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Abstract
Molecular reactions within a cell are inherently stochastic, and cells often differ in
morphological properties or interactwith a heterogeneous environment. Consequently,
cell populations exhibit heterogeneity both due to these intrinsic and extrinsic causes.
Although state-of-the-art studies that focus on dissecting this heterogeneity use single-
cell measurements, the bulk data that shows only the mean expression levels is still in
routine use. The fingerprint of the heterogeneity is present also in bulk data, despite
being hidden from direct measurement. In particular, this heterogeneity can affect the
mean expression levels via bimolecular interactions with low-abundant environment
species. We make this statement rigorous for the class of linear reaction systems that
are embedded in a discrete state Markov environment. The analytic expression that
we provide for the stationary mean depends on the reaction rate constants of the
linear subsystem, as well as the generator and stationary distribution of the Markov
environment. We demonstrate the effect of the environment on the stationary mean.
Namely, we show how the heterogeneous case deviates from the quasi-steady state
(Q.SS) case when the embedded system is fast compared to the environment.
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1 Introduction

Regulation of gene expression is generally well-modelled by stochastic chemical reac-
tion networks (CRNs) and can be successfully represented using other approaches only
under certain conditions (Hahl and Kremling 2016). The modelled system, e.g., a sin-
gle gene or a small gene network, exists in the context of a larger gene network and
the cellular environment (Fig. 1a). It is crucial to account for the influence of this con-
text onto the modelled system while not inflating the model complexity. A standard
approach for this is to represent all external influence on a given system as a con-
solidated stochastic process (Zechner et al. 2014; Zechner and Koeppl 2014). In the
case when the environment affects the rates of the studied process, we must consider
a CRN with modulated reaction rates.

In modelling studies, protein degradation, or the death process, is often assumed
to be a constant-rate process that is driven by the activity of degradation enzymes
and dilution due to cell growth (Paulsson 2005). Nevertheless, the embedding envi-
ronment, natural or synthetic, can regulate this process by tuning the degradation
enzyme levels or the cell growth rate. In prokaryotes, protein concentrations are gen-
erally defined by the balance between production and dilution rather than degradation
rates (Klumpp et al. 2009). However, tunable protein degradation can be much faster
than dilution alone, and this dynamic can propagate to downstream circuits, e.g.,
a bistable genetic switch can change states more frequently (Cameron and Collins
2014; Huang et al. 2012). Meanwhile, in eukaryotes, protein degradation is regulated
via a ubiquitin-proteasome pathway, which allows fine-tuning the degradation rates of
specific proteins (Ciechanover and Schwartz 1998; Ciechanover 1998; Kornitzer and
Ciechanover 2000). Further, controlling targeted protein degradation is a promising
route for treating various health conditions such as cancer, neurodegenerative diseases,
metabolic disorders, infections, and inflammatory diseases (Collins et al. 2017). Previ-
ously, it was not possible to perturb the protein death process in a controlledway,which
hindered the detailed modeling of these processes. However, recently, new techniques
for this were introduced (Collins et al. 2017; Dao and Castañeda 2020). Thus, it is
now relevant and feasible to develop new modelling strategies that would incorporate
modulated protein degradation rates.

The study of general chemical reaction networks dates back to the 60s (McQuar-
rie 1967), after Delbrück (1940), Bartholomay (1958), Ishida (1964) and others had
pioneered small case studies. Typical quantities of interest are the probability dis-
tribution or the generating function and moments both in the transient and stationary
behaviour. Bartholomay (Bartholomay 1962) still emphasized the analogy of themean
equations with the deterministic counterpart. However, the following works (Gillespie
1976; McQuarrie 1967) demonstrated that bimolecular reactions cause a character-
istic deviation of stochastic systems when the system is not in the thermodynamic
limit, highlighting the need for other techniques. Early works computed the generat-
ing function and mean at stationarity for small bimolecular networks comprising two
balanced reactions (Darvey et al. 1966). The observation that bimolecular reactions
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Fig. 1 a The cartoon shows an example subsystem of a reaction cascade (dashed box) that is embedded into
a cellular environment that includes RNA polymerase activity, ATP availability, and the concentration of a
degradation enzyme. Purple environment components from left to right symbolize the RNA polymerase that
modulates transcription, mitochondria that supply energy in form of ATP and proteases that actively degrade
proteins. More broadly, the embedding of the single cell in a tissue and communication with neighbouring
cells via the extracellularmatrix (light green) or ion channels (blue) can contribute stochasticity. The reaction
cascade consists of a sensor molecule (green) and an enzyme (orange) whose expression is mediated by
the sensor molecule. b Trajectories of a birth-death-process with heterogeneous death rate μ, modelled as a
birth-death process on different time scales. On the fast time scale, the trajectory resembles an unmodulated
birth-death process (upper panel). On the intermediate time scale, triangular excursions appear whileμ = 0
(middle panel). On the slow time scale, the excursions become more pronounced (lower panel). The mean
death rate is the same for all cases (color figure online)

result in an unclosed mean equation brought more attention to unclosed (hierarchical)
moment equations. Unclosed moment equations have prompted researchers to pur-
sue several strategies. Among them, stochastic simulations for systems with highly
abundant components are time-consuming and therefore computationally prohibitive.
Equally prohibitive is the use of the master equation, which gave rise to more efficient
hybrid methods (Hasenauer et al. 2014; Jahnke 2011; Menz et al. 2012). Overall, pre-
vious studies developed and extensively explored various moment closure schemes
(Bronstein and Koeppl 2018; Grima 2012; Lakatos et al. 2015; Schnoerr et al. 2015),
identified the limitation of moment closures with regards to bimodal distributions
(Hasenauer et al. 2014) and extinction (Singh and Hespanha 2011), and pointed out
the limited local character of moment closures (Kuehn 2016). More recently, linear
programming under positive semi-definite constraints was employed to compute upper
and lower moment bounds (Ghusinga et al. 2017; Kuntz et al. 2019; Sakurai and Hori
2017) and approximated the moments in the case of tight bounds.

Linear reaction networks are a class of CRNswhose propensities depend linearly on
the state of the system, i.e., the vector of species copy numbers. Assumingmass-action
kinetics, this restriction corresponds to admitting only first- and zeroth-order reactions.
For this class, the first- and second order moment dynamics are well-known both in
the transient and stationary phase (Warren et al. 2006). In particular, the stationary
mean of the stochastic system equals the equilibrium concentration of the correspond-
ing deterministic system (Anderson and Kurtz 2015). We have a clear understanding
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of the case when a linear subsystem is modulated in its zeroth-order reactions. Sev-
eral research groups characterized the second-order moments (Gupta and Khammash
2022; Raj et al. 2006; Warren et al. 2006) for this case and Zechner and Koeppl (2014)
introduced a method with which they (approximately) simulated marginal subsys-
tem trajectories for various example networks. Zeroth-order modulation by a linear
environment is included in the theory on linear systems, because the joint subsystem-
environment network is linear. Non-linear reaction systems were embedded in a linear
environment while assuming linear subsystem-environment interaction (Falk et al.
2019), i.e., zeroth-order modulation (in both directions).

The effect of a randomenvironment on the noise in a subsystem, i.e., on the variance,
iswell-studied.Many researchgroups adopted the decompositionof noise into intrinsic
and extrinsic components since its introduction in the seminal paper (Swain et al.
2002), and this concept was expanded upon in later studies (Bowsher and Swain
2012; Hilfinger et al. 2012; Gupta and Khammash 2022; Tostevin et al. 2012). Of
equal interest is the question how the environment shapes the stationary distribution
of the subsystem, e.g., bimodality (Holehouse et al. 2020). In contrast, we investigate
the effect of the random environment on the mean of a subsystem species. This effect
is visible when first-order reactions are modulated as the following simple example
illustrates. Consider a birth-death process with birth rate λ and death rate μ whose
mean approaches λ/μ in the equilibrium. Zero-order modulation corresponds to a
modulation in the birth rate, i.e., stochastic λ with mean λ̄. By the linearity of the
functionλ �→ λ/μ and the linearity of themean, the heterogeneousmean λ̄/μ does not
reflect the heterogeneity at themean level. However, ifμ is stochastic, the non-linearity
of μ �→ λ/μ invalidates this argument. Instead, the excursions in the abundance that
emerge during μ = 0 can distort the heterogeneous mean away from λ/μ̄ (Fig. 1b).
In the experimental context, this means that even bulk data carries the fingerprint of a
heterogeneous environment.

The effect of a modulated degradation rate on the mean was studied in a gene
expression model with a two-state promoter, with and without negative feedback, for
a lognormally distributed extrinsic noise (Keizer et al. 2019). The authors confined
their study to a slow extrinsic noise, used a linear noise approximation and a slow
noise expansion. The simple birth-death process in a random environment has been
studied in queuing theory. It corresponds to an M/M/∞ queue, i.e., a queuing sys-
tem with infinitely many servers and exponential arrival and serving times. The birth
rate is the rate of arrival, while the death rate corresponds to the service rate. For a
Markov environment, the stationary distribution, stationary factorial moments, and the
transient evolution equation of the moments were derived in O’Cinneide and Purdue
(1986). Bimodal stationary distribution was reported. Complementary to this result,
the special case of the random telegraph modulated service rates was fully character-
ized in Baykal-Gursoy and Xiao (2004). It was extended to simultaneous birth- and
death-modulation by a semi-Markov environment in Falin (2008).

In this work, we consider the general class of linear reaction systems (subsystems)
whose reaction rates are modulated by a discrete state Markov environment. As our
main contribution, we analytically express the stationary mean for this class of CRNs
in terms of the subsystem rate constants, the environment generator matrix and the
environment equilibrium distribution. This extends the existing results in queuing
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theory to more reaction channels than the birth-death channel. It also provides an
exact alternative, at least on the mean level, to various approximations that have been
used to understand the effect of extrinsic noise on the mean, variance, power spectrum
and distribution. Furthermore, we propose a new method that quantifies the shares
that the environment states contribute to the stationary mean of a subsystem species.
Finally, we analyze the deviation from the Q.SS behaviour in a variety of case studies
to illustrate several non-linear effects of the random environment.

2 Model class

2.1 General CRNmodel

A CRN is defined as a system of M chemical reactions R1, . . . ,RM involving d
reactant species X = [X1, . . . , Xd ] with the stoichiometric substrate and product
coefficients Si j and Pi j , respectively, and reaction rates c j , where i ∈ {1, . . . , d},
j ∈ {1, . . . , M}:

R1 : S11X1 + · · · + Sd1Xd
c1−→ P11X1 + · · · + Pd1Xd

...
...

RM : S1M X1 + · · · + SdM Xd
cM−→ P1M X1 + · · · + PdM Xd .

The propensities of the system transitioning between states follow the mass-action
kinetics, with the propensities �f = [ f1, . . . , fM ] being a function of the stoichiometric
constants and the reaction rates, where the function form depends on the values of the
stoichiometric constants. Note that reactions of higher than the second order, i.e.,
reactions with

∑d
i=1 Si j > 2, are generally not considered, as the probability of such

reactions occurring is negligibly low compared to the reactions of the lower orders.

2.2 Homogeneous linear CRN

Consider a linear CRN with the vector Xt ∈ N
d of species counts, namely, a CRN

where the vector of propensities for its M reactions is of the form

�f : Nd → R
M≥0,

�f (x) = �x + γ. (1)

If all reactions follow mass-action kinetics, this implies that only zeroth or first order
reactions are admissible (Warren et al. 2006). Then �x and γ are the vectors with
the propensities of the first-order and the zero-order reactions, respectively. Next, we
construct the stoichiometric matrix that stores the change vectors for each reaction:

N =
⎡

⎣
| |
�ν1 . . . �νM
| |

⎤

⎦ ∈ Z
d×M
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via Ni j = Pi j − Si j and �ν j = p· j − s· j . This allows to write down the evolution of
the mean:

d

dt
E[Xt ] = E

⎡

⎣
M∑

j=1

�ν j f j (Xt )

⎤

⎦ = N �f (E[Xt ]) = N�E[Xt ] + Nγ =: b − AE[Xt ].

(2)

The matrixA = −N� captures the first-order reaction rates, while the vector b = Nγ

accounts for the zero-order reaction rates. Throughout this paper, we assume that in
the homogeneous case A has only eigenvalues with positive real part. This property
is called Hurwitz-stable, and it guarantees the ergodicity of the system, in particular
the existence of and convergence to the stationary mean (Gupta et al. 2014).

2.3 Linear CRN in a random environment

We have just described the homogeneous case. Next, we embed the linear chem-
ical reaction network in a random environment. We assume that Z is a stationary
continuous-time Markov chain (CTMC) on a discrete state spaceZ . The environment
modulates X by Z -dependent propensities which replace Eq. (1) by

�f (x|z) = �(z)x + γ (z) (3)

with corresponding family of matrices A(z) and vectors b(z) as defined in Eq. (2).
We refer to such a linear CRN in a random environment also as a heterogeneous,
or modulated, linear CRN. Throughout this paper, we assume that A(z) has only
eigenvalueswith non-negative real part for each z ∈ Z . In contrast to the homogeneous
case, 0 may be included as an eigenvalue. This assumption is needed for the proof of
proposition 2 and for the evaluation in Eq. (20) to prove the main theorem 3. Both
proofs are based on the Lemma 4, see Appendix A.2, that uses the assumption.

Most prominently, Z can be a CRN on the state space of (environmental) species
countsZ ⊆ N

m (Liebermeister et al. 2005; Zechner andKoeppl 2014). In this case, we
call X the subsystem of the joint reaction network (X,Z). The equation that governs
the mean now reads

d

dt
E[Xt ] = E[b(Zt )] − E[A(Zt )Xt ], (4)

involving non-linear modulation terms E[A(Zt )Xt ].

2.4 Quasi-steady state referencemodel

With a quasi-steady state (Q.SS) assumption on the environment, we aim to map a het-
erogeneous linear CRN to a homogeneous one. To this end, we replace the subsystem
propensities �f (x|z) by f̄ (x) = E[ �γ (z)] + E[�(z)]x. Even though the quasi-steady
state method has seen applications with much less coarse approximations in stochastic
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models, i.e., at the level of the master equation (Rao and Arkin 2003), we use the term
in the described way at the mean level. The corresponding first-order rate matrix and
zero-order rate vector, see Sect. 2.2, are Ā = −NE[�(z)], b̄ = NE[γ (z)]. In the case
of Z ⊆ R

m≥0 and if � or γ depend linearly on z, then Ā = −N�(z̄) or b̄ = Nγ (z̄),
respectively. The mean Eq. (4) reads

d

dt
E[Xt ] = b̄ − ĀE[Xt ] (5)

and converges to the equilibrium

E[XQ.SS∞ ] = Ā
−1

b̄. (6)

We use the Q.SS model as a reference model. The deviation of the heterogeneous
from the homogeneous reference model quantifies the effect of the random environ-
ment on the subsystem. Quasi-steady state model reduction is typically justified by the
assumption that the environment operates on a faster time scale than the subsystem.
This particular rather coarse Q.SSmodel cannot be justified as a model reduction tech-
nique, when taking into consideration that more elaborated and superior techniques
(Cao et al. 2005; Mastny et al. 2007; Rao and Arkin 2003) were developed. However,
we justify our Q.SS in the reverse perspective. In the modeling context, when we build
a hierarchy of models, we may start with homogeneous reaction rates, i.e., a determin-
istic constant environment. As we pass to heterogeneous rates, the rate means are kept
constant, e.g., if the environment means were obtained from separate measurements.

Then the heterogeneous case deviates from the homogeneous Q.SS case. Is it nec-
essary to include a higher-order moment analysis in order to detect the deviation? We
demonstrate how the fingerprint of the heterogeneous rates emerges already in the
stationary mean of the subsystem.

As a point of departure, we first portray a base case without deviation at the mean
level, i.e., the stationary mean of the Q.SS model coincides with the heterogeneous
stationary mean. Suppose, the environment modulates the subsystem only via zero-
order reactions, i.e. A(z) ≡ Ā = A is independent of the environment, while b(z)
may maintain dependencies. Then Eq. (4) reduces to

d

dt
E[Xt ] = E[b(z)] − AE[Xt ]

with equilibrium state E[X∞] = A−1
E[b(z)] = E[XQ.SS∞ ]. Only in the second (and

higher) order moments the exact network deviates from the Q.SS model (Gupta and
Khammash 2022). The additional term which enters in the variance expressions is
commonly interpreted as extrinsic noise, opposed to the intrinsic fluctuations that are
attributed to the subsystem alone (Tostevin et al. 2012).

While the stationary mean is not affected by the zero-order modulation, this is
much different when we allow modulation of first-order reactions. The question how
the random environment affects the subsystem even on the mean level guides the
remainder of this paper. Since the analytic expression for the stationary mean of the
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heterogeneous system that we provide in Eqs. (10), (13) and (14) below is complex,
we mainly address this question numerically in the case studies, Sect. 4. However, in
the case of a birth-death process with modulated degradation, an analytical answer
can be obtained. We provide it in Eq. (23) below for a two-state environment and more
generally in Sect. 4.1.4.

3 Results

We analytically express the stationary mean for the class of CRNs introduced in the
previous section. The expressions only depend on the subsystem rate constants and
standard characteristics of theMarkov environment that we specify as follows. Denote
by �(z′, z)z′,z∈Z its generator and by π(z) its stationary distribution, i.e., �π = 0.
Introduce the notation �0(z) := −�(z, z) = ∑

z′ �=z �(z′, z) for the total exit rate.
Let (τn)n∈N be the jump times of Z . These induce the discrete-time Markov chain
(Wn)n := (Z(τn))n with transition kernel

K (z′, z) =
{

�(z′,z)
�0(z)

, z′ �= z

0, z′ = z
.

The process Wn is called embedded discrete-time Markov chain that corresponds to
the jump epochs of Z(t) (Blom et al. 2014).

Proposition 1 Let W be the embedded chain of a Markov jump process onZ with sta-
tionary distributionπ(z) and total exit rates�0(z), z ∈ Z . Define π̃ (z) := π(z)�0(z).
Then π̃ satisfies the stationarity condition for the embedded chain, i.e., is an unnor-
malized stationary distribution of W.

Proof For the check of the stationarity condition, see Appendix A.1. �

3.1 Auxiliary machinery

For the computation of the stationary mean, we use the average values of the process
X at the end of intervals [τn, τn+1] in environmental state z. The computation of
these average values is facilitated by the fact that, conditional on the environment, the
subsystem expectation progresses linearly.

Definition 1 Define x(n, z) := E[X(τn+1)|Z(τn) = z] and Y(t) := E[X(t)|Z[0,t]].
Conditional on the history of Z , the subsystem X is linear and hence Y evolves like

d

dt
Y(t) = b(Z(τn)) − A(Z(τn))Y(t), τn ≤ t ≤ τn+1. (7)

We note that the value Z(τn) is the only information in the history of the environment
that governs the evolution (locally in time). For the valueY(t) global in time, the initial
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jump value Y(τn) is needed, which depends in a more complex way on past values of
Z . This is solved interval-wise by

Y(t) = e−A(z)(t−t0)Y(t0) +
∫ t

t0
e−A(z)(s−t0) ds b(z). (8)

Choosing t0 = τn and t = τn+1, we just expressed

(Y(τn+1), Z(τn+1)) = g(Y(τn), Z(τn), τn+1 − τn) (9)

for a deterministic update function g. By the update characterization ofMarkov chains,
the independent waiting times (τn+1 − τn)n and independence of τn+1 − τn from
(Y(τn), Z(τn)), we get that the pair (Y(τn), Z(τn))n forms a Markov chain. Further-
more, by the tower property of conditional expectations, we obtain the following link
between x and Y

x(n, z) = E[Y(τn+1)|Z(τn) = z].

At stationarity, x(n, z) does not depend on n anymore, because (Y(τn+1), Z(τn)) has
the same distribution as (Y(τn), Z(τn−1)). Hence, we can drop n. More formally:

Definition 2 Define (Ỹn, Z̃n)n as the stationary version of the Markov chain
(Y(τn), Z(τn))n and x̃(n, z) := E[Ỹn+1|Z̃n = z]. Define x(z) := x̃(1, z).

Proposition 2 The x(z), defined in Definition 2, satisfy the linear equations

A(z)x(z) =
∑

z′∈Z
�(z, z′)π(z′)

π(z)
x(z′) + b(z). (10)

Suppose that π(z) satisfies detailed balance, then

A(z)x(z) = (�T x)(z) + b(z). (11)

Proof See Appendix A.2. �
The structure of Eq. (10) can be captured graphically. Let us visualize the recursion

by a directed graph on the set of nodes Z . There is an edge from z′ to z, if x(z′) has a
non-zero coefficient for the equation of x(z). Then this graph is precisely the transition
graph of the Markov chain Z . In particular the sparsity of Eq. (10) is dictated by the
sparsity of �.

Remark 1 Define y(z) := π(z)x(z) and denote by yT = [y(z0)T , y(z1)T , . . . ] the
concatenated vector for an enumeration of the environment state. Further define the
block matrices
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A =
⎡

⎢
⎣

A(z0) 0 · · ·
0 A(z1)
...

. . .

⎤

⎥
⎦ ∈ R

|Z|d×|Z|d ,B =
⎡

⎢
⎣

b(z0) 0 · · ·
0 b(z1)
...

. . .

⎤

⎥
⎦ ∈ R

|Z|d×|Z|.

Then Eq. (10) can be written as

(A − � ⊗ Id)y = Bπ (12)

where Id is the (d × d) identity matrix, ⊗ is the Kronecker- or tensor-product and
π ∈ R

|Z|×1 is the stationary probability vector. Denote by xT = [x(z0)T , x(z1)T , . . . ]
the concatenated vector for an enumeration of the environment state. Furthermore
consider b = Be with e ∈ R

|Z|×1 the vector with ones in all entries. Then Eq. (11)
can be written as

(A − �T ⊗ Id)x = b.

3.2 Exact stationary mean evaluation (ESME)

We computed the average values of the process X at the end of intervals [τn, τn+1]
with environmental ’label’ z. With these auxiliary quantities, we obtain the following
main result for the stationary mean.

Theorem 3 (ESME) Let X be a linear CRN in a random environment as described in
Sect. 2.3. With x defined as in Definition (2) and π the stationary distribution of Z, it
holds

E[X∞] =
∑

z∈Z
π(z)x(z) (13)

Proof See next section and Appendix A.2. �
Remark 2 If we invest Eq. (12), the resulting Eq. (13) for ESME is rewritten inmatrix–
vector notation

E[X∞] = (eT ⊗ Id)(A − � ⊗ Id)−1Bπ (14)

with⊗ the Kronecker-product, Id the d ×d-identity matrix and e ∈ R
|Z|×1 the vector

with ones in all entries. For d = 1, the expression reduces to

eT (A − �)−1Bπ

for diagonal matrices A,B. This is in agreement with the expression obtained in
(O’Cinneide and Purdue 1986, theorem 3.1). If π(z) satisfies detailed balance, then it
also holds

E[X∞] = (πT ⊗ Id)(A − �T ⊗ Id)−1b. (15)
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3.3 Proof of the ESME expression

In this section, we provide the essential part of the proof for the main theorem 3
(ESME) in detail. This equips the reader with the intuition on quantifying the shares
that environmental states contribute to the stationary mean.We define these in the next
section. Note that our proof deviates from those in queuing theory in that it does not
pursue a generating function approach. For technical parts of the proof we refer to
Appendix A.2.

By the ergodic theorem, we can move from the ensemble mean to the temporal
mean

E[X∞] = lim
N→∞

1

τN

∫ τN

0
X(t) dt . (16)

Next, we partition the time axis at the jump times τn both in the numerator and
denominator to obtain

E[X∞] = lim
N→∞

1
∑N−1

n=0 (τn+1 − τn)

N−1∑

n=0

∫ τn+1

τn

X(t) dt . (17)

The summands (in both sums) are ordered by their appearance in time. The idea is now
to sort them by the values of Z(τn). This is achieved by multiplying each summand
with unity of the form

∑
z∈Z 1(Z(τn) = z) and changing the order of summation.

The outer sum is now indexed by z ∈ Z . The next idea is to normalize the numerator
and denominator by N to get empirical averages. As N → ∞, the ergodic theorem
allows us to move back to expectations. In the denominator, this reveals the average
waiting time as a mixture of inverse exit rates:

∑

z∈Z
lim

N→∞
1

N

N−1∑

n=0

1(Z(τn) = z)(τn+1 − τn)

=
∑

z∈Z
P[Z(τn) = z]E[τn+1 − τn|Z(τn) = z]

=
∑

z∈Z
P[Z(τn) = z]�0(z)

−1.

In the numerator, the contributions of Z(τn) = z to the sum is handled analogously
by moving from the empirical mean to the expectation

∑

z∈Z
lim

N→∞
1

N

N−1∑

n=0

1(Z(τn) = z)
∫ τn+1

τn

X(t) dt

=
∑

z∈Z
E

[

1(Z(τn) = z)
∫ τn+1

τn

X(t) dt

]

(18)
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=
∑

z∈Z
P[Z(τn) = z]E

[∫ τn+1

τn

X(t) dt |Z(τn) = z

]

. (19)

The integrals in Eq. (19) evaluate to

E

[∫ τn+1

τn

X(t) dt |Z(τn) = z

]

= x(z)
�0(z)

, (20)

which is computed in the Appendix A.2 along with the remaining calculations.

Remark 3 The expression (13) has a rather astonishing interpretation that can be under-
stood as a consequence of the waiting time paradox (Feller 1971). Suppose the system
operates in stationarity. For simplicity, we assume X is one-dimensional. If we choose
a random time t , then with probability π(z) we hit an interval τn ≤ t < τn+1 with
a ’label’ Z(t) = z. Call this event Iz . The time point adds E[X(t)|Iz] to the mean if
we think of the stationary mean as

∑
z∈Z π(z)

∫ ∞
0 E[X(s)|Iz] dFz(s), and Fz(s) is

the distribution of s = t − τn when in Z(t) = z. Looking at the structure of expres-
sion (13), the integral evaluates to x(z) = E[X(τn+1)|Iz]. Why is this paradox? We
might ad hoc assume that t lands, on average, at some centered location within the
interval [τn, τn+1], in particular it is, on average, smaller than τn+1. The progression
of s �→ E[X(s)|Iz] = Y (s), see Eq. (7), is strictly monotone. Imagine it is increasing
(decreasing). Then t < τn+1 implies E[X(t)|Iz] < (>)E[X(τn+1)|Iz]. By the mono-
tonicity of the expectation, this implies

∫ ∞
0 E[X(s)|Iz] dFz(s) < (>)x(z). In contrast,

Theorem 3 informs us that equality holds. This can be understood as a consequence
of the waiting time paradox. A uniformly random time point t satisfies that τn+1 − t
is exponentially distributed with parameter �0(z) by the memory-less property of the
exponential distribution. However, due to symmetry reasons in the uniform choice of
t , the distance t − τn of the last Z -jump in backwards time is also exponentially dis-
tributed with parameter �0(z). To deviate from the main line of thought, the interval
that t lands in has, on average, twice the expected length. This paradox is resolved by
the size bias effect: longer intervals have a higher chance to be hit by the point t . The
explicit size-biased distribution of τn+1 − τn is provided in (Feller 1971). Returning
to the main line of thought, a randomly chosen time point is actually an average end-
point, regarded from the perspective of a randomly chosen interval. The difference
lies in the random choice of a time point versus the random choice of an interval. The
waiting time paradox permits the slim formulation of Theorem 3, once the recursion
in Proposition 2 is solved.

Note that for the derivation of ESME towork it is crucial to assume the conditionally
linear form of the propensities in Eq. (3). From this assumption we obtained Eq. (7)
that are closed in the conditional first moment Y(t). As a further consequence of the
linear form the update function g in Eq. (9) is linear in Y(τn), see Eq. (8), from which
we obtain the linear recursions in Eq. (10). If the linear assumption in Eq. (3) was
dropped we would not obtain closed equations as in Eq. (7) to begin with. Depending
on the functional form of the propensities the equation would involve higher order
conditional moments, e.g., for second-order mass-action reactions, or the conditional
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expectation of rational functions, e.g., for Hill propensities. The analogue to the vari-
able Y(t) would need to summarize all the dependencies and would be generally of
infinite dimension. A conditional moment closure or other projection methods would
generally be required to reduce it to finite dimensions. This may result in non-linear
g in Eq. (9) and in non-linear recursions. One way to obtain a linear equation as in
Eq. (7) would be the use of conditional probabilities P[X(t) = x|Z[0,t]], indexed over
all x ∈ N

d , together with an appropriate closure scheme. We anticipate that this can
become computationally prohibitive. However, it might be feasible for systems that
only access finitely many states, e.g., due to conservation relations. For instance, this
is the case if every reaction is a conversion reactions, i.e.,

∑d
i=1 Si j = ∑d

i=1 Pi j for
all j . While the functional form was required to be linear in the state x, we emphasize
that the dependence in the environment component z can be of arbitrary functional
form.

3.4 Quantification of environmental shares

The stationary mean is a composite result of the subsystem existing in different envi-
ronmental states. Thus, we aim to quantify the share that each environmental state
contributes to the value of the stationary mean. First, let us fix a subsystem species
1 ≤ i ≤ d and consider its stationary mean E[Xi,∞]. When we computed the sta-
tionary mean following Eq. (17), we sorted the summands by the environmental states
Z(τn) = z. Inspired by Eq. (18), we define the environmental share that environmental
state z contributes to the stationary mean of species i , as

αi (z) := 	−1
i E

[

1(Z(τn) = z)
∫ τn+1

τn

Xi (t) dt

]

(21)

with the normalization

	i :=
∑

z∈Z
E

[

1(Z(τn) = z)
∫ τn+1

τn

Xi (t) dt

]

.

We note that, by definition,
∑

z∈Z αi (z) = 1. It holds

αi (z) = π(z)xi (z)

E[Xi,∞] , (22)

because E[1(Z(τn) = z)
∫ τn+1
τn

Xi (t) dt] ∝ π(z)xi (z) by Eq. (20) and Proposition 1.

4 Case studies

We analyze several small chemical reaction networks and gene regulatory motifs,
including an example relevant in synthetic biology, to demonstrate how the stationary
mean (ESME, Theorem 3) and the environmental shares can provide insight into the
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properties of the system. Our focus is on comparing the stationary mean of the Q.SS
model and ESME to evaluate the effect of the random environment on the mean of the
embedded system. ESME requires the generator and the stationary distribution of the
Markov environment, as well as the reaction rate constants of the linear subsystem.
The generator and reaction rate constants are specified by the model, whereas the
stationary distribution can be obtained numerically, or in special cases analytically,
e.g., for the class of monomolecular CRNs (Jahnke and Huisinga 2007).

4.1 Birth-death process in a random environment

First, we illustrate the effect of three different stochastic environments E1–E3 (Fig. 2a–
c) on the stationary mean of a birth-death process X . The modulated first-order death
reaction can be seen as a bimolecular reaction. Here, we demonstrate the effect of
different relative speeds between the environment Z2 and the subspecies X . The
environments E1–E3modulate the birth and death rates independently. The birth mod-
ulation via a birth-death process Z1 is the same in all cases, while the complexity of
the death rate modulation Z2 increases.

4.1.1 Death modulation via random telegraph (E1)

First, we considered the scenario where the death rate is modulated by a two-state
Markov process (Fig. 2a). A two-state modulation highlights the effect that the Off
state Z∗

2 has on X . When the instant decay rate is zero, the molecular numbers of
X increase unboundedly. We call these phases excursions. We expect the stationary
mean to depend on (i) the length and (ii) the frequency of excursions, because (i) the
temporal average during one excursion increases with the length of the excursion,
and (ii) if excursions occur more frequently, the excursion average value is weighted
more strongly. The frequency can be characterized by POff := P[Z2 = 0], whereas the
length of excursions is proportional to the relative correlation time. The autocorrelation
function of the random telegraph process, as well as the birth-death process, is of the
form e−t/τ , where t is the time lag and τ is the correlation time. Thus, for the random
telegraph process Z2 with On and Off switching rate c3, c4, the correlation time is
τZ = (c3 + c4)−1, while for the birth-death process with constant degradation c6 it
is τX = c−1

6 . With these definitions, the expression of the stationary mean (derived
using ESME, Eq. (15), see Appendix B.1) takes the form

E[X∞] = E[XQ.SS∞ ]
(

1 + POff
τZ

τX

)

. (23)

In the queuing literature,Baykal-Gursoy andXiao (2004) alreadyderived an equivalent
expression in terms of rate constants, along with other characteristics for the model,
e.g., stationary distribution, using a generating function approach. The bracket term
is larger than 1, yielding a systematic positive deviation compared to the Q.SS as a
referencemodel (Sect. 2.4). Note that this can be expected from themoment equations.
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Fig. 2 a–c Environment schemes for the birth-death process X . The two processes Z1 and Z2 modulate the
birth and the death rate, respectively.dUpper panel, eUpper panel, f TheStationarymean as a function of the
relative correlation time systematically exceeds the Q.SS mean, to which it converges for fast environment
(valid Q.SS assumption). d Lower panel. The contributions of Z2 to the stationary mean (E1). For slow
environment the share of Z2 = 0 dominates. e Upper panel. Three regimes for E2 can be distinguished: the
asymptotic, the intermediate and the degenerate regime. The matched plot of E1, Eq. (26), shows agreement
in the fast and slow regimes and a discrepancy for the intermediate regime.Lower panel. The contributions of
Z2 = z for z ∈ {0}, (0,E[Z2]), [E[Z2], ∞) to the stationary mean indicate the distinct regimes. f Mutable
Z2 synthesis (E3): The different curves reflect different relative speeds between environmental components
Z2, Z3. For fast Z3 the muting is neglectable and the environmental effect E2 from e is recovered. For slow
Z3 the deviation from the Q.SS mean increases. g, h, i The asymptotic behaviour for E1–E3 as the relative
subsystem speed tends to ∞. The log-log plot demonstrates that E[X∞] increases proportional with the
relative correlation time. The proportionality constant was computed according to Sect. 4.1.4 and is shown
as dashed line. Different values for the g percentage of inactivity P[Z2 = 0] (E1), h environment mean
(E2), i relative speed between environmental components (E3) are shown. The relative correlation times
τZ /τX = c6/(c3+c4) (E1), c6/c4 (E2, E3) progress from slow to fast subsystem (hence slow environment)

in increasing direction. All parameter choices kept the Q.SS mean E[XQ.SS∞ ] = 10 and the ratio c5/c6 = 1
fixed. For E2, E3 E[Z2] = 8 was chosen unless indicated otherwise, while in E1 E[Z2] was calibrated to
match P[Z2 = 0] with E2. For E3 E[Z3] = 0.8 was held constant when varying τZ /τS = (c7 + c8)/c4
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The mean equation for X is

d

dt
E[X(t)] = c5E[Z1(t)] − c6E[Z2(t)X(t)] (24)

= c5E[Z1(t)] − c6E[Z2(t)]E[X(t)] − c6 Cov[Z2(t), X(t)]. (25)

The first two terms in Eq. (25) would yield the Q.SS dynamics. Since Z2 and X are
negatively correlated, the stationary mean is larger compared to the Q.SS mean. As
Eq. (23) shows, the deviation is proportional to the separation of time scales τZ/τX
and to the probability P[Z2 = 0].

Figure 2d (upper panel) portrays the stationary mean E[X∞] as a function of the
relative correlation time τZ/τX , given that the Q.SS mean and POff are constant.
Increasing the relative correlation time can be achieved by either accelerating X or
decelerating Z2. Figure2d (lower panel) shows how the share of Z2 = 0 increases
with the mean waiting time in Z2 = 0 (or decreases with increasing speed of Z2).
In the asymptotic regime τZ/τX → 0, the stationary mean reaches the Q.SS mean,
confirming that the Q.SS assumption is valid for sufficiently fast Z2 or, equivalently,
slow X .

4.1.2 Death modulation via birth-death process (E2)

We next investigated whether the generic expression Eq. (23) still holds when the
death modulator Z2 is itself a birth-death process (Fig. 2b). To this end, we altered
τZ = c−1

4 and POff = exp(−E[Z2]) and asked whether

f

(
c6
c4

)

= E[XQ.SS∞ ]
(

1 + c6
c4

exp(−E[Z2])
)

(26)

approximates E[X∞], computed via ESME in Appendix B.2. The approximation is
valid for the extreme cases of (i) c4 large compared to c6 or (ii) c4 small compared to
c6 (Fig. 2e, upper panel). Namely, we found E[X∞] = O( f ( c6c4 )) for (i)

c6
c4

→ ∞ and
(ii) c6

c4
→ 0. The means E[Z1] and E[Z2], as well as c5/c6, were fixed.

Second,we partitioned the states of Z2 into three classes: the zero state, the non-zero
states below the mean, and the states equal to or above the mean. The relative speed
τZ/τX of the environment defines which of these three classes dominates in terms
of the corresponding environmental share, i.e., the effect on the stationary mean. In
order to interpret the deviation of E2 from E1, we quantified environmental shares
according to the three classes of environment states:

α(0), α<z̄ :=
�E[Z2]−1�∑

k=1

α(k), α≥z̄ :=
∞∑

k=�E[Z2]�
α(k).

We found that, depending on the relative speed of the environment, the subsystem can
be in one of three phases (Fig. 2e, lower panel). For a small c6/c4 ratio, the non-zero
shares α<z̄ and α≥z̄ both contribute significantly, with α≥z̄ showing a slight dominance
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over α<z̄ , while the share of α(0) is negligible. For a medium c6/c4 ratio, α<z̄ takes the
lead in dominance, while α(0) is still negligible. Finally, for large c6/c4, the share α(0)
dominates the contribution to the mean. Returning to the upper panel of the Fig. 2e,
we confirm that the mean E[X∞] as a function of τZ/τX undergoes the same phase
transitions.

The qualitative behavior for large τZ/τX is driven by unbounded excursions in the
state Z2 = 0. However, in biological systems, these are generally prevented by, e.g.,
a leakage in the death rate. Upon introducing a base death rate λ0, we expect the
stationary mean to saturate at the upper bound as the relative environmental speed
approaches zero. To demonstrate this, we generalize the propensity of the death reac-
tion to f (x |z) = (c6z+λ0)x . The Fig. 5 indicates four qualitatively different regimes
of the stationary mean over the relative correlation time. In particular, the three phases
of the model E2 analysis (Fig. 2e) persist, whereas the fourth phase with the largest
τZ/τX reaches saturation.

4.1.3 Mutable synthesis of the modulator (E3)

We next considered the case where the modulating process Z2 is itself modulated
by another process, Z3 (Fig. 2c). The modulator Z3 ↔ Z∗

3 is a two-state Markov
process that acts as a switch with On (Z3) and Off (Z∗

3) states, switching rates c7, c8,
and correlation time τS = (c7 + c8)−1. Here, Z2 can be seen as a regulatory protein
produced from a promoter Z3 that alternates between On and Off states. Then Z2 is a
Markov-modulated birth-death process and, as such, represents an example of a non-
Markovian death rate modulator. Since the joint environment (Z2, Z3) is Markovian,
ESME applies (see Appendix B.3).

We varied the relative correlation time τZ/τX = c6
c4

while keeping the ratios c7
c4
,

c8
c4
, and c3

c4
constant. Furthermore, we varied the relative speed of the environmental

components by additionally varying the relative correlation time τZ/τS = c7+c8
c4

while
keeping the fraction of time the modulator is active, E[Z3] = c7

c7+c8
, constant. For a

large relative speed c7+c8
c4

, the original model with a constant birth rate c3E[Z3] is
recovered as expected.

Comparing the stationary means at different relative switching speeds of the mod-
ulator (Fig. 2f), we found the following. For slower relative speeds, the deviation
from the Q.SS mean becomes more pronounced already at smaller correlation times
c−1
4 , and the intermediate phase vanishes. Meanwhile, Fig. 6a visualizes how the entry
into the degenerate regime depends on τZ/τS and E[Z3]. The muting prolongs the
excursions of X in the zero or sub-average Z2 states.

4.1.4 Stationary mean for slow environment

We considered each of the environments E1–E3 without leakage in the death rate
of X and analyzed the behaviour for a slow environment and a fast subsystem, i.e.,
τZ/τX → ∞. We aimed at isolating the effect of the time scale separation. For this
purpose, we kept the means and the relative speed of the environment components, as
well as c5/c6, fixed. As the plots of the environmental shares (Figs. 2d, e, 6b) suggest,

123



43 Page 18 of 40 M. Sinzger-D’Angelo et al.

the state Z2 = 0 is the only one that contributes in the limit case τZ/τX → ∞. From
this, we derived

E[X∞] = O
(

τZ

τX

)

, (27)

see Appendix B.4, i.e., the stationary mean grows proportionally to the time scale
differences. The parallel asymptotes in the log-log plots with unit slope in the Fig. 2g–
i reflect this dependence.

4.1.5 Application to a division-dilution model

In a model similar to E1, Sect. 4.1.1, Beentjes et al. (2020) studied the dilution of
protein copy numbers due to cell division. The mean copy number in a single lineage
increased in a model with Erlang distributed division time and binomial partitioning
at cell division (model III in the reference) compared to the same model with deter-
ministic division times (model II) and to a birth-death model with averaged effective
degradation rate (model I). We can attribute this deviation to the random cell division
times. To demonstrate this attribution, we elaborate on the analogy to the random
duration of excursions in E1. Let the extrinsic noise component (the environment) be
the cell cycle duration. To formalize this, we introduce the time points of division,
denoted by a sequence of random variables 0 =: τ0 < τ1 < τ2 < . . . , such that
the τi+1 − τi are i.i.d. Let X(t) be the number of proteins that increases on average
with rate λ between environment jumps, be it by geometrically distributed bursts or
by simple birth reactions. Furthermore, let X(τi ) follow a Binomial distribution with
p = 1/2 and N = X(τi−). If the protein production, the binomial partition at divi-
sion, and the environment jumps are all assumed to be stochastically independent, it
is easy to see that Y (t) := E[X(t)|(τi )i ] evolves as Ẏ (t) = λ between the jumps and
is set to Y (τi ) = 1/2 · Y (τi−) at the environment jumps. It is furthermore easy to
derive E[Y (τi )] = λE[τ1] for the stationary system. Then, analogous to the derivation
in Sect. 3.3, we obtain

E[X∞] = lim
N→∞

1
N

∑N
i=1

∫ τi
τi−1

Y (t) dt

1
N

∑N
i=1 τi − τi−1

= λE[τ1] + 1/2λE[τ 21 ]
E[τ1]

= λ

2

(

3E[τ1] + Var[τ1]
E[τ1]

)

.

For (N , N/y)-Erlang distributed τ1, i.e., E[τ1] = y and Var[τ1] = y2/N , this is in
accordance with Eq. (39) in Beentjes et al. (2020), which was derived using a gener-
ating function approach. Compared with our two-state Markov model of alternating
linear increase and exponential decay in X , the division-dilution model replaces the
periods of exponential decay by instantaneous decays at divisions. In both models, the
stochasticity in the duration of excursions (referred to as cell cycle length variability
in the reference) causes an increase in the stationary mean. While in the reference
paper this is the single cause of the increase compared to the model I, in our case
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the increase is caused by an interplay of the random duration, the frequency of the
excursions, and the time scale separation between Z and X . Note that the reference
models (model I and Q.SS, respectively) are constructed differently. The degradation
rate of the model I was tuned such that the stationary mean matches with that of
the deterministic division-dilution model II. As a consequence, it encodes the time
scale of the environment, whereas in the Q.SS reference model, the degradation rate
is uncoupled from the environment time scale. This uncoupling provides a degree of
freedom which causes a larger relative increase of the stationary mean value in our
case study than in Beentjes et al., compared to the respective reference models.

4.2 Synthetic controller mitigating the heterogeneous degradation rate

One goal of synthetic biology is to design circuits that are robust to environmental
changes. The setpoint objective specifies a target copy number or concentration at
which the species of interest should be kept robustly, i.e., the concentration is supposed
to re-adapt when environmental changes perturb it. We considered the setting in which
an environmental birth-death process modulates the degradation of X (Fig. 3a). A
controller species senses the environment and acts on the birth rate of X to attenuate
the effect and achieve the setpoint objective for X (Zechner et al. 2016, Fig S.9c). We
chose the Q.SS mean as the setpoint, and as the deviation measure we employed the
relative deviation


 = E[X∞] − E[XQ.SS∞ ]
E[XQ.SS∞ ] , (28)

or the accuracy measure
−1, respectively. In the previous sections we saw that Z = 0
can be the main driver of deviations from the Q.SS. The controller U works against
this effect: during phases of otherwise unbounded X excursions, the birth rate of X is
now down-regulated by U and, in the extreme case, comes to a halt at a plateau (for
details see Appendix B.5).

With stochastically independent birth and death modulation that we considered
so far, the stationary mean was not affected by fluctuations in the birth modulation,
and we could apply the Q.SS assumption on Z1. Here, on the contrary, the time
scale of the controller species U matters in reacting robustly to the environment.
Figure3b depicts the stationary mean of X for different controller speeds c2/c6. The
deviation 
 gets more pronounced for a slower controller, whereas a fast controller
achieves better accuracy 
−1. For the effect to become apparent, the environment
needs to be sufficiently slow (τZ/τX large). When the controller operates slowly, it
does not have the attenuating effect. In this regime, the target species achieves a base
accuracy that depends on a given environment speed and its mean (see Fig. 3c). The
base accuracy decreases when the environment gets lower in mean or slower in time
scale. In particular, a slow controller achieves worse accuracy in a slow environment
compared to a fast one. As a contrary effect, as the controller speeds up, it departs to a
better accuracy later in a fast environment than in a slow one. That is why in Fig. 3c the
accuracy curves for slow and fast environment intersect, which also explains the local
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Fig. 3 a Reaction scheme for the environment with controller. The birth-death environment E2 is mitigated
by a controller that senses the environment and regulates the birth rate of X accordingly. b The stationary
mean as a function of the relative correlation time τZ /τX . Different relative controller speeds c2/c6 are
plotted. Circles (triangles) indicate fast (slow) environment. c Accuracy 
−1 as a function of controller
speed c2/c6 for different values of environment mean E[Z ] and speed c4/c6. Green (purple) indicates
slow (fast) environment. The mean value E[Z ] = 4 is highlighted by triangles (slow) or circles (fast) to
match b. The slow environment achieves lower accuracy than the fast one for inactive controller (controller
speed near 0). In order to improve accuracy, less increase in controller speed is needed for slow than for fast
environment. As a consequence the accuracy curves for slow and fast environment intersect. The dashed line
indicates the the critical controller speed needed to reach a given accuracy level for all environment mean
and speed. The slow and low environment exhausts this universal accuracy-controller relation. Parameters

were E[XQ.SS∞ ] = c1/c2 = 10, c6E[Z2] = 4(2, 0.1), c6/c4 = 1 (circles, purple), 100 (triangles, green)
(color figure online)

maxima in Fig. 3b. The slower environment - although having a lower base accuracy
as a handicap - can be compensated for (in terms of accuracy) already at a slower
controller speed.

As a key question, we asked at which time scale the controller must operate to
mitigate environmental perturbations with a given accuracy. To formalize this, we
request the deviation in Eq. (28) to stay below a critical margin 
∗ or the accuracy
to stay above 1/
∗. Interestingly, we found that for each accuracy margin, a critical
controller speed can be chosen that operates universally for all environment speeds
and means (see the dashed line in Fig. 3c). For fixed c5/c6 and c1/c2, the critical
relative controller speed is given by

c∗
2/c6 = (
∗)−1. (29)

When the environment changes inmean or time scale, the controller holds the accuracy
within the tolerated margin. Since the robustness that we analyze is defined via the
steady state behaviour, our statement is restricted to environmental changes that occur
so rarely that the steady state can be reached between changes (see Appendix Fig. 8).

Which environment speed and mean exhaust the critical accuracy? It is not the fast
and furious (i.e., large mean) environment that causes deviation from Q.SS. For fast
environment, the degradation rate of X averages out to the mean, making the Q.SS
assumption valid. For large (furious) environment, the main driver of deviation 0 is
hardly visited. In addition, the furious environment boils up the controller to act in
a regime where it has a higher signal-to-noise ratio. This leaves the slow and low Z
to exhaust the critical deviation. During excursions (Z = 0), the average dynamics
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follows

u̇ = −c2u, u(0) = E[U |Z = 1] = c1/c2

ẋ = c5u, x(0) = E[XQ.SS∞ ].

Consequently, the deviation for an infinitely long excursion rises, on average, to the
value

x(∞) − E[XQ.SS∞ ] = c5c1
c2

∫ ∞

0
e−c2t dt = E[XQ.SS∞ ]c6

c2
.

The excursion becomes the single dominating share as E[Z ] tends to 0, and τZ → ∞
justifies infinitely long excursions. Since this dominating case is linear, the average
dynamics is justified and the heuristic derivation of Eq. (29) can be made rigorous.

In summary, we observed that the accuracy margin was exhausted by the regime of
slow and low environment, leaving the controller with the simple task to react as fast
as to guarantee that a plateau is reached within the tolerated deviation, on average.
This finding joins the variations on the theme ’faster sensor molecules achieve higher
accuracy’. Note that the setting and the control objective differ from Lestas et al.
(2010). In the latter, a sensor molecule recorded the progression of the target species,
while here it senses the environment. The objective of suppressing fluctuations, i.e.,
the variance, in the controlled species induced the quartic root law on the sensing event
counts. Here, in contrast, we asked for the stationary mean to stay within a tolerance
of the setpoint, and this induced an inverse proportional law on the speed with which
the controller responds to the environment. To summarize, both findings show that,
when under the influence of a random environment, the accuracy can be increased at
the cost of a faster sensor molecule. Our finding stands out due to its independence of
size and speed of Z and the proportional relation in Eq. (29).

4.3 Stochastic toggle switch in a random environment

In the previous examples, we observed the effects of the modulation of the stochastic
birth-death process given different architectures of this process. The next question
of interest is whether the modulation effects propagate into the networks constructed
from several such processes that interact with each other. Here, we consider a simple
genetic toggle switch without cooperative binding, which is one of the best-studied
small gene networks that induces bistability (Lipshtat et al. 2006). A balance of a
toggle switch is known to be sensitive to noise (Tian and Burrage 2006), and we
hypothesise that the effect of the noise in the stochastic environment should be visible
at the level of the mean expression of the component genes.

Wemodel the genetic toggle switch as a subsystem of two processes that are modu-
lated by a shared environment (Z1, Z2) in the sameway as the single gene ismodulated
in the Sect. 4.1.2. These processes interact with each other by reducing the birth rate of
their counterparts (Fig. 4a). In terms of a gene network, each process here is the num-
ber of proteins expressed by a gene. Their birth and death rates are modulated by the
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environment, and the birth rates are decreased in the presence of proteins expressed
by the other gene. This model can be described by the following set of stochastic
reactions:

R1,R2 : ∅ c1−→ Z1
c2−→ ∅

R3,R4 : ∅ c3−→ Z2
c4−→ ∅

R5 : Z1
g1−→ Z1 + X1, g1 = a1 − b1X2

R6 : Z1
g2−→ Z1 + X2, g2 = a2 − b2X1

R7 : X1 + Z2
c6−→ Z2

R8 : X2 + Z2
c6−→ Z2

Reactions R1,R2,R3,R4 model the stochastic environment. Reactions R5,R6
describe gene expression and regulation modulated by the stochastic environment Z1.
Rates a1, a2 correspond to the rate of expression of a the fully active gene, whereas
coefficients b1, b2 are proportional to the strength of repression of the correspond-
ing regulatory molecules produced by the counterpart gene. Finally, reactions R7,R8
describe the decay of the gene products modulated by the stochastic environment
Z2. The subsystem species X1 and X2, besides interacting directly, are additionally
coupled by the confounding factors Z1 and Z2.

Note that here we use a linear function to model repression, instead of, e.g., a
Hill function, which would be a standard choice for this purpose (Santillán 2008;
Zhu et al. 2007). This decision is based on the fact that a standard repression model
employs a non-linear reaction propensity, whereas ESME can work only with linear
subsystems. In order to adhere to an implicit assumption that numbers of each species
of the subsystem cannot be negative, we only considered the region of the parameter
space of the model where the following is true. First, no share contributed by any
state of the environment can be negative. Second, the total share contributed by the
states that stabilize at negative values of the subsystem species cannot exceed 0.01%,
which keeps its impact on the modulated mean expectation negligibly small (see also
Appendix C.1).

To investigate the effect of the environmental modulation on the asymmetry of the
toggle switch in the unimodal regime, we first define the asymmetry of the switch as
a ratio of the stationary means of its component processes:

r = E[X1,∞]
E[X2,∞] .

In the case of a constant environment,we denote this ratio as r0, the baseline asymmetry
of the switch:

r0 = E[XQ.SS
1,∞ ]

E[XQ.SS
2,∞ ] .

Then we can quantify the effect of a given environmental modulation on this asym-
metry by computing the relative asymmetry change ratio R = r

r0
.
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Fig. 4 The relative asymmetry change ratio R and its counterpart R̃ as a function of the relative correlation
time τZ /τX for different baseline asymmetry r0 and r̃0 values, computed for the subsystem species of a
toggle switch with fixed parameters E[XQ.SS

1,∞ ] = 30, E[XQ.SS
2,∞ ] = 30, 27, 25, b1 = b2 = 0.02, c6 = 0.01,

with a1, a2 matched accordingly; and b oscillator with fixed parameters E[XQ.SS
1,∞ ] = 40, E[XQ.SS

2,∞ ] =
40, 20, 5, b1 = 0.02, c6 = 0.01, with a1 and b2 matched accordingly. The fixed parameters of the
environment of both toggle switch and oscillator are: c1 = 300, c2 = 100, E[Z2] = 10. All simulations
were performed for 106 time points

Here, we chose the model parameters that result in three different r0 ratios and, for
each of these cases, varied the relative correlation time τZ/τX = c6

c4
while keeping the

ratio c3
c4

fixed. The stationary means for various τZ/τX were computed with ESME
(Appendix B.6). From Fig. 4a (solid lines), (i) a symmetric switch stays symmetric
also in a random environment, (ii) the relative asymmetry in an originally asymmetric
switch increases with the relative correlation time, (iii) this effect of the environmental
speed on the asymmetry is higher when the baseline asymmetry, r0, is higher. We also
note that, for asymmetric switches, the value of R grows towards a vertical asymptote.
This asymptote signifies the τZ/τX value at which theweaker gene of the toggle switch
(in our example, it is X2) becomes repressed so strongly that itsmean approaches 0. The
switch model with the repression implemented using linear propensities is descriptive
of the modelled system only on the left side of this asymptote (for limitations, see
Appendix C.1).

Given that the asymptote is an artifact of the linearization in reactions R5,R6, we
verified that, apart from it, the observed monotonic dependencies (i), (ii), (iii) of the
relative switch asymmetry are indeed the property of the toggle switch in a random
environment. For this, we replaced the R5 and R6 with reactions R∗

5 and R∗
6

R∗
5 : Z1

g̃1−→ Z1 + X1, g̃1 = k1
KA1

KA1+X2

R∗
6 : Z1

g̃2−→ Z1 + X2, g̃2 = k2
KA2

KA2+X1

that utilize a Hill function (without cooperative binding), which is a standard way
to describe the expression of a gene subject to repression (Santillán 2008; Zhu et al.
2007). Since the exact stationary mean is computationally unfeasible to obtain, we
performed stochastic simulations (Doob 1945; Gillespie 1976) of the changed model.
To ensure that the models match, we performed a “reverse linearization” between
the linear and the Hill function repression models (Appendix B.7). Furthermore, we
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chose parameters of the reactions R∗
5,R

∗
6 such that r0 and r̃0 take similar values for

convenient comparison.
From Fig. 4a, we see that all the three observations (i), (ii), (iii) made with regards

to how τZ/τX affects the asymmetry of a toggle switch hold for the model with a
nonlinear repression function. However, while the behaviour is the same in terms of
the symmetric case (i) and themonotonic properties (ii), (iii), there is a shift along the x-
axis between the R and R̃ values. This is likely because the Hill function represses less
strongly than its linearization. For the linearized repression, the dominant stable state
with high X1 and low X2 is induced at a lower perturbation, i.e., at lower correlation,
even driving the X2 to full extinction. We conjecture that an asymptote also occurs for
the Hill model, caused by much higher X1 values than X2 values due to excursions,
likely also driving X2 to full extinction.

Our method is limited in that it has only access to the means and requires lineariza-
tion. Thus, we focused on the amplification of asymmetry in the unimodal regime.
However, other studies looked into the effect of degradation modulation on trajec-
tory properties, i.e., stability and switching, and on the shape of the distribution, i.e.,
bimodality. Xu et al. (2014) examined an ODE model of the toggle switch with noise
in the degradation rates and found noise induced switching. Holehouse et al. (2020)
considered an autoregulatory gene expression system that can exhibit bimodality and
showed that bimodality can be induced by noise in the degradation rate, even if the
system without noise is in the unimodal regime.

4.4 Stochastic oscillator in a random environment

While some effects of the random environment on the mean levels of the toggle switch
components were to be expected, it might seem counter-intuitive that an effect will
also be visible in a network with a periodic behavior. In particular, one might object
that, in an oscillatory system, the information about the network period is lost when
wemove from the time series to the mean levels in the analysis. However, an oscillator
is also characterized by an amplitude of its components, and we expect that the effects
of the random environment on these amplitudes will be visible in the mean levels of
the subsystem components. Further, changes in the dynamics of skipped oscillations,
which are possible in stochastic oscillators, could propagate into changes in the mean
species levels.

Reactions of the oscillator model differ from the reactions of the switch model
(Sect. 4.3) only in reaction R6, which now models induction of the species X2 by the
species X1 with the induction strength coefficient b2 and takes form:

R6 : Z1
g2−→ Z1 + X2, g2 = b2X1,

Note that here, as in Sect. 4.3, we model repression propensity with a linear function.
Thus, we investigated the model only in the subset of its parameter space where no
share contributed by any state of the environment is negative and the mean values of
the subsystem species stabilize at non-negative values in all considered states of the
environment.
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We quantified the effect of a given environmental modulation on this oscillator
by computing the relative asymmetry change ratio R = r

r0
, as in Sect. 4.3, in three

different r0 ratios over the varied relative correlation time τZ/τX = c6
c4

while keeping
the ratio c3

c4
fixed. The stationary means for various τZ/τX were computed with ESME

(Appendix B.7). From Fig. 4b (solid lines), R decreases with the relative correlation
time for all r0 values, and this effect is more pronounced at higher r0 values. In terms of
X1 and X2, this means that a random environment causesE[X1,∞] to decrease relative
toE[X2,∞], and this effect is stronger when the oscillator has higherE[XQ.SS

1,∞ ] relative
to E[XQ.SS

2,∞ ].
As in Sect. 4.3, we verified that the observed effects are the property of the studied

network in a random environment and do not qualitatively depend on the linearization
assumption made when modelling repression in reaction R5 by performing stochastic
simulations of the oscillator model with R5 replaced by R∗

5. From Fig. 4b (dots), the
results of the simulations are qualitatively the same as those produced by ESME.

5 Discussion

In this work, we provided an exact stationarymean evaluation for linear chemical reac-
tion networks in Markov environment, as a way to address (i) the difficulty of deriving
the means in networks with bimolecular reactions and (ii) the computational infeasi-
blity of co-simulating the environment with the subsystem. Namely, the computation
of stationary means in chemical reaction networks commonly relies on Monte Carlo
simulation, moment closure or the approximation via a linear program with convex
constraints. These approaches are often time-consuming or prone to approximation
errors. Our expression computes the stationary mean exactly for a particular class of
chemical reaction networks, i.e., the ones that can be decomposed into a linear sub-
system and an environment, where the modulation is only allowed unidirectionally
from environment to subsystem. Often such decomposition does not exist, because the
requirements of linearity and unidirectional modulation are limiting. Common viola-
tions are the following: (1) the existence of a reaction A+ B → C where at least one
of the three species is in the subsystem, e.g., the MAPK/ERK pathway (Purutçuoǧlu
and Wit 2006). If A is an environmental species, it needs to be preserved during the
reaction, and A and B cannot be both in the subsystem due to linearity. (2) Systems for
which any partition into two sets of species comprises bimolecular reactions in both
directions are not feasible. Finally, (3) reaction rates that have aHill or other non-linear
dependency violate the linearity constraint. We suggest that, for non-linear propen-
sities, Monte Carlo simulations with the method of conditional moments (Hasenauer
et al. 2014) are used to obtain numerical estimates of the stationarymean.Additionally,
our expressions require the stationary distribution of the environment, which further
limits our approach.

In the presented case studies, we focused on the effect of a modulated degradation.
As a general effect, we found that, as the environment slows down, the mean deviates
more, and we attributed this effect to the excursions when the environment is in
the zero state. We also described more subtle non-linear effects, such as a phase in
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which the non-zero environment states that are below average dominate the mean, or a
locally maximal deviation when a controller mitigates the effect of excursions. In the
literature, the effect of modulated degradation was recently described in Keizer et al.
(2019), Holehouse et al. (2020). Holehouse et al. investigated the effect of extrinsic
noise in the reaction rates on an autoregulatory gene expression system. Focusing
on the shape of the stationary distribution of the subsystem, they found that extrinsic
noise in the degradation rate can help explore the secondmode of the deterministically
bistable system resulting in a bimodal distribution for a range of noise strengths. They
also found noise induced bimodality. The effect of modulated degradation on themean
was explicitly studied by Keizer et al. for gene expression models with and without
feedback using lognormally distributed slow extrinsic noise. The authors obtained that
the mean increases by up to 10% for a moderately increased coefficient of variation.
In contrast, we studied the deviation for increased time scale separation between
the environment and the embedded birth-death system and found that much larger
increases are possible.

Since protein dilution rather than active degradation can be a primary environmental
noise source, we compared our case study E1 with a model of dilution due to cell divi-
sion Beentjes et al. (2020). In both models, the stationary mean increased compared
to the respective reference model. Beentjes et al. consider this increase of the mean
as small and irrelevant in their model, which is the case when N of the Erlang distri-
bution is large. Instead, they bring to attention that the negative binomial stationary
distribution of a birth-death model with geometrically distributed bursts persists under
the influence of the environment, with a changed interpretation of the parameters. In
contrast, with the environment speed as an additional degree of freedom we obtain
large relative increases which we consider relevant. In addition, the comparison with a
model that employed an Erlang distributed interjump time in the environment suggests
to extend our approach fromMarkov to semi-Markov environments. Furthermore, this
comparison showed that we can incorporate the instantaneous decays as long as the
change of the mean can be expressed by a linear relation.

Models on continuous state spaces, e.g., Langevin equations, can often handle
rates that become temporarily negative. However, in Holehouse et al. (2020), the
approximating Langevin equations resulted in negative probabilities. Similarly, we
found that our method can be sensitive to temporarily negative rates when summands
in Eq. (13) get negative. This can prohibit rate linearization. When we compute ESME
numerically, we need a truncation of the environment to a finite state space. For this, the
finite state projection method (Bronstein and Koeppl 2018; Munsky and Khammash
2006) or other tools (Wolf et al. 2010) can be employed.

In the experimental context, we suggest that the effect of an environmental embed-
ding can be distinguished from the Q.SS model with averaged environment via a
characteristic fingerprint at the bulk level. Single stationary mean values are hardly
informative to distinguish between both. However, functional dependencies over sys-
tem parameters can look qualitatively different for a Q.SS model compared to an
extension via an environmental embedding. In this work, we mostly investigated the
time scale separation as a system parameter and saw a characteristic qualitative devi-
ation. While the Q.SS model remained constant, the environment model generated
a dependency with phases of distinct functional behaviour. It is hard to modify the
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time scale separation experimentally. However, other system parameters, such as vol-
ume, temperature, inducer concentration or time, can yield dependencies that achieve
a phase change. In this way, the effect of the environment could be seen at the bulk
level.

Reduction techniques for the stochastic simulation of chemical reaction networks
can have difficulties in capturing the asymptoticmean correctly (Bronstein 2020, p.70).
Our approach might assist in detecting the parameter regimes in which approximate
simulations succeed. On the one hand, ESME can replace theMonte Carlo approxima-
tions. On the other hand, our quantification of environmental shares can permit insight
into the failure mode of the approximate simulation or model reduction technique.
The knowledge of the exact stationary mean can also tune approximation methods
towards capturing the asymptotic mean correctly.

In future work, we seek to derive expressions for the stationary variance and gen-
eralize the expressions to a semi-Markov environment, analogously to Falin (2008),
and to environments on continuous state space.
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Appendix A Proofs of Proposition 1 and themain result (ESME)

A.1 Proof of Proposition 1

Proof We verify the stationarity condition for the embedded chain.

∑

z∈Z
K (z′, z)π̃(z) =

∑

z �=z′

�(z′, z)
�0(z)

π(z)�(z) = −�(z′, z′)π(z′) = �0(z
′)π(z′) = π̃(z′).

�
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A.2 Proofs of Proposition 2 and Theorem 3 (ESME)

In the proofs we make use of the following lemma.

Lemma 4 Let T be exponentially distributed with parameter μ > 0 and suppose that
all eigenvalues of A have non-negative real part. Then μ I+A is invertible and

(i)

E[e−AT ] = μ(μ I+A)−1

(ii)

E[
∫ T

0
e−At dt] = (μ I+A)−1

(iii)

E[
∫ T

0

∫ t

0
e−As ds dt] = μ−1(μ I+A)−1

Proof of the lemma

E[e−AT ] =
∫ ∞

0
μe−μt e−At dt = μ(μ I+A)−1

E[
∫ T

0
e−At dt] =

∫ ∞

0
μe−μτ

∫ τ

0
e−At dt dτ =

∫ ∞

0
e−At

∫ ∞

t
μe−μτ dτ dt

=
∫ ∞

0
e−At e−μt ds = (μ I+A)−1

E[
∫ T

0

∫ t

0
e−As ds dt] =

∫ ∞

0
μe−μτ

∫ τ

0

∫ t

0
e−As ds dt dτ

=
∫ ∞

0
e−As

∫ ∞

s

∫ ∞

t
μe−μτ dτ dt ds

=
∫ ∞

0
e−As

∫ ∞

s
e−μt dt ds =

∫ ∞

0
e−Asμ−1e−μs ds

= μ−1(μ I+A)−1

�
Proof of proposition 2

x(z) = E[Y(τn+1)|Z(τn) = z]
= E[e−A(z)(τn+1−τn)|Z(τn) = z]E[Y(τn)|Z(τn) = z]

+ E[
∫ τn+1−τn

0
e−A(z)t dt |Z(τn) = z]b(z)
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= �0(z)(�0(z) I+A(z))−1
∑

z′ �=z

P[Wn−1 = z′|Wn = z]x(z′) + (�0(z) I

+ A(z))−1b(z)

= �0(z)(�0(z) I+A(z))−1
∑

z′ �=z

K (z, z′) π̃(z′)
π̃(z)

x(z′) + (�0(z) I+A(z))−1b(z)

= �0(z)(�0(z) I+A(z))−1
∑

z′ �=z

�(z, z′) π(z′)
π(z)�0(z)

x(z′) + (�0(z) I+A(z))−1b(z)

= (�0(z) I+A(z))−1
∑

z′ �=z

�(z, z′)π(z′)
π(z)

x(z′) + (�0(z) I+A(z))−1b(z)

Hence,

(�0(z) I+A(z))x(z) =
∑

z′ �=z

�(z, z′)π(z′)
π(z)

x(z′) + b(z),

or upon adding of �(z, z)x(z):

A(z)x(z) =
∑

z′∈Z
�(z, z′)π(z′)

π(z)
x(z′) + b(z).

If detailed balance hold, we substitute

�(z, z′)π(z′)
π(z)

= �(z′, z),

yielding

A(z)x(z) =
∑

z′∈Z
�T (z, z′)x(z′) + b(z).

�
Proof of Eq. (20) The integrals evaluate to:

E[
∫ τn+1

τn

Y(t) dt |Z(τn) = z]

= E[
∫ τn+1−τn

0
e−A(z)(t) dt |Z(τn) = z]E[Y(τn)|Z(τn) = z]

+ E[
∫ τn+1−τn

0

∫ t

0
e−A(z)s ds dt |Z(τn) = z]b(z)

= (�0(z) I+A(z))−1
∑

z′ �=z

P[Wn−1 = z′|Wn = z]x(z′)

123



43 Page 30 of 40 M. Sinzger-D’Angelo et al.

+ �0(z)
−1(�0(z) I+A(z))−1b(z)

= x(z)
�0(z)

�

Proof of theorem 3

E[X∞] = lim
N→∞

∫ τN
0 X(t) dt

τN

= limN→∞ 1
N

∑N
n=0

∫ τn+1
τn

X(t) dt
∑

z∈Z 1(Z(τn) = z)

limN→∞ 1
N

∑N
n=0(τn+1 − τn)

∑
z∈Z 1(Z(τn) = z)

=
∑

z∈Z limN→∞ 1
N

∑N
n=0 1(Z(τn) = z)

∫ τn+1
τn

X(t) dt
∑

z∈Z limN→∞ 1
N

∑N
n=0 1(Z(τn) = z)(τn+1 − τn)

=
∑

z∈Z P[Z(τn) = z]E[∫ τn+1
τn

X(t)|Z(τn) = z]
∑

z∈Z P[Z(τn) = z]E[τn+1 − τn|Z(τn) = z]

=
∑

z∈Z π̃(z) x(z)
�0(z)∑

z∈Z π̃(z)�0(z)−1

=
∑

z∈Z π(z)x(z)
∑

z∈Z π(z)

�

Appendix B Details on case studies

B.1 E1: Two-state death rate modulation

The birth rate is a birth-death process and the death rate is a two-state Markov process
(random telegraph model), i.e., consider the CRN (see Fig. 2a)

R1,R2 : ∅ c1−→ Z1
c2−→ ∅

R3,R4 : Z∗
2

c3−⇀↽−
c4

Z2

R5 : Z1
c5−→ Z1 + X

R6 : X + Z2
c6−→ Z2.

(B1)

The stationary means of Z1 and Z2 are easily identified as

E[Z1] = c1
c2

, E[Z2] = c3
c3 + c4

.
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In this case, the dimension of the subsystem is d = 1. Then A(z1, z2) = c6z2 and
b(z1, z2) = c5z1 are scalars. Since Z1 only enters via the zero-order reactions, i.e., via
b, we use the Q.SS assumption and set it to its mean. This reduces the environment to
Z = Z2 on the state space Z = {0, 1}. The generator of the environment is

� =
[−c3 c4
c3 −c4

]

with stationary distribution π = Bernoulli(c3/(c3 + c4)). The expression of the sta-
tionary mean is then (Eq. (15))

E[X∞] = c1c5(c3 + c4)

c2c3c6

(

1 + c6c4
(c3 + c4)2

)

. (B2)

We analyzed the behaviour of the stationary mean E[X∞] as a function of the relative
correlation time c6/(c3 + c4).

B.2 E2: Birth-deathmodulator

In Eq. (B1), replace the two reactions R3,R4 by

R3,R4 : ∅ c3−→ Z2
c4−→ ∅. (B3)

The full CRN is visualized in Fig. 2b.
While the collection of rates A,b of the X dynamics remains the same, we make

adjustments in the stationary mean state space, generator and stationary distribution
of Z2 accordingly:

E[Z1] = c1
c2

, E[Z2] = c3
c4

.

The standard birth-death generator on state space Z = N0 is given by

�(z, z′) =

⎧
⎪⎨

⎪⎩

c3, z = z′ + 1

c4z′, z = z′ − 1

−(c3 + c4z′), z = z′
(B4)

with stationary distribution π = Poisson(c3/c4). The expression of the stationary
mean was already presented in Falin (2008) and O’Cinneide and Purdue (1986). Anal-
ogously to model E1, we analyzed the behaviour of the stationary mean E[X∞] as a
function of the relative correlation time c6/c4. For computational purposes, we trun-
cate the state space Z to ZN = {0, 1, . . . , N } with a large enough N . Here, N = 99
was used.
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Fig. 5 Model E2 with leakage. Upper panel. Stationary mean as a function of ln(c4). The stationary mean
systematically exceeds the Q.SS mean c1c5

c2c6(c3/c4+λ0)
= 9.97. Four regimes can be distinguished: the

asymptotic regime, the intermediate regime, the rising degenerate regime and the saturating degenerate
regime. Lower panel. The contributions of Z2 to the stationary mean. Parameters were c1c5

c2
= 60, c3

c4
=

6, c6 = 1, λ0 = 0.02

B.2.1 Leakage

Compared to model E2, we include a base degradation rate λ0 for reaction R6, i.e.,
the propensity of reaction R6 is f (x, z) = (c6z + λ0)x . This altered A, i.e., A(z) =
c6z+λ0. The Fig. 5 indicates four regimes, in particular the three phases of the model
E2 analysis (Fig. 2e) persist. The fourth phase with largest τZ/τX reaches saturation.

B.3 E3: Mutable synthesis of themodulator

We modified reaction R3 of model E2, see Eqs. (B1) and (B3), to

R3 : Z3
c3−→ Z3 + Z2

R7,R8 : Z∗
3

c7−⇀↽−
c8

Z3.
(B5)

Then the two-dimensional environment Z = (Z2, Z3) ∈ N × {0, 1} has a stationary
distribution that is expressed via the confluent hypergeometric function. Expressions
for P[Z2 = m, Z3 = 0] and P[Z2 = m, Z3 = 1] were derived analogously to
Peccoud and Ycart (1995) by expanding the generating function given therein. Define
a = c7

c4
, b = c7+c8

c4
, μ = c3

c4
. Then it holds

P[Z2 = m, Z3 = 0] = (b)(m + a)(b − a)

(a)(m + b + 1)
1F1(m + a,m + b + 1,−μ)

μm

m!
P[Z2 = m, Z3 = 1] = (b)(m + a + 1)

(a)(m + b + 1)
1F1(m + a + 1,m + b + 1,−μ)

μm

m! .

ESME was calculated numerically using Eq. (14) with truncation N = 100. Figure6a
shows the entry of the stationary mean into the degenerate regime as a function of the
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Fig. 6 Model E3 mutable c3 synthesis. a The figure shows the c4 value at which α(0) and α<z̄ intersect
as a function of c8

c4
. Dominant α(0) > α<z̄ indicates that the stationary mean has entered the degenerate

regime. The three curves illustrate different values ofP[Z3 = 0]. ForP[Z3 = 0] = 0.5, 0.8 and slow enough
relative speed c8/c4 no intersectionwas found, becauseα(0) dominatedα<z̄ for all c4. ThemeanE[Z2] = 8
was fixed and c3/c4 adapted accordingly. Parameters were c1 = 0.4, c2 = 0.01, c5 = 1, c6 = 0.5 and

E[XQ.SS∞ ] = 10. b The left upper panel shows the slow switching Z3, whereas the right panel shows the
fast switching Z3, compare Fig. 2f. The corresponding shares are depicted in the lower panels. Parameters
were as in Fig. 2f

relative speed of the modulator Z3 ↔ Z∗
3 . Figure6b depicts the environmental shares

for the slow and the fast modulator.

B.4 Asymptotic behavior in a slow environment

Consider anyof themodelsE1,E2,E3.Under thefixationofE[XQ.SS∞ ], c5
c6

,E[Z2],E[Z3]
and τZ/τS the stationary mean only depends on the relative time scale τZ/τX . Hence
in the following we fix τX = c−1

6 = 1. Then, τZ/τX → ∞ is equivalent to c4 → 0.
By our main theorem (3), we obtain E[X∞] = O(π(0)x(0)) for c4 → 0 in the models
1a, 1b and E[X∞] = O(π(0, 0)x(0, 0) + π(0, 1)x(0, 1)) for model E3. By definition
x(0) = E[X(τn+1)|Z2(τn) = 0]. The function t �→ E[X(t)|Z2(τn) = 0] progresses
affine-linearly in time. For very slow Z2 the excursions are long and the base value
at τn , from which they depart, is small compared to the value they reach at τn+1. We
thus neglect the base value to obtain a linear progression with constant slope c5E[Z1],
yielding

x(0) = O(c5E[Z1]E[τn+1 − τn|Z2(τn) = 0]) = O
(
c1c5
c2c3

)

.

In total we obtain for the stationary mean of models E1, E2

E[X∞] = O
(
c1c5
c2c3

P[Z2 = 0]
)

.

Since P[Z2 = 0] only depends on the meanE[Z2]which we keep fixed, the parameter
c3 which scaled linearly with c4 dominates the asymptotic behaviour c4 → 0. More
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precisely, we obtain

lim
c4→0

E[X∞]
c−1
4

=
⎧
⎨

⎩

c5E[Z1] (1−E[Z2])2
E[Z2] , Z2 random telegraph

c5E[Z1] exp(−E[Z2])
E[Z2] , Z2 birth-death

.

For model E3 the two states (Z2, Z3) = (0, 0) and (0, 1) contribute for c4 → 0. After
setting up the recursion that couples x(0, 0) and x(0, 1), see next paragraph, we obtain

lim
c4→0

E[X∞]
c−1
4

= c5E[Z1]
(
P[Z2 = 0]
E[Z2] + c4

c8

P[Z2 = 0, Z3 = 0]
1 − E[Z3]

)

Note that P[Z2 = 0] and P[Z2 = 0, Z3 = 0] only depend on the relative rates
c7
c4

, c8
c4

, c3
c4
, which were fixed, i.e., the time scale of the joint environment (Z2, Z3) was

varied. The inverse proportional dependence on c4 for models E1–E3 is visualized in
Fig. 2c, f, i.

For c4 → 0 we compute the stationary mean under assumption that all terms in
Eq. (13) vanish except for z = (0, 0), (0, 1). The recursion Eq. (10) for the two states
(0, 0) and (0, 1) read

0 = −c7π(0, 0)x(0, 0) + c8π(0, 1)x(0, 1) + c4π(1, 0)x(1, 0) + c5c1
c2

π(0, 0)

0 = −(c8 + c3)π(0, 1)x(0, 1) + c7π(0, 0)x(0, 0) + c4π(1, 1)x(1, 1) + c5c1
c2

π(0, 1)

By assumption,

max{π(1, 1)x(1, 1), π(1, 0)x(1, 0)} � min{π(0, 1)x(0, 1), π(0, 0)x(0, 0)}

so we can set π(1, 1)x(1, 1) = π(1, 0)x(1, 0) = 0. Then the 2 dimensional linear
system has the solution

π(0, 0)x(0, 0) = c5c1
c2

·
(
c8 + c3
c3c7

π(0, 0) + c8
c3c7

π(0, 1)

)

π(0, 1)x(0, 1) = c5c1
c2

· π(0, 0) + π(0, 1)

c3

whichbyE[X∞] = π(0, 0)x(0, 0)+π(0, 1)x(0, 1)yields the result for limc4→0 E[X∞]c4.

B.5 E2 + controller: a correlated environment

Compared to environment E2, we replaced the reaction R1 in Eqs. (B1), (B3) by

R1 : Z2
c1−→Z2 + Z1

123



Bye bye, linearity, bye: quantification of the mean… Page 35 of 40 43

Fig. 7 The controllerU becomes slower from a–d. Parameters were c5 = 1, c6 = 1, c1/c2 = 10, c3/c4 =
4. For small c6/c4 the stationary mean saturates to the Q.SS mean c1c5/c2c6 = 10 independent. The
saturation level for large c6/c4 depends on the speed c2 ofU . For fast enoughU a local maximum appears.
For slower U the saturation level increases and the contribution α(0) dominates more and more

In order to apply our general framework we regard Z2 as the one-dimensional environ-
ment and (Z1, X) as the modulated linear CRN. Then Z = N0 and � is the generator
of a birth-death process with birth rate c3 and death rate c4. Detailed balance is satisfied
by Poisson-distributed π with parameter c3/c4. For the dynamics of Y we obtain

A(z) =
[
c2 0

−c5 c6z

]

b(z) =
[
c1z
0

]

.

We fix c6, c5 and the means c1
c2

, c3
c4
. For different speeds c2 of Z1 we let the speed

c4 of Z2 vary, see Fig. 2k. For large c4 the stationary mean saturates to the Q.SS
mean c1c5/c2c6 = 10 independent of c2. The saturation level for small c4 depends
on the speed c2 of Z1. For fast enough Z1 a local maximum appears. For slower Z1
the saturation level increases. The stationary mean curve for small c2 resembles the
leakage case displaying the same four phases.

The birth-death process X in a correlated environment showed a local maximum in
the phase analysis. Here we provide details on the shares α(0), α<z̄, α≥z̄ , see Fig. 7.
Furthermore, Fig. 8 provides example trajectories for a fast and a slow controller.

B.6 Stochastic toggle switch in a random environment

Given themodel reactions, the dynamics ofE[X∞] can be describedwith the following
reaction matrices:

A(z) =
[
c6z2 b1z1
b2z1 c6z2

]

,

b(z) =
[
a1z1
a2z1

]

.
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Fig. 8 Trajectories for the environment E2 with controller. Environment Z and controller U are shown in
plain form, while X is depicted as a moving average with window length t = 10, 000 to match the statement
about the stationary mean. A burn-in time of t = 10, 000 was used. The environment progresses through
four stages of different mean and speed. a A fast controller (c2/c6 = 10) keeps the target species near
the setpoint, on average, as the environment changes. According to the theory the deviation stays within
10% of the setpoint. In the last phase a higher deviation indicates that stationarity is not reached within the
window length. The drop below the setpoint is due to a low plateau value in the trajectory that would be
counter-balanced by larger plateau values in the long run. b A slow controller (c2/c6 = 0.1) achieves low

accuracy for the critical stage of low and slow environment (last phase). Parameter values wereE[XQ.SS∞ ] =
E[U ] = 10, c6 = 1 and in the four phases the four pairs (E[Z ], c4) = (4, 3), (0.1, 3), (4, 0.03), (0.1, 0.03)
were used
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The generator used here is the one corresponding to two jointly independent birth-
death processes, and it is of the form

� = I1 ⊗�2 + �1 ⊗ I2

with Ii ∈ R
Ni×Ni the identity matrices for state space truncation Zi ∈ {0, 1, . . . , Ni −

1} and �i analogous to Eq. (B4). Here, N1 = N2 = 50 was used.
To pick the model parameters for a given r0 ratio, we fixed all parameters besides

the rates a1 and a2 and computed those rates from the equation b(z) = A(z)E[XQ.SS∞ ].

B.7 Stochastic oscillator in a random environment

Given themodel reactions, the dynamics ofE[X∞] can be describedwith the following
reaction matrices:

A(z) =
[
c6z2 b1z1

−b2z1 c6z2

]

b(z) =
[
a1z1
0

]

.

The generator used here is the one corresponding to two jointly independent birth-
death processes, and it is of the form

� = I1 ⊗�2 + �1 ⊗ I2

with Ii ∈ R
Ni×Ni the identity matrices for state space truncation Zi ∈ {0, 1, . . . , Ni −

1} and �i analogous to Eq. (B4). Here, N1 = N2 = 50 was used.

Appendix C Details on linearization

We matched the linearized and the Hill function models of repression as follows.
Namely, first in g1, we obtained

a1 = g̃1(E[XQ.SS
2,∞ ]) − g̃′

1(E[XQ.SS
2,∞ ])E[XQ.SS

2,∞ ]
b1 = −g̃′

1(E[XQ.SS
2,∞ ])

and then in g̃1 we expressed k1 and KA1 in terms of a1 and b1 (analogously, the same
is done for k2 and KA2 ):

⎧
⎨

⎩

k1 = b1(
a1
b1

−x̄2)2

a1
b1

−2x̄2

KA = a1
b1

− 2x̄2
.
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The expansion point was chosen from the linearized model, in which it was the unique
stable fixed point. To match this situation with the Hill function model, we restricted
our study to the regime, where the corresponding deterministic model is monostable
and the stochastic model is in the unimodal regime.

C.1 Limitiations

Here, we elaborate on our understanding of the limitations of the linearization in the
switch and oscillator case studies.

• First Limitation: As soon as X1 or X2 get too large, the propensities of the reactions
R5,R6 become negative. This can happen for any choice of non-negative rate
constants. Consequently, the linear dynamics Eq. (7) conditioned on Z = z can
saturate at a state with a negative value for a subsystem component. This can,
for large enough waiting time, cause the integral in the share Eq. (21) to become
negative, and can be detected by checking for negative shares. Eventually, this can
result in a negative stationary mean. In the toggle switch case study we checked
that in the portrayed parameter range (i) no share is negative and that (ii) the total
share of those environmental states for which the saturation point has a negative
component, is sufficiently small.

• Second Limitation: Negative eigenvalues of the matrix A(z) can arise for some
values of z. This means that the linear dynamics Eq. (7) conditioned on Z = z
gets unstable. If the waiting time in the state is short enough or, equivalently,
�0(z) is large enough, then the unstable dynamics is mitigated and the formulas
in Lemma 4 remain valid. This was not a limitation in the toggle switch case study
due to a large enough c1.

• Third Limitation: The matrix A−�⊗ I in Eq. (14) can get singular. We observed
this in the toggle switch example for the choice c4 = 0.015 and other param-
eters that determine A − � ⊗ I as in Fig. 4, causing an asymptote in E[X1,∞]
and E[X2,∞]. This parameter choice was, however, already excluded by the first
limitation.
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