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Abstract
The opportunistic fungus Aspergillus fumigatus infects the lungs of immunocompro-
mised hosts, including patients undergoing chemotherapy or organ transplantation.
More recently however, immunocompetent patients with severe SARS-CoV2 have
been reported to be affected by COVID-19 Associated Pulmonary Aspergillosis
(CAPA), in the absence of the conventional risk factors for invasive aspergillosis.
This paper explores the hypothesis that contributing causes are the destruction of
the lung epithelium permitting colonization by opportunistic pathogens. At the same
time, the exhaustion of the immune system, characterized by cytokine storms, apop-
tosis, and depletion of leukocytes may hinder the response to A. fumigatus infection.
The combination of these factors may explain the onset of invasive aspergillosis in
immunocompetent patients. We used a previously published computational model
of the innate immune response to infection with Aspergillus fumigatus. Variation of
model parameters was used to create a virtual patient population. A simulation study of
this virtual patient population to test potential causes for co-infection in immunocom-
petent patients. The two most important factors determining the likelihood of CAPA
were the inherent virulence of the fungus and the effectiveness of the neutrophil pop-
ulation, as measured by granule half-life and ability to kill fungal cells. Varying these
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parameters across the virtual patient population generated a realistic distribution of
CAPA phenotypes observed in the literature. Computational models are an effective
tool for hypothesis generation. Varying model parameters can be used to create a vir-
tual patient population for identifying candidate mechanisms for phenomena observed
in actual patient populations.

Keywords COVID-19 · Invasive aspergillosis · Coinfection · Immunocompetent
host · Computational model · Virtual patient population

Mathematics Subject Classification 92-10

1 Introduction

Aspergillus fumigatus is an opportunistic fungus that can infect the lungs of immuno-
compromised hosts, including, among others, patients undergoing chemotherapy or
receiving an organ transplant, and patients affected by chronic granulomatous dis-
ease (Latge 1999; Pappas 2010). Neutrophils are essential to fighting the pathogen,
and impaired neutrophil responses are a common predisposing factor to the infec-
tion. More recently, patients with severe SARS-CoV2 infection have reportedly been
affected byCOVID-19Associated Pulmonary aspergillosis (CAPA).However, Lai and
Yu (2021) found that the conventional risk factors for aspergillosis were not present
in CAPA patients.

Mitaka et al. (2021) found that around 10% of COVID-19 patients in ICUs develop
invasive aspergillosis, and the mortality rate for these patients is 54% compared with
24% of those without CAPA (Ergun et al. 2021). According to Lai and Yu (2021),
patients with CAPA are predominantly male, with an average age of 73±13 years, and
88% had diabetes, high blood pressure, kidney disease, chronic obstructive pulmonary
disease (COPD), or heart disease. The fact that CAPA is associated with these comor-
bidities but not with the conventional risk factors for invasive aspergillosis requires
the generation of new hypotheses to explain the susceptibility of these hosts to the
infection.

Computational models have been used extensively in immunology to create and
test hypotheses. In particular, agent-based models have proven effective for studying
respiratory diseases. They are intuitive, rule-basedmodels thatmake it easy to represent
heterogeneous spatial environments and individual entities, such as immune cells
or pathogens, and their generation does not require extensive modeling expertise.
We published an agent-based model of the innate immune response to Aspergillus
fumigatus within an alveolar duct that established that one of the critical parameters
determining infection outcome is the distance within which macrophages can detect
fungal spores (Oremland et al. 2016).

In Ribeiro et al. (2022), we published an agent-basedmodel of the immune response
to Aspergillus fumigatus. The model focuses on the role of iron sequestration by
the host as part of the innate immune response. It was parametrized entirely with
information from the literature rather than data fitting, and was extensively validated
with both data from the literature and our own time course data from experiments using
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amousemodel of the infection.We also showed that variation of parametrizations from
this reference model could account for the variability across experiments. A first result
we obtained using the model demonstrates that fungal strains engage different parts of
the innate immune response depending on their level of virulence. This computational
model is the main tool for the results reported here.

We hypothesize that in patients with severe COVID-19, the destruction of the lung
epithelium facilitates colonization by opportunistic pathogens. At the same time, the
exhaustion of the immune system characterized by cytokine storms, apoptosis, and
depletion of leukocytes hinders its ability to kill the fungus, explaining the susceptibil-
ity of otherwise immunocompetent patients to aspergillosis.We use the computational
model to test this hypothesis and to ask what set of parameters and conditions explain
CAPA. To test our hypothesis, we created a virtual patient population by sampling
the model parameter space, characterizing patients with dual infection and analyzing
disease outcomes, with each choice of parameters representing one virtual patient.

2 Material andmethods

2.1 Modeling

The simulation study in this paper uses a computational model of the co-infection that
is a modification of our previously publishedmodel (Ribeiro et al. 2022) capturing key
features of the innate immune response to a respiratory Aspergillus fumigatus infec-
tion in immunocompetent hosts, including the role of iron regulation, an important
virulence factor. The model spans the intracellular, tissue-level, and organism scales.
At the tissue level, an agent-based model simulates the immune response in a spa-
tially homogeneous representation of a volume of lung tissue. The domain simulated
(6.4 × 10−2μL) is enough to represent a piece of lung infected with a few coni-
dia. Its components are depicted in Fig. 1. The original model of immune response
to Aspergillus fumigatus had 76 parameters; here, we use a reduced version of that
model with 27 parameters (Table 4) by eliminating the iron regulation component and
aggregating some of the cytokines represented explicitly. We describe the model in
detail below.

The 3-dimensional space is homogeneous with periodic boundary conditions; that
is, a 3-dimensional torus. If amolecule or agent leaves the simulation space by crossing
one boundary, it re-enters from another, similar to previous modeling in this context
(e.g., Castiglione et al. 2007; Ribeiro et al. 2017). The rationale for periodic boundary
conditions is that the simulation covers a small volume amid a large infected volume.
Therefore, the concentration of molecules across all boundaries should be similar.

As in our published model, we have three types of host cells: type II epithelial cells,
macrophages, and neutrophils. These cells are equipped with a simple intracellular
model (Fig. 2) that determines their state at any given time. They receive signals in the
form of cytokines or contact with A. fumigatus and move to one of three final states:
Active (macrophages, epithelial cells, and neutrophils), TNF primed (macrophages
and epithelial cells), or Inactive (macrophages only). Each state allows the cell to
engage in certain activities, such as secreting specific cytokines. Table 3 shows the
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Fig. 1 Model description. Aspergillus fumigatus hyphae activate host cells (pneumocytes, monocytes, and
neutrophils). Pneumocytes and monocytes secrete cytokines (TNF and IL-10) and chemokines (CXCL2
and CCL4). The chemokines chemoattract other leukocytes (neutrophils and monocytes) to the infection
site, and the cytokines (TNF), together with the fungus itself, activate the leukocytes. Leukocytes kill
A. fumigatus. This simplified figure does not show inactivation by IL-10/TGF-β/apoptotic cells and the
secretion of TGF-β by inactivated cells

interactions between agents and molecules and the outcomes of these interactions. It
is worth noting that only active macrophages can kill hyphae, while neutrophils in any
state can kill. That was an assumption in our previous model, based on evidence that
macrophages need pre-activation to kill hyphae (Roilides et al. 1995, 1994).

Figure 2 and Table 3 summarize most features of the model dynamics. As men-
tioned, in thismodelwe do not include ironmetabolism explicitly, thereby significantly
reducing the number of parameters. We also assumed that there were no significant
changes in cell counts over time, due to the fact that we only simulate a 24h period,
based on the observation in Gago et al. (2018) that the number of monocytes and neu-
trophils is approximately constant from day two to three, which makes our assumption
reasonable. We used two minute time steps in order to correctly capture the dynamics
of diffusion, since a longer time step would lead to near equilibrium in the diffused
molecules.

Besides cells, the model also contains five molecules: IL10, TNF, TGF-β, CCL4,
and CXCL2. These molecules diffuse through the space according to a partial differ-
ential equation (Chang et al. 1991) and interact with cells with probability given by
Eq.1:

p = 1 − e−x/kd , (1)

where p is the probability that the receptor will be activated, x is the cytokine concen-
tration, and kd is its dissociation constant. This equation is also used for the reaction
between granules and hyphae. In this case, x is the granule concentration in arbitrary
units, kd is kd_GRANULE, and p is the probability that the hyphal septae will die.
In the case of hyphae killing by granules this equation is a phenomenological approx-
imation. Moreover, a given molecule’s concentration decays with a half-life of one
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Fig. 2 Diagram showing host cell state changes. In response to TNF or hyphae, resting host cells move to
the activating state, and after 60 iterations activating cells become active. Active cells extra primed with
TNF become chemokine secreting. Macrophages primed with TGF-β, IL-10, or apoptotic cells become
"inactivating" and then inactive (TGF-β secreting). After 180 iterations, inactive, active, or TNF-primed
cells return to the resting state without extra signaling. The times to move from one state to another
are approximations using the times for gene activation and inactivation measured in in-vitro experiments
(Ribeiro et al. 2022)

hour and a continuous exchange with the serum (Eq.2):

y = x ∗ e−Kturn∗t , (2)

where Kturn is the turnover rate, and t is the time-step size (2min).
The two mechanisms not covered so far are leukocyte movement and A. fumigatus

growth. Like in our published model, in the absence of chemokines, cells move ran-
domly, while in their presence, they tend to move to the voxels with higher chemokine
concentrations. The rate of movement is constant, and the cells will, on average, tra-
verse a fixed number of voxels per time step. In the presence of chemokines, each voxel
receives a weight according to Eq.3, where CCL4 guides macrophages and CXCL2
guides neutrophils (Ribeiro et al. 2022):

wi = 1 − e−yi /kd , (3)

where wi is the weight of the i-th neighbor voxel, yi is the chemokine concentration
in the i-th voxel, and kd is the dissociation constant.
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In nature, hyphal growth is of course a continuous process composed of elongation
and branching (chiefly sub-apical branching). In themodelwe represent hyphal growth
and branching as a discrete approximation. Every 40 μm of septae was considered
a unit (we called it a cell in the simulator). A tip cell can produce another tip cell
(elongation), while a sub-tip cell can form a 45◦ branch (subapical branch) (Mahesh-
wari 2005; Riquelme and Bartnicki-Garcia 2004) with a 25% probability. Other cells
cannot originate new cells unless their neighbors are killed and they become tip or
sub-tip cells again. In this paper, we did not change the branching probability, and to
vary the growth rate, we changed the time it takes for a tip cell to generate a new unit.

2.2 Modeling coinfection

We model the COVID-19 A. fumigatus coinfection implicitly by changing specific
parameters as well as the number of leukocytes in the lung space (Table 1). In the
model, neutrophils kill hyphae by direct contact. However, to accommodate alternative
mechanisms of neutrophil anti-microbial function, we introduced a second scenario
in which leukocytes secrete granules that diffuse and kill the fungus. In our published
model, we considered neutrophils killing A. fumigatus via ROS secretion only. The
ROS concentration to kill hyphae is high enough only in the synapsis between the
neutrophil and hyphae. However, other granule molecules may also be able to kill
hyphae, hence the second scenario to account for uncertainty in the mechanism.

The results for the second scenario are presented in the supplementary mate-
rial. For the second scenario, we introduced the parameters (kd_GRANULE and
GRANULE_HALF_LIFE—Table 5). Upon interaction withA. fumigatus, neutrophils
are activated and then secrete one arbitrary unit of granule (an abstraction for the
molecules contained in neutrophil granules). This granule kills hyphae with a prob-
ability given by Eq.1. The granule contents, like all molecules, decay with a given
half-life (GRANULE_HALF_LIFE). The rationale for using arbitrary units is that all
that is needed is a pair of values, GRANULE_QTTY and kd_GRANULE, that fits the
data in Ribeiro et al. (2022). This pair of parameters is not identifiable, so we fixed
GRANULE_QTTY to one arbitrary unity and fit the kd to reproduce the simulation
data in our previous work.

In Ribeiro et al. (2022), iron sequestration acted to inhibit Aspergillus fumigatus
growth. Here we do not consider the role of iron explicitly. Instead, we tested a wide
range of hyphal growth rates (Table 1) to represent more or less permissive lung
environments, partly as the result of variable availability of nutrients such as iron
across the space (see below). Another contributing factor is the damage done to the
epithelium by the ongoing viral infection.

In this study, we focus on five parameters, with values listed in Table 1. The first
parameter is the intrinsic growth rate of the fungus. The second and third parameters
are proxies for the strength of the immune response, and the fourth and fifth param-
eters reflect an increased number of immune cells as part of the response to the viral
infection. The intrinsic growth rate of the hyphae encapsulates the permissivity of the
environment, such as the nutrient availability. However, the collective effects of the
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intrinsic growth rate, together with the counteracting effects of the immune response,
we call the observed growth rate.

We performed Latin-Hypercube Sampling (LHS) on the parameters in Table 1. We
varied the number of leukocytes, the monocyte killing probability (the probability
with which monocytes kill hyphae upon direct contact), the intrinsic growth rate, and
the neutrophil killing probability (the probability with which neutrophils kill hyphae
upon direct contact). The intrinsic growth rate varies between 2.75 and 80 µm/h. The
rationale for these values is that the host limits access of the fungus to nutrients, thereby
decreasing its growth rate. Therefore, at the lowest restriction, the fungus will grow to
its full potential. The literature measure A. fumigatus growth in vitro of 40 µm/h (see
our previous work Ribeiro et al. (2022)) and 60 μm/h Gago et al. (2018). Because
there is uncertainty in these numbers and in-vitro growth may be conservative, we set
the maximum to 80 µm/h.

The probability of neutrophils and macrophages killing hyphae had a similar ratio-
nale. We had the default from our previous work of 23% and 9.9%, respectively.
Because we are considering the negative effect of SARS-CoV-2 in these cells (See
Results and Discussion), these numbers can only decrease. Meanwhile, the number
of leukocytes reflects the uncertainty and natural variability in these cells. We use the
ranges given by Gago et al. (2018) (5–15 million) as an educated guess. Note that at
the peak, on day one, we have 15 million neutrophils, and on day three, 15 million
monocytes. Therefore, these ranges are reasonable for both cell types.

Using LHS sampling we generated 24,000 parameter sets, representing 24,000 vir-
tual hosts of the dual infection. (Wealso created an additional 36,000virtual hosts using
the alternative neutrophil mechanism; see supplementary material). We measured the
observed growth rate as the slope of the log of the A. fumigatus curve across the 24h of
simulation (Eq.4). Note that we shifted the A. fumigatus curve by 1 to avoid negative
infinity when the number of A. fumigatus cells tends to zero. The observed growth
rate is a value given by Eq.4, while the intrinsic growth rate is a model parameter
(Table 1). In Eq.4 we are counting the number of hyphal septae:

Log10(hyphae + 1) = a + b × t, (4)

where b is the observed growth rate, and t is time in hours.

2.3 Partial rank correlation coefficient

Apartial rank correlation coefficient is a commonway to assess local model sensitivity
to parameters. In this paper, we performed a sensitivity analysis (SA) of the five
(Scenario 1) and six (Scenario 2) parameters againstA. fumigatus observedgrowth rate.
We used the method “pcc" from the R package “verification" (Johnson and Lebreton
2004). To do the SA we used our virtual patient population.

Moreover, we also measured how the parameters’ partial correlation changed as
the intrinsic growth rate changed. That is, we divided the virtual patient population
into ten bins of similar intrinsic growth rates (GROWTH_RATE). Then we computed
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the partial rank correlation coefficient of the other four parameters (PR_N_KILL,
PR_MA_KILL, NUM_MA, and NUM_N).

2.4 Code

The simulator was written in Java (JavaSE−1.8) and needs only the JRE System
Libraries. A typical execution takes about 4-5 s to simulate 24h in an OSX 2.6 GHz
6-Core Intel Core i7. Code is available at: https://github.com/deassisinfo/CAPA/.

3 Results

Our goal is to test the hypothesis that a respiratory viral infection such as severe
COVID-19 can make the lung environment more permissive to A. fumigatus growth
and, at the same time, exhaust the immune system, allowing the fungal infection to
progress in an otherwise immunocompetent host. In the simulator, these conditions
translate into a higher intrinsic growth rate and lower ability of leukocytes to kill
hyphae. Concomitantly, when the A. fumigatus infection starts, the number of leuko-
cytes in the lung is high because the host is already fighting another infection. These
conditions are encoded by themodel parameters in Table 1. Each parameter sample can
be thought of as a virtual patient for whom we simulate infection outcome. We started
each simulation with 640 type-II pneumocytes, 20 germinated conidia, and 360–960
monocytes and neutrophils. Each simulation represented 24h (720 iterations), and we
used a time-step of 2min. The results are shown in Fig. 3.

In order to correctly interpret Fig. 3, one needs to keep in mind the distinction
between intrinsic growth rate and observed growth rate. The first is a parameter
(Table 1) that controls the time it takes for new A. fumigatus cells to be generated. The
second results from the number of cells generated (intrinsic growth rate) minus the
number of cells killed by leukocytes. The intrinsic growth rate is always positive, while
the observed growth rate may be negative if the infection is declining, as observed in
the vast majority of cases in Fig. 3.

Observe that the distinction between intrinsic and observed growth rates is exclu-
sively a model property. The intrinsic growth rate is a model parameter, whereas the
observed rate is a model output. However, from the point of view of nature or a more
complex model, what we call intrinsic may still be considered observed. For example,
a simple model may have a growth rate with a value of 3 µm/h. Therefore, for this
model, 3 µm/h is its intrinsic growth rate. However, a more complex model may have
two parameters: growth rate and iron acquisition, none of which are 3 µm/h. But they
interact to produce an observed growth rate of 3 µm/h.

The data in Fig. 3 show a prominent peak in negative observed growth rate, indicat-
ing resolution of the infection, and a second smaller peak with a long tail of positive
observed growth rate. We can therefore cluster patients into two groups, with Cluster
1 containing only patients that clear the infection. Cluster 2 can be further subdivided
into three subclusters representing progressively worsening fungal infection. Clus-
ter 2A is the portion of Cluster 2 with negative observed growth rate, representing
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Fig. 3 Distribution of observed growth rate. The observed growth rate of A. fumigatuswas measured during
the 24h of simulation in the virtual patient population. The graph shows a bimodal distribution of the growth
rate. We divided the virtual patients into two clusters according to their observed growth rate: the prominent
peak on the negative side (Cluster 1) and the secondary peak (Cluster 2). We then subdivided Cluster 2 into
three subclusters: 2A is the negative part, 2B is the positive part excluding outliers, and 2C is the long tail
of outliers

patients whose infection clears, while Cluster 2B is the portion of Cluster 2 with pos-
itive observed growth rate (excluding the outliers), and Cluster 2C is the long tail of
outliers (Fig. 3), both together representing patients that develop CAPA. We found a
similar distribution in Scenario 2 (Fig. 8). This bimodal distribution is consistent with
what is known for this disease: patients with an intact neutrophil response resolve the
fungal infection, whereas the cluster with positive observed growth rate corresponds
to the observation that COVID-19 patients in the ICU can develop CAPA (Mitaka et al.
2021). Figure 7 shows that the percentage of patients with CAPA in our simulation
(clusters 2B and 2C) is similar to the one measured in epidemiological studies.

Clusters 2B and 2C in Fig. 3 and Table 6 suggest that a combination of higher intrin-
sic fungal growth rate and lower fungal killing by the immune response can explain the
onset of CAPA in otherwise immunocompetent hosts. Figure10 confirms that patients
with CAPA have decreased ROS production by neutrophils, one of the key tools used
by leukocytes to kill hyphae. This reduction is qualitatively similar to the reduction in
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Fig. 4 Classification tree. The classification tree found the parameter values that best parse the virtual
patients into the four clusters defined in Fig. 3. The percentage value range is 0–1. The sets of four numbers
beneath each branch are the relative frequencies of each cluster in that branch

neutrophil-killing ability between CAPA and non-CAPA patients (Fig. 10B). Mean-
while, Fig. 11 shows that hemorrhage and the availability of heme is a factor that favors
A. fumigatus growth, similar to the increase in the observed growth rate observed in
our CAPA virtual patients (Fig. 11C). Interestingly in Scenario 2, the intrinsic growth
rate seems to play a secondary role (Table 2). To further explore this hypothesis, we
constructed classification trees to see which combinations of parameters are necessary
for CAPA (Fig. 4).

One can see in Fig. 4 that the dominant parameters are the neutrophil killing rate,
intrinsic growth rate, and to a lesser degree, the monocyte killing rate. Classification
trees can indicate which parameters are the most important by measuring how much
each parameter contributes to node purity. We confirmed that these three parameters
(neutrophil killing rate, intrinsic growth rate, and monocyte killing rate) are indeed the
dominant ones. Similarly, in Scenario 2, granule half-life, kd , and to a lesser degree,
intrinsic growth rate are the dominant parameters (not shown, Fig. 9).

Since we have only three dominant parameters, we can plot the virtual patients in
a 3D space. That will allow us to see how the four clusters are distributed. In Fig. 5A,
each point represents a virtual patient. The x-axis is the log of that patient’s intrinsic
growth rate, the y-axis is the log of that patient’s monocyte killing probability, and
the z-axis is the log of that patient’s neutrophil killing probability. We colored each
patient according to their cluster (1, 2A, 2B, or 2C). We used log base ten because
different patients have parameter value differences of up to two orders of magnitude.
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Fig. 5 Distribution of clusters of patients and CAPA probability in the 3D and 2D spaces formed by the
most important parameters according to the classification tree (Fig. 4).A virtual patients plotted in 3D space
and colored according to their cluster. The x-axis is the log of patients’ intrinsic growth rate, the y-axis is
the log of their monocyte killing probability, and the z-axis is the log of the neutrophil killing probability.
B shows the CAPA probability as the intrinsic growth rate and neutrophil killing probability

As shown in Fig. 5A, Clusters 1 and 2A are interspersed. This is to be expected
because both these clusters represent patients for whom the infection cleared (Cluster
2A is the negative part of peak 2). Cluster 2C is segregated in the high intrinsic growth
rate region. However, it is noteworthy that some patients in Cluster 2B are very similar
to patients in Cluster 2A, in that they have similar sets of parameters that characterize
their infection.

To better explore this transition between patients that clear the infection (Clusters 1
and 2A) and those that do not (Clusters 2B and 2C), we computed how the probability
of developing CAPA changes as parameters vary (Fig. 5B). We restrict ourselves to
plotting the CAPA probability across the twomost influential parameters.We plot how
a virtual patient’s probability of developing CAPA changes as the intrinsic growth rate
and the neutrophil killing rate change (Fig. 5B). As shown in Fig. 5B, the dividing
line along which a patient may either clear the infection or develop CAPA cuts the
graph across the diagonal. Both parameters (intrinsic growth rate and neutrophil killing
probability) are essential in determining the patient’s outcome: a high intrinsic growth
rate can be compensated for, in part, by a high killing rate and vice versa. In Scenario
2, we found a similar transition between patients that develop CAPA and those that
do not when we vary the parameters of intrinsic growth rate and granule kd (Fig. 9B).
This shows that our conclusions are similar in both scenarios.

An essential question in Fig. 5, especially 5B, is whether using only two parameters
ismeaningful. To answer that question, we divided the virtual patients into two subsets.
The first subset of 20,000 was used to train classification trees, while the second
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Table 2 The predictive power of
parameters

Parameters F1-cross-valildation F1-test

ALL 0.7379 0.7430

Top-three 0.7380 0.7393

Top-two 0.7108 0.7163

The predictive power of classification trees was evaluated in cross-
validation and test sets when these trees were trained using all five
parameters, the top three parameters (GROW_RATE, PR_N_KILL,
andPR_MA_KILL), or the top two (GROW_RATEandPR_N_KILL).
Column 1 parameters used in themodel; Column two F1 score in cross-
validation; Column 3 F1 score in the test set

subset of 4000 was used to test its predictive power. We also used ten-fold cross-
validation and measured the F1 score, as in Table 2. The F1 score combines the
precision and recall into a single metric, and it is primarily used to compare the
performance of a classifier. We found that the reduction from all five parameters
to the top three (GROW_RATE, PR_N_KILL, and PR_MA_KILL) does not affect
the predictive power of the classification trees, while the reduction to the top two
(GROW_RATE and PR_N_KILL) has only a minor effect.

Results from previous figures have shown that the observed growth rate is highly
dependent on the intrinsic growth rate. We divided the virtual population into ten
bins of similar intrinsic growth rates and computed the square of the partial rank
correlation of the parameters and observed growth rate (Fig. 6). Figure6A shows the
variation of the square of the correlation between neutrophil killing probability and
observed growth rate. At the same time, Fig. 6B shows the variation of the square of
the correlation between monocyte killing probability and observed growth rate. The
partial correlation between the other parameters and the observed growth rate was not
substantial (results not shown).

4 Discussion

Aspergillus fumigatus is an opportunistic mold that infects immunocompromised
hosts, chiefly those with impaired neutrophil response, but also patients with normal
neutrophils but impaired cell-mediated immunity (Mackel and Steele 2019). However,
Lai and Yu (2021) found that in patients with CAPA the conventional risk factors for
invasive aspergillosis are not present. They found that CAPA patients were mostly
older men suffering from diabetes, obesity, hypertension, or cardiovascular disease.
These conditions may help explain the onset of CAPA, but are likely not sufficient by
themselves. We hypothesized that COVID-19 infection may exhaust the immune sys-
tem, and at the same time the destruction of lung epithelium overloads the fungus with
nutrients. Therefore we propose a model where the coinfection negatively affects the
default parameters we inherited from Ribeiro et al. (2022). We tested this hypothesis
using a simulated virtual patient population generated by our computational model.

Before we can draw conclusions from the model, it is critical to discuss the param-
eters. Like our previous one, this model was parameterized with literature data.
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Fig. 6 Variation of the square of the correlation r2 between the critical model parameters and the observed
growth rate, with the variation of the intrinsic growth rate. We started with a dataset of 24,000 virtual
patients generated with LHS and then partitioned this dataset by intrinsic growth rate. The x-axis shows the
range of the intrinsic growth rate in each partition. We then calculate the correlation between parameters
and the observed growth rate in each partition. A Variation of r2 between the neutrophil killing rate and
observed growth rate. BVariation of r2 between monocyte killing rate and observed growth rate. Error bars
are standard deviations calculated with bootstrap

Therefore it does not fit any particular dataset exactly. However, it reproduces bio-
logical data within the limit of biological variance itself. That was the case with the
several datasets with which we compared our model in our previous paper (Ribeiro
et al. 2022). We note that it is possible, to fit this model to particular data sets.

Another point that is worth discussing is identifiability. Because of the way param-
eters were obtained from the literature (see Ribeiro et al. 2022), identifiability is not an
issue here. As an example, take cytokines kd , secretion rate, and half-life. If one tries
to fit these parameters from a time series of cytokines in BAL or lung homogenate in
an infection, likely, they will not be identifiable. However, we got these parameters
from experiments designed to measure each one individually.

Concerning the experiments we conducted, our simulations show that 31% of the
virtual patients in Scenario 1 and 17% in Scenario 2, who were exposed to A. fumi-
gatus, developed CAPA. That is qualitatively consistent with data from Mitaka et al.
(2021) that show 10% of patients in the ICU developed CAPA and with data from
Kariyawasam et al. (2021) that show that 15% of patients in the ICU developed CAPA
(Fig. 7). Moreover, Figs. 10 and 11 suggest that the kinds of parameter variations pro-
posed in this model (i.e., change in A. fumigatus virulence and neutrophil activity)
exist in the general population. On the other hand, the discrepancy, chiefly in Sce-
nario 1, can be explained by the fact that most patients hospitalized with COVID-19
infection are presumably not exposed to A. fumigatus.
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Results from Fig. 7 show that Scenario 2 seems to agree more with epidemiological
data, but it also shows a discrepancy between the two scenarios. This highlights the
fundamentally different dynamics of neutrophils killing by direct contact or secreting
granules that kill hyphae in the neighborhood. Both scenarios were made to fit the
simulations in Ribeiro et al. (2022). However, the two scenarios diverged when we
varied the conditions, albeit still behaving in similar ways.

Our model suggests that both reducing neutrophil activity and increasing fungal
intrinsic growth rate might be necessary for CAPA to emerge (Figs. 4 and 5). Tappe
et al. (2022) found that neutrophils of COVID-19 patients had reducedROSproduction
qualitatively similar to the reduction in neutrophils’ killing ability in simulated CAPA
patients in our model (Fig. 10). At the same time, Grunwell et al. (2019) found that
neutrophils treated with airway supernatant of patients with acute respiratory failure
due to lower respiratory tract viral infection had altered surface markers. Moreover,
when the neutrophils were treated with airway supernatant in patients with bacterial
and viral coinfection, they had decreased respiratory burst and bactericidal response.
The mechanism is not well understood. However, Verweij et al. (2020) reported that
influenza might suppress neutrophil oxidative burst, causing temporary disease sta-
tus resembling chronic granulomatous disease. Arastehfar et al. (2020) indicate that
collateral effects of antiviral immunity may, paradoxically, contribute to an inflamma-
tory environment that favors secondary infections such as CAPA. On the other hand,
the drugs used to treat serious COVID-19 infection, such as Tocilizumab and dexam-
ethasone, can also hinder the immune response against A. fumigatus (Segrelles-Calvo
et al. 2021). These findings support the hypothesis that the immune response against
A. fumigatus may be hampered in patients with serious COVID-19 infection.

Concomitantly, Escobar et al. (2015) showed that pneumocytes cocultured with A.
fumigatus inhibited fungal germination and growth. In contrast, Rodrigues et al. (2005)
found that exposingA. fumigatus to albumin increases its germination and growth rate.
Hsu et al. (2018) gives a persuasive argument for hemorrhaging increasing the rate ofA.
fumigatus invasion. Likewise, Michels et al. (2022) found that heme increases fungal
growth (Fig. 11).While Fig. 11B shows only the effect of heme in-vivoMichels’s paper
(Michels et al. 2022) gives compelling evidence that heme iron and perhaps heme ring
favors A. fumigatus growth in-vitro and in-vivo.

In our previous model, iron concentration was a bottleneck reducing the observed
growth rate (Ribeiro et al. 2022). Hemorrhage caused by previousCOVID-19 infection
may help to overcome this bottleneck, according to the evidence provided by (Hsu
et al. 2018; Michels et al. 2022). Furthermore, the iron concentration (non-heme) may
be higher in serum than in the alveolar space (Stites et al. 1995). Arastehfar et al. (2020)
argue that the leading risk factor for CAPA includes severe lung damage during the
course of COVID-19 and the presence of comorbidities such as structural lung defects.
Thesefindings support our hypothesis that lung epitheliumdestruction andhemorrhage
favor A. fumigatus growth: once the pneumocytes are killed, A. fumigatus is exposed
to a nutrient-rich environment and can grow faster.

Figure5 suggests that the onset of CAPA is regulated chiefly by the intrinsic fungal
growth and neutrophil killing rates. The CAPA probability increases as the intrinsic
growth rate increases or as the neutrophil killing probability decreases. In the alter-
native neutrophil action scenario (Fig. 9), we can make a similar observation with the

123



6 Page 16 of 32 H. A. L. Ribeiro et al.

granule Kd and intrinsic growth rate (Fig. 9B). A moderate increase in the intrinsic
growth rate and decrease in neutrophil activity can also lead to CAPA. Alternatively,
a high increase in intrinsic growth rate or a steep decrease in neutrophil activity could
also lead to the same outcome. Both scenarios we tested (i.e., neutrophils killing by
direct contact or by secreting granules) support this conclusion. We found the first
hypothesis to be more plausible (i.e., moderate change). However, Grunwell, JR et al.
2018 Grunwell et al. (2019) found a substantial reduction in neutrophil killing abil-
ity that could support the second hypothesis (i.e., high change in neutrophil killing
probability). Whether their result generalizes to fungal coinfection remains open.

Figure6 shows that neutrophils are more efficient in controlling the infection in
the case of a moderate intrinsic growth rate. This corroborates the previous results.
It may also reflect how identifiable these two parameters are. Figure6 can be divided
into two: the center and the tails. In the tails, the leukocytes always win or lose the
battle independent of the value of the intrinsic growth rate. But that means that the
observed growth rate in these regions is not strongly correlated with leukocyte activity.
The center is where there is an exchange: as the intrinsic growth rate increases, the
neutrophil and monocyte activity has to increase to keep the fungus in check. That
means that these two parameters are not identifiable from the point of view of the
observed growth rate. That reinforces the previous conclusion that CAPA may be
caused by decreased leukocyte activity, increased Aspergillus fumigatus growth, or
both.

Figures5B and 9B, however, suggests that CAPAmight be caused by both instead of
only one of the causes. The tails and the center in Fig. 6 roughly relate to the plateaus
and the dividing line in Figs. 5B and 9B. Note that there are only narrow areas of
intrinsic growth rate that are entirely independent of neutrophil activity. That is, the
dividing line in graphs 5B and 9B cuts the plot along the diagonal.

Interestingly, the work of Dellière et al. (2021) analyzed several clinical factors in
COVID-19 patients with and without CAPA. Treatment of COVID-19 patients with
the antibiotic azithromycin was associated with an increased risk of CAPA. In prior
literature, azithromycin has been shown to attenuate neutrophil oxidative burst (Čulić
et al. 2002). In our model, this would translate into a decreased neutrophil-killing
probability. This fits with our finding that this parameter is paramount for CAPA
establishment.

On theother hand,Dellière et al. (2021) found similar percentages of neutrophils and
macrophages in CAPA and non-CAPA patients. Likewise, Xu et al. (2021) found that
patients with fewer than 1.5 × 109 neutrophils/L had no increased risk of developing
CAPA. That resonates with our finding that the number of neutrophils and monocytes
had a low correlation with the observed growth rate (Table 6) and was a poor predictor
of CAPA (Figure trees) (Fig. 4).

The work we present here is primarily theoretical, validated with supporting evi-
dence from the literature. While it would be very difficult to validate our predictions
using actual patient data, one could insteaduse data fromexperimentswithmousemod-
els of aspergillosis and COVID-19. Such an experiment would involve three groups
of mice: non-neutropenic ACE2 transgenic mice challenged with Aspergillus, ACE2
mice challenged with SARS-CoV2, and SARS-COV2 followed by Aspergillus. One
could then use data on fungal load and cytokine measurements after 3 days.

123



COVID-19-associated pulmonary aspergillosis... Page 17 of 32 6

We conclude that an increase in the favorability of the lung environment, likely
due to an increased supply of nutrients and decreased effectivity of neutrophils to kill
hyphae, is themost likely explanation for CAPA. Tomake our findingsmore robust, we
tested twopossible scenarios of howneutrophils kill hyphae (SupplementaryMaterial).
We found that the conclusions are the same, independent of the scenario.
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Appendix A Supplementary Material

A.1 Rules

Table 3 shows the rules used in the model, all taken from Ribeiro et al. (2022). That is,
the rules in this model are a subset of the rules in our previous model. The reduction
in the number of rules is related to the fact that we are not simulating iron explic-
itly. Second, we start the model with already germinated conidia (i.e., small hyphae).
Therefore, rules such as the interaction of leukocytes with conidia and conidia germi-
nation are unnecessary. Table 4 shows the parameters in the model; again, all taken
from Ribeiro et al. (2022), except for the number of leukocytes. Subsequently, we
provide a brief rationale for all the parameters with references.

A.2 Parameters

The kd of TNF, IL10, TGF, CCL4, and CXCL2. The kd values from these molecule
receptors are reported by Samson et al. (1997), Sai et al. (2004), Al-Alwan et al.
(2013), Liu et al. (1994), Tan et al. (1993), Ho et al. (1993), Carson et al. (1995),
Schall et al. (1990), Aggarwal et al. (1985), Tsujimoto et al. (1985), Baglioni et al.
(1985), Tsujimoto and vilcek (1987), Stauber et al. (1988), Hohmann et al. (1989),
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Ding et al. (1989), Massague and Like (1985), Kalter and Brody (1991), Wakefield
et al. (1987). In cases where we have more than one value we used the median.

TheTNF, IL10,TGF,CCL4,CXCL2secreting rates come fromWerner et al. (2009),
Taylor et al. (2007, 2014), Gersuk et al. (2006), Hohl et al. (2005), Chai et al. (2010),
Celio et al. (2006), Fadok et al. (1998), Steele et al. (2005), Adachi et al. (1994),
Okazaki et al. (1995), Brummer et al. (2003), Mihai et al. (2003), Marika et al. (2002),
Warris et al. (2005), Fadok et al. (2001), Fujishima et al. (1993), Xing and Remick
(2003), Altstaedt et al. (1996), Bondeson et al. (1999), Abe et al. (1999), Loeffler et al.
(2009), Simitsopoulou et al. (2007), Lord et al. (1991), Cassatella (1995), Ciesielski
et al. (2002), Palmberg et al. (1998), Jablonski et al. (2016), Katsuo and Bo-Ram
(2014), Thorley et al. (2007). For more detail see Ribeiro et al. (2022).

Diffusion rate of cytokines is reported by Goodhill (1997, 1998).
Half-life of cytokines is reported by Huhn et al. (1997), Zahn and (1989), Oliver

et al. (1993), Kuribayashi (2018), Castell et al. (1988), Toft et al. (2011), Wakefield
et al. (1990).

This movement rate can be obtained from Khandoga et al. (2009). The value, 1.44
µm/min, is conservative compared to other sources. Pollmächer and Figge (2014) uses
a movement rate of 2–6.4 µm/min, for instance. Nevertheless, the rate used here must
be considered a phenomenological movement rate. In the real lung, leukocytes may
not move in a straight line but along the alveolar curved surface. That is the case in
the Pollmächer and Figge (2014) model.

Growth rates come from papers that report hyphal length over time (Bocking et al.
1999; Escobar et al. 2015; Gago et al. 2018; Meletiadis et al. 2001), while branching
probability was based on the hyphal growth unit length. This gives an estimate of how
many branches per septum there are Trinci (1973), Bocking et al. (1999).

Monocyte and neutrophil killing probabilities are extrapolated from the killing
rate of in vitro experiments from Zarember et al. (2007), Gazendam et al. (2016a, b),
Roilides et al. (1998, 1995, 1994)). Likewise for the pneumocyte interaction rate
(Wakefield et al. 1990). For more details see Ribeiro et al. (2022).

Turnover rate comes from the difference between lung and serum IL-6 concentration
(Goncalves et al. 2017). For more details see Ribeiro et al. (2022).

Monocyte and neutrophil half-life is reported in Patel et al. (2017); Tak et al. (2013).
Septae length is reported in Ding et al. 2015; Renshaw et al. 2018.
The time that cells need to change status (T_CHANGE and T_REST - Fig. 2) were

based on in vitro reports (Sharif et al. 2017).
Number of macrophages and monocytes comes from mice infected with influenza

(Gago et al. 2018). While the number of pneumocytes comes from Dzhuraev et al.
(2019) (Table 5).

A.3 Model Equations

Here, we add some additional information on the equations and parameters in the
model. We calculate the molecule’s half-life by decreasing their amount by a specific
percentage each iteration in each voxel, which is equivalent to Euler’s approximation
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Table 4 Parameters used in the model

Parameter Descriotion Value References

TNF_QTTY TNF secretion quantity 1.46 × 10−20 mol ×cell−1 × h−1 Ribeiro et al. (2022)

IL10_QTTY IL-10 secretion quantity 6.97 × 10−22 mol ×cell−1 × h−1 Ribeiro et al. (2022)

TGF_QTTY TGF-b secretion
quantity

1.01 × 10−21 mol ×cell−1 × h−1 Ribeiro et al. (2022)

CCL4_QTTY CCL4 secretion
quantity

1.79 × 10−20 mol ×cell−1 × h−1 Ribeiro et al. (2022)

CXCL2_QTTY CXCL2 secretion
quantity

1.11 × 10−19 mol ×cell−1 × h−1 Ribeiro et al. (2022)

kd_TNF kd TNF receptor 326 pM Ribeiro et al. (2022)

kd_IL10 kd IL10 receptor 140 pM Ribeiro et al. (2022)

kd_TGF kd TGF-b receptor 26.5 pM Ribeiro et al. (2022)

kd_CCL4 kd CCL4 receptor 180 pM Ribeiro et al. (2022)

kd_CXCL2 kd CXCL2 receptor 91.667 pM Ribeiro et al. (2022)

D Diffusion coefficient 850 µm2/min Ribeiro et al. (2022)

r Elongation rate 40 µm/h Ribeiro et al. (2022)

PR_BRANCH Branch probability 25% Ribeiro et al. (2022)

MV_RATE Leukocyte move rate 1.44 μm/min Ribeiro et al. (2022)

N_H_KILL Probability of
neutrophil killing
hyphae

22.71% Ribeiro et al. (2022)

MA_H_KILL Probability of
macrophage killing
hyphae

9.81% Ribeiro et al. (2022)

E_INT Epithelial
cells-Aspergilllus
interaction rate

4.49% Ribeiro et al. (2022)

L Molecule half-life 1h Ribeiro et al. (2022)

TURNOVER_RATE Molecule exchange rate
between lung and
whole body serum

0.1823 h−1 Ribeiro et al. (2022)

MA_HALF_LIFE Macrophage half-life 24h Ribeiro et al. (2022)

N_HALF_LIFE Neutrophils-half-life 6h Ribeiro et al. (2022)

SEPTAE_L Septa length 40 µm Ribeiro et al. (2022)

ITER_CH_STATE Iterations for cell to
change state

60 Ribeiro et al. (2022)

ITER_TO_REST Iterations for cell to
return to resting state

180 Ribeiro et al. (2022)

NUM_MA Number of
macrophages

960 Gago et al. (2018)

NUM_N Number of neutrophils 360 Gago et al. (2018)

NUM_P Number of
pneumoocytes

640 Ribeiro et al. (2022)

The first column gives the parameter name; the second a short description; the third the parameter value;
and the forth a bibliographic reference. Note that apart from the number of leukocytes, all parameters were
inherited from our previous model
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Table 6 Table with the sensitivity analysis (SA) of the parameters used to create the virtual population

Parameter Scenario-1 Scenario-2

GROWTH_RATE 0.5538 ± 0.0050 −0.0317 ± 0.0061

PR_N_KILL −0.5497 ± 0.0042 NA

PR_MA_KILL −0.3170 ± 0.0061 −0.0788 ± 0.0052

NUM_N −0.1114 ± 0.0062 −0.1093 ± 0.0050

NUM_MA −0.0780 ± 0.0064 −0.0535 ± 0.0050

GRANULE_HALF_LIFE NA 0.5929 ± 0.0038

Kd_GRANULE NA −0.3809 ± 0.0049

The parameter range is shown in Table 5. First column parameters description; Column 2 partial rank
correlation for Scenario 1; Column 3 partial rank correlation for Scenario 2

of the solution of the following differential equation:

dx

dt
= −k ∗ x (A1)

where k is not equal to but can be calculated from the parameter L in Table 4. To
compute k from the parameter L in the table, we have to notice that the above equation
has the solution:

x(t) = x0 ∗ e−k∗t (A2)

where x(L)/x0 = 0.5; therefore, k = −ln(0.5)/L
Notice that molecules also decal as an effect of turnover with the serum (Eq.2).

Similarly, the leukocytes (Macrophages andNeutrophils) die every iterationwith fixed
probability which approximates the above differential equation.

Molecules diffuse through the space with the partial differential equation:

∂S

∂t
= D ∗ ∇2S (A3)

where D is the diffusion coefficient (Table 4), we solve this equation using an implicit
method with periodic boundary conditions.

A.4 Supplementary Results

This supplementarymaterial contains results from Scenario 2, sensitivity analysis, and
comparisons of simulated results with the literature (Table 6 and Figs. 7, 8, 9, 10, 11).
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Fig. 7 Comparison between
epidemiological data on CAPA
(Kariyawasam et al. 2021) and
virtual epidemiology. ICU
patients and intubated patients
refer to epidemiological data
from Kariyawasam et al. (2021).
Scenarios 1 and 2 are simulation
data. Error bars represent
standard deviation

Fig. 8 Distribution of observed
growth rate in the alternative
scenario where neutrophils do
not need direct contact to kill
hyphae. We divided virtual
patients into two clusters: the
prominent peak on the negative
side (Cluster 1) and the
secondary peak (Cluster 2). We
then subdivided Cluster 2 into
three subclusters: 2A is the
negative part, 2B is the positive
part excluding outliers, and 2C
is the long tail of outliers
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Fig. 9 Plots in 3D space of the most important parameters according to the classification tree (not shown)
in the alternative scenario where neutrophils do not need direct contact to kill hyphae. A Virtual patients
plotted in 3D space. The x-axis is the log of patients’ intrinsic growth rate, the y-axis is the log of their
neutrophil granule kd , and the z-axis is the log of the neutrophil granule half-life. B shows the CAPA
probability as the intrinsic growth rate and neutrophil granule kd change

Fig. 10 Immune system inhibition by SARS-CoV-2.A decrease in ROS production in patients with SARS-
CoV-2 (Tappe et al. 2022). B decrease in neutrophil killing ability in virtual patients with CAPA relative to
patients without CAPA (Scenario 1)

123



6 Page 26 of 32 H. A. L. Ribeiro et al.

Fig. 11 Hemorrhage leads to increased A. fumigatus growth in-vivo due to iron availability.AMice treated
with heme and infected with A. fumigatus had more lung colony-forming units than litter mates treated with
Tin protoporphyrin. B Lung transplant causes micro-hemorrhage that predisposes mice to fungal invasion
due to iron availability. Hemochromatosis mice Hfe-/- mice had more fungal invasion control when infected
with A. fumigatus after receiving a lung transplant. C simulated CAPA virtual patients (Scenario 1) had
higher intrinsic growth rates, similar to what A and B suggest for mice with hemorrhage
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