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Abstract
Many populations occupy spatially fragmented landscapes. How dispersal affects the
asymptotic total population size is a key question for conservation management and
the design of ecological corridors. Here, we provide a comprehensive overview of two-
patchmodelswith symmetric dispersal and two standard density-dependent population
growth functions, one in discrete and one in continuous time. A complete analysis of
the discrete-time model reveals four response scenarios of the asymptotic total pop-
ulation size to increasing dispersal rate: (1) monotonically beneficial, (2) unimodally
beneficial, (3) beneficial turning detrimental, and (4) monotonically detrimental. The
same response scenarios exist for the continuous-time model, and we show that the
parameter conditions are analogous between the discrete- and continuous-time setting.
A detailed biological interpretation offers insight into the mechanisms underlying the
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response scenarios that thus improve our general understanding how potential conser-
vation efforts affect population size.

Keywords Two-patch model · Spatial fragmentation · Total population size ·
Dispersal · Population dynamics

Mathematics Subject Classification 92D25 · 37N25 · 39A60

1 Introduction

Human activities such as urbanisation, agriculture and forestry increasingly lead to
habitat fragmentation,where continuous habitat is split into a greater number of smaller
patches isolated fromeach other. Land and sea use change have becomeone of themain
drivers of species extinction and biodiversity loss (IPBES 2019). In order to enhance
the dispersal between patches and hopefully induce positive effects on the populations,
conservation programmes often aim to increase the connectivity or reduce the isolation
of the patches, e.g. through the construction of dispersal corridors or stepping stones
(Turner and Gardner 2001). It is therefore of key interest to spatial ecology how
increased dispersal (as a token of increase connectivity) affects the asymptotic total
population size.

Empirical evidence suggests diverse effects of dispersal on the total population size
and stability. Examples include positive effects (for the yeast-like fungus Aureobasid-
ium pullulans (Ives et al. 2004) or budding yeast Saccharomyces cerevisiae (Zhang
et al. 2017)), negative effects (oribatid mites; Aström and Pärt 2013), first positive
and then negative effects (for Escherichia coli; Vortkamp et al. 2022) and insignifi-
cant effects (for Drosophila melanogaster; Dey et al. 2014) of increased dispersal on
total population size. Hence, there seems to be a certain complexity in the underlying
relationship.

Here, we consider two heterogeneous subpopulations which differ in their intrinsic
growth rates and carrying capacities. We will analyse the effect of different dispersal
rates on the asymptotic total population size. Two-patch models of the kind shown
in Fig. 1 have been instrumental in theoretical ecology (Hanski 1999). They have
been studied and investigated in many forms (e.g. Hastings 1983; Gyllenberg et al.
1993; Doebeli 1995; Jansen 2001; Briggs and Hoopes 2004; DeAngelis et al. 2020;
Zhang et al. 2021), but only recently has there been increased attention regarding the
total population size. If two patches connected by dispersal reach an asymptotic total
population size larger (smaller) than the sum of the two carrying capacities of the two
individual patches, we refer to this outcome as a beneficial (detrimental, respectively)
effect of dispersal. For continuous-time models, there is by now a substantial amount
of literature (e.g. Freedman and Waltman 1977; DeAngelis et al. 1979; Holt 1985;
DeAngelis and Zhang 2014; DeAngelis et al. 2016, 2020). Latest research by Arditi
et al. (2015) and Gao and Lou (2022) provides a complete theoretical description of
the asymptotic total population size response to dispersal in continuous time.

For discrete-time models, however, there are no similar results yet. This is some-
what surprising as discrete-time models have been extensively studied with respect
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Fig. 1 Two-patch model: the subpopulations NA and NB reproduce with growth functions fA(NA) and
fB(NB), respectively. Individuals disperse between the patches symmetrically with dispersal rate δ

to stability (Gyllenberg et al. 1993; Hastings 1993; Dey et al. 2014; Vortkamp et al.
2020), spatial heterogeneity (Lloyd 1995; Kendall and Fox 1998), synchrony (Earn
et al. 2000; Earn and Levin 2006) and persistence (Zion et al. 2010), for example. To
our knowledge, the asymptotic total population size has been addressed only byGadgil
(1971) and Franco and Ruiz-Herrera (2015) who assumed local population dynamics
in the form the quadratic map and the Beverton–Holt map, respectively. Their results
are conflicting in the sense that the former predicts that dispersal is always detrimental,
while the latter shows that dispersal, when it is small, is always beneficial in the sce-
nario of two connected source patches that we consider here. Up to now, there exist no
exact parameter conditions for the effect of dispersal on asymptotic total population
size in discrete time.

In this paper, the aim is to complete the analysis of the possible effects that dispersal
can have on the asymptotic total population size in a Beverton-Holt discrete-time
model, to provide a comprehensive overview by comparing these effects with the
analogue logistic continuous-timemodel and to understand the biological mechanisms
behind these effects. Therefore, we approach three main goals in this paper.

First, we will consider the effect of dispersal on the asymptotic total population
size as a response scenario. Here we refer to four qualitatively different types:Mono-
tonically beneficial: The effect of dispersal on the asymptotic total population size
is beneficial for all dispersal rates and increases monotonically as dispersal increases.
Unimodally beneficial: As dispersal increases, the asymptotic total population size
is increasing until it reaches a global maximum. Beyond that, the asymptotic popula-
tion size decreases, but the effect remains beneficial for all dispersal rates. Beneficial
turning detrimental: Low dispersal rates lead to a beneficial effect, but as dispersal
increases the asymptotic total population size drops below the sum of the carrying
capacities at a certain threshold. Monotonically detrimental: The asymptotic total
population size is smaller than the sum of the carrying capacities for all dispersal rates.
Moreover, the asymptotic total population size monotonically decreases if dispersal
increases. After the model formulation in Sect. 2, we provide in Sect. 3 a novel and
complete classification of the response scenarios for a Beverton–Holt two-patchmodel
in discrete time.

Second, in Sect. 4 we compare the response scenarios of our discrete-time results to
an analogous continuous-time model. The continuous-time analogue of the Beverton–
Holt equation is the logistic growth equation, and the two-patch model with logistic
growth has been completely mathematically analysed by Gao and Lou (2022). Using
this analysis, we identify the same four response scenarios with structurally similar
conditions for the continuous-time model. However, we also state that for the discrete-
time model it is possible to consider dispersal settings that cannot be considered for
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the continuous-time model, which might be of interest with respect to maximising the
asymptotic total population size.

Third, in Sect. 5 we provide a detailed biological mechanistic interpretation of the
effects that dispersal can have on the asymptotic total population size, in both dis-
crete and continuous time for all four response scenarios. Mathematical results are
important in themselves, but in order to apply the results to real-world problems and
formulate management strategies, it is indispensable to put the results into biological
context. Previous research on dispersal effects included some approaches on mech-
anistic interpretation, e.g. the crucial relationship between the carrying capacity and
growth rate (Holt 1985; Zhang et al. 2017; Vortkamp et al. 2022). Nevertheless, a
complete biological interpretation of the conditions of the dispersal effects is missing
thus far.

2 Methods

In this Section, we provide the model equations for the two-patch model in discrete
and continuous time. At the outset, we illustrate the general model structure in Fig. 1.
There are two subpopulations, and their population sizes are denoted as NA and NB.
The total population size is Ntot = NA + NB. The two populations are connected by
symmetric dispersal, i.e. the dispersal rate is assumed to be identical in both directions.
The subpopulations reproduce with separate growth functions. In both the discrete-
and continuous-time setting, we will assume growth functions with negative density
dependence (or exact compensation, Varley et al. 1974), which can be described by
intrinsic growth and carrying capacity (or intraspecific competition) parameters. That
is, we consider logistic growth in the continuous-time model and its discrete-time
analogue, the Beverton–Holt dynamics.

Discrete-timemodels are a typical choice for populations that reproduce seasonally.
In our case, population growth is assumed to take place before dispersal:

NA,t+1 = (1 − δ) fA(NA,t ) + δ fB(NB,t ),

NB,t+1 = (1 − δ) fB(NB,t ) + δ fA(NA,t ),
(1)

with subpopulation sizes Ni,t at time step t ∈ N, discrete-time dispersal rate δ and
growth functions fi (Ni ) in patches i = A,B. ForBeverton–Holt dynamics, the growth
functions in the patches read

fi (Ni ) = ri Ni

1 + ξi Ni
, i = A,B. (2)

Parameters ri are the intrinsic growth rates. The strengths of the intraspecific competi-
tion are described by parameters ξi > 0. In terms of the carrying capacities Ki (i.e. the
positive fixed point of fi ), the competition strengths can be expressed by ξi = ri−1

Ki
.

The larger ξi , the smaller the recruitment function.
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The continuous-time model reads

dNAc

dt
= fAc(NAc) − δc(NAc − NBc),

dNBc

dt
= fBc(NBc) − δc(NBc − NAc), (3)

with subpopulation sizes Nic at time t ∈ R+, continuous-time dispersal rate δc and
growth functions fic(Nic) in patches i = A,B. All variables and parameters of the
continuous-time model are marked with index c to distinguish them from the param-
eters of the discrete-time model. For the growth functions, we use the logistic model

fic(Nic) = ricNic

(
1 − Nic

Kic

)
, i = A,B, (4)

where parameters ric determine the intrinsic growth rates and Kic the carrying capaci-
ties. Here, the strength of competition can be represented as the composite intraspecific
competition parameter ξic = ric

Kic
(Pastor 2008).

The dispersal rates require some careful distinction. In the continuous-time
model (3), the dispersal rate is bounded from below, δc ≥ 0. A dispersal rate equal to
zero represents isolated patches without dispersing individuals, while a dispersal rate
of δc → ∞ is considered as perfect mixing meaning that the number of individuals
in patch A and B will equalise in the long run. In the discrete-time model (1), by
contrast, the dispersal rate is bounded in the unit interval, 0 ≤ δ ≤ 1. As in continuous
time, δ = 0 leads to no exchange between the patches. A dispersal rate of δ = 0.5
corresponds to perfect mixing as the population sizes in patch A and B are equal after
one iteration. For dispersal rates between 0.5 < δ ≤ 1, more individuals move to the
other patch than stay in their patch. So, if δ = 1, the two patches completely exchange
their populations each time step.

Within this paper, we focus on scenarios where both patches act as sources, i.e.
ri > 1 and ric > 0. Therefore, both patches approach their carrying capacity when
being isolated.

3 Mathematical results in discrete time

For the discrete-time model we analytically found the parameter conditions for the
four qualitatively different responses of the asymptotic total population size to an
increasing dispersal rate (defined in the Introduction). In this section, we first give the
analytical details summarised and proved in Theorem 1 (see below) and then develop
a graphical understanding of the response scenarios.
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3.1 Analytical results

We start the analysis of the parameter cases for the effect of dispersal by considering
the discrete-time model (1). We denote R

2+ := [0,+∞) × [0,+∞) and R
2++ :=

(0,+∞) × (0,+∞).
First, we prepare the proof of Theorem 1 by presenting some preliminary results.

Their proofs can be found in “Appendix A.1”. The following lemma shows that the
asymptotic total population size tends to a strictly positive equilibrium.We choose the
notation Ni (δ) to emphasise its dependence on the dispersal rate which is of central
interest here.

Lemma 1 Assume 1 < rB ≤ rA. For each δ ∈ [0, 1], system (1) has a unique fixed
point (NA(δ), NB(δ)) ∈ R

2++ such that

lim
t→+∞(NA,t , NB,t ) = (NA(δ), NB(δ))

for any initial condition (NA,0, NB,0) ∈ R
2+\{(0, 0)}.

The next result shows that, in the case of equal carrying capacities, the asymptotic
total population size is not affected by dispersal.

Lemma 2 Assume 1 < rB ≤ rA and KA = KB. Then, for model (1), connecting the
two patches with any dispersal rate δ ∈ (0, 1] has no effect on the asymptotic total
population size.

In the following, we focus on the case in which the carrying capacities in the two
patches are different. Let H : [0, 1] → R be the function defined by

H(δ) := NA(δ) + NB(δ) − (NA(0) + NB(0)), (5)

which yields the difference between the asymptotic total population size when the two
patches are connected by dispersal of intensity δ and the asymptotic total population
size when the two patches are isolated. We note that H is well defined by Lemma 1.

Clearly, H satisfies H(0) = 0. The following result shows that H can have at most
another zero. Hence, whether the effect of dispersal is beneficial or detrimental can
change at most once as we increase the dispersal rate.

Lemma 3 Assume 1 < rB ≤ rA and KA �= KB. We define δ̃ by the expression

δ̃ := KAKB(rA − 1)(rB − 1)(rA − rB)

(KA(rB − 1) + KB(rA − 1))(KArA(rB − 1) − KBrB(rA − 1))
. (6)

If rA = rB, KArA(rB − 1) = KBrB(rA − 1), or δ̃ /∈ (0, 1], then H has a unique zero,
δ = 0. Otherwise, H has two zeros, which are δ = 0 and δ = δ̃.

The following lemma gives the expression for the derivative of H at zero, providing
a tool to identify whether the effect of dispersal at small dispersal rates is beneficial
or detrimental.
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Lemma 4 Assume 1 < rB ≤ rA. Then,

H ′(0+) = (rA − rB)(KA − KB)

(rA − 1)(rB − 1)
.

We study the monotonicity of H to refine the distinction between beneficial and
detrimental effects of dispersal on the asymptotic total population size. We denote

δmax := NB − fB
(
NB

)
fA

(
NA

) − fB
(
NB

) ,

where

NA := KA(KB(
√
rA − √

rB) + √
rA(rB − 1)NB)

KB
√
rB(rA − 1)

,

and NB denotes the largest root of the equation ay2 + by + c = 0 (for more details,
see Lemma 5 in “Appendix A.1”) with

a := (rB − 1)(KA
√
rA(rB − 1) + KB

√
rB(rA − 1)),

b := KB(rB − 1)(2KA
√
rA − (KA − KB + (KA + KB)rA)

√
rB),

c := −KAK
2
B(

√
rA − √

rB)(
√
rArB − 1).

(7)

The following result characterises the monotonicity of H . Specifically, it shows
that the response of the total population size can only be monotonic or unimodal.

Proposition 1 Assume 1 < rB ≤ rA and KA �= KB. Then, fA
(
NA

) �= fB
(
NB

)
, and

the following holds:

1. If δmax /∈ (0, 1), then H is strictly monotonic in [0, 1].
2. If δmax ∈ (0, 1), then H is strictly increasing in [0, δmax) and strictly decreasing

in (δmax, 1].
Nowthe theoretical preparation is complete to present themain result. The following

theorem states the exact conditions for all four possible response scenarios of the
effect of dispersal on the asymptotic total population size. It is formulated in terms of
a characterisation of the behaviour of H in terms of the dispersal rate δ ∈ [0, 1].
Theorem 1 Assume 1 < rB < rA and KA �= KB.

1. If
√
rA(rB−1)√
rB(rA−1) ≤ KB

KA
< 1, then H is positive in (0, 1). Moreover,

(a) If δmax /∈ (0, 1), then H is strictly increasing in [0, 1]; see Fig. 2a (monotoni-
cally beneficial).

(b) If δmax ∈ (0, 1), then H is strictly increasing in [0, δmax)and strictly decreasing
in (δmax, 1]; see Fig. 2b (unimodally beneficial).

2. If KB
KA

<
√
rA(rB−1)√
rB(rA−1) , then 0 < δmax < δ̃ < 1. Moreover, H is positive and strictly

increasing in (0, δmax), positive and strictly decreasing in (δmax, δ̃), and negative
and strictly decreasing in (δ̃, 1]. See Fig. 2c (beneficial turning detrimental).
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Fig. 2 The asymptotic total population size in the discrete-time model in terms of the dispersal rate for
the four different response scenarios in Theorem 1. The dashed horizontal line corresponds to the sum
of the two carrying capacities, KA + KB. The grey vertical lines correspond to δ = 0.5. The red cross
indicates the maximal asymptotic total population size. a Monotonically beneficial with the parameter
values rA = 3, rB = 1.5, KA = 2, KB = 1.5; b unimodally beneficial with rA = 3.2, rB = 1.5, KA =
3.85, KB = 1.37; c beneficial turning detrimental with rA = 3.4, rB = 1.5, KA = 8.4, KB = 1.37; d
monotonically detrimental with rA = 2, rB = 1.25, KA = 1, KB = 1.25 (colour figure online)

3. If KB
KA

> 1, then H is negative and strictly decreasing in [0, 1]; see Fig. 2d (mono-
tonically detrimental).

Remark 1 Theorem 1 assumed 1 < rB < rA. If rA = rB, then H is negative and
strictly decreasing in (0, 1] for all KA > 0 and KB > 0 with KA �= KB. In the proof
of Proposition 1, we show that in that case NB = KB, and thus δmax = 0. Hence, H is
strictly decreasing in [0, 1]. Since H(0) = 0, we conclude that H is negative in (0, 1].
This response scenario is qualitative comparable to the monotonically detrimental
response scenario and is therefore not treated as a fifth scenario.

Now we prove Theorem 1.
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Proof First, we collect some results. On the one hand, we note that 1 < rB < rA
implies √

rA(rB − 1)√
rB(rA − 1)

<
rA(rB − 1)

rB(rA − 1)
< 1.

Hence, the four cases considered in the theorem cover all possible response scenarios
in which KA �= KB. On the other hand, from the expression defining δ̃ in (6) we
conclude that

δ̃ < 0 ⇔ KB

KA
>

rA(rB − 1)

rB(rA − 1)
,

and

δ̃ ≥ 1 ⇔
√
rA(rB − 1)√
rB(rA − 1)

≤ KB

KA
<

rA(rB − 1)

rB(rA − 1)
.

Moreover, from the expression of H ′(0+) provided by Lemma 4,

H ′(0+) > 0 ⇔ KB

KA
< 1,

and

H ′(0+) < 0 ⇔ KB

KA
> 1.

We are ready to begin with the proof of the statements in the theorem.

1. Let us start by assuming rA(rB−1)
rB(rA−1) ≤ KB

KA
< 1. From rA(rB−1)

rB(rA−1) ≤ KB
KA

, we know

by Lemma 3 that either δ̃ does not exist or δ̃ < 0. Hence, H has no zeros in the
interval (0, 1]. From KB

KA
< 1, we have that H ′(0+) > 0. Given that H(0) = 0, we

conclude that H is positive in (0, 1).

Now assume
√
rA(rB−1)√
rB(rA−1) ≤ KB

KA
<

rA(rB−1)
rB(rA−1) , in which case δ̃ ≥ 1. Moreover, since

rA > rB > 1, we have that KB
KA

< 1, and thus H ′(0+) > 0. Arguing as before, we
conclude that H is positive in (0, 1).
Since H ′(0+) > 0 in both cases, the monotonicity of H in terms of δmax directly
follows from Proposition 1.

2. By the assumptions in this case, we have that δ̃ ∈ (0, 1). Given that H(0) =
H(δ̃) = 0, we conclude that δmax ∈ (0, δ̃) since, by Proposition 1, δmax is the
unique possible stationary point of H in (0, 1). In particular, KB

KA
< 1, which yields

H ′(0+) > 0. The statement follows from Proposition 1 and H(0) = 0.
3. Since KB

KA
> 1, we have that H ′(0+) < 0. In particular, KB

KA
>

rA(rB−1)
rB(rA−1) , which

implies δ̃ < 0. Hence, H has no zeros in the interval (0, 1]. Arguing as before,
we conclude that H is negative in (0, 1]. Given that H strictly decreases around
δ = 0, by Proposition 1 we conclude that δmax /∈ (0, 1), and therefore H strictly
decreases in the entire interval [0, 1]. ��
The following corollary provides closed formulas for both themaximumasymptotic

total population size and the dispersal rate at which it is reached in terms of the
parameters describing the populations in the two patches.
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Corollary 1 Assume 1 < rB ≤ rA and KA �= KB. The following holds:

1. If δmax ∈ (0, 1), then the maximum asymptotic total population size is NA + NB,
which is reached when the two patches are connected by a dispersal rate δ = δmax.
Moreover, NA and NB are the maximum asymptotic population sizes in patches
A and B, respectively.

2. If δmax /∈ (0, 1), then the following holds:

(a) If rA = rB or KA < KB, then the maximum asymptotic total population size
is KA + KB, which is attained by keeping the two patches disconnected.

(b) If rA > rB and KA > KB, then the maximum asymptotic total population size
is

NA+NB = KAKB(KA(rA+1)(rB − 1)+KB(rB + 1)(rA − 1))(rArB − 1)

(KArA(rB − 1)+KB(rA − 1))(KA(rB − 1)+KBrB(rA − 1))
,

which is reached when the two patches are connected by a dispersal rate δ = 1.
Moreover, the maximum asymptotic population sizes in patches A and B are,
respectively,

NA(1) = KAKB(rArB − 1)

KArA(rB − 1) + KB(rA − 1)
,

NB(1) = KAKB(rArB − 1)

KA(rB − 1) + KBrB(rA − 1)
.

(8)

Proof Case 1 directly follows from Proposition 1, and case 2(a) follows from case 3
in Theorem 1 and Remark 1. Finally, case 2(b) corresponds to case 1(a) in Theorem 1,
and thus H is strictly increasing in [0, 1]. Therefore, the maximum asymptotic total
population size is reached for δ = 1 and is given by NA(1) + NB(1). The fixed point
(NA(1), NB(1)) of system (1) satisfies

{
NA(1) = fB(NB(1)),
NB(1) = fA(NA(1)),

which yields the values of NA(1) and NB(1) given in (8). ��

3.2 Graphical analysis

In the following we give a graphical description of the mechanisms that determine
whether the asymptotic total population size is smaller or larger than the sum of the
carrying capacities. We begin with rewriting the discrete-time model (1) in terms of
the total population size Ntot,t = NA,t + NB,t and the between-patch difference in
population sizes NB,t − NA,t :

Ntot,t+1 = fA(NA,t ) + fB(NB,t ),

NB,t+1 − NA,t+1 = (1 − 2δ)
(
fB(NB,t ) − fA(NA,t )

)
.

(9)
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Fig. 3 A graphical approach to understand the influence of dispersal on the equilibrium population size in
the discrete-time two-patch model. The growth functions in the two patches A and B are shown as red and
blue curves, respectively. The carrying capacities are marked by a filled circle in the respective colour. The
grey diagonal line is the identity function. a Illustrates the trend of the asymptotic total population size with
increasing dispersal rate. The empty circle between the two carrying capacities marks half of the sum of
the two carrying capacities. The crosses indicate half of the asymptotic total population size, and the thin
lines connect the asymptotic subpopulation sizes for a fixed δ. The arrow highlights that, here, this sum
decreases with increasing dispersal. b The magnitude of undercrowding resulting from dispersal is larger
than the magnitude of overcrowding resulting from dispersal. The width of the curly brackets indicates the
absolute difference between the equilibrium at δ = 0 (i.e. the carrying capacity) and a nonzero δ (colour
figure online)

The equilibrium values N∗
A and N∗

B, assuming N∗
A �= N∗

B, satisfy

f ∗
B − N∗

B = −( f ∗
A − N∗

A) (10)

and
f ∗
B − f ∗

A

N∗
B − N∗

A
= 1

1 − 2δ
, (11)

where we have used the notation f ∗
i := fi (N∗

i ) to simplify the exposition.
Equation (10)means that the total population size is in equilibriumwhen the change

in population size due to growth in patch B compensates that in patch A. Figure3a
shows the growth function fi (Ni ) of each patch. There are infinitely many pairs of
population sizes NA and NB forwhich condition (10) holds, e.g. those connected by the
thin lines in Fig. 3a. The second equilibrium condition (11) imposes a requirement on
the line connecting the two equilibrial points (N∗

A, f ∗
A) and (N∗

B, f ∗
B), namely that its

slope equals 1/(1−2δ). This constitutes a graphical procedure to find the equilibrium
population sizes in the two patches: find a pair of points on the growth curves that
satisfy f ∗

B −N∗
B = −( f ∗

A −N∗
A) and can be connected by a line with slope 1/(1−2δ).

From the results in Sect. 3.1, we know that the equilibrium is unique and globally
asymptotically stable.

Using this graphical approach, we can deduce the following insights. For δ = 0,
the slope of the connecting line equals unity such that it coincides with the identity
line and connects the carrying capacities of the two patches. See Fig. 3a. For δ = 0.5
(perfect mixing), the connecting line becomes vertical such that the two patches are
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equal in their population sizes. When the dispersal rate increases in between these
two extremes, the two patches approach each other in abundance. Notably, the patch
with the larger K retains the larger equilibrium population size, i.e. if KB > KA, then
KB > N∗

B > N∗
A > KA.

In the presence of dispersal, δ > 0, there is a unique intersection of the connecting
line with the identity line (marked by crosses in Fig. 3a). One can show that this is
exactly half of the asymptotic total population size. For comparison, the empty circle
marks half of the sum of the two carrying capacities. In the example of Fig. 3a, we see
that the asymptotic total population size always decreases with δ and is always smaller
than the sum of carrying capacities. Hence, Fig. 3a is an example of the monotonically
detrimental response scenario.

Figure 3b illustrates the magnitude of overcrowding resulting from dispersal in
the smaller patch A, N∗

A − KA and the magnitude of undercrowding resulting from
dispersal in the larger patch B, KB−N∗

B. The difference in the magnitude of over- and
undercrowding determines whether dispersal has a beneficial or detrimental effect. In
the monotonically detrimental response scenario of Fig. 3, the magnitude of under-
crowding is for all dispersal rates larger than the magnitude of overcrowding.

Figure7 in “Appendix B” illustrates an example where the magnitude of over-
crowding is for all dispersal rates larger than the magnitude of undercrowding, which
corresponds to the monotonically beneficial response scenario.

4 Comparison of discrete- and continuous-timemodel results

Another central aim of this paper is to compare the results obtained for the discrete-
time model (see Sect. 3.1) to results obtained for the continuous-time logistic model
introduced in Sect. 4.1. The latter are available in the literature (Arditi et al. 2015; Gao
andLou 2022); herewe summarised them inTheorem2with an analogous formulation
to the discrete-time results. As explained in detail in Sect. 2, the dispersal rate in
the continuous-time model ranges from zero to infinity, which models all scenarios
from isolation (δc = 0) to perfect mixing (δc → ∞). In contrast, the dispersal rate
in the discrete-time model ranges from zero to one, which covers scenarios from
isolation (δ = 0) over perfect mixing (δ = 0.5) to complete replacement (δ = 1).
In order to bring together the results obtained in the discrete-time and continuous-
time setting, we restrict the discrete-time results presented in Sect. 3.1 to δ ∈ [0, 0.5]
for the comparison. The restricted results are presented in Sect. 4.2. Comparing the
two different models in Sect. 4.3, we emphasise the similarities of the results from
the discrete-time model and the continuous-time model but we point out one major
difference as well.

4.1 Identifying the effect of dispersal in continuous time

In contrast to the discrete-time case, the continuous-timemodel has already beenmath-
ematically analysed in detail. Arditi et al. (2015) proved the existence of three different
response scenarios, but did not distinguish between the monotonically beneficial and
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unimodally beneficial response scenarios. Later, Gao and Lou (2022) provided two
theoremson the effect of dispersal on the asymptotic total population size.One theorem
(their Theorem 2.4) distinguishes between a generally beneficial or detrimental effect
depending on the dispersal rate, the other theorem (their Theorem 2.5) analyses the
monotonicity of the asymptotic total population size. Therefore, all response scenarios
that we have identified in the discrete-time model can be found in the continuous-time
model as well. For comparability, we identified the conditions for the four response
scenarios with the two theorems of Gao and Lou (2022) and formulated Theorem 2,
aligned to Theorem 1 in discrete time, summarising the conditions in a more compact
way.

Let Hc : (0,∞) → R be the function defined by

Hc(δc) := NAc(δc) + NBc(δc) − (NAc(0) + NAc(0)). (12)

Similar to the discrete-time setup in Eq. (5), Hc(δc) yields the difference between
the asymptotic total population sizes NAc and NBc when the patches are connected and
when they are isolated. Therefore, the effect of dispersal is beneficial if H c(δc) > 0
and detrimental if H c(δc) < 0. If the patches are isolated, each asymptotic sub-
population size approaches its carrying capacity (NAc(0), NBc(0)) = (KAc , KBc).
Without loss of generality it is assumed that KAc < KBc . Then, as proved by Arditi
et al. (2015) and Gao and Lou (2022), the equilibria of the connected patches satisfy
KAc < NAc(δc) < NBc(δc) < KBc , meaning that the smaller patch will always have
the smaller asymptotic subpopulation size and vice versa. Note that, unlike in Gao and
Lou (2022), the dispersal is assumed to be symmetric.

Direct calculations by Gao and Lou (2022) found the following expressions for the
difference of asymptotic total population sizes in isolated patches Hc(0), the difference
of the asymptotic total population sizes at infinite dispersal Hc(∞), the right derivative
of the difference of the asymptotic total population sizes at zero dispersal H ′

c(0
+),

and the criterion for determining the sign of H ′
c(δc) for sufficiently large dispersal

δc � 1, H′
c(∞):

Hc(0) = 0,

Hc(∞) = (KBc − KAc)
rBcKAc − rAcKBc

rBcKAc + rAcKBc

,

H ′
c(0

+) = (KBc − KAc)
rBc − rAc

rAcrBc

,

H
′
c(∞) = 1

2
(KBc − KAc)(rBc − rAc) − 2rAcrBc

(KBc − KAc)
2

rBcKAc + rAcKBc

.

With these expressions it is possible to identify the four different response scenarios.
The following theorem states the exact parameter conditions for the four response
scenarios identified in the results of Gao and Lou (2022). The details on how we
identified the conditions are given in “Appendix C”.
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Fig. 4 The asymptotic total population size in the continuous-time model in terms of the dispersal rate for
the four different response scenarios in Theorem 2. The dashed horizontal line corresponds to the sum of the
two carrying capacities KAc+KBc . aMonotonically beneficialwith the parameter values rAc = 0.5, rBc =
2, KAc = 0.5, KBc = 1; b Unimodally beneficial with rAc = 1.1, rBc = 2, KAc = 0.5, KBc = 1;
c Beneficial turning detrimental with rAc = 1, rBc = 2, KAc = 0.5, KBc = 1.5; d Monotonically
detrimental with rAc = 1.1, rBc = 2, KAc = 2, KBc = 1 (colour figure online)

Theorem 2 Assume KAc < KBc and define

κc := rAc + 3rBc

rBc + 3rAc

> 1.

1. Consider H ′
c
(0+) > 0, i.e. rAc < rBc . Moreover,

(a) If rBc
KBc

≥ κc
rAc
KAc

, then Hc(δc) is positive and strictly increasing: Hc(δc) > 0

and H ′
c(δc) > 0 for all δc ∈ (0,∞). See Fig. 4a (monotonically beneficial).

(b) If rAc
KAc

≤ rBc
KBc

< κc
rAc
KAc

, then Hc(δc) is positive for all δc ∈ (0,∞). Moreover,

H
′
c(∞) is negative, thus there exists δmaxc > 0 such that H ′

c
(δc) > 0 for
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δc ∈ (0, δmaxc), H
′
c
(δc) < 0 for δc ∈ (δmaxc ,∞) and H ′

c
(δmaxc) = 0. See

Fig. 4b (unimodally beneficial).
(c) If rBc

KBc
<

rAc
KAc

, then H
′
c(∞) is negative and there exists a δmaxc > 0 as

in (b). Moreover, Hc(∞) < 0, thus there exists a zero Hc(δ̃c) = 0 such that
Hc(δc) > 0 for δc ∈ (0, δ̃c) and Hc(δc) < 0 for δc ∈ (δ̃c ,∞). See Fig. 4c
(beneficial turning detrimental).

2. If H ′
c
(0+) < 0, i.e. rAc > rBc , then Hc(δc) is negative and strictly decreasing:

Hc(δc) < 0 and H ′
c(δc) < 0 for all δc ∈ (0,∞). See Fig. 4d (monotonically

detrimental).

Remark 2 Theorem 2 does not include the case of equal growth rates. If rAc = rBc ,
then Hc(δc) is negative and strictly decreasing in (0,∞), but H ′

c
(0+) = 0 (Gao and

Lou 2022). This response scenario is qualitative comparable to the monotonically
detrimental response scenario and is therefore not treated as a fifth scenario.

4.2 Rewriting the discrete-time results for ı bounded in [0,0.5]

We prepare the comparison between the discrete-time results from Sect. 3.1 and the
continuous-time results presented in Sect. 4.1. The discrete-time results obtained in
Theorem 1 are given for the dispersal rates δ ∈ [0, 1]. Now we rewrite these results to
the dispersal range δ ∈ [0, 0.5]. This procures the correspondence of both the discrete-
time and continuous-time results to the range from isolation to perfect mixing.

The following proposition states the restricted discrete-time result. The proof can
be found in “Appendix A.2”.

Proposition 2 Assume 1 < rB < rA and KA �= KB, and define

κ := rB + √
rArB − 2

rA + √
rArB − 2

.

1. If κ rB−1
rA−1 ≤ KB

KA
< 1, then H is positive and strictly increasing in (0, 0.5] (mono-

tonically beneficial).

2. If rB−1
rA−1 ≤ KB

KA
< κ rB−1

rA−1 , then δmax ∈ (0, 0.5) and H is positive and strictly
increasing in [0, δmax ) and positive and strictly decreasing in (δmax , 0.5] (uni-
modally beneficial).

3. If KB
KA

< rB−1
rA−1 , then 0 < δmax < δ̃ < 1/2. Moreover, H is positive and strictly

increasing in (0, δmax ), positive and strictly decreasing in (δmax , δ̃), and negative
and strictly decreasing in (δ̃, 0.5] (beneficial turning detrimental).

4. If KB
KA

> 1, then H is negative and strictly decreasing in (0, 0.5] (monotonically
detrimental).

Remark 3 In Proposition 2 we assume 1 < rB < rA and distinguish the four response
scenarios with conditions on the carrying capacities and intraspecific competition
coefficients. Under this assumption the first three response scenarios (monotonically
beneficial, unimodally beneficial, beneficial turning detrimental) occur if additionally
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Table 1 The analogous discrete- and continuous-time parameter conditions for the four response scenarios,
summarised in one table for dispersal rates from isolation to perfect mixing

Response scenario discrete- and continuous-time parameter conditions
1. Monotonically

KA < KB

rA < rB

beneficial

2. Unimodally
beneficial

3. Beneficial turning
detrimental

4. Monotonically
rA ≥ rBdetrimental

The basic assumption is that the carrying capacity in patch B is larger than the one in patch A. The number
line visualises the relative strengths of intraspecific competition in the two patches. The red thick interval
indicates the range of values one intraspecific competition can have in relation to the other intraspecific

competition. Here, in the discrete-time case the competition strength is ξid = ri−1
Ki

and the constant is

κd := κ = rB+√
rArB−2

rA+√
rArB−2 > 1. In the continuous-time case the competition strength is ξic = ri

Ki
and the

constant is κc = rA+3rB
rB+3rA

> 1, i = A,B

KA > KB. In contrast, the fourth response scenario (monotonically detrimental)
occurs if additionally KA < KB.

Rewriting the parameter conditions to the basic assumption KA < KB, we first
exchange the conditions of patch A and patch B, and then for the first three response
scenarios we swap the order of the conditions which yields the basic assumption
KA < KB and the additional condition rA < rB. The rewriting of the fourth response
scenario requires a closer look. Due to Lemma 4, the derivative H ′(0+) is negative
if and only if (rA − rB)(KA − KB) < 0. Consequently, the fourth response scenario
occurs if the patch with the larger carrying capacity has the smaller growth rate and
vice versa. Therefore, with the desired basic assumption KA < KB, the additional
condition for the fourth response scenario is rA > rB.

4.3 Similarities and differences between the discrete- and continuous-time
models

After having presented the continuous-time results and the rewritten discrete-time
results, we bring them together and have a close look at the analogy and differences
of those results.

4.3.1 Analogy of parameter conditions

In Table 1we summarise, for both the continuous- and discrete-timemodel, the param-
eter conditions for the four response scenarios. The table is based on dispersal ranging
from isolation to perfect mixing, to facilitate comparison between the continuous-
and discrete-time frameworks. The parameter conditions are formulated in terms of
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Fig. 5 The asymptotic total
population size in the
discrete-time model taking a
maximum for a dispersal rate
beyond perfect mixing, δ > 0.5.
The dashed horizontal line
corresponds to the sum of the
two carrying capacities
KA + KB. Parameter values:
rA = 2.35, rB = 1.7, KA =
2.35, KB = 1.75 (colour figure
online)

the intrinsic growth rates, the carrying capacities and the intraspecific competition
coefficients (which are actually ratios of the former two parameters).

The parameter conditions are based on the assumption that the carrying capacity in
patch B is larger than the one in patch A, KB > KA (which is why the discrete-time
results in Theorem 2 needed to be rewritten, cf. Remark 3). The monotonically detri-
mental response scenario occurs when the patch with the smaller carrying capacity
has the larger intrinsic growth rate. Elsewise, one of the other three response sce-
narios occurs, depending on the relative strengths of intraspecific competition in the
two patches. This is visualised by the number lines in Table 1. If the intraspecific
competition in the larger and faster growing patch B is less than in patch A, the
response scenario is beneficial turning detrimental. In the other case, the response
scenario is beneficial. Whether it is monotonically or unimodally beneficial, depends
on whether the strength of intraspecific competition in patch B is much larger (in the
sense of exceeding ξA j κ j ) or only mildly larger than the one in patch A (in the sense
of not exceeding ξA j κ j ), respectively, where κd and κc are threshold values given in
Theorem 2 and Proposition 2. Strikingly, the continuous- and discrete-time parame-
ter conditions are qualitatively identical, with numerical differences only due to the
different ways of quantifying intraspecific competition (ξi and κ j ).

4.3.2 Replacement in discrete time

For the comparison with the continuous-time model, we restricted the range of the
discrete-time dispersal rate to the interval [0, 0.5]. However, there exist parameter
settings in which the maximum asymptotic total population size occurs for a dispersal
rate greater than 0.5 (see Fig. 5). In these cases, the optimal dispersal rate (in the sense
of maximising asymptotic total population size) exceeds the value of perfect mixing.
Dispersal rates beyond perfect mixing can not be modelled by the continuous-time
model (3). As a consequence, we see that using the discrete-time model may lead to
optimal dispersal choices which do not exist in the continuous-time model. This is
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related to the nature of the discrete-timemodel (1), giving the new state at the next time
step rather than an instantaneous rate of change, and it may be important to take into
account the full dispersal parameter range from zero to one in case it is biologically
feasible.

5 Biological interpretation

The parameter conditions for the four response scenarios are mathematically interest-
ing in themselves. However, they are also biologically relevant as they may enhance
our basic understanding of population dynamics in spatially fragmented landscapes.
If the analytical findings are to be translated into potential management strategies,
they require a thorough biological interpretation and description of the underlying
biological mechanisms.

The two fragmented habitats are characterised by their carrying capacities, their
intrinsic growth rates and the resulting intraspecific competition strengths. Figure6
provides graphical illustrations of the mechanisms underlying each response scenario.
For the discrete-time case (left column of Fig. 6) the graphs show the reproduction
curves along with the carrying capacities of the two patches. The intrinsic growth rates
rA and rB correspond to the slopes of the reproduction curves at Nt = 0. The strength
of intraspecific competition is not straightforward to visualise. Here, we mark it on the
reproduction curve by a diamond at the point N�, where the strength of intraspecific
competition equals the negative slope of the per-capita net growth. N� can also be
understood as the population size where the growth in a time step, f (N ) − N , is
maximal (see “AppendixD” for the derivation). The size of the diamond is proportional
to the strength of the intraspecific competition. Moreover, the further left a diamond is
located between zero and the respective carrying capacity, the stronger the respective
intraspecific competition. For the continuous-time setting (right column of Fig. 6) we
use stock-and-flow diagrams. The subpopulations grow by reproduction (inflow) and
they shrink due to intraspecific competition for resources (outflow).

In the monotonically beneficial response scenario (Fig. 6a, b), the larger patch B
exhibits fast population growth and the smaller patch A has slow population growth.
The competition in the larger patch B is stronger than in A, and thus the majority
of individuals is subject to this stronger competition. With increasing dispersal more
individuals move from patch B to the smaller patch A where they are subject to
less intraspecific competition (which is quadratic in N ). Therefore, an increasing
number of individuals profit from better conditions in the smaller patch A, which
can increase beyond its carrying capacity due to its low density dependence. This
enables the total population size to grow beyond the sum of carrying capacities. In this
scenario, dispersal has a monotonically increasing beneficial effect on the asymptotic
total population size.

In the unimodally beneficial response scenario (Fig. 6c, d), the larger patch B
exhibits fast population growth and the smaller patch A has slow population growth, as
in Fig. 6a, b. The competition in the larger patch B is also stronger than in A. However,
the difference in competition between the two patches is below a certain threshold (as
expressed by κ , see Tab. 1). As a consequence, for small dispersal rates, the effects
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Fig. 6 Visualisation of the biological mechanisms driving the four response scenarios in the discrete-time
(left column) and continuous-time model (right column). a, b Monotonically beneficial, c, d unimodally
beneficial, e, f beneficial turning detrimental, g, h monotonically detrimental. In the left column, a larger
font size indicates larger carrying capacities and/or intrinsic growth rates. The diamond symbolises the
strength of intraspecific competition; its location is explained in the main text. A larger diamond indicates
stronger intraspecific competition. In the right column, a larger box for the patch indicates a larger carrying
capacity, and thicker arrows indicate larger in- or outflows (colour figure online)
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on the asymptotic total population size are similar to those in the monotonically ben-
eficial response scenario. But for a larger dispersal rate, the degree of benefit for the
asymptotic total population size decreases. A larger proportion of individuals dispers-
ing to the smaller patch A can not profit from relaxed conditions in the smaller patch A
as they are subject to a comparable competition (because the difference between the
strengths of competitions in the two patches is small). In this scenario, dispersal has
always a beneficial effect, but there exists a dispersal rate that maximises the total
population size, after which the positive effect slightly decreases.

In the beneficial turning detrimental response scenario (Fig. 6e, f), the faster popu-
lation growth still occurs in the larger patch B. However, now the stronger competition
is in the smaller patch A. Even though in the larger patch B individuals are subject to
the weaker competition, the large population size strengthens the effect of competi-
tion on the total population. A net dispersal to patch A at a low level can relax these
conditions. First, a small population size in patch A relaxes the effect of strong com-
petition. As dispersal increases, the population size in patch A increases and then the
stronger competition exerts a detrimental effect on the total population size, because
more individuals are subject to worse conditions in the smaller patch A.

In the monotonically detrimental response scenario (Fig. 6g, h), the larger patch B
exhibits slow population growth and the smaller patch A fast population growth. The
result is a stronger competition in the smaller patch A. With increasing dispersal the
net movement from the larger patch B to the smaller patch A increases such that more
individuals become subject to stronger competition in the smaller patch A. This is the
worst condition for the total population size. Therefore, dispersal is always detrimental
in this case.

In the right column of Fig. 6, the differences in the habitat conditions explained
in detail above can be seen by the increasing intensity of the flows in and out of the
smaller patch (thin arrows becoming thicker) and the decreasing intensity of the flows
in and out of the larger patch (thick arrows becoming thinner).

The biological mechanisms above only covered dispersal in a range of no dispersal
to perfect mixing. As we discussed in Sect. 4.3, the discrete-time model can also cover
dispersal which indicates replacement.

6 Discussion and conclusions

We have provided a full analysis how the total population size of a population dis-
tributed over two heterogeneous patches responds in the long run to changes in
dispersal, both in discrete- and continuous-time models. The discrete-time results are
original and significantly extend previous work by Franco and Ruiz-Herrera (2015).
They proved that dispersal has a positive effect on asymptotic total population size
when dispersal is small. This is the case in three of the four response scenarios, but
as we have shown these scenarios differ in what happens for larger dispersal rates
(with the asymptotic total population size either continuing to increase, to decrease
but staying above the sum of carrying capacities or to decrease below the sum of car-
rying capacities). The fourth scenario (monotonically detrimental) does not occur in
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the model considered by Franco and Ruiz-Herrera (2015), presumably because they
assumed equal carrying capacities scaled to unity in the two patches.

Gadgil (1971) studied two coupled quadratic maps, showing that there is only
the monotonically detrimental response scenario. This may be a particularity of the
quadratic map or due to the fact that he assumed equal intrinsic growth rates in the two
patches. Our results classify four response scenarios according to the intrinsic growth
rates and carrying capacities in the two patches. They clearly reveal their relative
values are important. That is, the spatial heterogeneity in both intrinsic growth rates
and carrying capacities (and also intraspecific competition) are key to fully understand
the long-term dynamics in coupled patches. Considering spatial variation in only one
of the parameters may give an incomplete picture.

The four response scenarios we have found in the discrete-time model also exist
in the continuous-time model. The latter has been analysed by Arditi et al. (2015)
who classified three response scenarios, not distinguishing between the unimodally
beneficial and the beneficial turning detrimental case. However, it may be important
whether larger dispersal rates cause actually larger or smaller total population sizes
when compared to no dispersal. Gao and Lou (2022) analysed the same model as
Arditi et al. (2015) and used two categorisations, one classifying the results on having
a beneficial or detrimental effect, the other one regarding the monotonicity of the
asymptotic total population size. We combined the analyses of the two papers to
identify four response scenarios also in the continuous-time model.

The parameter conditions for the four response scenarios in the discrete- and
continuous-time model match remarkably well (cf. Tab.1). If the larger of the two
patches has a faster population growth rate, the asymptotic total size can be greater in
the presence of dispersal compared to disconnected patches. When the intraspecific
competition in the larger patch is stronger than in the smaller patch, all dispersal rates
lead to an asymptotic total population size greater than the sum of carrying capacities.
This is because the individuals dispersing to the smaller patch are released from the
strong density dependence in the larger patch. A threshold value κ for the strength of
intraspecific competition distinguishes whether the increase of total population size is
monotonic or nonmonotonic. However, if the intraspecific competition in the larger
patch is weaker than in the smaller patch, then only small dispersal rates have a ben-
eficial effect. For larger dispersal rates, the smaller patch becomes too saturated such
that individuals moving into it cause an overall too strong density dependence. Lastly,
if the larger patch has the smaller population growth, then the effect of dispersal is
always detrimental. The loss of emigrating individuals from the larger patch cannot be
compensated by the growth conditions in the smaller patch as its competition pressure
is too strong.

The dispersal rate of a species depends not only on species-specific movement
abilities, but also on characteristics of the landscape. Conservation measures such as
ecological corridors or stepping stones may effectively increase dispersal rates—and
thus prompt beneficial or detrimental population responses depending on the given
response scenario. This can imply that well-intended interventions lead to decreases
in population size. The results in this paper give the exact parameter conditions, for
two-patch constellations with Beverton–Holt growth and logistic growth dynamics.
The parameter conditions crucially depend on the intrinsic growth rates and carrying
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capacities (or their combinations in form of intraspecific competition strengths). These
parameters are also species- as well as habitat-specific. Thus, conservation manage-
ment could also attempt to improve local habitat conditions (e.g. by habitat restoration,
habitat extension, removal of natural enemies or competitors etc.), in order to move
the parameter conditions into a more favourable response scenario.

Dispersal in the discrete-time model can cover cases beyond perfect mixing when
0.5 < δ ≤ 1 such that patches exchange more than half of their populations every
time step. This is not possible in the continuous-time model and is often deemed to
be rare in nature (e.g. Kawecki and Holt 2002). However, in laboratory experiments
it is easy to replace large fractions of a population (e.g. Vortkamp et al. 2022), and in
nature conservation programs could substantially enforce dispersal between patches
(e.g. by assisted movement or translocation). We have found closed formulas for
the maximum asymptotic total population size and the dispersal rate for which it is
attained. The optimal dispersal rate can be actually beyond perfect mixing, see Fig. 5.

There are many directions for possible future work on the discrete-time setting,
many of which could be based on or extend existing approaches in the literature, e.g.
source–sink constellations (e.g. Holt 1985; Franco and Ruiz-Herrera 2015), asym-
metric (e.g. Dey et al. 2014; Arditi et al. 2015, 2018; Gao and Lou 2022; Wu et al.
2020) or other forms of dispersal (e.g. Ylikarjula et al. 2000; Ims and Andreassen
2005; Cressman and Křivan 2013), multi-species interactions (e.g. Adler 1993; Jansen
2001; Ruiz-Herrera and Torres 2018; Wang et al. 2020), multiple patches with differ-
ent network structures (e.g. Zhang et al. 2015; Ruiz-Herrera 2018; Arino et al. 2019),
consumer–resource growth dynamics (e.g. Arditi et al. 2015; Zhang et al. 2017; DeAn-
gelis et al. 2020) or the relation withmulti-patch infectious diseasemodels (Allen et al.
2007; Gao 2020; Gao and Lou 2021, 2022).

The main contribution of this paper is likely the complete analysis of the discrete-
time two-patch model. Moreover, the discrete-time results are shown to match very
well the continuous-time response scenarios, for which we have combined existing
theorems to identify the same four response scenarios and their parameter conditions.
Furthermore, we have provided graphical and mechanistically based biological inter-
pretations of both the discrete- and continuous-time insights, which allow to gain a
more intuitive understanding of dispersal effects in spatially heterogeneous and struc-
tured landscapes. This appears fundamental for the planning of conservation efforts
and the design of connectivity patterns in fragmented areas.
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Appendix A: Proofs of the discrete-time results

In the following, we give the proofs and technical details first for Sect. 3.1 and then
for Sect. 4.2.

A.1 Dispersal rate ı ∈ [0, 1]

Proof of Lemma 1 For δ = 0, system (1) is an uncoupled system with (NA(0),
NB(0)) = (KA, KB) being the unique positive equilibrium, which attracts all nonzero
solutions since fA(NA) and fB(NB) are increasing and concave downward functions.
For δ ∈ (0, 1], following Kirkland et al. (2006), we rewrite system (1) as

(
NA,t+1
NB,t+1

)
= Sδ�(NA,t , NB,t )

(
NA,t

NB,t

)
,

where

Sδ :=
(
1 − δ δ

δ 1 − δ

)
and �(NA,t , NB,t ) :=

(
rA

1+ξANA,t
0

0 rB
1+ξANB,t

)
.

By Kirkland et al. (2006, Theorem 2.1), it is enough to prove that

ρ(Sδ�(0, 0)) > 1,

where ρ(Sδ�(0, 0)) denotes the spectral radius of Sδ�(0, 0). Since

Sδ�(0, 0) =
(

(1 − δ)rA δrB
δrA (1 − δ)rB

)
,

the sum of the coefficients in the first column of Sδ�(0, 0) is rA, and for the second
column the sum is rB. Hence,

ρ(Sδ�(0, 0)) ≥ min{rA, rB} = rB > 1,
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which completes the proof (see, e.g., Theorem 8.1.22 in Horn and Johnson 2012).
Notice that uniqueness of the positive equilibrium is guaranteed since we have proved
that it attracts all nonzero solutions. ��
Proof of Lemma 2 Denote KA = KB = K . It is straightforward that (K , K ) is a
fixed point of system (1) for all δ ∈ [0, 1]. By Lemma 1, for δ ∈ [0, 1] sys-
tem (1) has a unique equilibrium with positive coordinates (NA(δ), NB(δ)). Hence,
(NA(δ), NB(δ)) = (K , K ) for all δ ∈ [0, 1] and, in particular, the asymptotic total
population size is NA(δ) + NB(δ) = 2K for all δ ∈ [0, 1]. ��
Proof of Lemma 3 Assume that H(δ) = 0 for δ ∈ [0, 1]. We have that NA(δ) and
NB(δ) satisfy {

NA(δ) = (1 − δ) fA(NA(δ)) + δ fB(NB(δ)),

NB(δ) = δ fA(NA(δ)) + (1 − δ) fB(NB(δ)),
(A1)

and by adding these equations we obtain

NA(δ) + NB(δ) = fA(NA(δ)) + fB(NB(δ)).

From the assumption H(δ) = 0, we obtain

NA(δ) + NB(δ) = KA + KB. (A2)

Therefore, NA(δ) and NB(δ) are solutions of the system

{
NA(δ) + NB(δ) = fA(NA(δ)) + fB(NB(δ))

NA(δ) + NB(δ) = KA + KB,
(A3)

which has at most two solutions,

(NA(δ), NB(δ)) = (KA, KB) and

(NA(δ), NB(δ)) =
(

KA(KA + KB)(rB − 1)

KA(rB − 1) + KB(rA − 1)
,

KB(KA + KB)(rA − 1)

KA(rB − 1) + KB(rA − 1)

)
.

Moreover, from the first equations of (A1) and equation (A2), we obtain

(KA + KB − 2 fA(NA(δ)))δ = NA(δ) − fA(NA(δ)).

If we substitute NA(δ) = KA into the previous equality, we obtain δ = 0, and if we

substitute NA(δ) = KA(KA+KB)(rB−1)
KA(rB−1)+KB(rA−1) , we obtain

(KArA(rB − 1) − KBrB(rA − 1))δ = KAKB(rA − 1)(rB − 1)(rA − rB)

KA(rB − 1) + KB(rA − 1)
. (A4)

If rA = rB, then KArA(rB − 1) − KBrB(rA − 1) �= 0, which yields δ = 0. Hence,
δ = 0 is the only zero of H . If rA > rB and KArA(rB − 1) − KBrB(rA − 1) = 0, then
(A4) is inconsistent, and thus δ = 0 is again the only zero of H . Otherwise, equation
(A4) yields δ = δ̃, which is another zero of H if and only if δ̃ ∈ (0, 1]. ��
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Proof of Lemma 4 We recall that NA(δ) and NB(δ) are implicitly defined by sys-
tem (A1). Consider the function F : R

3 → R
2 given by F(δ̄, NA, NB) =

(F1(δ̄, NA, NB), F2(δ̄, NA, NB)), with

F1(δ̄, NA, NB) = (1 − δ̄) fA(NA) + δ̄ fB(NB) − NA,

F2(δ̄, NA, NB) = δ̄ fA(NA) + (1 − δ̄) fB(NB) − NB.

To prove that N ′
A(0+) and N ′

B(0+) are finite, we apply the Implicit Function The-
orem to the system F(δ̄, NA, NB) = (0, 0) around the point (0, NA(0), NB(0)) =
(0, KA, KB). Since f ′

A(NA(0)) = 1
rA

and f ′
B(NB(0)) = 1

rB
, we have that

∣∣∣∣∣∣
∂F1
∂NA

∂F1
∂NB

∂F2
∂NA

∂F2
∂NB

∣∣∣∣∣∣|(0,NA(0),NB(0))

=
∣∣∣∣∣
1−rA
rA

0

0 1−rB
rB

∣∣∣∣∣ �= 0.

This proves that there exists 0 < ζ < 1 such that the system F(δ̄, NA, NB) = (0, 0)
defines two differentiable functions NA(δ̄) and NB(δ̄) for δ̄ ∈ (−ζ, ζ ). Clearly, if
δ̄ = δ ∈ [0, ζ ), the point (NA(δ), NB(δ)) is a fixed point of system (1). By Lemma 1,
we conclude that NA(δ) = NA(δ) and NB(δ) = NB(δ) for δ ∈ [0, ζ ), which proves
that N ′

A(0+) = N
′
A(0) and N ′

B(0+) = N
′
B(0) are finite.

By differentiating with respect to δ in system (A1), we arrive at

{
N ′
A(δ) = − fA(NA(δ)) + (1 − δ) f ′

A(NA(δ))N ′
A(δ) + fB(NB(δ)) + δ f ′

B(NB(δ))N ′
B(δ),

N ′
B(δ) = fA(NA(δ)) + δ f ′

A(NA(δ))N ′
A(δ) − fB(NB(δ)) + (1 − δ) f ′

B(NB(δ))N ′
B(δ),

(A5)

which after taking δ → 0+ yields

{
N ′
A(0+) = − fA(NA(0)) + f ′

A(NA(0))N ′
A(0+) + fB(NB(0)),

N ′
B(0+) = fA(NA(0)) − fB(NB(0)) + f ′

B(NB(0))N ′
B(0+).

Since fA(NA(0)) = KA, fB(NB(0)) = KB, f ′
A(NA(0)) = 1

rA
, and f ′

B(NB(0)) = 1
rB
,

we obtain

{
N ′
A(0+) = − rA

rA−1 (KA − KB),

N ′
B(0+) = rB

rB−1 (KA − KB).

Thus,

H ′(0+) = N ′
A(0+) + N ′

B(0+)

=
(

rB
rB − 1

− rA
rA − 1

)
(KA − KB)

= (rA − rB)(KA − KB)

(rA − 1)(rB − 1)
. ��
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Now we give the technical details for and the proof of Proposition 1, which states
the effect of symmetric dispersal on the asymptotic total population size.

Lemma 5 Assume rA > 1, rB > 1, KA > 0, and KB > 0. The equation ay2+by+c =
0, with a, b and c defined in Eq. (7), has two simple real roots.

Proof The result follows from the fact that the discriminant of the equation is positive,

b2 − 4ac = K 2
BrB(rA − 1)(rB − 1)((K 2

A + K 2
B)(rA − 1)(rB − 1)+

+ 2KAKB((
√
rA − √

rB)2 + (
√
rArB − 1)2)).

��
By using Lemma 5, denote by NB the largest root of the equation ay2+by+c = 0,

and define

NA := KA
(
KB

(√
rA − √

rB
) + √

rA
(
rB − 1

)
NB

)
KB

√
rB

(
rA − 1

) .

We recall Proposition 1 to prove it.

Proposition (Sect. 3.1, Proposition 1) Assume 1 < rB ≤ rA and KA �= KB. Then,
fA(NA) �= fB(NB), and the following holds:

1. If δmax /∈ (0, 1), then H is strictly monotonic in [0, 1].
2. If δmax ∈ (0, 1), then H is strictly increasing in [0, δmax) and strictly decreasing

in (δmax, 1].
Proof of Proposition 1 Assume that H ′(δ) = 0 for δ ∈ (0, 1). From the expression
of H , this is equivalent to N ′

A(δ) + N ′
B(δ) = 0. By adding the two equations of (A5),

we obtain

N ′
A(δ) + N ′

B(δ) = f ′
A(NA(δ))N ′

A(δ) + f ′
B(NB(δ))N ′

B(δ), (A6)

which after substituting N ′
A(δ) = −N ′

B(δ) leads to

(
f ′
A(NA(δ)) − f ′

B(NB(δ))
)
N ′
B(δ) = 0.

Suppose N ′
B(δ) = 0. Then, N ′

A(δ) = 0, and by substituting into (A5) we obtain
fA(NA(δ)) = fB(NB(δ)). If we impose this condition, then system (A1) reads as

{
NA(δ) = fA(NA(δ)),

NB(δ) = fB(NB(δ)),

and therefore NA(δ) = KA and NB(δ) = KB. By substituting these equalities into the
first equation of (A1), we obtain δ = 0 or KA = KB, which is absurd by the hypothesis
assumed. Hence, necessarily, f ′

A(NA(δ)) = f ′
B(NB(δ)), which is equivalent to

NA(δ) = KA(KB(
√
rA − √

rB) + √
rA(rB − 1)NB(δ))

KB
√
rB(rA − 1)

. (A7)
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Notice that

NA(δ) > 0 ⇔ NB(δ) >
KB(

√
rB − √

rA)√
rA(rB − 1)

,

which is always true for NB(δ) > 0 since we are assuming rB ≤ rA. The sum of the
equations in (A1) yields

NA(δ) + NB(δ) = fA(NA(δ)) + fB(NB(δ)),

which is equivalent to aNB(δ)2+bNB(δ)+c = 0 after substituting the value of NA(δ)

given in (A7).
If rA = rB, then a > 0, b = −KBa, and c = 0, which yields NB(δ) = NB = KB

and NA(δ) = NA = KA. If rA > rB, under the assumptions in the statement, a > 0
and c < 0, and therefore the two roots of the equation ay2 +by+c = 0 have different
signs. This implies NB(δ) = NB > 0 and NA(δ) = NA > 0. Moreover, we have seen
that necessarily fA(NA) �= fB(NB), and thus δmax is well defined.

For all the above, H has stationary points in (0, 1) if and only if there exists a
δ ∈ (0, 1) such that

(NA(δ), NB(δ)) = (NA, NB).

This is equivalent to say that (NA, NB) satisfies system (A1) for some δ ∈ (0, 1), i.e.

{
NA = (1 − δ) fA(NA) + δ fB(NB),

NB = δ fA(NA) + (1 − δ) fB(NB).
(A8)

The sum of these two equalities is

NA + NB = fA(NA) + fB(NB),

which is met by the construction of NA and NB done above. Hence, it is enough to
impose any of the two equalities in (A8). If we focus on the second one of them, we
can rewrite it in the form

( fA(NA) − fB(NB))δ = NB − fB(NB),

which is equivalent to δ = δmax. Hence, if δmax /∈ (0, 1), then (NA, NB) does not
satisfy (A1) for any δ ∈ (0, 1). Consequently, H has no stationary points and is strictly
monotonic in (0, 1), which proves the first statement.

Now assume δmax ∈ (0, 1). In that case, (NA, NB) satisfies (A1) only for δ = δmax,
and thus H has a unique stationary point δ = δmax. To study the monotonicity of H on
either side of that point, we study the sign of the second derivative of H at δ = δmax.
By differentiating (A6) with respect to δ and substituting δ = δmax, we obtain
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N ′′
A(δmax) + N ′′

B(δmax) = N ′′
A(δmax) f

′
A(NA) + N ′′

B(δmax) f
′
B(NB)

+ (N ′
A(δmax))

2 f ′′
A(NA) + (N ′

B(δmax))
2 f ′′

B (NB).

We have seen that f ′
A(NA) = f ′

B(NB) and N ′
A(δmax) = −N ′

B(δmax), and thus

(1 − f ′
B(NB))H ′′(δmax) = (N ′

A(δmax))
2( f ′′

A(NA) + f ′′
B (NB)).

Since f ′′
A(x) < 0 and f ′′

B (y) < 0 for all (x, y) ∈ R
2+, we have that

H ′′(δmax) < 0 ⇔ 1 − f ′
B(NB) > 0 ⇔ NB >

KB√
rB + 1

=: γ

and

aγ 2 + bγ + c = −K 2
BrB(KB(rA − 1)(

√
rB − 1) + KA(

√
rA − 1)2(

√
rB + 1))√

rB + 1
< 0.

Given that NB is the largest root of the concave upward parabola ay2 + by + c, we
conclude that NB > γ , and thus H ′′(δmax) < 0. Therefore, δ = δmax is a local
maximum of H . Since it is the unique stationary point, it is the global maximum and,
moreover, H is strictly increasing in [0, δmax) and strictly decreasing in (δmax, 1],
which proves the second statement. ��

A.2 Dispersal rate ı ∈ [0, 0.5]

Proof of Proposition 2 Before starting the proof of the four cases, we collect some
results. If we define

ε := (rA − 1)
√
rArB + rA(

√
rArB − 1)

(rB − 1)
√
rArB + rB(

√
rArB − 1)

,

then one can check that, for 1 < rB < rA,

1 < κ < ε <
rA − 1

rB − 1
.

Moreover, by Lemma 4, we have that

H ′(0+) > 0 ⇔ KB

KA
< 1,

and, from the expression defining δ̃ in Eq. (6),

δ̃ ∈ (0, 0.5) ⇔ KB

KA
<

rB − 1

rA − 1
.
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By using the results above, we now consider when δmax ranges between 0 and 0.5.
We recall that, according to Proposition 1, δmax is defined as the quotient

δmax = NB − fB(NB)

fA(NA) − fB(NB)
,

where, for 1 < rB < rA, NB is the only positive root of the equation ay2 +by+c = 0
(for the definitions of a, b and c see Eq. (7)), and

NA := KA(KB(
√
rA − √

rB) + √
rA(rB − 1)NB)

KB
√
rB(rA − 1)

.

In what follows, we consider δmax as a function of KB > 0 for fixed values of
rA, rB > 1 and KA > 0, with rA > rB. We study the continuity of δmax by analysing
if there exists KB > 0 for which the denominator of δmax is null. In that case,
fA(NA) = fB(NB), which is equivalent to (KBrB(rA − 1) − KArA(rB − 1))NB =
KAKB

√
rA(

√
rA − √

rB). If KArA(rB − 1) = KBrB(rA − 1), this equality is incon-
sistent and thus, in that case, the denominator of δmax is nonzero. Otherwise, we have
that

NB = KAKB
√
rA(

√
rA − √

rB)

KBrB(rA − 1) − KArA(rB − 1)
=: ζ.

Under this condition, necessarily aζ 2 + bζ + c = 0, where

aζ 2 + bζ + c = KAK 3
B

(
rA − 1

)
rB

(√
rA − √

rB
)
R(

KBrB
(
rA − 1

) − KArA
(
rB − 1

))2 ,

with
R = KA(rB − 1)((rA − 1)

√
rArB + rA(

√
rArB − 1))−

− KB(rA − 1)((rB − 1)
√
rArB + rB(

√
rArB − 1)).

Therefore, the denominator of δmax is null if and only if R = 0, which is equivalent
to KB

KA
= ε rB−1

rA−1 . Moreover, the numerator and the denominator of δmax cannot be

simultaneously null. If the numerator is null, then NB = KB and NA = KA, and in
that case the denominator is KA − KB, which is nonzero by the assumptions in the
statement. We conclude that δmax has a vertical asymptote at KB

KA
= ε rB−1

rA−1 which,
moreover, is the only discontinuity of δmax.

We now study if there exist values of KB for which δmax = 0.5. This condition
is equivalent to H ′(0.5) = 0, and according to the proof of Proposition 1 it implies
f ′
A(NA(0.5)) = f ′

B(NB(0.5)), with NA(0.5) = NA and NB(0.5) = NB. If we sub-
stitute δ = 0.5 into Eq. (A1), we obtain NA(0.5) = NB(0.5) = NA = NB and
2NA − fA(NA) − fB(NA) = 0. In particular, f ′

A(NA) = f ′
B(NA), which yields(

KB
√
rB (rA − 1) − KA

√
rA (rB − 1)

)
NA = KAKB

(√
rA − √

rB
)
. This equality is
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only consistent if KB
√
rB(rA − 1) �= KA

√
rA(rB − 1), in which case

NA = NB = KAKB(
√
rA − √

rB)

KB
√
rB(rA − 1) − KA

√
rA(rB − 1)

.

By substituting this value into 2NA− fA(NA)− fB(NA) = 0,we obtain KB
KA

= κ rB−1
rA−1 .

Hence, this is the only value of KB for which δmax = 0.5.
Now, we analyse if δmax can be null for some value of KB. This is true if and only

if NB = fB(NB) and fA(NA) �= fB(NB). The first equality has two alternatives,
namely NB = 0 and NB = KB. The first of them implies c = 0, which is true
if and only if KB = 0, which is absurd. The second alternative yields NA = KA,
and therefore fA(NA) = KA �= KB = fB(NB). The equality NB = KB implies
aK 2

B + bKB + c = 0, but this is also impossible since

aK 2
B + bKB + c = −KAK

2
BrB(

√
rA − √

rB)(
√
rArB − 1) < 0.

This proves that δmax is always nonzero.
By using all of the above, we proceed to separately prove the four cases.

1. Assume KB
KA

< rB−1
rA−1 . In this case, δ̃ ∈ (0, 0.5), and therefore δmax ∈ (0, δ̃) since

H(0) = H(δ̃) = 0 and δmax is the only possible stationary point of H . The rest
of the proof follows from Proposition 1.

2. Now assume rB−1
rA−1 ≤ KB

KA
< κ rB−1

rA−1 . Since κ < ε, δmax is a continuous function
for the range of values of KB considered in this subcase. From the previous case,
δmax ∈ (0, 0.5) for KB < KA

rB−1
rA−1 . Moreover, we have seen that δmax is always

nonzero, and δmax = 0.5 if and only if KB = κKA
rB−1
rA−1 . By the continuity of δmax,

this implies δmax ∈ (0, 0.5) for KB ∈ [KA
rB−1
rA−1 , κKA

rB−1
rA−1 ). Additionally, under

the case assumptions, δ̃ /∈ (0, 0.5), which implies that H has no zeros in (0, 0.5).
Again, the rest of the proof follows from Proposition 1.

3. Suppose κ rB−1
rA−1 ≤ KB

KA
< 1. We have seen that δmax has a vertical asymptote

at KB = εKA
rB−1
rA−1 ∈

(
κKA

rB−1
rA−1 , KA

)
. This means that δmax /∈ (0, 0.5) for

KB around εKA
rB−1
rA−1 . Since δmax is continuous for KB �= εKA

rB−1
rA−1 and it is

nonzero and different from 0.5 for KB ∈
(
κKA

rB−1
rA−1 , KA

)
, we conclude that

δmax /∈ (0, 0.5) for the range of values of KB considered in this subcase. Given
that H(0) = 0 and, under the case assumptions, H ′(0) > 0, we conclude that H
is positive and strictly increasing in (0, 0.5] by Proposition 1.

4. This case directly follows from case 3 in Theorem 1. ��
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Fig. 7 Analogue of Fig. 3 for the monotonically beneficial response scenario: The growth functions in the
two patches A and B are shown as red and blue curves, respectively. The carrying capacities are marked
by a filled circle in the respective colour. The grey diagonal line is the identity function. a Illustrates the
trend of the asymptotic total population size with increasing dispersal rate. The empty circle between the
two carrying capacities marks half of the sum of the two carrying capacities. The crosses indicate half of
the asymptotic total population size, and the thin lines connect the asymptotic subpopulation sizes for a
fixed δ. The arrow highlights that, here, this sum increases with increasing dispersal. b The magnitude
of overcrowding resulting from dispersal is larger than the magnitude of undercrowding resulting from
dispersal. The width of the curly brackets indicates the absolute difference between the equilibrium at
δ = 0 (i.e. the carrying capacity) and a nonzero δ (colour figure online)

Appendix B: Visualisation of the over- and undercrowding in discrete-
time

In addition to the monotonically detrimental scenario shown in Fig. 3 in the main text,
we illustrate the over- and undercrowding for the monotonically beneficial response
scenario in Fig. 7.

Appendix C: Identification of continuous-time results

In the following we give the details on how we identified the parameter conditions for
the four response scenarios in the results of Gao and Lou (2022, their Theorems 2.4
and 2.5).

Direct calculations of Gao and Lou (2022) lead to the following expressions of
the total asymptotic population size at isolated patches Ntotc , the total asymptotic
population size at infinite dispersal Ntotc(∞), the right derivative of the total population
size with respect to δc at no dispersal N ′

totc(0
+), and the criterion for determining the

sign of N ′
totc(δc) for sufficiently large dispersal δc � 1, N′

totc(∞):

Ntotc(0) = KAc + KBc

Ntotc(∞) = KAc + KBc + (
KBc − KAc

) rBcKAc − rAcKBc

rBcKAc + rAcKBc
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N ′
totc

(
0+) = lim

δc→0+
Ntotc

(
δc

) − Ntotc

(
0
)

δc
= (

KBc − KAc

) rBc − rAc

rAcrBc

N
′
totc

(∞) = 1

2

(
KBc − KAc

) (
rBc − rAc

) − 2rAcrBc

(
KBc − KAc

)2
rBcKAc + rAcKBc

Recall Theorem 2.4 of Gao and Lou (2022) with our notation:

Theorem 3 (Gao and Lou 2022, Theorem 2.4) Suppose KAc < KBc . Then

(a) If N ′
totc(0

+) ≤ 0, i.e. rBc ≤ rAc , then Ntotc(δc) < Ntotc(0) for δc ∈ (0,∞).
(b) If N ′

totc(0
+) > 0 and Ntotc(∞) < Ntotc(0), i.e. rBc > rAc and rBcKAc < rAcKBc ,

then Ntotc(δc) > Ntotc(0) for δc ∈ (0, δ̃c), Ntotc(δc) = Ntotc(0) for δc = δ̃c, and
Ntotc(δc) < Ntotc(0) for δc ∈ (δ̃c,∞), where

δ̃c = rAcrBcKAcKBc

(
rBc − rAc

)
(
rBcKAc + rAcKBc

) (
rAcKBc − rBcKAc

) and

(
NAc

(
δ̃c

)
, NBc

(
δ̃c

))
= KAc + KBc(

rBcKAc + rAcKBc

) (
rBcKAc , rAcKBc

)
.

(c) If Ntotc(∞) ≥ Ntotc(0), i.e. rBcKAc ≥ rAcKBc , then Ntotc(δc) > Ntotc(0) for
δc ∈ (0,∞) (and N ′

totc(0
+) > 0).

And recall Theorem 2.5 of Gao and Lou (2022) with our notation:

Theorem 4 (Gao and Lou 2022, Theorem 2.5) Suppose KAc < KBc . Then

(a) If N ′
totc(0

+) ≤ 0, i.e. rBc ≤ rAc , then N ′
totc(δc) < 0 for δc ∈ (0,∞).

(b) If N ′
totc(0

+) > 0 and N
′
totc(∞) < 0, then there exists δmaxc > 0 such that

N ′
totc(δc) > 0 for δmaxc ∈ (0, δmaxc), N

′
totc(δc) = 0 for δmaxc = δmaxc , and

N ′
totc(δc) < 0 for δmaxc ∈ (δmaxc ,∞), where

δmaxc =
rAcrBcKAcKBc

(
r2Bc

− r2Ac

)
2

(
rAcrBc

(
rBcKAc + rAcKBc

) (
KBc − KAc

) + (
rAcKBc − rBcKAc

)
ψ

)

with

ψ =
√(

rAcrBc

(
rAcKAc + rBcKBc

) (
rBcKAc + rAcKBc

))
and

(NAc(δmaxc), NBc(δmaxc)) =
(
KAc

2

(
1 + 1

rAc

√
rAcKAc + rBcKBc

KAc/rAc + KBc/rBc

)
,

KBc

2

(
1 + 1

rBc

√
rAcKAc + rBcKBc

KAc/rAc + KBc/rBc

))

(c) If N′
totc (∞) ≥ 0, then N ′

totc

(
δc

)
> 0 for all δc ∈ (0,∞)

(
N ′

totc

(
0+)

> 0
)
.

123



The effect of dispersal on asymptotic total population size… Page 33 of 35 60

Finally, we note from where the statements of our Theorem 2 can be derived:

• Statement 1(a) follows from Theorems 3(c) and 4(c).
• Statement 1(b) follows from Theorems 3(c) and 4(b).
• Statement 1(c) follows from Theorems 3(b) and 4(b).
• Statement 2 follows from Theorems 3(a) and 4(a).

Appendix D: Visualisation of intraspecific competition

Here, we propose a way to graphically mark the strength of intraspecific competition
in the Beverton–Holt map. The degree of density dependence is often measured by
the negative slope of the per-capita net growth. For the Beverton–Holt map (2), this is

− d

dN

f (N ) − N

N
= rξ

(1 + ξN )2
.

For the logistic growth function, the corresponding expression is a constant, but for the
Beverton–Holt map it clearly depends on population size. We can mark the strength of
intraspecific competition by that value of population size, N� for which the degree of
density dependence equals the strength of intraspecific competition, ξ . We then obtain

N� = 1

ξ

(√
r − 1

) = K

√
r − 1

r − 1
, (D9)

which strictly decreaseswith r and strictly increaseswith K . So, the larger the intraspe-
cific competition (high r and small K ), the lower N�. This suggest the following
visualisation: The further “left” N� is located between zero and the respective car-
rying capacity of the Beverton–Holt map for a given r and K , the stronger is the
intraspecific competition.

We remark that N� can be alternatively derived from the necessary condition for
the population growth in one time step, f (N )−N to be maximal, i.e. d f (N )/dN = 1
at N = N�.
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