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Abstract
Infectious diseases continue to pose a significant threat to the health of humans
globally. While the spread of pathogens transcends geographical boundaries, the man-
agement of infectious diseases typically occurswithin distinct spatial units, determined
by geopolitical boundaries. The allocation of management resources within and across
regions (the “governance structure”) can affect epidemiological outcomes consider-
ably, and policy-makers are often confronted with a choice between applying control
measures uniformly or differentially across regions. Here, we investigate the extent to
which uniform and non-uniform governance structures affect the costs of an infectious
disease outbreak in two-patch systems using an optimal control framework. A uni-
form policy implements control measures with the same time varying rate functions
across both patches, while these measures are allowed to differ between the patches
in a non-uniform policy. We compare results from two systems of differential equa-
tions representing transmission of cholera and Ebola, respectively, to understand the
interplay between transmission mode, governance structure and the optimal control of
outbreaks. In our case studies, the governance structure has a meaningful impact on
the allocation of resources and burden of cases, although the difference in total costs
is minimal. Understanding how governance structure affects both the optimal control
functions and epidemiological outcomes is crucial for the effective management of
infectious diseases going forward.
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1 Introduction

Infectious disease management remains a critical challenge as both existing and
emerging infectious diseases increasingly burden communities worldwide (Daszak
et al. 2000; Jones et al. 2008; Morens and Fauci 2012; Global burden 2019). Recent
advances in pharmaceutical and non-pharmaceutical interventions have improved the
ability of communities to respond to outbreaks (Morse et al. 2012; Flaxman et al.
2020; Lal et al. 2022). However, the implementation of successful infectious disease
management policies is constrained by political boundaries, while infectious agents
often freely spread across the same borders (e.g. due to immigration, the movement of
livestock, the flow of water, or the dispersal of insect vectors) (Mirkovic et al. 2014;
Bwire et al. 2016; Hemida et al. 2017; Agusto et al. 2021). Consequently, a key con-
sideration for successful disease management should be the allocation of resources
within and across these discrete spatial units.

Mathematical models are often used by researchers and public health officials to
compare the effectiveness of various disease management policies (Martcheva 2013;
Feng 2014; Brauer et al. 2019). Typically based on the classic Susceptible–Infected–
Recovered or SI R model paradigm (Kermack and McKendrick 1927; Anderson and
May 1991), these transmission models can be coupled with optimal control theory
to determine the most efficient implementation of a management strategy accounting
for cost (e.g. the cost of infections or the cost of response) (Lenhart and Workman
2007). Many models consider space implicitly, so that both the disease dynamics and
associated management policies are homogeneous across space (Miller Neilan et al.
2010; Bonyah et al. 2016)). However in cases of cross-boundary pathogen transmis-
sion, evaluating the effectiveness of disease management policies requires that models
explicitly include space. Here, we use the term patches to generically refer to neigh-
boring jurisdictions, which can take the form of states, countries, or any other political
or cultural subdivisions. We assume that these patches are connected in some way, for
example by the movement of individuals, and need not be adjacent in a geographic
sense. In considering such a structure, many natural questions arise. For example, is it
better for two patches to implement the same or different management policies? How
does this decision depend on differences between the properties of each patch?

In deterministic optimal control models, spatial features may be represented in con-
tinuous space using partial differential equations (Ding et al. 2012; Fitzgibbon et al.
2020) or in discrete space using ordinary differential and discrete equations (Ding
et al. 2007). For example, many studies determine optimal resource allocation for a
particular type of control strategy, such as vaccination (Asano et al. 2008; Miyaoka
et al. 2019). Such studies typically aim to minimize the overall total costs across all
patches, including the costs of new cases, the number of current infected individuals,
and/or control implementation (Miller Neilan et al. 2010; Kelly et al. 2016; Lee et al.
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2020b). These policies may be non-uniform, meaning that the optimal control applied
to one patch need not be the same as in the others. However, this approach does not
consider constraints that may be faced by decisionmakers managingmultiple jurisdic-
tions. For example, a decision maker responsible for multiple patches may choose to
apply uniform policies across patches motivated by fairness or equity. Consequently,
it is possible that such an “equitable”, uniform policy may not optimally minimize
overall total cost.

Recently, Blackwood et al. (2021) began to tackle the question of how governance
structure impacts optimal control as a Structured Decision Making problem (Gregory
et al. 2012; Shea et al. 2014). This work considered a generic disease that is highly
transmissible, modeled within the SI R-model paradigm, and evaluated the trade-offs
between local and global decision-making formultiplemanagement strategies, includ-
ing time-constant implementation of vaccination, medication and travel restrictions.
The work of Blackwood et al. (2021) highlighted the potential trade-offs between the
local and global management of a generic infectious disease, showing that policies
which are best for one jurisdiction may lead to worse disease outcomes overall. We
extend this work in three primary ways: (1) we consider the management of two spe-
cific pathogens with differing modes of transmission; (2) we optimize management
strategies with time-varying functions using optimal control theory (with disease out-
comes combined with cost of implementing the controls), and (3) we compare the
optimal control decisions under both uniform and non-uniform governance structures
following a method from Sanchirico et al. (2021), a fisheries management study. We
define a uniform policy as the implementation of exactly the same level of control in
both patches (“centralized uniform management” in Blackwood et al. 2021), and a
non-uniform policy as one in which the level of control for each patch is allowed to
differ (“centralized jurisdiction-specific management” in Blackwood et al. (2021)).

To compare the effect of multiple governance structures on pathogens with differ-
ent modes of transmission, we develop two-patch SI R-type models for cholera and
Ebola. Cholera is transmitted primarily through water, its environmental reservoir,
though it can also be directly transmitted (Fitzgibbon et al. 2020; Legros 2018). In
contrast, Ebola is transmitted directly from both infected individuals and from direct
contact with the corpses of individuals that died fromEbola and have not had a sanitary
burial (Dowell et al. 1999).We focus on these disease systems because cross-boundary
transmission has occurred and is considered an important consideration for the preven-
tion and control of outbreaks (Mirkovic et al. 2014; Bwire et al. 2016). Furthermore,
these diseases have well-established models that reliably capture their transmission
dynamics, allowing us to focus on optimal control of each disease rather than model
validation (Tien and Earn 2010; Kelly et al. 2016; Burton et al. 2021). Investigating
these types of governance management features is a novel application of optimal con-
trol theory. For each disease example, we model the control of transmission through
two distinct and concurrent management interventions, specifically vaccination and
sanitation for cholera and vaccination and hospitalization for Ebola. The Pontryagin
Maximum Principle (Pontryagin et al. 1962) is used to characterize the optimal con-
trols and their corresponding adjoint functions.We then consider the numerical results
obtained from simulations of both models. Finally, we compare the results of the two
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models to evaluate important differences in how the choice of governance structure
impacts the optimal control of each disease.

2 Models

2.1 Cholera

Our cholera model represents two geographically distinct populations, called patches,
each divided into the epidemiological sub-compartments of susceptible, S, infectious,
I , and recovered, R,with N representing the total population size, N = S+I+R. Since
cholera is primarily spread through contact with contaminated water (Fitzgibbon et al.
2020; Legros 2018),we include a compartment,W , representing cholera bacteria in the
water supply. The number of newly infected individuals depends on both the number
of currently infected individuals and the amount of cholera bacteria in the water.

Non-infected individuals (i.e., susceptible and recovered) canmovebetween the two
patches; however, because the symptoms of cholera make travel difficult (Melbourne
2011), we assume there is no movement of infected individuals between patches.
We model the migration of individuals between patches with an Eulerian modeling
approach (Cosner 2015; Vargas Bernal et al. 2022). We assume that contaminated
water is transferred by a water source connecting the patches (e.g., a river or stream),
where the second patch is downstream from the first patch (i.e., water flows from Patch
1 to Patch 2). Our model is based on the models introduced in Kelly et al. (2016) and
Tien and Earn (2010). For comparisons of several cholera models with vaccination
scenarios, see the work of Lee et al. (2020a). A schematic of the model is given in
Fig. 1, and the system of ordinary differential equations describing transmission and
control dynamics is given by (1).

S1

S2

I1

I2

R1

R2

W1 W2

Fig. 1 Schematic of cholera transmission within and between Patch 1 and Patch 2. Susceptible individuals,
Si , become infected based on the number of infected individuals, Ii , and the amount of cholera-contaminated
water, Wi . Infected individuals either recover, Ri , or experience disease-induced mortality. Susceptible
and recovered individuals migrate between patches while infected individuals remain stationary due to
the severity of their symptoms. Contaminated water in Patch 1, W1, decays or flows into Patch 2, W2,
where contaminated water either decays or flows out of the system. In the diagram, solid lines represent
epidemiological transitions, dotted lines represent shedding, and dashed lines represent movement
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S′
1 = μ1N1 − βI1S1 I1 − (1 − u1(t))βW1S1W1 − μ1S1 − v1(t)S1 − m1S1 + m2S2
I ′
1 = βI1S1 I1 + (1 − u1(t))βW1S1W1 − (μ1 + γ1 + δ1)I1

R′
1 = γ1 I1 − μ1R1 + v1(t)S1 − m1R1 + m2R2

W ′
1 = ξ1 I1 − ν1W1 − ρ1W1

S′
2 = μ2N2 − βI2S2 I2 − (1 − u2(t))βW2S2W2 − μ2S2 − v2(t)S2 + m1S1 − m2S2
I ′
2 = βI2S2 I2 + (1 − u2(t))βW2S2W2 − (μ2 + γ2 + δ2)I2

R′
2 = γ2 I2 − μ2R2 + v2(t)S2 + m1R1 − m2R2

W ′
2 = ξ2 I2 − ν2W2 + ρ1W1 − ρ2W2

(1)

We assume that cholera transmission can be controlled through twomeans: the san-
itation of contaminated water and the vaccination of susceptible individuals. Reducing
transmission from contaminated water has been achieved by the provision of alter-
native sources of clean water (Legros 2018) or sanitation tablets or other technology
which sanitize water at the point of contact (Sévère et al. 2016). Therefore, we model
our water sanitation control, represented by ui (t), as a percent reduction in the rate
of transmission from the water compartments (i.e., 0 ≤ ui (t) ≤ 1). In each patch,
we also introduce vaccination as another form of transmission control (Sévère et al.
2016). The vaccination controls, vi (t), represent a per-capita rate of vaccination, which
permanently immunizes susceptible individuals and prevents future infection in those
individuals. With these two controls, we seek to find the optimal control vector that
minimizes the objective functional given in (2).

J (u1, v1, u2, v2)

= J1(u1, v1) + J2(u2, v2)

=
∫ T

0

[
b1(βI1S1 I1 + (1 − u1)βW1S1W1) + A1v1S1 + ε1v

2
1 + B1u1 + η1u

2
1

]
dt

+
∫ T

0

[
b2(βI2S2 I2 + (1 − u2)βW2S2W2) + A2v2S2 + ε2v

2
2 + B2u2 + η2u

2
2

]
dt

(2)

The objective functional (2) represents the cost of the total number of new cases and
the cost of implementing both controls, including nonlinear, quadratic costs. Since the
relative sizes of the coefficients in J determine the optimal control, the cost coefficients
of new cases, b1 and b2, are set to one. The costs of sanitation are represented by the
weights B1, B2, η1 and η2 and the costs of vaccination are represented by the weights
A1, A2, ε1 and ε2.

The control set for the non-uniform policy, in which each patch can respond to an
outbreak using different controls, is given by (3).

U = {(u1, v1, u2, v2) ∈ [L∞(0, T )]4 | 0 ≤ ui (t)

≤ ui,max, 0 ≤ vi (t) ≤ vi,max, i = 1, 2} (3)

An optimal control vector, (u∗
1, v

∗
1 , u

∗
2, v

∗
2), will minimize the total cost of cases

and controls, and satisfy (4).
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J (u∗
1, v

∗
1 , u

∗
2, v

∗
2) = min

U
J (u1, v1, u2, v2) (4)

Because the controls, state variables and the derivatives of the state variables are
all bounded, standard compactness results imply the existence of an optimal control
vector, (u∗

1, v
∗
1 , u

∗
2, v

∗
2), for this problem (Fleming and Rishel 1975; Kelly et al. 2016).

With this existence result, we use Pontryagin’s Maximum Principle to obtain the
optimal control characterization shown in (5).

u∗
1(t) = min

{
u1,max, max

{
0,

b1βW1S1W1 − B1 − λ1βW1S1W1 + λ2βW1S1W1

2η1

}}

u∗
2(t) = min

{
u2,max, max

{
0,

b2βW2S2W2 − B2 − λ5βW2S2W2 + λ6βW2S2W2

2η2

}}

v∗
1(t) = min

{
v1,max, max

{
0,

λ1S1 − A1S1 − λ3S1
2ε1

}}

v∗
2(t) = min

{
v2,max, max

{
0,

λ5S2 − A2S2 − λ7S2
2ε2

}}
, (5)

The adjoint functions, λi for i = 1, ..., 8, their derivatives and final time conditions,
and the Hamiltonian obtained from Pontryagin’s Maximum Principle used to obtain
the optimal control characterization are discussed and given in full in “Appendix B.1”

If we instead insist on a policy wherein the same level of controls is used in both
patches, which we deem a uniform policy, the control set is then given by (6), where
u1 = u2 = u and v1 = v2 = v.

U = {(u, v) ∈ [L∞(0, T )]2 | 0 ≤ u(t) ≤ umax, 0 ≤ v(t) ≤ vmax} (6)

In this case, the characterization of an optimal control vector (u∗, v∗) is given by (7).

u∗ = min

{
umax, max

{
0,

b1βW1S1W1 − B1 − λ1βW1S1W1 + λ2βW1S1W1
+b2βW2S2W2 − B2 − λ5βW2S2W2 + λ6βW2S2W2

2(η1 + η2)

}}

v∗ = min

{
vmax, max

{
0,

λ1S1 − A1S1 − λ3S1 + λ5S2 − A2S2 − λ7S2
2(ε1 + ε2)

}}
(7)

See Sect. 3.1 for details on the implementation of this model numerically, including
parameterization (Table 1).

2.2 Ebola virus disease

Similar to our cholera model, we include transmission within and between two
patches in our Ebola model. Each population is divided into the epidemiological
sub-compartments: susceptible, S, exposed, E , infectious, I , hospitalized, H , and
recovered, R, with N representing the total population size, N = S+ E + I + H + R.
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A significant transmission pathway of Ebola is direct contact with the corpse of some-
onewho has recently died of the disease (Dowell et al. 1999).We therefore also include
the compartment D to represent the amount of infectious corpses in the system which
have not received a sanitary burial. We assume that hospitalized individuals are medi-
cally isolated and thus do not contribute to transmission. Furthermore, if an individual
infected with Ebola dies while hospitalized, we assume that they are buried in a sani-
tary manner and thus do not contribute to the D compartment. Our model is based on
the model introduced in Burton et al. (2021).

We assumenon-infected individuals (i.e., susceptible, exposed and recovered)move
between patches; however, because of the severity of disease associated with Ebola
virus infection (Weyer et al. 2015), we assume infected individuals do not travel
between patches. We model the migration of individuals between patches with an
Eulerian modeling approach (Cosner 2015; Vargas Bernal et al. 2022). A schematic of
themodel is given in Fig. 2 and the system of ordinary differential equations describing
transmission and control dynamics is given by (8).

S′
1 = μ1N1 − βI1S1 I1 − βD1S1D1 − μ1S1 − v1(t)S1 − m1S1 + m2S2

E ′
1 = βI1S1 I1 + βD1S1D1 − (μ1 + α1)E1 − m1E1 + m2E2

I ′
1 = α1E1 − (μ1 + γI1 + (1 + u1(t))ϕ1 + δI1)I1

H ′
1 = (1 + u1(t))ϕ1 I1 − (μ1 + γH1 + δH1)H1

D′
1 = δI1 I1 − ξ1D1

R′
1 = v1(t)S1 + γI1 I1 + γH1H1 − μ1R1 − m1R1 + m2R2

S′
2 = μ2N2 − βI2S2 I2 − βD2S2D2 − μ2S2 − v2(t)S2 + m1S1 − m2S2

E ′
2 = βI2S2 I2 + βD2S2D2 − (μ2 + α2)E2 + m1E1 − m2E2

I ′
2 = α2E2 − (μ2 + γI2 + (1 + u2(t))ϕ2 + δI2)I2

H ′
2 = (1 + u2(t))ϕ2 I2 − (μ2 + γH2 + δH2)H2

D′
2 = δI2 I2 − ξ2D2

R′
2 = v2(t)S2 + γI2 I2 + γH2H2 − μ2R2 + m1R1 − m2R2 (8)

In our model, the transmission of Ebola is controlled through the hospitalization
of infected individuals and the vaccination of susceptible individuals. Tactics to slow
the spread of Ebola have centered around increasing the number of infected individ-
uals that are cared for in well-equipped facilities (e.g., increased personal protective
wear and training for healthcare workers, or increasing the number of hospital beds
at regional Ebola treatment centers (Bell et al. 2016; WHO 2014)). Because the hos-
pitalized compartment, H , represents individuals in such facilities, we model these
control efforts, ui (t), as a proportional increase in the per-capita hospitalization rate of
infectious individuals. In addition, vaccination, represented by per-capita rates vi (t),
permanently immunizes susceptible individuals. Using these two controls, we seek to
find the optimal control vector that minimizes the objective functional given by (9).
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S1

S2

E1

E2

I1

I2

R1

R2

D1

D2

H1

H2

Fig. 2 Schematic of Ebola transmission within and between Patch 1 and Patch 2. Susceptible individuals,
Si , become exposed, Ei , and eventually infectious, Ii . Infected individuals may recover, Ri , become hos-
pitalized, Hi , or, if not hospitalized, die from the disease and potentially contribute to onward transmission,
Di . Susceptible, exposed and recovered individuals may migrate between patches. However, infectious
individuals do not travel due to the severity of their symptoms. Hospitalized individuals are assumed to be
medically isolated, hence they do not travel between patches and do not contribute to onward transmission.
Both infectious and hospitalized individuals experience disease induced mortality, with a reduced mor-
tality rate for hospitalized individuals. Solid lines represent epidemiological transitions, and dashed lines
represent movement

J (u1, v1, u2, v2)

= J1(u1, v1) + J2(u2, v2)

=
∫ T

0

[
b1(βI1S1 I1 + βD1S1D1) + A1v1(S1 + E1) + ε1v

2
1 + B1u1ϕ1 I1 + η1u

2
1

]
dt

+
∫ T

0

[
b2(βI2S2 I2 + βD2S2D2) + A2v2(S2 + E2) + ε2v

2
2 + B2u2ϕ2 I2 + η2u

2
2

]
dt

(9)

The objective functional (9) represents the cost of the total number of new cases
together with the cost of implementing the controls, including nonlinear, quadratic
costs. The costs of new cases are represented by the weights b1 and b2, and are set
to one. The costs of hospitalization are represented by B1, B2, η1 and η2, while the
costs of vaccination are represented by the weights A1, A2, ε1 and ε2. The values of
the control cost coefficients are given in Table 3.

The control set for the non-uniform policy is defined in (10).

U = {(u1, v1, u2, v2) ∈ [L∞(0, T )]4 | 0 ≤ ui (t)

≤ ui,max, 0 ≤ vi (t) ≤ vi,max, i = 1, 2} (10)

An optimal control vector (u∗
1, v

∗
1 , u

∗
2, v

∗
2) satisfies (11).

J (u∗
1, v

∗
1 , u

∗
2, v

∗
2) = min

U
J (u1, v1, u2, v2) (11)
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As in the cholera case, the optimal control vector exists, so we can apply Pontrya-
gin’s Maximum Principle to form the Hamiltonian, and obtain the resulting adjoint
differential equations and optimal control characterization (u∗

1, v
∗
1 , u

∗
2, v

∗
2) in (12)

(Pontryagin et al. 1962). The Hamiltonian and adjoint differential equations are given
in full in “Appendix B.2”

u∗
1(t) = min

{
u1,max, max

{
0,

−B1ϕ1 I1 + λ3ϕ1 I1 − λ4ϕ1 I1
2η1

}}

u∗
2(t) = min

{
u2,max, max

{
0,

−B2ϕ2 I2 + λ9ϕ2 I2 − λ10ϕ2 I2
2η2

}}

v∗
1(t) = min

{
v1,max, max

{
0,

−A1(S1 + E1) + λ1S1 − λ6S1
2ε1

}}

v∗
2(t) = min

{
v2,max, max

{
0,

−A2(S2 + E2) + λ7S2 − λ12S2
2ε2

}}

(12)

In the case of a uniform policy, the control set is given by (13) and the characteri-
zation of an optimal control vector (u∗, v∗) is given by (14), where u1 = u2 = u and
v1 = v2 = v.

U = {(u, v) ∈ [L∞(0, T )]2 | 0 ≤ u(t) ≤ umax, 0 ≤ v(t) ≤ vmax}, (13)

u∗ = min

{
umax, max

{
0,

−B1ϕ1 I1 + λ3ϕ1 I1 − λ4ϕ1 I1 − B2ϕ2 I2 + λ9ϕ2 I2 − λ10ϕ2 I2
2(η1 + η2)

}}

v∗ = min

{
vmax, max

{
0,

−A1(S1 + E1) + λ1S1 − λ6S1 − A2(S2 + E2) + λ7S2 − λ12S2
2(ε1 + ε2)

}}

(14)

3 Numerical simulations

All simulations and calculations were conducted in R (R Core Team 2021). Solutions
to the systems of ODEs were numerically estimated using the lsoda function in R
(Soetaert et al. 2010). A forward-backward sweep algorithm was used to solve the
optimality systems of the two disease models (Lenhart and Workman 2007). Other
algorithms and software programs such as GPOPS and PASA have been developed to
handle particular types of optimal control problems (Hager and Zhang 2016; Patterson
and Rao 2014). The code used to conduct the analyses and generate the figures in
this manuscript is publicly available on GitHub at https://github.com/eahowerton/
governance-and-disease-control.

3.1 Cholera

Our numerical simulations use parameters adapted from Kelly et al. (2016), which are
based on data originally reported inTuite et al. (2011) (Table 1). Because the simulation
period was brief (200 days), we set the natural birth/death rate parameter, μi , to zero.
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To ensure that ourmodel approximated realistic outbreak sizes, we calculated the basic
reproduction number, R0, of the two-patch system using the next-generation matrix
method introduced by Diekmann et al. (2000) and explicated in van den Driessche
and Watmough (2002). For the full derivation of R0 for this model, see “Appendix
A.1”. With the parameters in Table 1, we have R0 = 2.57, which is in line with R0
estimates from previous studies (Che et al. 2021; Mukandavire et al. 2011).

We assume each patch has a population of 100,000 individuals, an outbreak begins
in Patch 1, and controls are implemented after 60 days. To implement this, we ran our
model without control for an initially naive population with 100 infected individuals
in Patch 1 (i.e., S1(0) = 99,900, S2(0) = 100,000, I1(0) = 100, I2(0) = 0, R1(0) =
R2(0) = 0, and W1(0) = W2(0) = 0). Then, we use the size of each compartment
at day 60 as initial conditions for all optimal control analyses (S1(60) = 77,528,
S2(60) = 93,546, I1(60) = 4275, I2(60) = 1833, R1(60) = 18,187, R2(60) = 4584,
W1(60) = 430, and W2(60) = 176). During this period, there were 28,925 cases and
46 deaths across both patches.

For the optimal control analyses, the linear costs for implementing the vaccination
controls, A1 and A2, are set to 0.125, or 12.5% of the cost of cases. The upper bound
for vaccination, v1(t) and v2(t), is 0.015, meaning that at most 1.5% of the population
can be vaccinated per day. The costs of sanitationmeasures are one order of magnitude
smaller than vaccination, i.e., B1 = B2 = 0.0125, or 1.25% of the cost of cases. We
set the upper bound for sanitation, u1(t) and u2(t), at 0.4, meaning the transmission
rate from the water reservoir can decrease by at most 40%, which is sufficiently high
enough to reduce R0 below one. The full set of baseline parameters are summarized
in Table 1.

Figure3 shows the numbers of infectives and the intensity of controls under an
optimal control scenario for both non-uniform and uniform policies. The optimal
vaccination and sanitation controls eventually decrease the number of infectives in
each patch to zero, requiring less control over time. While the number of infectives is
also expected to decrease to zero under no control (due to susceptible depletion, see
Supplementary FigureD.9), implementation of the optimal control reduces cumulative
cases across both patches by up to 62% (56,381 cases with non-uniform control vs.
148,403 cases without any control). Even given the implementation of control, there
is an initial increase in infectives in Patch 2 after the onset of controls, due to the flow
of infectious agents in the water from Patch 1 to Patch 2.

For both uniform and non-uniform approaches, the optimal sanitation rates remain
at their maximum values for approximately 75 days. Although sanitation effort does
approach zero, it does not reach zerowithin the 200day studyperiod.Vaccination effort
remains at its maximum value for more than 100 days and reduces to zero before day
150. In the scenario we consider, the uniform optimal control falls between the patch-
specific (i.e., non-uniform) controls. For example, in Fig. 3, the optimal sanitation and
vaccination rates in the uniform case are less than the non-uniform control for Patch 2
(orange curves) and greater than the non-uniform control for Patch 1 (green curves).

We measured the effect of switching from a uniform to a non-uniform policy on the
number of vaccinations, amount of water sanitized, number of cholera cases, as well as
the total cost (Fig. 4). Although the differences between the uniform and non-uniform
controls do not significantly change the total cost, the implementation of a uniform
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Table 1 Symbols, descriptions and values of the baseline cholera model parameters

Description Value Reference

Disease μi Natural birth/death rate in Patch i 0 day−1 (c)

dynamics βI i Transmission rate from direct contact
in Patch i

2.64 × 10−6 ind.−1 day−1 (b)

βWi Transmission rate from contaminated
water in Patch i

1.01 × 10−5 ind.−1 day−1 (b)

γi Recovery rate in Patch i 0.25 day−1 (a)

δi Death rate due to disease in Patch i 5.0 × 10−4 day−1 (a)

ξi Shedding rate of pathogen in Patch i 7.56 × 10−3 day−1 (a)

νi Decay rate of pathogen in Patch i 7.56 × 10−3 day−1 (a)

Movement m1 Movement rate of healthy individuals
from Patch 1 to Patch 2

5 × 10−4 day−1 (b)

m2 Movementrate of healthy individuals
from Patch 2 to Patch 1

5 × 10−4 day−1 (b)

ρ1 Movement rate of pathogen in water
from Patch 1 to Patch 2

1.25 × 10−3 day−1 (b)

ρ2 Movement rate of pathogen in water
out of Patch 2

1.25 × 10−3 day−1 (b)

Control bi Cost per new case in Patch i 1 ind.−1 (c)

parameters Ai Cost per vaccination in Patch i 0.125 ind.−1 (c)

Bi Cost of water sanitation in Patch i 0.0125 ind.−1 (c)

εi Nonlinear cost of vaccination in
Patch i

1 × 104 (c)

ηi Nonlinearcost of water sanitation in
Patch i

100 (c)

ui,max Maximum daily water sanitation rate
in Patch i

0.4 ind.−1 (c)

vi,max Maximum daily vaccination rate in
Patch i

0.015 ind.−1 (a)

T0 Time until start of control measures 60 days (c)

Movement parameters were chosen to be realistic, symmetric between patches, and to produce epidemics on
a timescale relevant for the control measures considered. Cost coefficients were chosen so that vaccination
is one-eighth the cost of a cholera case and sanitation is one-tenth the cost of vaccination. Nonlinear costs
were chosen to ensure convergence of the optimal control scheme. Bounds were selected to represent
plausible upper limits to control measures of 1.5% of individuals vaccinated per day and 40% reduction in
transmission rate from contaminated water due to sanitation. Variations in the cost coefficient parameters
are further explored in Sect. 3.3. Parameters were adapted from (a) Kelly et al. (2016) and Tuite et al.
(2011), (b) modified from values in those articles, or (c) assigned here in order to get appropriate outbreak
simulations and control curves

control policy leads to substantial shifts in the relative distribution of resources and
epidemiological burden across the two patches. Under both policies, the majority of
cases and deaths occur in Patch 2 compared to Patch 1 during the control window
(Table 2). More resources are allocated to Patch 2 under the non-uniform policy in
comparison to the uniform policy, leading to a 2.1% increase in vaccination effort
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and 7.5% increase in sanitation effort (Fig. 4 and Supplementary Table C.4). These
additional resources decrease cases in Patch 2 by 1.1% compared to the uniform policy.
The shift to a non-uniform policy, however, decreases the resources allocated to Patch
1, decreasing vaccination by 4.4% and sanitation by 7.6%, leading to a 1.2% increase
in cases.

Infectives in Patch 2

Infectives in Patch 1

0 50 100 150 200

0 50 100 150 200
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Days since start of control
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0.000
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0.008

0.012

0.1
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0.4

Days since start of control

Patch 1: uniform Patch 1: non−uniform Patch 2: uniform Patch 2: non−uniform

Fig. 3 Numerical simulation results for the cholera model, including the numbers of infectious individuals
in Patch 1 and Patch 2, and the optimal levels of sanitation and vaccination over time. Across all panels,
line color represents the patch number and line type represents the control policy. Each patch begins with
100,000 susceptible individuals with 100 infectious individuals moved to the infectious compartment in
Patch 1 to initialize the outbreak

1.2%

−7.6%

−4.4%

−1.1%

7.5%

2.1%

−0.2%

Patch 1 Patch 2 Total

Vaccination Sanitation Cases Vaccination Sanitation Cases Total cost
−8%
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8%

Cholera: Percent change from uniform to non−uniform policy

Fig. 4 The effect of switching from a uniform to a non-uniform policy for the cholera model. Bars show the
percent change in the number of vaccines distributed, amount of water sanitized, number of cholera cases in
Patch 1 and 2, as well as the overall cost. Percent change is calculated as (vnon-uniform −vuniform)/vuniform
for each value of interest v (i.e., vaccination, sanitation, cases, total cost). Only cholera cases which occurred
after the onset of control (day 0) are counted
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Table 2 Case and control totals from the simulations of the cholera and Ebola models under non-uniform
and uniform policies after the start of controls (60 days for cholera and 150 days for Ebola)

Model Control type Patch Cases Deaths Vaccinations Second control

Cholera Non-uniform 1 26,390 61 44,069 41

Non-uniform 2 29,972 63 58,735 47

Uniform 1 26,073 61 46,103 44

Uniform 2 30,309 64 57,535 44

Ebola Non-uniform 1 5737 1402 55,199 3192

Non-uniform 2 1267 154 57,688 220

Uniform 1 5834 1425 53,012 3,108

Uniform 2 1085 133 61,492 255

The second control for cholera gives the (scaled) volume of contaminated water that was sanitized over the
simulation period. The second control for Ebola gives the additional hospitalizations due to the implemen-
tation of control over the simulation period

3.2 Ebola virus disease

Our numerical simulations use parameters from Burton et al. (2021) and Blackwood
and Childs (2016). Using the same methods as for cholera, we calculated the basic
reproduction number of the two-patch Ebola system to ensure that our simulations
produced realistic outbreak sizes. For the full derivation and description of the basic
reproduction number, see “Appendix A.2”. With the parameter values in Table 3, we
obtainR0 = 1.7 which is in-line with previous estimates ofR0 for Ebola (Getz et al.
2019).

Similar to cholera, we assume each patch has a population of 100,000 individuals,
an outbreak begins in Patch 1, and controls are implemented after 150 days. In this
case, we ran our model without control from in an initially naive population with 10
infected individuals in Patch 1 (i.e., S1(0) = 99,990, S2(0) = 100,000, I1(0) = 10,
I2(0) = 0, E1(0) = E2(0) = 0, D1(0) = D2(0) = 0, H1(0) = H2(0) = 0, and
R1(0) = R2(0) = 0). Then, we use the size of each compartment at day 150 as initial
conditions for all optimal control analyses (S1(150) = 89, 700, S2(150) = 99,428,
E1(150) = 2723, E2(150) = 153, I1(150) = 696, I2(150) = 38, H1(150) = 834,
H2(150) = 42, D1(150) = 66, D2(150) = 3, R1(150) = 5382, and R2(150) = 282).
During this period, there were 10,871 cases and 69 deaths across both patches.

Using rough estimates of the cost of vaccination described in Bartsch et al. (2015)
and UNICEF (2021), we set the linear cost of vaccination, A1 and A2, to 0.01, or
1% of the cost of cases. We assume it is possible to vaccinate at most 1.5% of the
population per day, i.e., v1(t) = v2(t) = 0.015. Further, we assume that increasing
the hospitalization rate is ten times more expensive than vaccination and set B1 and
B2 as 0.1, or 10% of the cost of cases. Both u1(t) and u2(t) have an upper bound
of 0.5, meaning that the hospitalization rate can increase by at most 50%. Baseline
parameters are summarized in Table 3.

Similar to the cholera model, the optimal control of Ebola decreases the number of
infectives in each patch, requiring less control over time (Fig. 5); however, some level
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Table 3 Symbols, descriptions and values of the baseline Ebola model parameters

Description Value Reference

Disease μi Natural birth/death rate in Patch i 5.5 × 10−5 day−1 (d)

dynamics βI i Transmission rate from contact with
infectious in Patch i

2.94 × 10−6 ind.−1 day−1 (a)

βDi Transmission rate from contact with
corpse in Patch i

2.94 × 10−5 ind.−1 day−1 (a)

αi Incubation rate in Patch i 0.1 day−1 (c)

ϕi Hospitalization rate of infectious in
Patch i

0.236 day−1 (b)

γI i Recovery rate of infectious in Patch i 0.1 day−1 (c)

γHi Recovery rate of hospitalized in
Patch i

0.154 day−1 (b)

δI i Death rate of infectious due to
disease in Patch i

0.024 day−1 (b)

δHi Deathrate of hospitalized due to
disease in Patch i

0.01 day−1 (b)

ξi Decay rate of corpses in Patch i 0.222 day−1 (b)

Movement m1 Movement rate of healthy individuals
from Patch 1 to Patch 2

5 × 10−4 day−1 (d)

m2 Movement rate of healthy individuals
from Patch 2 to Patch 1

5 × 10−4 day−1 (d)

Control bi Cost per new case in Patch i 1 ind.−1 (d)

parameters Ai Cost per vaccination in Patch i .01 ind.−1 (d)

Bi Cost per hospitalization in Patch i 0.1 ind.−1 (d)

εi Nonlinear cost of vaccination in
Patch i

5 × 104 (d)

ηi Nonlinear cost of hospitalization in
Patch i

5 (d)

ui,max Maximum hospitalization rate in
Patch i

0.5 day−1 (d)

vi,max Maximum daily vaccination rate in
Patch i

0.015 day−1 (d)

T0 Time until start of control measures 100 days (d)

The values for βI i and βDi were estimated by assuming that R0 = 1.7 (Getz et al. 2019) and that
transmission from contact with dead bodies is ten times more transmissible than contact with infectious
individuals (βDi = 10βI i ). All other diseases dynamic parameter values were obtained from Burton et al.
(2021) and Blackwood and Childs (2016). Movement parameters were chosen to be realistic, symmetric
between patches, and to produce epidemics on a timescale relevant for the control measures considered.
Cost coefficients were chosen so that hospitalization is one-tenth the cost of an Ebola case and vaccination
is one-tenth the cost of hospitalization. Nonlinear costs were chosen to ensure convergence of the optimal
control scheme. Bounds were selected to represent plausible upper limits to control measures of 1.5% of
individuals vaccinated per day and a 50% increase in hospitalization rate. Variations in the cost coefficient
parameters are further explored in Sect. 3.3. Parameter values were obtained from (a) Getz et al. (2019),
(b) Burton et al. (2021), (c) Blackwood and Childs (2016), or (d) assigned here in order to get appropriate
outbreak simulations and control curves

123



The effect of governance structures on optimal control... Page 15 of 31 74

Infectives in Patch 2

Infectives in Patch 1

0 50 100 150 200

0 50 100 150 200

200

400

600

10

20

30

40

Days since start of control

Hospitalization effort Vaccination effort

0 50 100 150 200 0 50 100 150 200
0.000

0.004

0.008

0.012

0.0

0.1

0.2

0.3

0.4

0.5

Days since start of control

Patch 1: uniform Patch 1: non−uniform Patch 2: uniform Patch 2: non−uniform

Fig. 5 Numerical simulation results for the Ebola model, including the numbers of infectious individuals
in Patch 1 and Patch 2, and the optimal levels of hospitalization and vaccination over time. Across all
panels, line color represents the patch number and line type represents the control policy. Each patch begins
with 100,000 susceptible individuals with 10 infectious individuals moved to the infectious compartment
in Patch 1 to initialize the outbreak

of control is necessary to bring the number of infectives to zero within the simulation
period of 200 days (see Supplementary Figure D.10). For both uniform and non-
uniform approaches, the optimal hospitalization and vaccination rates remain at their
maximum values for approximately 50 days after which they decrease to 0 before day
200 for hospitalization and day 100 for vaccination. Like in the case of cholera, the
uniform optimal control falls between the patch-specific (i.e., non-uniform) controls
(Fig. 5). However, in contrast to cholera, Patch 1 (the “source” patch) receives more
resources than Patch 2 for the majority of the control period. Although, after 109 days,
Patch 2 is allocated more hospitalization effort than Patch 1.

Like we saw with the results for cholera, the total cost is not significantly different
between uniform and non-uniform controls, however, control levels and epidemiolog-
ical burden differ across the two policies (Fig. 6). Specifically, Patch 1 receives 4.1%
more vaccination resources under the non-uniformpolicy in comparison to the uniform
policy. Hospitalization effort, however, increases 10.8% in Patch 2 when switching to
a non-uniform policy from a uniform one. This case, where Patch 1 receives more vac-
cination but Patch 2 receives more hospitalization, is qualitatively different from the
cholera model, where Patch 2 receives more of both resources. The change in resource
distribution from uniform to non-uniform decreases cases in Patch 1 by 1.7%, but
increases cases in Patch 2 by 16.7%.

3.3 The effect of changing cost andmovement parameters

We next considered whether, in either model, our results are sensitive to the choice
of the control costs and movement parameters. In particular, we consider the effect
of asymmetry in the patch-specific costs of control and movement. To do this, we
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Fig. 6 The effect of switching from a uniform to a non-uniform policy for the Ebola model. Bars show the
percent change in the number of vaccines distributed, number of individuals hospitalized and number of
Ebola cases in Patch 1 and 2, as well as the overall cost. Percent change is calculated as (vnon-uniform −
vuniform)/vuniform for each value of interest v (i.e., vaccination, hospitalization, cases, total cost). Only
Ebola cases which occurred after the onset of control (day 0) are counted

increased parameters by an order ofmagnitude and observed the changes in the control
trajectories for each model and each patch. We omit several cases that did not show
interesting shifts in control trajectories: for cholera, increasing the cost of sanitation
in Patch 2 and, for Ebola, increasing the costs of either of the controls in either patch,
and changes in movement parameters (see Supplementary Figure D.11).

In the cholera model, increasing the vaccination cost parameters can substantially
change the trajectories of all controls (Fig. 7). For example, increasing the cost of vac-
cination in Patch 1 means fewer vaccines are distributed to Patch 1 in both the uniform
and non-uniform cases (Fig. 7a, second row), which is compensated for by increased
sanitation effort. Unlike in the baseline case, where Patch 2 receives more sanitation
and vaccination than Patch 1 (Fig. 3), the optimal non-uniform policy allocates more
vaccination to Patch 2 but more sanitation to Patch 1 when the cost of vaccination is
higher in Patch 1 (Fig. 7a). Note how, as in the baseline case, the uniform control tra-
jectories of both patches always fall between the corresponding non-uniform control
trajectories.

Increasing the cost of vaccination in Patch 2 leads to substantial qualitative dif-
ferences in control trajectories (Fig. 7b). Similar to the case where vaccination cost
is increased in Patch 1, vaccination effort under the uniform policy is reduced and
compensated for by increased levels of sanitation. The optimal non-uniform policy,
however, allocates no vaccines to Patch 2. Although the absence of vaccinations in
Patch 2 is offset by increased sanitation, the start of sanitation control in Patch 2 is
delayed (not rising above 1% until day 7). When compared to the uniform policy, the
non-uniform policy provides higher levels of sanitation for Patch 2 and higher levels
of vaccination in Patch 1. Compared to increasing the cost of vaccination, the optimal
control results are much less sensitive to increases in the cost of sanitation, either in
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Fig. 7 The effect of increasing cost parameters on the optimal control trajectories of the cholera model. Cost
parameters are increased by one order of magnitude from baseline: a increasing linear cost of vaccination in
Patch 1 from A1 = 0.125 to 1.25;b increasing linear cost of vaccination in Patch 2 from A2 = 0.125 to 1.25;
and c increasing linear cost of sanitation in Patch 1 from B1 = 0.0125 to 0.125. The case where the cost of
sanitation is increased in Patch 2 is not shown as it is substantially similar to (c). Total cost of vaccination
and sanitation under each scenario is (a) non-uniform: 33,465 and uniform: 53,473, b non-uniform: 9,881
and uniform: 60,230, and c non-uniform: 16,308 and uniform: 16,419 (compared to the baseline case, with
cost of non-uniform: 16,305 and uniform: 16,416)

Patch 1 (Fig. 7c) or Patch 2 (not shown). Under both of these parameterizations, the
optimal control results are similar to the baseline case.

For both diseases, increasing the rate of movement between patches reduces the dif-
ference between the non-uniform policy and the uniform policy, as the two populations
becamemore closely linked and act more like a well-mixed population. Asymmetrical
increases in movement rates lead to patches of unequal size; this in turn results in an
optimal non-uniform control that places increased emphasis on control in the more
populous patch (Fig. 8). This result is less pronounced in the cholera model, where
the flow of contaminated water from Patch 1 to Patch 2 is a strong driver of dynamics
and thus maintains the need for controlling the outbreak in Patch 1, even when Patch
2 has a larger population (Supplementary Figure D.12).

4 Discussion

The choice of governance structure is often ignored in mathematical studies of disease
management. However, recent work suggests that this choice may be consequential
for outbreak suppression (Blackwood et al. 2021). In this paper, we used two case
studies to investigate the differences between two control policies of a centralmanager:
“uniform”, where the level of control must be the same in both patches, and “non-
uniform”, where the level of control is allowed to vary between the patches. We found
that, while the choice of control policy has only a marginal effect on the total cost of
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Fig. 8 The effect of increasingmovement parameters on the optimal control trajectories of the Ebola model.
Movement parameters are increased by one order of magnitude: a baseline case shown in main text, where
movement rate m1 = 5 × 10−4 and m2 = 5 × 10−4; b increasing movement rate from Patch 1 to Patch
2, m1 = 5 × 10−3; c increasing movement rate from Patch 2 to Patch 1 m2 = 5 × 10−3; d increasing
movement in both directions, m1 = 5 × 10−3 and m2 = 5 × 10−3

control, this choice may exacerbate inequalities between jurisdictions, both in the size
of outbreaks and the amount of resources allocated.

It is no surprise that following a non-uniform control policy leads to an overall lower
cost of control: the set of all possible uniform control policies is a subset of all possible
non-uniform policies. But in both of our case studies, non-uniform control policies led
to a small (less than 1%) decrease in overall cost when compared to uniform control
policies (Figs. 4 and 6). Thus a manager deciding between employing a non-uniform
or uniform control policy may not focus entirely on the total cost incurred by each
policy tomake their choice but instead consider other alternative consequences of their
choice.

The distribution of resources and epidemiological burden may change substantially
when shifting to a different control policy. Our case studies showed that shifting from
a uniform to a non-uniform policy could lead to changes in the outbreak sizes ranging
from a 1.2% decrease to a 16.7% increase (Figs. 4 and 6). A stark example of these
disparities is found in our Ebola case study. Under a uniform control policy, Patch 2,
the patch that is not the initial source of the outbreak, received fewer vaccination and
hospitalization resources and thus saw a 16.7% relative increase in the burden of cases
when compared to the non-uniform policy (Figs. 5 and 6). In this case, a manager may
prefer a uniform policy, which minimizes the disparities between the patches, at the
cost of a 0.9% relative increase in total cost.

In our examples, the uniform control policy is always bounded by the non-uniform
controls for each patch. Investigating whether this result holds in general or if it is tied
to our model formulation or parameterization is an important future direction. From
a certain perspective, this result implies that when switching from a uniform to non-
uniform policy, one patch will always benefit from the switch in terms of increased
resource allocation, reduced number of cases, or both,while the other patchwill always
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be disadvantaged due to the switch. Thus, despite the facts that the uniform policy is
more equitable (in the sense of resource allocation) and that the overall total cost is
relatively similar between the two policies, there are still meaningful trade-offs that a
manager should take into account when choosing a policy.

In addition to inducing disparities between patches, the implementation of a non-
uniform policy may come with additional costs that we have not considered explicitly.
For example, there may be political costs associated with disparities in the distribution
of resources across geopolitical regions. Similarly, there may be increased implemen-
tation costs incurred when managing two jurisdictions separately. A manager might
also consider additional costs associated with disease-inducedmortality, which we did
not include in our cost calculations in this study.

The case studies in this paper also illustrate how pathogen transmission modes and
the connectivity of patches can alter the optimal allocation of resources for disease
control. In the Ebola model (Fig. 5), Patch 1, the source of the outbreak, receives
more resources for the majority of the simulation time. On the other hand, in the
cholera model, Patch 2 receives more resources under non-uniform control despite the
outbreak originating in Patch 1 (Fig. 3). Whereas an Ebola outbreak might decrease
migration between the patches (because infected individuals do not travel), a cholera
outbreak may increase transmission to Patch 2 because of shedding into the water
that then flows downstream to Patch 2. These results suggest that understanding and
accounting for connectivity between patches is essential for effective management of
infectious diseases.

For our baseline cases, we assumed that the patches in our model were largely
symmetric (including transmission biology, implementation cost, and movement of
individuals). However, in practice, asymmetries between patches are likely to be the
norm rather than the exception.We investigated twopotential asymmetries, specifically
the cases where the implementation costs of the controls are elevated in one patch
and where the movement of healthy individuals is greater in one direction. In most
of the cases we considered, optimal control strategies are insensitive to a single-
patch increase in implementation cost. However, increasing the cost of vaccination
in one patch within the cholera model changed the shape of the control functions
qualitatively. As expected, the patch with the higher vaccination cost received fewer
vaccinations, which is compensated for by an increase in sanitation (Fig. 7). Changing
themovement parameters had a qualitative effect on the optimal control strategies only
when the migration was asymmetric and the primary mode of transmission was direct
(as in Ebola) suggesting that a policy of restricting immigration could have unintended
consequences. Further investigation into the effects of patch-specific differences is
warranted to generalize this work.

In this study, we only considered the policies of a central manager allocating
resources across two patches. However, governance across regions is often decentral-
ized and jurisdictions act independently or semi-independently (e.g., US state-level
stay-at-home orders during the COVID-19 pandemic Moreland et al. 2020). Sepa-
rate jurisdictions may enact different types and levels of responses and initiate their
responses at different time points. Modeling a more realistic, decentralized gover-
nance structure introduces additional complications because the optimization of the
costs within a single patch would require knowledge of the actions taken in other
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patches. To address such a challenge, other studies have assumed that patches ignore
one another (Blackwood et al. 2021) or have used game theory tomodel between-patch
dynamics (Sanchirico et al. 2021).

This novel application of optimal control theory to investigate governance structures
for infectious disease management yielded several insights. Our case studies suggest
that central managers who care only about minimizing total cost should use a non-
uniform control policy. However, the relative cost savings of following a non-uniform
policy over a uniform one areminimal. Thus amanager motivated tomaintain an equal
resource allocation between the patches will prefer a uniform control policy. But that
is not to say a uniform control policy is always equitable: choosing one policy over
another inevitably introduces disparities in the outbreak sizes and resource allocations
in the patches. Responsible management of an outbreak across two patches therefore
requires a holistic perspective of the impacts of policy choice on both patches, as well
as a firm understanding of the underlying dynamics of disease transmission. Further
investigation into the interplay between governance structure and optimal control of
infectious disease outbreaks is important for continuing to improve the efficacy and
equity of infectious disease management.
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Appendix A: Details of basic reproduction number calculations

Appendix A.1: Cholera

We define the vector x = (I1, I2,W1,W2, S1, S2, R1, R2)
T . There is a unique disease

free equilibriumgiven by x0 = (0, 0, 0, 0, N1,0, N2,0, 0, 0)T where Ni,0 represents the
initial population inPatch i . For eachpatch there are only two infectious compartments:
infected humans (Ii ) and the water reservoir (Wi ), but new infections only occur in the
infected humans compartment. Let F (x) be the rate of new infections, and let V (x)
be the net transfer for all other transitions. Under this condition, the system (1) can be
written as x ′ = F (x) − V (x). In computing the next generation matrix, we define

RI i = βI i Ni,0

γi + μi + δi

RWi = βWi Ni,0ξi

(γi + μi + δi )(ξi + ρi )
.

These expressions denote the new infections in Patch i resulting from contact with
an infected individual (RI i ) and the new infections resulting from contact with con-
taminants in the water source (RWi ). Thus the basic reproductive number for Patch
i as an isolated system is RI i + RWi . Because we do not allow infected individuals
to move between patches, the next generation matrix is block-upper triangular (with a
zero matrix in the lower-diagonal block). The principal 2× 2 submatrix has the form

⎡
⎣ RI1 + RW1 0(

ρ1

ξ1 + ρ1

) (
ξ1(μ2 + γ2 + δ2)

ξ2(μ1 + γ1 + δ + 1)

)
RI2 + RW2

⎤
⎦

The basic reproduction number of our system is the spectral radius of this 2 × 2
submatrix. Thus, in the absence of movement among infected individuals, the basic
reproduction number is the larger of the two diagonal entries, i.e., the patch-specific
reproduction numbers.

Appendix A.2: Ebola

To compute the reproduction number of the Ebola model, we proceed in a simi-
lar fashion using the next generation matrix method. We define the vector x =
(E1, E2, I1, I2, D1, D2, S1, S2, H1, H2, R1, R2)

T and write the state equations as
x ′ = F (x) − V (x) where F (x) contains terms representing new infections and
V (x) contains all other transition terms. In this model, new infections appear in the
exposed class (Ei ) as a result of direct contact with an infected individual (Ii ) or
through contact with a recently deceased person (Di ). Because the exposed class is
permitted to move between patches, an individual from Patch 1 can cause a new infec-
tion in Patch 2 (and vice versa). The next generation matrix exhibits this structure.
For the two patches, letRi j be a type reproduction number representing the expected

123



74 Page 22 of 31 E. Howerton et al.

number of new infections in Patch j due to an initial infective in Patch i . The basic
reproduction number is then given by

R0 = 1

2
(R11 + R22) + 1

2

√
(R11 + R22)2 − 4(R11R22 − R12R21).

Appendix B: Details of optimality systems

Appendix B.1: Cholera

First, we describe the characterization of the optimal control for the non-uniform
policy, in which the controls in each patch may be different. Let our state variables be
defined as solutions of the system of differential equations in (1). Our optimal control
problem consists of finding a control vector (u∗

1, v
∗
1 , u

∗
2, v

∗
2) from the control set (3)

that satisfies

J (u∗
1, v

∗
1 , u

∗
2, v

∗
2) = min

U
J (u1, v1, u2, v2),

where J (u1, v1, u2, v2) is the objective functional given in (2). We append the right
hand sides of our state differential equations to the integrand of the objective functional
with adjoint functions λ = [λ1, λ2, . . . , λ8] by defining the Hamiltonian in (15).

H = b1(βI1S1 I1 + (1 − u1)βW1S1W1) + A1v1S1 + ε1v
2
1 + B1u1 + η1u

2
1

+ b2(βI2S2 I2 + (1 − u2)βW2S2W2) + A2v2S2 + ε2v
2
2 + B2u2 + η2u

2
2

+ λ1(μ1(S1 + I1 + R1) − βI1S1 I1 − (1 − u1)βW1S1W1 − μ1S1 − v1S1
− m1S1 + m2S2) + λ2(βI1S1 I1 + (1 − u1)βW1S1W1 − (γ1 + μ1 + δ1)I1)

+ λ3(γ1 I1 − μ1R1 + v1S1 − m1R1 + m2R2)

+ λ4(ξ1 I1 − ξ1W1 − ρ1W1) + λ5(μ2(S2 + I2 + R2) − βI2S2 I2
− (1 − u2)βW2S2W2 − μ2S2 − v2S2 + m1S1 − m2S2)

+ λ6(βI2S2 I2 + (1 − u2)βW2S2W2 − (γ2 + μ2 + δ2)I2)

+ λ7(γ2 I2 − μ2R2 + v2S2 + m1R1 − m2R2)

+ λ8(ξ2 I2 − ξ2W2 + ρ1W1 − ρ2W2)
(15)

Pontryagin’s Maximum Principle states that if (u∗
1, v

∗
1 , u

∗
2, v

∗
2) and the correspond-

ing states minimize the objective functional (2), then (u∗
1, v

∗
1 , u

∗
2, v

∗
2) minimizes the

Hamiltonian, H , in (15) with respect to the controls at each time. Thus, on the interior
of the control set, we can find (u∗

1, v
∗
1 , u

∗
2, v

∗
2) by solving the optimality conditions

∂H

∂ui
= 0 and

∂H

∂vi
= 0, i = 1, 2,
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for the controls u∗
1, v

∗
1 , u

∗
2 and v∗

2 :

∂H

∂u1
= −b1βW1S1W1 + B1 + 2η1u

∗
1 + λ1βW1S1W1 − λ2βW1S1W1 = 0

�⇒ u∗
1 = b1βW1S1W1 − B1 − λ1βW1S1W1 + λ2βW1S1W1

2η1
∂H

∂u2
= −b2βW2S2W2 + B2 + 2η2u

∗
2 + λ5βW2S2W2 − λ6βW2S2W2 = 0

�⇒ u∗
2 = b2βW2S2W2 − B2 − λ5βW2S2W2 + λ6βW2S2W2

2η2
∂H

∂v1
= A1S1 + 2ε1v

∗
1 − λ1S1 + λ3S1 = 0

�⇒ v∗
1 = λ1S1 − A1S1 − λ3S1

2ε1
∂H

∂v2
= A2S2 + 2ε2v

∗
2 − λ5S2 + λ7S2 = 0

�⇒ v∗
2 = λ5S2 − A2S2 − λ7S2

2ε2
. (16)

The optimal control characterizations (5) are found by taking into account the
bounds on the control representations in (16). Since ηi > 0 and εi > 0 for i = 1, 2,
we have the appropriate convexity,

∂2H

∂u2i
= 2ηi > 0 and

∂2H

∂v2i
= 2εi > 0, i = 1, 2,

which ensures that the optimal control (u∗
1, v

∗
1 , u

∗
2, v

∗
2) is in fact a minimum.

The optimality system consists of the characterization for the optimal control
(u∗

1, v
∗
1 , u

∗
2, v

∗
2) in (5) together with the state and adjoint equations (and their boundary

conditions). To form the optimality system, we need the adjoint differential equations:

λ′
1 = − ∂H

∂S1
= −[b1(βI1 I1 + (1 − u1)βW1W1) + A1v1

+ λ1(μ1 − βI1 I1 − (1 − u1)βW1W1 − μ1 − v1 − m1)

+ λ2(βI1 I1 + (1 − u1)βW1W1) + λ3(v1) + λ5(m1)]
λ′
2 = −∂H

∂ I1
= −[b1βI1S1 + λ1(μ1 − βI1S1) + λ2(βI1S1

− (γ1 + μ1 + δ1)) + λ3(γ1) + λ4(ξ1)]
λ′
3 = − ∂H

∂R1
= −[λ1(μ1) − λ3(μ1 + m1) + λ7(m1)]

λ′
4 = − ∂H

∂W1
= −[b1(1 − u1)βW1S1 − λ1((1 − u1)βW1S1)

+ λ2((1 − u1)βW1S1) − λ4(ξ1 + ρ1) + λ8(ρ1)]
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λ′
5 = − ∂H

∂S2
= −[b2(βI2 I2 + (1 − u2)βW2W2) + A2v2 + λ1(m2)

+ λ5(μ2 − βI2 I2 − (1 − u2)βW2W2 − μ2 − v2 − m2)

+ λ6(βI2 I2 + (1 − u2)βW2W2) + λ7(v2)]
λ′
6 = −∂H

∂ I2
= −[b2βI2S2 + λ5(μ2 − βI2S2) + λ6(βI2S2 − (γ2 + μ2 + δ2))

+ λ7(γ2) + λ8(ξ2)]
λ′
7 = − ∂H

∂R2
= −[λ3(m2) + λ5(μ2) − λ7(μ2 + m2)]

λ′
8 = − ∂H

∂W2
= −[b2(1 − u2)βW2S2 − λ5(1 − u2)βW2S2

+ λ6(1 − u2)βW2S2 − λ8(ξ2 + ρ2)]
λ j (T ) = 0, j = 1, 2, . . . , 8.

Next, we describe the characterization of the optimal control for the uniform policy,
where each patch responds to its outbreak using the same controls as the other patch.
We let u1 = u2 = u and v1 = v2 = v. Our optimal control problem consists of
finding a control vector (u∗, v∗) from the control set (6) that minimizes the objective
functional (2). We find (u∗, v∗) on the interior of the control set, by solving the
optimality conditions

∂H

∂u
= 0 and

∂H

∂v
= 0,

for the controls u∗ and v∗:

∂H

∂u1
= −b1βW1S1W1 + B1 + 2η1u

∗
1 + λ1βW1S1W1 − λ2βW1S1W1

− b2βW2S2W2 + B2 + 2η2u
∗
2 + λ5βW2S2W2 − λ6βW2S2W2 = 0

�⇒ u∗ =
b1βW1S1W1 − B1 − λ1βW1S1W1 + λ2βW1S1W1 + b2βW2S2W2

−B2 − λ5βW2S2W2 + λ6βW2S2W2

2(η1 + η2)

∂H

∂v1
= A1S1 + 2ε1v

∗
1 − λ1S1 + λ3S1 + A2S2 + 2ε2v

∗
2 − λ5S2 + λ7S2 = 0

�⇒ v∗ = λ1S1 − A1S1 − λ3S1 + λ5S2 − A2S2 − λ7S2
2(ε1 + ε2)

. (17)

The optimal control characterizations (7) are found by taking into account the
bounds on the control representations in (17). Since ηi > 0 and εi > 0 for i = 1, 2,
we have the appropriate convexity,

∂2H

∂u2
= 2(η1 + η2) > 0 and

∂2H

∂v2
= 2(ε1 + ε2) > 0.
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Appendix B.2: Ebola

First, we describe the characterization of the optimal control for the non-uniform
policy, in which the controls in each patch may be different. Let our state variables be
defined as solutions of the system of differential equations in (8). Our optimal control
problem consists of finding a control vector (u∗

1, v
∗
1 , u

∗
2, v

∗
2) from the control set (10)

that satisfies

J (u∗
1, v

∗
1 , u

∗
2, v

∗
2) = min

U
J (u1, v1, u2, v2),

where J (u1, v1, u2, v2) is the objective functional given in (9). We append the right
hand sides of our state differential equations to the integrand of the objective functional
with adjoint functions λ = [λ1, λ2, . . . , λ12] by defining the Hamiltonian in (18).

H = b1(βI1S1 I1 + βD1S1D1) + A1v1(S1 + E1) + ε1v
2
1 + B1u1ϕ1 I1 + η1u

2
1

+ b2(βI2S2 I2 + βD2S2D2) + A2v2(S2 + E2) + ε2v
2
2 + B2u2ϕ2 I2 + η2u

2
2

+ λ1(μ1N1 − βI1S1 I1 − βD1S1D1 − (μ1 + v1 + m1)S1 + m2S2)

+ λ2(βI1S1 I1 + βD1S1D1 − (μ1 + α1 + m1)E1 + m2E2)

+ λ3(α1E1 − (μ1 + γI1 + (1 + u1)ϕ1 + δI1)I1)

+ λ4((1 + u1)ϕ1 I1 − (μ1 + γH1 + δH1)H1)

+ λ5(δI1 I1 − ξ1D1)

+ λ6(v1S1 + γI1 I1 + γH1H1 − (μ1 + m1)R1 + m2R2)

+ λ7(μ2N2 − βI2S2 I2 − βD2S2D2 − (μ2 + v2 + m2)S2 + m1S1)

+ λ8(βI2S2 I2 + βD2S2D2 − (μ2 + α2 + m2)E2 + m1E1)

+ λ9(α2E2 − (μ2 + γI2 + (1 + u2)ϕ2 + δI2)I2)

+ λ10((1 + u2)ϕ2 I2 − (μ2 + γH2 + δH2)H2)

+ λ11(δI2 I2 − ξ2D2)

+ λ12(v2S2 + γI2 I2 + γH2H2 − (μ2 + m2)R2 + m1R1)

(18)

Pontryagin’s Maximum Principle states that if (u∗
1, v

∗
1 , u

∗
2, v

∗
2) and the correspond-

ing states minimize the objective functional (9), then (u∗
1, v

∗
1 , u

∗
2, v

∗
2) minimizes the

Hamiltonian, H , in (18) with respect to the controls at each time. Thus, on the interior
of the control set, we can find (u∗

1, v
∗
1 , u

∗
2, v

∗
2) by solving the optimality conditions

∂H

∂ui
= 0 and

∂H

∂vi
= 0, i = 1, 2,

for the controls u∗
1, v

∗
1 , u

∗
2 and v∗

2 :

∂H

∂v1
= A1(S1 + E1) + 2ε1v

∗
1 − λ1S1 + λ6S1 = 0
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�⇒ v∗
1 = −A1(S1 + E1) + λ1S1 − λ6S1

2ε1
∂H

∂v2
= A2(S2 + E2) + 2ε2v

∗
2 − λ7S2 + λ12S2 = 0

�⇒ v∗
2 = −A2(S2 + E2) + λ7S2 − λ12S2

2ε2
∂H

∂u1
= B1ϕ1 I1 + 2η1u

∗
1 − λ3ϕ1 I1 + λ4ϕ1 I1 = 0

�⇒ u∗
1 = −B1ϕ1 I1 + λ3ϕ1 I1 − λ4ϕ1 I1

2η1
∂H

∂u2
= B2ϕ2 I2 + 2η2u

∗
2 − λ9ϕ2 I2 + λ10ϕ2 I2 = 0

�⇒ u∗
2 = −B2ϕ2 I2 + λ9ϕ2 I2 − λ10ϕ2 I2

2η2
. (19)

The optimal control characterizations (12) are found by taking into account the
bounds on the control representations in (19). Since ηi > 0 and εi > 0 for i = 1, 2,
we have the appropriate convexity,

∂2H

∂u2i
= 2ηi > 0 and

∂2H

∂v2i
= 2εi > 0, i = 1, 2,

which ensures that the optimal control (u∗
1, v

∗
1 , u

∗
2, v

∗
2) is in fact a minimum.

The optimality system consists of the characterization for the optimal control
(u∗

1, v
∗
1 , u

∗
2, v

∗
2) in (12) together with the state and adjoint equations. To solve the

optimality system, we need the adjoint differential equations:

λ′
1 = − ∂H

∂S1
= −[b1(βI1 I1 + βD1D1) + A1v1

+ λ1(μ1 − βI1 I1 − βD1D1 − μ1 − v1 − m1)

+ λ2(βI1 I1 + βD1D1) + λ6(v1) + λ7(m1)]
λ′
2 = − ∂H

∂E1
= −[A1v1 + λ1(μ1) + λ2(−μ1 − α1 − m1) + λ3(α1) + λ8(m1)]

λ′
3 = −∂H

∂ I1
= −[b1(βI1S1) + B1u1ϕ1 + λ1(μ1 − βI1S1) + λ2(βI1S1)

+ λ3(−(μ1 + γI1 + (1 + u1)ϕ1 + δI1)) + λ4((1 + u1)ϕ1)

+ λ5(δI1) + λ6(γI1)]
λ′
4 = − ∂H

∂H1
= −[λ1(μ1) + λ4(−(μ1 + γH1 + δH1)) + λ6(γH1)]

λ′
5 = − ∂H

∂D1
= −[b1(βD1S1) + λ1(−βD1S1) + λ2(βD1S1) + λ5(−ξ1)]

λ′
6 = − ∂H

∂R1
= −[λ1(μ1) + λ6(−μ1 − m1) + λ12(m1)]
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λ′
7 = − ∂H

∂S2
= −[b2(βI2 I2 + βD2D2) + A2v2 + λ7(μ2 − βI2 I2

− βD2D2 − μ2 − v2 − m2)

+ λ8(βI2 I2 + βD2D2) + λ12(v2) + λ1(m2)]
λ′
8 = − ∂H

∂E2
= −[A2v2 + λ7(μ2) + λ8(−μ2 − α2 − m2) + λ9(α2) + λ2(m2)]

λ′
9 = −∂H

∂ I2
= −[b2(βI2S2) + B2u2ϕ2 + λ7(μ2 − βI2S2) + λ8(βI2S2)

+ λ9(−(μ2 + γI2 + (1 + u2)ϕ2 + δI2)) + λ10((1 + u2)ϕ2) + λ11(δI2)

+ λ12(γI2)]
λ′
10 = − ∂H

∂H2
= −[λ7(μ2) + λ10(−(μ2 + γH2 + δH2)) + λ12(γH2)]

λ′
11 = − ∂H

∂D2
= −[b2(βD2S2) + λ7(−βD2S2) + λ8(βD2S2) + λ11(−ξ2)]

λ′
12 = − ∂H

∂R2
= −[λ7(μ2) + λ12(−μ2 − m2) + λ6(m2)]

λ j (T ) = 0, j = 1, 2, . . . , 12.

Next, we describe the characterization of the optimal control for the uniform policy,
where each patch responds to its outbreak using the same controls as the other patch.
We let u1 = u2 = u and v1 = v2 = v. Our optimal control problem consists of
finding a control vector (u∗, v∗) from the control set (13) that minimizes the objective
functional (9). We find (u∗, v∗), on the interior of the control set, by solving the
optimality conditions

∂H

∂u
= 0 and

∂H

∂v
= 0,

for the controls u∗ and v∗:

∂H

∂v
= A1(S1 + E1) + 2ε1v

∗ − λ1S1 + λ6S1 + A2(S2 + E2) + 2ε2v
∗

− λ7S2 + λ12S2 = 0

�⇒ v∗ = −A1(S1 + E1) + λ1S1 − λ6S1 − A2(S2 + E2) + λ7S2 − λ12S2
2(ε1 + ε2)

∂H

∂u
= B1ϕ1 I1 + 2η1u

∗ − λ3ϕ1 I1 + λ4ϕ1 I1 + B2ϕ2 I2 + 2η2u
∗

− λ9ϕ2 I2 + λ10ϕ2 I2 = 0

�⇒ u∗ = −B1ϕ1 I1 + λ3ϕ1 I1 − λ4ϕ1 I1 − B2ϕ2 I2 + λ9ϕ2 I2 − λ10ϕ2 I2
2(η1 + η2)

.

(20)

The optimal control characterizations (14) are found by taking into account the
bounds on the control representations in (20). Since ηi > 0 and εi > 0 for i = 1, 2,
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we have the appropriate convexity,

∂2H

∂u2
= 2(η1 + η2) > 0 and

∂2H

∂v2
= 2(ε1 + ε2) > 0.
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