i.e. N ≤ N0,
since F is decreasing in (1, u2) and increasing in (u2, +∞), where F∗ = F(u2) < −βδ, the equation
F(u) = −βδ has two roots 1 < ū1 < u2 < ū2, and F(u) + βδ < 0 when ū1 < u < ū2 while
F(u) + βδ ≥ 0 when u ∈ (1, ū1] ∪ [ū2,+∞)

Hence E ′
mix (θ) < 0 when ū1 < u < ū2 while E ′

mix (θ) ≥ 0 when u ∈
(1, ū1] ∪ [ū2,+∞). Thus Emix (θ) is increasing in (1, ū1), decreasing in (ū1, ū2),
and increasing again in (ū2,+∞). In term of the variable θ , Emix (θ) is increasing in
(−δ, θ1), decreasing in (θ1, θ2), and increasing again in (θ2,+∞), where

θ1 := log(u1)

β
− δ, θ2 := log(u2)

β
− δ.

As a consequence, for N ≤ N0,

min
θ≥θ0

Emix (θ) = min{Emix (θ0), Emix (θ2)}.

This completes the proof of this theorem. ��

4 Asymptotic behaviour of the expected cost function

In this section, we study the asymptotic behaviour (neutral drift, strong selection, and
infinite population limits) of the cost function, proving the main results in Theorem 1.
To this end, we will first need some auxiliary technical lemmas.

4.1 Some auxiliary lemmas

The first auxiliary lemma is an elementary inequality which will be used to estimate
the cost function. Its proof can be found in Duong and Han (2021).
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Lemma 3 For all x ∈ R, we have

0 ≤ ex + . . . + e(N−2)x

1 + ex + . . . + e(N−1)x
≤ N − 2

N
. (14)

In thenext lemma,weprovide lower andupper bounds for the numberHN ,a,b defined in
(8). As mentioned in the introduction, this number plays a similar role as the harmonic
number Hn in Duong and Han (2021). However, unlike the harmonic number, we will
show that HN ,a,b is always bounded and has a finite limit as N → +∞.

Lemma 4 It holds that

2(ln 2 + 1
2N−1 − 1

N+1 )

max(a, b)
≤ HN ,a,b ≤ 2(ln 2 + 1

2N+1 − 1
N−1 )

min(a, b)
.

The proof of this lemma is given in Sect. 6.6.
The following proposition characterises the asymptotic limit of HN ,a,b as N →

+∞, which will be used later to obtain asymptotic limits of the cost function.

Proposition 4 It holds that

lim
N→+∞ HN ,a,b = Ha,b ,where Ha,b = 1

a
ln
(a + b

b

)
+ 1

b
ln
(a + b

a

)
.

Proof We recall that HN ,a,b =
N−1∑
j=1

1
j(N− j) min( j

a ,
N− j
b ). As in the proof of the above

lemma, we will link HN ,a,b to the harmonic number HN by splitting the sum at
an appropriate point, which allows us to determine the minimum between j/a and
(N − j)/a explicitly, given by

Na,b =
⌊

N
b
a + 1

⌋
.

We have

HN ,a,b =
Na,b∑
j=1

j
a

j(N − j)
+

N−1∑
j=Na,b+1

N− j
b

j(N − j)
= 1

a

Na,b∑
j=1

1

N − j
+ 1

b

N−1∑
j=Na,b

1

j
.

Let ĵ = N − j . Thus:

HN ,a,b = 1

a

N−1∑
ĵ=N−Na,b

1

ĵ
+ 1

b

N−1∑
j=Na,b+1

1

j
= 1

a

(
HN − HN−Na,b

)
+ 1

b

(
HN − HNa,b

)
.

Note that N − Na,b = N (1 − a
a+b ) = N b

a+b and Na,b = N a
a+b . Thus both Na,b

and N−Na,b go to+∞ as N → +∞. Then it follows from the following well-known

123



77 Page 22 of 57 M. H. Duong et al.

asymptotic behaviour of the harmonic number (see (52))

lim
N→+∞ HN = ln N + γ,

we obtain the following asymptotic behaviour of HN ,a,b

lim
N→+∞ HN ,a,b = 1

a
ln
(a + b

b

)
+ 1

b
ln
(a + b

a

)
.

This completes the proof of the proposition. ��
The following lemma provides lower and upper bounds for the cost function, which
show that it grows quadratically with respect to the population size.

Lemma 5 It holds that

N 2θ

2

(
HN ,a,b + m

)
≤ Emix (θ) ≤ N (N − 1)θ

(
HN ,a,b + M

)
, (15)

where

m = min
i

min( i+1
a , N−i−1

b )

(i + 1)(N − i − 1)
, M = max

i

min( i+1
a , N−i−1

b )

(i + 1)(N − i − 1)
. (16)

Proof Let HN ,a,b =
N−1∑
j=1

1
j(N− j) min( j

a ,
N− j
b ). We have

(1 + ex )(1 + ex + . . . + e(N−2)x )

1 + ex + . . . + e(N−1)x
= 1 + ex + . . . + e(N−2)x

1 + ex + . . . + e(N−1)x
.

Using Lemma 3, we get

1 ≤ (1 + ex )(1 + ex + . . . + e(N−2)x )

1 + ex + . . . + e(N−1)x
≤ 2(N − 1)

N
.

Let m = min
i

min( i+1
a , N−i−1

b )

(i+1)(N−i−1) and M = max
i

min( i+1
a , N−i−1

b )

(i+1)(N−i−1) . Since

m
N−2∑
j=0

e jx ≤
N−1∑
j=1

e( j−1)x

j(N − j)
min

( j

a
,
N − j

b

)
≤ M

N−2∑
j=0

e jx .
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we obtain the following estimates

m ≤ m
(1 + ex )(1 + ex + . . . + e(N−2)x )

1 + ex + . . . + e(N−1)x

≤ (1 + ex )

1 + ex + . . . + e(N−1)x

N−1∑
j=1

e( j−1)x

j(N − j)
min

( j

a
,
N − j

b

)

≤ (HN ,a,b + M)
(1 + ex )(1 + ex + . . . + e(N−2)x )

1 + ex + . . . + e(N−1)x
≤ 2(N − 1)(HN ,a,b + M)

N
.

Thus for θ > 0 we have

N 2θ

2

(
HN ,a,b + m

)
≤ Emix (θ) ≤ N (N − 1)θ

(
HN ,a,b + M

)
,

which completes the proof of the lemma. ��
We can further estimate m and M in (16) from below and above respectively in terms
of the population size N as follows.

Lemma 6 For m and M defined in (16), it holds that

m ≥ 1

max(a, b)(N − 1)
, M ≤ 1

min(a, b)� (N−1)
2 	 .

As a consequence, we have

N 2θ

2

(
HN ,a,b + 1

max(a, b)(N − 1)

)
≤ Emix (θ) ≤ N (N − 1)θ

(
HN ,a,b + 1

min(a, b)� (N−1)
2 	

)
.

The proof of this lemma is given in Sect. 6.7.

4.2 Neutral drift limit

In this section, we study the neutral drift limit of the cost function, proving the second
part of Theorem 1.

Proposition 5 (neutral drift limit) It holds that

lim
β→0

Emix (θ) = θN 2HN ,a,b.

It is worth noting that the neutral drift limit of the cost function depends on the
population size N , the reward and punishment efficiency ratios a and b through the
number HN ,a,b, but does not depend on the underlying game.
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Proof We recall that x = β(θ + δ). Since β → 0 implies x → 0, it follows from the
formula of Emix (θ) that

lim
β→0

Emix (θ) = lim
β→0

N 2θ(1 + ex )

2(1 + ex + . . . e(N−1)x )[(
1 + ex + . . . + e(N−2)x) N−1∑

j=1

1

j(N − j)
min

( j

a
,
N − j

b

)

+
N−1∑
j=1

e( j−1)x

j(N − j)
min

( j

a
,
N − j

b

)]

= θN [(N − 1)HN ,a,b + HN ,a,b]
= θN 2HN ,a,b.

��

4.3 Strong selection limits

In this section, we study the strong selection limits of the cost function, proving the
third statement of Theorem 1.

Proposition 6 (strong selection limits)

lim
β→+∞ Emix (θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

N2θ
2

(
HN ,a,b + 1

a(N−1)

)
, for θ < −δ,

N A
2

[
2NHN ,a,b + 1

a(N−1) + 1
b(N−1)

−min(2/a,(N−2)/b)
2(N−2) − min((N−1)/a,1/b)

(N−1)

]
, for θ = −δ,

N2θ
2

[
HN ,a,b + 1

b(N−1)

]
for θ > −δ.

Similarly to the neutral drift limit, the strong selection limit of the cost function depends
on the population size N , the reward and punishment efficiency ratios a and b, but
does not depend on the underlying game.

Proof To establish the strong selection limit lim
β→+∞ Emix (θ), we rewrite Emix (θ) in a

more convenient form as follows:

Emix (θ) =
N2θ
2 (1 + ex )∑N−1

j=1 e jx

×
⎡
⎢⎣

N−2∑
j=0

e jx HN ,a,b +
N−2∑
j=0

e ĵ x

( ĵ + 1)(N − ĵ − 1)min
(

ĵ+1
a ,

N− ĵ−1
b

)
⎤
⎥⎦
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=
N2θ
2 (1 + ex )∑N−1

j=0 e jx

[ N−2∑
j=0

e jx (HN ,a,b + h j )

]
,

where h j = min( j+1
a ,

N− j−1
b )

( j+1)(N− j−1) .

Now, note that:

(1 + ex )
N−2∑
j=0

e jx (HN ,a,b + h j )=
N−2∑
j=0

e jx (HN ,a,b + h j )+
N−2∑
j=0

e( j+1)x (HN ,a,b + h j )

=
N−1∑
j=0

η j e
j x ,

where

η0 = HN ,a,b + h0 = HN ,a,b + min( 1a , N−1
b )

N − 1
= HN ,a,b + 1

a(N − 1)
,

ηN−1 = HN ,a,b + hN−2 = HN ,a,b + 1

b(N − 1)
,

η j = HN ,a,b + h j + HN ,a,b + h j−1 = 2HN ,a,b + h j + h j−1, for 1 ≤ j ≤ N − 2.

By putting all of the above together, we obtain that:

Emix (θ) = N 2θ

2
∑N−1

j=0 e jx

N−1∑
j=0

η j e
j x .

Recall that x = β(θ + δ) with δ being the difference of the average payoffs between
a cooperator and a defector. We study 3 cases:

1. If θ < −δ, then j(θ + δ) < 0, so e jx =
[
e j(θ+δ)

]β
for all 1 ≤ j ≤ N − 1. Thus,

lim
β→+∞ e jx = lim

β→+∞

[
e j(θ+δ)

]
= 0. Therefore,

lim
β→+∞ Emix (θ) = N 2θ

2

1

(1 + 0)
η0

= N 2θ

2

(
HN ,a,b + 1

a(N − 1)

)
.
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2. If θ = −δ, then x = 0. So Emix (θ) = Emix (−δ) = − N2δ
2N

N−1∑
j=0

η j . We have

N−1∑
j=0

η j = η0 +
N−2∑
j=1

η j + ηN−1

= HN ,a,b + 1

a(N − 1)
+ HN ,a,b + 1

b(N − 1)

+
N−2∑
j=1

(
2HN ,a,b + h j + h j−1

)

= 2(N − 1)HN ,a,b + 1

a(N − 1)
+ 1

b(N − 1)

+ HN ,a,b − h1 + HN ,a,b − hN−2

= 2NHN ,a,b + 1

a(N − 1)
+ 1

b(N − 1)

− min(2/a, (N − 2)/b)

2(N − 2)
− min((N − 1)/a, 1/b)

(N − 1)
.

Therefore,

Emix (−δ) = −Nδ

2

[
2NHN ,a,b + 1

a(N − 1)
+ 1

b(N − 1)

−min(2/a, (N − 2)/b)

2(N − 2)
− min((N − 1)/a, 1/b)

(N − 1)

]
.

3. If θ > −δ, then we obtain

lim
β→+∞ Emix (θ) = N 2θ

2
limβ→+∞

∑N−1
j=0 η j e j x∑N−1
j=0 e jx

= N 2θ

2
ηN−1

= N 2θ

2

[
HN ,a,b + 1

b(N − 1)

]
,

since

lim
β→+∞

∑N−1
j=0 η j e j x∑N−1
j=0 e jx

= e(N−1)x ∑N−1
j=0 e( j−(N−1))x

e(N−1)x
∑N−1

j=0 e( j−(N−1))x

=
∑N−1

j=0 η j e( j−(N−1))x

∑N−1
j=0 e( j−(N−1))x

,
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Fig. 4 Neutral drift and strong selection limits. We calculate numerically the expected total cost for the
mixed incentive, varying the intensity of selection β. The dashed red lines represent the corresponding
theoretical limiting values obtained in Proposition 5 for the neutral drift limit, while the dashed green lines
represent the corresponding theoretical limiting values obtained in Proposition 6 for the strong selection
limit. We observe that numerical results are in close accordance with those obtained theoretically. Results
are obtained for DGwith N = 2500, B = 2, c = 1 (left) and for PGGwith N = 2500, c = 1, r = 3, n = 5
(right) (colour figure online)

so e( j−(N−1))x = e( j−(N−1))β(θ+δ) =
[
e( j−(N−1))(θ+δ)

]β

for all 0 ≤ j ≤ N − 2.

Thus limβ→+∞ e( j−(N−1))x = 0 for all 0 ≤ j ≤ N − 2. ��

4.4 Infinite population limits

In this section, we establish the infinite population limits of the cost function, proving
the fourth statement of Theorem 1.

Proposition 7 (infinite population limits) We have

lim
N→+∞

Emix (θ)

N2θ
2 Ha,b

=
{
1 + e−β|θ−c| for DG,

1 + e−β|θ−c(1− r
n )| for PGG.

(17)

Unlike the neutral drift and strong selection limits, the infinite population limit of the
cost function strongly depends on the underlying game. The strength of selection, β,
is fixed. See Fig. 5 below for an illustration of these limits.

Proof Using

Emix (θ)=
N2θ
2 (1 + ex )∑N−1

j=0 e jx

[ N−2∑
j=0

e jx (HN ,a,b+h j )
]
where h j = min( j+1

a ,
N− j−1

b )

( j+1)(N− j−1)
,

we can estimate

(1 + ex )(1 + . . . + e(N−2)x )

1 + . . . + e(N−1)x

(HN ,a,b

Ha,b
+ h

Ha,b

)
≤ Emix (θ)

N2θ
2 Ha,b

≤ (1 + ex )(1 + . . . + e(N−2)x )

1 + . . . + e(N−1)x

(HN ,a,b

Ha,b
+ h

Ha,b

)
, (18)
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where h = min h j and h = max h j .
We recall that x = β(θ + δ), where

δ = δ(N ) =
{

−(c + B
N−1 ) for DG,

−c(1 − r(N−n)
n(N−1) ) for PGG.

Let

w(θ) := (1 + ex )(1 + . . . + e(N−2)x )

1 + . . . + e(N−1)x
.

Then we have

w(θ) = 1 + ex + . . . e(N−2)x

1 + . . . + e(N−1)x

=
{

2(N−1)
N if x = 0,

1 + ex 1−e(N−2)x

1−eNx if x 
= 0.
(19)

Since for fixed θ , x equals to 0 for only one value of N , we can consider x 
= 0
when we study the limit N → +∞. We have

lim
N→+∞ ex = lim

N→+∞ eβ(θ+δ(N )) =
{
eβ(θ−c) for DG,

eβ(θ−c(1− r
n )) for PGG.

(20)

In addition, for DG, we have

lim
N→+∞

1 − e(N−2)x

1 − eNx
= lim

N→+∞
1 − e−βb(N−3)/(N−1)eβ(θ−c)(N−3)

1 − e−βbeβ(θ−c)(N−1)

=
{
1 if θ ≤ c,

e−2β(θ−c) if θ > c.
(21)

While for PGG, we have

1 − e(N−2)x

1 − eNx
= 1 − e(N−2)β[θ−c(1− r

n )− cr
n

n−1
N−1 ]

1 − eNβ[θ−c(1− r
n )− cr

n
n−1
N−1 ]

= 1 − e(N−2)β(θ−c(1− r
n ))e−β(N−2) crn

n−1
N−1

1 − eNβ(θ−c(1− r
n ))e−Nβ cr

n
n−1
N−1

(22)

If θ − c(1 − r
n ) ≤ 0, then

lim
N→+∞ e(N−2)β(θ−c(1− r

n )) = lim
N→+∞ e−β(N−2) crn

n−1
N−1 = 0,
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lim
N→+∞ e−β(N−2)c r(n−1)

n(N−1) = e−βc r(n−1)
n ,

lim
N→+∞ e−Nβc r(n−1)

n(N−1) = e−βc r(n−1)
n .

Substituting these above limits in (22), it follows that, if θ −c(1− r
n ) ≤ 0, we have

lim
N→+∞

1 − e(N−2)x

1 − eNx
= 1.

If θ − c(1 − r
n ) > 0, then we have

1 − e(N−2)β(θ−c(1− r
n ))e−β(N−2) crn

n−1
N−1

1 − eNβ(θ−c(1− r
n ))e−Nβ cr

n
n−1
N−1

=
1

eNβ(θ−c(1− r
n ))

− e−2β(θ−c(1− r
n ))e−β(N−2) crn

n−1
N−1

1
eNβ(θ−c(1− r

n ))
− e−Nβ cr

n
n−1
N−1

. (23)

We have

lim
N→+∞

1

eNβ(θ−c(1− r
n ))

= 0,

lim
N→+∞ e−β(N−2) crn

n−1
N−1 = e−βc r(n−1)

n ,

lim
N→+∞ e−Nβc r(n−1)

n(N−1) = e−βc r(n−1)
n .

From the above limits, (22) and (23) we obtain

lim
N→+∞

1 − e(N−2)x

1 − eNx
= lim

N→+∞

1
eNβ(θ−c(1− r

n ))
− e−2β(θ−c(1− r

n ))e−β(N−2) crn
n−1
N−1

1
eNβ(θ−c(1− r

n ))
− e−Nβ cr

n
n−1
N−1

= −e−2β(θ−c(1− r
n ))e−β

cr(n−1)
n

−e−β
cr(n−1)

n

= e−2β(θ−c(1− r
n )).

Hence for PGG

lim
N→+∞

1 − e(N−2)x

1 − eNx
=
{
1, if θ ≤ c(1 − r

n ),

e−2β(θ−c(1− r
n )) if θ > c(1 − r

n ).
(24)
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From (19), (20), and (21), we obtain, for DG

lim
N→+∞ w(θ) =

{
1 + eβ(θ−c) if θ ≤ c,

1 + e−β(θ−c) if θ > c

= 1 + e−β|θ−c|, (25)

and similarly, from (19), (20), and (24), we get, for PGG

lim
N→+∞ w(θ) =

{
1 + eβ(θ−c)eβc r

n if θ ≤ c(1 − r
n ),

1 + e−β(θ−c)e−βc r
n if θ > c(1 − r

n )

= 1 + e−β|θ−c(1− r
n )|. (26)

Now we study the limit of HN ,a,b+h
Ha,b

and of HN ,a,b+h
Ha,b

as N → +∞.

For i = 1, . . . , Na,b, hi = 1
a(N−i) < 1

a(N−Na,b)
as N − i ≥ N − Na,b. Since

lim
N→+∞

1
a(N−Na,b)

= 0, it follows that lim
N→+∞ hi = 0.

For i = Na,b + 1, . . . , N − 2, hi = 1
b(i+1) < 1

b(Na,b+1) as i ≥ Na,b + 1. Since

lim
N→+∞

1
b(Na,b+2) = 0, it follows that lim

N→+∞ hi = 0.

As Na,b = � N
b
a +1

	 → +∞ for N → +∞, we deduce that h j → 0 as N → +∞
for any j ,

lim
N→+∞

HN ,a,b

Ha,b
+ h

Ha,b
= lim

N→+∞
HN ,a,b

Ha,b
+ h

Ha,b
= 1. (27)

Therefore, from (18), (25), and (27) we obtain, for DG:

lim
N→+∞

Emix (θ)

N2θ
2 HN ,a,b

= 1 + e−β|θ−c|,

and from (18), (26) and (27), for PGG:

lim
N→+∞

Emix (θ)

N2θ
2 HN ,a,b

= 1 + e−β|θ−c(1− r
n )|.

��
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Fig. 5 Large population size limit. We calculate numerically the expected total cost for the mixed incentive,
varying the population size N . The dashed orange lines represent the corresponding theoretical limiting
values obtained in Proposition 7 for the large population size limit, N → +∞. We observe that numerical
results are in close accordance with those obtained theoretically. Results are obtained for DG with N =
2500, B = 2, c = 1, β = 1, θ = 1 (left) and for PGG with N = 2500, c = 1, r = 3, n = 5, β = 1, θ = 1
(right) (colour figure online)

5 Discussion

The use of institutional incentives such as reward and punishment is an effective tool
for the promotion of cooperation in social dilemmas, as proven both by theoretical
(Hauert et al. 2007; Sasaki et al. 2015; Sigmund et al. 2010; Han 2022; Duong and
Han 2021) and experimental results (Ostrom 2005; Van Lange et al. 2014; Jia-Jia et al.
2014). In past works, although mixed incentives were used, the aspect of minimisation
of the cost function while ensuring a minimum level of cooperation was overlooked.
Moreover, existingworks that consider this question usually omit the stochastic effects
that drive population dynamics, namely when the strength of selection, β, varies.

In this work, we used a stochastic evolutionary game theoretic approach for finite,
well-mixed populations and obtained theoretical results for the optimal cost of mixed
incentives that ensure a desired level of cooperation, for a given intensity of selection,
β. We show that this cost strongly depends on the value of β due to the existence of
a phase transition in the cost function for providing mixed incentives. This behaviour
is missing in works that consider a deterministic evolutionary approach (Wang et al.
2019). We also characterised asymptotic behaviours of the cost function and showed
that mixed incentives are always cost efficient than either using only reward or only
punishment. In particular, we successfully obtained an infinite population limit, as
well as those for neutral drift and strong selection.

For the mathematical analysis of the mixed incentive cost function to be possible,
we made some assumptions. Firstly, in order to derive the analytical formula for
the frequency of cooperation, we assumed a small mutation limit (Rockenbach and
Milinski 2007; Nowak et al. 2004; Sigmund 2010). Despite the simplified assumption,
this small mutation limit approach has wide applicability to scenarios which go well
beyond the strict limit of very small mutation rates (Zisis et al. 2015; Hauert et al.
2007; Sigmund et al. 2010; Rand et al. 2013). If we were to relax this assumption,
the derivation of a closed form for the frequency of cooperation would be intractable.
Secondly,we focused on two important cooperation dilemmas, theDonationGame and
the Public Goods Game. Both have in common that the difference in average payoffs
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between a cooperator and a defector does not depend on the population composition.
This special property allowed us to simplify the fundamental matrix of the Markov
chain to a tridiagonal form and apply the techniques of matrix analysis to obtain a
closed form of its inverse matrix. In games with more complex payoff matrices such
as the general prisoners’ dilemma and the collective risk game (Sun et al. 2021), this
property no longer holds (e.g. in the former case the payoff difference,�C (i)−�D(i),
depends additively on i) and the technique in this paper cannot be directly applied.
In these scenarios, we might consider other approaches to approximate the inverse
matrix, exploiting its block structure.

More recent works looked at the effect of indirect exclusion on cooperation, having
found that the introduction of indirect exclusion could induce the stable coexistence
of cooperators and defectors or the dominance of cooperators, successfully promoting
cooperation (Liu and Chen 2022). Looking at prior agreement before an interaction
takes place also showed that cooperation would be increased. Thus, individuals choose
whether to take part in a social dilemma and those who do are rewarded (Ogbo et al.
2022; Han 2022). Our future work will consider cost-efficiency in these different form
of institutional incentives, including the problem of providing incentives whenever the
frequency or number of cooperators (or defectors) in the population does not exceed
a given threshold.

We furthermore aim to investigate the optimisation problems of incentives such as
reward, punishment, and exclusion in complex networks. There has been little attention
to providing analytical results for cost-efficient incentives in structured populations or
in more complex games, so this would also be an interesting research avenue. Finally,
since time is most precious, we intent to explore the time that the system needs in
order to achieve a desired level of cooperation.
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6 Appendix

In this appendix, we provide explicit calculations for some small population cases, as
well as detailed proofs and computations of technical results in the previous sections.
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6.1 Small population examples

6.1.1 N = 3

The cost function is

Emix (θ) = θ

2

2∑
j=1

(n1 j + n2, j )min

(
j

a
,
3 − j

b

)

= θ

2

2∑
j=1

32

(3 − j) j

(
(W−1)1 j + (W−1)2, j

)
min( j, 3 − j)

= 9θ(1 + ex )

2(e3x − 1)

2∑
j=1

e2x − e( j−1)x + e jx − 1

j(3 − j)
min( j, 3 − j)

= 27θ(1 + ex )2

4(ex + e2x + 1)
.

The function F is

F(u) = u4 + 3u3 + 4u2 + 3u + 1

u3 − u
− log(u).

The critical threshold is

β∗ = 3.67.

6.1.2 N = 4

The cost function is

Emix (θ) = θ

2

3∑
j=1

(n1 j + n3, j )min

(
j

a
,
4 − j

b

)

= θ

2

3∑
j=1

42

(4 − j) j

(
(W−1)1 j + (W−1)3, j

)
min( j, 4 − j)

= 8θ(1 + ex )

(e4x − 1)

3∑
j=1

e3x − e( j−1)x + e jx − 1

j(4 − j)
min( j, 4 − j)

= 4θ(1 + ex )(9 + 10ex + 10e2x )

3(1 + ex + e2x + e3x )
.

The function F is

F(u) = 1.16u6 + 3.66u5 + 6.16u4 + 7.33u3 + 6.16u2 + 3.66u + 1.16

1.33u5 + 2.66u4 − 2.66u2 − 1.33u
− log(u).
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The critical threshold is

β∗ = 2.34.

6.1.3 N = 5

The cost function is

Emix (θ) = θ

2

4∑
j=1

(n1 j + n4, j )min

(
j

a
,
5 − j

b

)

= θ

2

4∑
j=1

52

(5 − j) j

(
(W−1)1 j + (W−1)4, j

)
min( j, 5 − j)

= 25θ(1 + ex )

2(e5x − 1)

4∑
j=1

e4x − e( j−1)x + e jx − 1

j(5 − j)
min( j, 5 − j)

= 25θ(1 + ex )(17 + 18ex + 18e2x + 17e3x )

24(1 + ex + e2x + e3x + e4x )
.

The function F is

F(u) = 1.16u8 + 3.58u7 + 6.083u6 + 8.5u5 + 9.66u4 + 8.5u3 + 6.083u2 + 3.58u + 1.16

1.25u7 + 2.66u6 + 3.83u5 + 8.88u4 − 3.83u3 − 2.66u2 − 1.25u
− log(u).

The critical threshold is

β∗ = 2.084.

6.2 Proof of Proposition 1

In this section, we prove Proposition 1.

Proof We recall that:

Er (θ) = θ

2

N−1∑
j=1

(n1 j + nN−1, j ) · j

a
, Ep(θ) = θ

2

N−1∑
j=1

(n1 j + nN−1, j ) · N − j

b
,

and

Emix (θ) = θ

2

N−1∑
j=1

(n1 j + nN−1, j ) · min
( j

a
,
N − j

b

)
.
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Thefirst statement follows directly from these formulae, the fact thatn1, j , nN−1, j >

0, and the elementary inequalities

min
( j

a
,
N − j

b

)
≤ j

a
and min

( j

a
,
N − j

b

)
≤ N − j

b
.

Now we prove the second statement. The third one is similar. Suppose that b
a ≤

1
N−1 . We have

b

a
≤ 1

N − 1
= N

N − 1
− 1 = min

1≤ j≤N−1

(N − j

j

)
,

which implies that

b

a
≤ N − j

j
, i.e.,

j

a
≤ N − j

b
for all j = 1, . . . , N − 1.

Thus, min
(

j
a ,

N− j
b

)
= j

a for all j = 1, 2, . . . , N − 1, where N is the number of

individuals in the population. Therefore,

Emix (θ) = θ

2

N−1∑
j=1

(n1 j + nN−1, j )min
( j

a
,
N − j

b

)

= θ

2

N−1∑
j=1

(n1 j + nN−1, j )
j

a

= Er (θ).

��

6.3 Proof of Lemma 2

In this section, we give the proof of Lemma 2.

Proof Since x = β(θ + δ), we have

d

dθ
Emix (θ) = β

d

dx
Emix (θ)

= βN 2

2

{
1

β

f (x)

g(x)
+ θ

( f ′(x)
g(x)

− f (x)g′(x)
g(x)2

)}

= N 2

2

{[
f (x)

g(x)
+ (x − βδ)

( f ′(x)
g(x)

− f (x)g′(x)
g(x)2

)]}

= N 2

2

1

g(x)2

[
f (x)g(x) − (x − βδ)( f (x)g′(x) − f ′(x)g(x))

]
. (28)
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Let u := ex . From the formula of f (x) = (1+ ex )
[(
1+ ex + . . .+ e(N−2)x

)
HN ,a,b +∑N−1

j=1
e( j−1)x

j(N− j) min
(

j
a ,

N− j
b

)]
and g(x) = 1+ex+. . .+e(N−1)x , it ismore convenient

to express the right-hand side of (28) in terms of u. We have

f (x) = (1 + u)

N−2∑
j=0

u j
(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
,

f ′(x) =
N−2∑
j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j ( j(1 + u) + u),

g(x) =
N−1∑
j=0

u j , g′(x) =
N−1∑
j=1

ju j .

Therefore

f (x)g′(x) − f ′(x)g(x)

= (1 + u)
( N−2∑

j=0

(HN ,a,b + min( j+1
a ,

N− j−1
b )

( j + 1)(N − j − 1)

)( N−1∑
j=1

ju j
)

−
( N−2∑

j=0

(
HN ,a,b + min( i+1

a , N−i−1
b )

(i + 1)(N − i − 1)

)
u j ( j(1 + u) + u)

)( N−1∑
j=0

u j
)

= (1 + u)u

[( N−2∑
j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=1

ju j−1
)

−
( N−2∑

j=1

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
ju j−1

)( N−1∑
j=0

u j
)]

− u
( N−2∑

j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=0

u j
)

:= uP(u),

where we define

P(u) := (1 + u)

[( N−2∑
j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=1

ju j−1
)

−
( N−2∑

j=1

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
ju j−1

)( N−1∑
j=0

u j
)]
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−
( N−2∑

j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=0

u j
)
. (29)

We also have

f (x)g(x) = (1 + u)
( N−2∑

j=0

(
HN ,a,b + min( j+1

a ,
N− j−1

b )

( j + 1)(N − j − 1)

)
u j
)( N−1∑

j=0

u j
)

:= Q(u).

(30)

Note that x − βδ = βθ > 0 and f (x)g(x) > 0. It follows that if f (x)g′(x) −
f ′(x)g(x) ≤ 0 then E ′

mix (θ) > 0. Therefore, we only need to consider the case
f (x)g′(x) − f ′(x)g(x) = uP(u) > 0 (i.e., when P(u) > 0). Let u = ex and define

F(u) := Q(u)

uP(u)
− log(u). (31)

Then

E ′
mix (θ) = N 2

2g(x)2
(uP(u))

( Q(u)

uP(u)
− log(u) + βδ

)

= N 2

2g(x)2
(uP(u))(F(u) + βδ). (32)

The next step is to understand the sign of the term F(u) + βδ, which is required to
understand the polynomials P and Q. In the next section, we analyse the polynomial
P (Q is explicit and is much simpler). ��

6.4 Proof of Proposition 2

In this section, we provide a proof of Proposition 2. We delicately analyse the coef-
ficients of P and employ the discrete integration by parts techniques from numerical
analysis.

Proof Let m j = min( j+1
a ,

N− j−1
b )

( j+1)(N− j−1) and let a j := HN ,a,b + m j for j = 0, . . . , N − 2.

Suppose that P(u) = ∑2N−4
j=0 p ju j . Using the following formula of product of two

polynomials:

( m∑
j=0

a j x
j
)( n∑

j=0

b j x
j
)

=
m+n∑
k=0

( min{m,k}∑
j=max{0,k−n}

a jbk− j

)
xk,
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we have

(i)
( N−2∑

j=0

(HN ,a,b + m j )u
j
)( N−1∑

j=1

ju j−1
)

=
( N−2∑

j=0

a ju
j
)( N−2∑

j=1

( j + 1)u j
)

=
2N−4∑
k=0

( min(k,N−2)∑
j=max(k−N+2,0)

a j (k − j + 1)
)
uk

(i i)
( N−2∑

j=1

(
HN ,a,b + m j

)
ju j−1

)( N−1∑
j=0

u j
)

=
( N−3∑

j=0

a j+1( j + 1)u j
)( N−1∑

j=0

u j
)

=
2N−4∑
k=0

( min(k,N−3)∑
j=max(0,k−N+1)

a j+1( j + 1)
)
uk .

(i i i)
( N−2∑

j=0

(
HN ,a,b + m j

)
u j
)( N−1∑

j=0

u j
)

=
( N−2∑

j=0

a ju
j
)( N−1∑

j=0

u j
)

=
2N−3∑
k=0

( min(N−2,k)∑
j=max(0,k−N+1)

a j

)
uk .

Hence

(i i i)

[( N−2∑
j=0

(HN ,a,b + m j )u
j
)( N−1∑

j=1

ju j−1
)

−
( N−2∑

j=1

(
HN ,a,b + m j

)
ju j−1

)( N−1∑
j=0

u j
)]

(1 + u)

=
( 2N−4∑

k=0

( min(k,N−2)∑
j=max(k−N+2,0)

a j (k − j + 1)

−
min(k,N−3)∑

j=max(0,k−N+1)

a j+1( j + 1)
)
uk
)

(1 + u)

123



Cost optimisation of hybrid... Page 39 of 57 77

=
( 2N−4∑

k=0

bku
k
)
(1 + u)

=
2N−3∑
k=0

( min(k,2N−4)∑
j=max(0,k−1)

b j

)
uk

= b0 +
2N−4∑
k=1

(bk−1 + bk)u
k + b2N−4u

2N−3

where for k = 0, . . . , 2N − 4

bk :=
min(k,N−2)∑

j=max(k−N+2,0)

a j (k − j + 1) −
min(k,N−3)∑

j=max(0,k−N+1)

a j+1( j + 1) (33)

=
min(k+1,N−1)∑

j=max(k−N+3,1)

ak− j+1 j −
min(k+1,N−2)∑

j=max(1,k−N+2)

a j j

=

⎧⎪⎨
⎪⎩

∑k+1
j=1(ak− j+1 − a j ) j k ≤ N − 3,∑N−1
j=1 ak− j+1 j −∑N−2

j=1 a j j k = N − 2,∑N−1
j=k−N+3 ak− j+1 j −∑N−2

j=k−N+2 a j j N − 1 ≤ k ≤ 2N − 4.

Therefore, we obtain

P(u) =
2N−3∑
k=0

( min(k,2N−4)∑
j=max(0,k−1)

b j −
min(N−2,k)∑

j=max(0,k−N+1)

a j

)
uk,

that is for k = 0, . . . , 2N − 3

pk =
min(k,2N−4)∑
j=max(0,k−1)

b j −
min(N−2,k)∑

j=max(0,k−N+1)

a j (34)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b0 − a0 k = 0,

bk−1 + bk −∑k
j=0 a j 1 ≤ k ≤ N − 2,

bk−1 + bk −∑N−2
j=k−N+1 a j N − 1 ≤ k ≤ 2N − 4,

b2N−4 − aN−2 k = 2N − 3.

(35)

In particular,

p0 = b0 − a0 = a0 − a1 − a0 = −a1

= −
[
HN ,a,b + min( 2a , N−2

b )

2(N − 2)

]
< 0

p2N−3 = b2N−4 − aN−2 = (N − 1)aN−2 − (N − 2)aN−2 − aN−2 = 0,
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p2N−4 = b2N−5 + b2N−4 − aN−3 − aN−2

=
[
(N − 2)aN−2 + (N − 1)aN−3 − (N − 3)aN−3 − (N − 2)aN−2

]

+
[
(N − 1)aN−2 − (N − 2)aN−2

]
− aN−3 − aN−2

= aN−3

=
[
HN ,a,b + min( N−2

a , 2
b )

2(N − 2)

]
> 0

Hence, in particular, if a = b then

p0 + p2N−4 = 0.

Now we will show that when a = b, pN−2 = 0 and pk + p2N−4−k = 0 for all
1 ≤ k ≤ N − 3.

For 1 ≤ k ≤ N − 3:

bk−1 + bk =
k∑
j=1

(ak− j − a j ) j +
k+1∑
j=1

(ak− j+1 − a j ) j

=
k∑
j=1

(ak− j − 2a j + ak− j+1) j + (a0 − ak+1)(k + 1)

=
k∑
j=1

(mk− j+1 + mk− j − 2m j ) j + (m0 − mk+1)(k + 1).

In addition,

k∑
j=0

a j =
k∑
j=0

(
HN ,a,b + m j

)

= (k + 1)HN ,a,b +
k∑
j=0

m j .

Therefore, for 1 ≤ k ≤ N − 3, we have

pk = bk−1 + bk −
k∑
j=0

a j

=
k∑
j=1

(mk− j+1 + mk− j − 2m j ) j
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+ (m0 − mk+1)(k + 1) − (k + 1)HN ,a,b −
k∑
j=0

m j . (36)

For k = N − 2, we have

N−2∑
j=0

a j =
N−2∑
j=0

(
HN ,a,b + m j

)

= (N − 1)HN ,a,b +
N−2∑
j=0

min( j+1
a ,

N− j−1
b )

( j + 1)(N − j − 1)

= (N − 1)HN ,a,b +
N−1∑
j=1

min( j
a ,

N− j
b )

j(N − j)

= (N − 1)HN ,a,b + HN ,a,b

= NHN ,a,b.

It follows from the above computations that

N−2∑
j=0

m j = HN ,a,b.

Hence

pN−2 = bk−1 + bk −
k∑
j=0

a j

= bN−3 + bN−2 −
N−2∑
j=0

a j

=
N−2∑
j=1

(aN−2− j − a j ) j +
N−1∑
j=1

aN−1− j j −
N−2∑
j=1

a j j −
N−2∑
j=0

a j

=
N−2∑
j=1

(aN−2− j − 2a j + aN−1− j ) j + (N − 1)a0 −
N−2∑
j=0

a j

=
N−2∑
j=1

(HN ,a,b + mN−2− j − 2HN ,a,b − 2m j + HN ,a,b + mN−1− j ) j

+ (N − 1)a0 − NHN ,a,b

=
N−2∑
j=1

(mN−2− j − 2m j + mN−1− j ) j + (N − 1)a0 − NHN ,a,b
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We have

HN ,a,b =
N−1∑
j=1

1

j(N − j)
min(

j

a
,
N − j

b
)

=
N−1∑
j=1

1

j(N − j)
min(

N − j

a
,
j

b
)

m j = min( j+1
a ,

N− j−1
b )

( j + 1)(N − j − 1)
,

mN−2− j = min((N − 1 − j)/a, ( j + 1)/b)

( j + 1)(N − j − 1)
,

mN−1− j = min((N − j)/a, j/b)

j(N − j)

Hence

N−2∑
j=1

mN−2− j j =
N−2∑
j=1

min((N − 1 − j)/a, ( j + 1)/b)

( j + 1)(N − j − 1)
j

=
N−1∑
j=2

min((N − j)/a, j/b)

j(N − j)
( j − 1)

=
N−1∑
j=2

min((N − j)/a, j/b)

(N − j)
−

N−1∑
j=2

min((N − j)/a, j/b)

(N − j)

=
N−1∑
j=2

min((N − j)/a, j/b)

(N − j)
−
[
HN ,a,b − min((N − 1)/a, 1/b)

(N − 1)

]
,

N−2∑
j=1

mN− j−1 j =
N−2∑
j=1

min((N − j)/a, j/b)

j(N − j)
j =

N−2∑
j=1

min((N − j)/a, j/b)

(N − j)
,

N−2∑
j=1

m j j =
N−2∑
j=1

min( j+1
a ,

N− j−1
b )

( j + 1)(N − j − 1)
j =

N−1∑
j=2

min( j
a ,

N− j
b )

j(N − j)
( j − 1)

=
N−1∑
j=2

min( j
a ,

N− j
b )

(N − j)
−
[
HN ,a,b − min((N − 1)/a, 1/b)

(N − 1)

]
.

Therefore, recalling that

a0 = HN ,a,b + m0 = HN ,a,b + min(1/a, (N − 1)/b)

N − 1
,
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HN ,a,b =
N−1∑
j=2

min((N − j)/a, j/b)

j(N − j)

= 1

N

N−1∑
j=2

min((N − j)/a, j/b)
[1
j

+ 1

N − j

]

= 1

N

[ N−1∑
j=2

min((N − j)/a, j/b)

j
+

N−1∑
j=2

min((N − j)/a, j/b)

N − j

]

Hence,

pN−2 =
N−1∑
j=2

min((N − j)/a, j/b)

N − j
− 2

N−1∑
j=2

min( j
a ,

N− j
b )

N − j

+
N−2∑
j=1

min((N − j)/a, j/b)

N − j

+
[
HN ,a,b − min((N − 1)/a, 1/b)

(N − 1)

]
+ (N − 1)HN ,a,b

+ min(1/a, (N − 1)/b) − NHN ,a,b

=
N−1∑
j=2

min((N − j)/a, j/b)

N − j
− 2

N−1∑
j=2

min( j
a ,

N− j
b )

N − j

+
N−1∑
j=2

min((N − j)/a, j/b)

N − j

= 2
N−1∑
j=2

min((N − j)/a, j/b) − min( j
a ,

N− j
b )

N − j
.

If a = b, then

min((N − j)/a, j/b) − min(
j

a
,
N − j

b
)

= 1

a

[
min(N − j, j) − min(N − j, j)

]
= 0,

hence, in this case, we have pN−2 = 0.
For N − 1 ≤ k ≤ 2N − 5:

bk−1 + bk =
N−2∑

j=k−N+2

(ak− j − a j ) j + (2N − 2 − k)ak−N+1
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+
N−2∑

j=k−N+3

(ak− j+1 − a j ) j + (2N − 3 − k)ak−N+2

=
N−2∑

j=k−N+3

(ak− j+1 − 2a j + ak− j ) j + (k − N + 2)(aN−2 − ak−N+2)

+ (2N − 2 − k)ak−N+1 + (2N − 3 − k)ak−N+2

=
N−2∑

j=k−N+3

(mk− j − 2m j + mk− j+1) j

+ (k − N + 2)(mN−2 − mk−N+2)

+ (2N − 2 − k)(HN ,a,b + mk−N+1) + (2N − 3 − k)

(HN ,a,b + mk−N+2)

=
N−2∑

j=k−N+3

(mk− j − 2m j + mk− j+1) j

+ (k − N + 2)(mN−2 − mk−N+2) + (2N − 2 − k)mk−N+1

+ (2N − 3 − k)mk−N+2 + (4N − 2k − 5)HN ,a,b.

Similarly,

N−2∑
j=k−N+1

a j =
N−2∑

j=k−N+1

(HN ,a,b + m j ) = (2N − k − 2)HN ,a,b

+
N−2∑

j=k−N+1

m j

Hence, for N − 1 ≤ k ≤ 2N − 5

pk = bk−1 + bk −
N−2∑

j=k−N+1

a j

=
N−2∑

j=k−N+3

(mk− j − 2m j + mk− j+1) j

+ (k − N + 2)(mN−2 − mk−N+2) + (2N − 2 − k)mk−N+1

+ (2N − 3 − k)mk−N+2 + (4N − 2k − 5)HN ,a,b

− (2N − k − 2)HN ,a,b −
N−2∑

j=k−N+1

m j
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=
N−2∑

j=k−N+3

(mk− j − 2m j + mk− j+1) j

+ (k − N + 2)(mN−2 − mk−N+2) + (2N − 2 − k)mk−N+1

+ (2N − 3 − k)mk−N+2 + (2N − k − 3)HN ,a,b −
N−2∑

j=k−N+1

m j .

For N − 1 ≤ k ≤ 2N − 5, let k := 2N − 4 − k̂, then 1 ≤ k̂ ≤ N − 3 and

p2N−4−k̂ =
N−2∑

j=N−k̂−1

(m2N−4−k̂− j − 2m j

+ m2N−3−k̂− j ) j + (N − k̂ − 2)(mN−2 − mN−k̂−2)

+ (k̂ + 2)mN−k̂−3 + (k̂ + 1)mN−k̂−2 + (k̂ + 1)HN ,a,b

−
N−2∑

j=N−k̂−3

m j

Now we will show that p2N−4−k̂ + pk̂ = 0, for all 1 ≤ k̂ ≤ N − 3. We have

p2N−4−k̂ + pk̂ =
N−2∑

j=N−k̂−1

(m2N−4−k̂− j − 2m j + m2N−3−k̂− j ) j

+ (N − k̂ − 2)(mN−2 − mN−k̂−2)

+ (k̂ + 2)mN−k̂−3 + (k̂ + 1)mN−k̂−2

+ (k̂ + 1)HN ,a,b −
N−2∑

j=N−k̂−3

m j

+
k̂∑
j=1

(mk̂− j+1 + mk̂− j − 2m j ) j + (m0 − mk̂+1)(k̂ + 1)

− (k + 1)HN ,a,b −
k̂∑
j=0

m j

=
N−2∑

j=N−k̂−1

(m2N−4−k̂− j − 2m j + m2N−3−k̂− j ) j+(N−k̂−2)mN−2

− (N − 2k̂ − 3)mN−k̂−2 + (k̂ + 2)mN−k̂−3 −
N−2∑

j=N−k̂−3

m j
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+
k̂∑
j=1

(mk̂− j+1 + mk̂− j − 2m j ) j + (m0 − mk̂+1)(k̂ + 1) −
k̂∑
j=0

m j

(37)

To proceed further, we need to simplify the two sums

S1 =
k̂∑
j=1

(mk̂− j+1 + mk̂− j − 2m j ) j and S2

=
N−2∑

j=N−k̂−1

(m2N−4−k̂− j − 2m j + m2N−3−k̂− j ) j

using discrete integration by parts techniques.
For the first sum in S1, by changing of index j to k̂ − j + 1, we get

k̂∑
j=1

mk̂− j+1 j =
k̂∑
j=1

m j (k̂ − j + 1).

Similarly, by changing of index j to k̂ − j we can rewrite the second sum in S1 as

k̂∑
j=1

mk̂− j j =
k̂−1∑
j=0

m j (k̂ − j)

=
k̂∑
j=1

m j (k̂ − j) + k̂m0.

Hence, we have

S1 =
k̂∑
j=1

(mk̂− j+1 + mk̂− j − 2m j ) j

=
k̂∑
j=1

m j (k̂ − j + 1) +
k̂∑
j=1

m j (k̂ − j) − 2
k̂∑
j=1

m j j + k̂m0

=
k̂∑
j=1

(2(k̂ − 2 j) + 1)m j + k̂m0. (38)
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By proceeding similarly, we can transform S2 as

S2 =
N−2∑

j=N−k̂−1

(m2N−4−k̂− j − 2m j + m2N−3−k̂− j ) j

=
N−2∑

j=N−k̂−2

m j (4N − 2k̂ − 4 j − 7) − (N − k̂ − 2)mN−2 − (N − 1)mN−k̂−2

+ 2(N − k̂ − 2)mN−k̂−2

=
N−2∑

j=N−k̂−2

m j (4N − 2k̂ − 4 j − 7)

− (N − k̂ − 2)mN−2 + (N − 2k̂ − 3)mN−k̂−2. (39)

Substituting (38) and (39) back into (37) we have

p2N−4−k̂ + pk̂ =
N−2∑

j=N−k̂−2

m j (4N − 2k̂ − 4 j − 7)

− (N − k̂ − 2)mN−2 + (N − 2k̂ − 3)mN−k̂−2 + (N − k̂ − 2)mN−k̂−2

− (N − 2k̂ − 3)mN−k̂−2 + (k̂ + 2)mN−k̂−3 −
N−2∑

j=N−k̂−3

m j

+
k̂∑
j=1

(2(k̂ − 2 j) + 1)m j + k̂m0 + (m0 − mk̂+1)(k̂ + 1) −
k̂∑
j=0

m j .

It follows immediately from the formula of m j that when a = b.

N−2∑
j=0

m j = HN ,a,b,

and m j = mN−2− j for j = 0, . . . , N − 2.
Therefore, we have

N−2∑
j=N−k̂−2

m j (4N − 2k̂ − 4 j − 7)

=
N−2∑

j=N−k̂−2

mN−2− j (4N − 2k̂ − 4 j − 7) =
k̂∑

i=0

mi (−2k̂ + 4i + 1)
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=
k̂∑
j=1

m j (−2k̂ + 4 j + 1) + m0(−2k̂ + 1).

So we have

p2N−4−k̂ + pk̂ = 2
k̂∑
j=1

m j + (k̂ + 2)mN−k̂−3 −
N−2∑

j=N−k̂−3

m j

+ m0(−2k̂ + 1) + k̂m0 + (m0 − mk̂+1)(k̂ + 1) −
k̂∑
j=0

m j

=
k̂∑
j=0

m j + (k̂ + 2)mN−k̂−3 − (k̂ + 1)mk̂+1 −
N−2∑

j=N−k̂−3

m j

=
k̂∑
j=0

m j + (k̂ + 2)mN−k̂−3 − (k̂ + 1)mk̂+1 −
k̂∑
j=0

m j − mk̂+1

= 0,

where in the last equality, we have used the fact that mN−k̂−3 = mk̂+1.
Next we show that pk < 0 for k = 1, . . . , N − 3. Substituting (38) back into (36)

we get for k = 1, . . . , N − 3

pk =
k∑
j=1

(2(k − 2 j) + 1)m j + km0. + (m0 − mk+1)(k + 1)

− (k + 1)HN ,a,b −
k∑
j=0

m j

=
k∑
j=0

2(k − 2 j)m j − (k + 1)mk+1 − (k + 1)HN ,a,b

=
�k/2	∑
j=0

2 k m j −
�k/2	∑
j=0

4 jm j

+
k∑

j=�k/2	+1

2(k − 2 j)m j − (k + 1)mk+1 − (k + 1)HN ,a,b (40)

In the above expression, only the first term is positive, the other ones are negative.
We will show that the first term is dominated by the last term. We recall that HN ,a,b =
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∑N−2
j=0 m j and for a = b, then m j = mN−2− j . Hence

HN ,a,b =
�(N−2)/2	∑

j=0

m j +
N−2∑

�(N−2)/2	+1

m j = 2
�(N−2)/2	∑

j=0

m j

Substituting this back to (40) we obtain

pk =
�k/2	∑
j=0

2 k m j −
�k/2	∑
j=0

4 jm j

+
k∑

j=�k/2	+1

2(k − 2 j)m j − (k + 1)mk+1 − 2(k + 1)
�(N−2)/2	∑

j=0

m j

Since k ≤ N − 3 we have

�k/2	∑
j=0

2 k m j < 2(k + 1)
�(N−2)/2	∑

j=0

m j .

Therefore, pk < 0 for all k = 0, . . . , N − 3. In conclusion, we have for 0 ≤ k ≤
N − 2

pk = −p2N−4−k < 0.

As a consequence, when a = b, the sequence of coefficients of P has exactly one
change of sign. Thus according to Descartes’ rule of sign, P has exactly one positive
root. Because pk = −p2N−4−k for all k = 0, . . . , N − 2, the root is equal to 1. This
finishes the proof of this proposition. ��

6.5 Proof of Proposition 3

In this section, we provide a detailed proof of Proposition 3.

Proof Recall that

Q(u) = (1 + u)
( N−2∑

j=0

a ju
j
)( N−1∑

j=0

u j
)

where

a j = HN ,a,b + m j .
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Thus Q is a polynomial of degree 2N − 2 and the leading coefficient is q2N−2 =
aN−2, which is

aN−2 = HN ,a,b + mN−2 = HN ,a,b + min ( N−1
a , 1

b )

N − 1
> 0.

Hence Q′(u) is a polynomial of degree 2N − 3 whose leading coefficient is (2N −
2)aN−2.

According to Proposition 2 P is a polynomial of degree 2N − 4 whose leading
coefficient is

p2N−4 = aN−3 = HN ,a,b + min( N−2
a , 2

b )

2(N − 2)
.

Hence P ′ is a polynomial of degree 2N − 5 whose leading coefficient is (2N −
4)aN−3.

It follows that M is a polynomial of degree

max{(2N − 3) + (2N − 4) + 1, (2N − 2) + (2N − 4),

(2N − 2) + (2N − 5) + 1, 1 + 2(2N − 4)} = 4N − 6.

with the leading coefficient

m4N−6 = (2N − 2)aN−2aN−3 − aN−2aN−3 − (2N − 4)aN−2aN−3

= aN−2aN−3 > 0.

We write

M(u) =
4N−6∑
i=0

miu
i .

Next we prove that the coefficients of M are symmetric, that is mi = m4N−6−i for
all i = 0, . . . , 4N − 6. In fact, we observe that

u4N−6M(1/u) = u4N−6
4N−6∑
i=0

mi (1/u)i =
4N−6∑
i=0

miu
4N−6−i =

4N−6∑
i=0

m4N−6−i u
i

Thus to prove that the coefficients of M are symmetric is equivalent to showing
that

u4N−6M(1/u) = M(u). (41)
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We now prove this equality. We have

u2N−2Q(1/u) = u2N−2(1 + 1/u)
( N−2∑

j=0

a j (1/u) j
)( N−1∑

j=0

(1/u) j
)

= (1 + u)
( N−2∑

j=0

a ju
N−2− j

)( N−1∑
j=0

uN−1− j
)

= (1 + u)
( N−2∑

j=0

aN−2− j u
j
)( N−1∑

j=0

u j
)

= (1 + u)
( N−2∑

j=0

a ju
j
)( N−1∑

j=0

u j
)

(42)

= Q(u), (43)

where we have used the fact that a j = aN−2− j for all j = 0, . . . , N − 2. It follows
that

Q′(u) =
[
u2N−2Q(1/u)

]′ = (2N − 2)u2N−3Q(1/u) − u2N−4Q′(1/u). (44)

Therefore

Q′(1/u) = 1

u2N−4

[
(2N − 2)u2N−3Q(1/u) − Q′(u)

]
. (45)

We now do similar computations for P . We have

u2N−4P(1/u) = u2N−4
2N−4∑
i=0

pi (1/u)i

=
2N−4∑
i=0

piu
2N−4−i

=
2N−4∑
i=0

p2N−4−i u
i

= −
2N−4∑
i=0

piu
i

= −P(u), (46)

where we have used the fact that p2N−4−i = −pi for all i = 0, . . . , 2N − 4. It also
follows that

P ′(u) = −
[
u2N−4P(1/u)

]′ = −
[
(2N − 4)u2N−5P(1/u) − u2N−6P ′(1/u)

]
.

(47)
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Thus

P ′(1/u) = 1

u2N−6

[
P ′(u) + (2N − 4)u2N−5P(1/u)

]
. (48)

Therefore, from (43) to (48) we have

M(1/u) = (1/u)Q′(1/u)P(1/u) − Q(1/u)(P(1/u)

+ (1/u)P ′(1/u)) − (1/u)P(1/u)2

= (1/u)
1

u2N−4

[
(2N − 2)u2N−3Q(1/u) − Q′(u)

][
− 1/u2N−4P(u)

]

−
[
1/u2N−2Q(u)

](
− 1/u2N−4P(u) + (1/u)

1

u2N−6

[
P ′(u) + (2N − 4)u2N−5P(1/u)

])
− (1/u)

[
− 1/u2N−4P(u)

]2

= 1

u4N−7 Q
′(u)P(u)+ 1

u4N−6 Q(u)P(u)− 1

u4N−7 Q(u)P ′(u)− 1

u4N−7 P(u)2

− 1

u2N−4 (2N − 2)Q(1/u)P(u) − 1

u2N−2 (2N − 4)Q(u)P(1/u)

Hence

u4N−6M(1/u) = uQ′(u)P(u) − uQ(u)P ′(u) − uP(u)2

+ Q(u)P(u) − u2N−2(2N − 2)Q(1/u)

P(u) − u2N−4(2N − 4)Q(u)P(1/u). (49)

Using (43) and (46), we can simplify further the last line in the above expression
as follows

Q(u)P(u) − u2N−2(2N − 2)Q(1/u)P(u) − (2N − 4)Q(u)P(1/u)

= Q(u)P(u) − (2N − 2)Q(u)P(u) + (2N − 4)Q(u)P(u)

= −Q(u)P(u).

Substituting this back into (49) we obtain

u4N−6M(1/u) = uQ′(u)P(u) − uQ(u)P ′(u) − uP(u)2 − Q(u)P(u) = M(u),

which is the desired equality (41). Hence the coefficients of M are symmetric.
Since m0 = m4N−6 > 0, it implies that

M(0) > 0, M(+∞) = lim
u→+∞ M(u) > 0. (50)

Next we show that M has at least to positive root by showing that M(1) < 0.
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From (13), since P(1) = 0 we have

M(1) = −Q(1)P ′(1).

Clearly Q(1) = 2N
∑N−2

j=0 a j > 0. Since P(u) = ∑2N−4
k=0 pkuk , we have P ′(u) =∑2N−4

k=0 kpkuk−1. Hence P ′(1) = ∑2N−4
k=0 kpk . According to Proposition 2 pk =

−p2N−4−k for k = 0, . . . , N − 3 and pN−2 = 0. Thus we can rewrite P ′(1) as
follows.

P ′(1) =
2N−4∑
k=0

kpk

=
N−3∑
k=0

kpk +
2N−4∑
k̂=N−1

k̂ pk̂

=
N−3∑
k=0

kpk +
N−3∑
k=0

(2N − 4 + k)p2N−4−k

=
N−3∑
k=0

(2N − 4 + k − k)p2N−4−k

= (2N − 4)
N−3∑
k=0

p2N−4−k,

Note that in the above computations, to go from the second equality to the third
one, we have used a change of variable k̂ = 2N − 4 − k. Since p2N−4−k > 0 for
all k = 0, . . . , N − 3, P ′(1) > 0 for all N ≥ 3. Thus, as M(1) = −Q(1)P ′(1) and
Q(1) > 0, P ′(1) > 0, we obtain that M(1) < 0. This, together with (50) and since
M is a polynomial, we deduce, by the Intermediate Value Theorem, that M(u) has at
least 2 roots, one in the interval (0, 1) and another in the interval (1,+∞). ��

6.6 Proof of Lemma 4

Proof We have

min
( j

max(a, b)
,

N − j

max(a, b)

)
≤ min

( j

a
,
N − j

b

)
≤ min

( j

min(a, b)
,

N − j

min(a, b)

)
.

We observe that

min
( j

max(a, b)
,

N − j

max(a, b)

)
= 1

max(a, b)
min( j, N − j),
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and

min
( j

min(a, b)
,

N − j

min(a, b)

)
= 1

min(a, b)
min( j, N − j).

Thus we have

1

max(a, b)

N−1∑
j=1

min( j, N − j)

j(N − j)
≤ HN ,a,b ≤ 1

min(a, b)

N−1∑
j=1

min( j, N − j)

j(N − j)
. (51)

Let HN ,1,1 =
N−1∑
j=1

min( j,N− j)
j(N− j) , which is exactly HN ,a,b when a = b = 1. Then we

have

HN ,1,1 =
N−1∑
j=1

min( j, N − j)

j(N − j)
=

� N
2 	∑

j=1

1

N − j
+

N−1∑
� N
2 	+1

1

j
= 2

N−1∑
� N
2 	+1

1

j
= 2(HN − H� N

2 	).

where

HN =
N−1∑
j=1

1

j

is the harmonic number. This important number plays a central role in number
theory. Its appearance in our analysis, as well as in Duong and Han (2021), is rather
interesting. Using the above relationship and the following well-known estimates for
the harmonic number

ln N + γ + 1

2N + 1
≤ HN ≤ ln N + γ + 1

2N − 1
, (52)

where γ = 0.5772156649 is the celebrated Euler-Mascheroni constant, we obtain
the following lower and upper bounds for HN ,1,1:

HN ,1,1 = 2(HN − H� N
2 	) ≤ 2

(
ln N + γ + 1

2N − 1
− ln�N

2
	
)

− γ − 1

2� N
2 )	 + 1

= 2
(
ln 2 + 1

2N − 1
− 1

N + 1

)
,

HN ,1,1 = 2
(
HN − H� N

2 	
)

≥ 2
(
ln N + γ + 1

2N + 1
− ln�N

2
	
)

− γ − 1

2� N
2 )	 − 1
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= 2
(
ln 2 + 1

2N + 1
− 1

N − 1

)

Substituting these estimates back to (51) we obtain the desired lower and upper
bounds for HN ,a,b and complete the proof of this lemma. ��

6.7 Proof of Lemma 6

Proof We have, for i = 0, . . . , N − 2

m = min
i

min( i+1
a , N−i−1

b )

(i + 1)(N − i − 1)

≥ min
i

min( i+1
max(a,b) ,

N−i−1
max(a,b) )

(i + 1)(N − i − 1)

≥ min
i

min(i+1,N−i−1)
max(a,b)

(i + 1)(N − i − 1)
,

We have

min
{min(1, N − 1)

N − 1
, . . . ,

min(N − 1, 1)

N − 1

}

= min
{ 1

N − 1
, . . . ,

1

N − 1

}
= 1

N − 1
.

Therefore, we obtain

m ≥ 1

max(a, b)(N − 1)
.

Similarly for M

M = max
i

min( i+1
a , N−i−1

b )

(i + 1)(N − i − 1)
≤ max

i

min( i+1
min(a,b) ,

N−i−1
min(a,b) )

(i + 1)(N − i − 1)

≤ max
i

min(i+1,N−i−1)
min(a,b)

(i + 1)(N − i − 1)
,

for i = 0, . . . , N − 2.
We have

max
{min(1, N − 1)

N − 1
, . . . ,

min(N − 1, 1)

N − 1

}
= max

{ 1

N − 1
, . . . ,

1

� (N−1)
2 	

}

= 1

� (N−1)
2 	 .
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Thus

M ≤ 1

min(a, b)� (N−1)
2 	 .

Substituting the lower bound for m and upper bound for M into (15) we obtain the
desired estimates for Emix . ��
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