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Abstract
In this paper, we first formulate a system of ODEs–PDE to model diseases with
latency-age and differential infectivity. Then, based on the ways how latent individuals
leave the latent stage, one ODE and two DDE models are derived. We only focus
on the global stability of the models. All the models have some similarities in the
existence of equilibria. Each model has a threshold dynamics for global stability,
which is completely characterized by the basic reproduction number. The approach is
theLyapunov directmethod.Wepropose an idea on constructingLyapunov functionals
for the two DDE and the original ODEs–PDE models. During verifying the negative
(semi-)definiteness of derivatives of the Lyapunov functionals along solutions, a novel
positive definite function and a new inequality are used. The idea here is also helpful
in applying the Lyapunov direct method to prove the global stability of some epidemic
models with age structure or delays.
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1 Introduction

Epidemiological models reflect the processes of disease transmissions and the transi-
tions of individuals among different disease statuses. They have played an important
role in understanding transmission mechanisms of infectious diseases, controlling
their spread, and predicting their development (Brauer and Castillo-Chavez 2001; Ma
and Li 2009). Many diseases (such as tuberculosis, Hepatitis C, influenza, COVID-
19, chicken pox, and so on) are known to have an exposed or latent phase, where
individuals are infected but not yet infectious. Furthermore, the infected individuals
of some diseases (such as malaria, dengue fever, AIDS, and other sexually trans-
mitted diseases) may have different abilities to transmit these infections in different
infectious stages since their infectivity usually depends on the level of the parasite or
viral loads of infected individuals or vectors (Anderson and May 1991; Nowak and
May 2000; Paul and Kuddus 2022). There have been many epidemic models incor-
porated latency (Demasse et al. 2016; Li and Fang 2008; Wang et al. 2012; Zhong
et al. 2019; Mccluskey 2016; McCluskey 2012; Liu et al. 2015; Asamoah et al. 2021;
Korobeinikov andMelnik 2013; Alshorman et al. 2016; Qiu et al. 2022 and references
therein) and differential infectivity (Fall et al. 2007; Kuzmina et al. 2021; Liu andChen
2015; Bonzi et al. 2011; Asamoah et al. 2021; Hyman and Li 2006; Hyman et al. 1999;
Ma et al. 2003; Bowong and Tewa 2009; Skakauskas 2022; Kouenkam et al. 2020 and
references therein). However, there are few considering both latency and differential
infectivity. The goal of this paper is to propose and analyze some epidemic models
incorporating both latency and differential infectivity.

For diseases that go through a latent stage, it is possible that certain disease-related
parameters (for example, the transfer rate from latent individuals to infectious or
recovered ones) depend on the latency-age, i.e., the duration when the individual has
been in the latent stage. Usually, to model such a phenomenon will lead to systems
involving partial differential equations (PDEs) (McCluskey2012;Demasse andDucrot
2013; Magal et al. 2010; Magal and McCluskey 2013; Mccluskey 2016; Blyuss and
Kyrychko 2021; Ren 2017). When the parameters are independent of the latency-age,
the PDEs will reduce to ordinary differential equations (ODEs) (Li and Muldowney
1995; Korobeinikov andMaini 2004; Zhang andMa 2003; Lu and Lu 2017; Sigdel and
McCluskey 2014; Gómez andMondragon 2021; Bame et al. 2008); while when latent
individuals have certain stage characteristics, we may subdivide the latent stage into
two phases, an initial phase where the individuals stay at the phase and do not transfer
to other states and a phase where individuals can transfer to other states. This situation
is suitably described by delayed differential equations (DDEs) (see, for example, Liu
and Zhang (2019); Huang et al. (2015) and references therein). In addition, there is
also a case where all the latent individuals leave the stage at the same latency-age.
This can also lead to a DDE for the change in the number of latent individuals, which
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is different from the two-stage situation mentioned above (Rst et al. 2013; Liu et al.
2018; Bajiya et al. 2021; Zhou et al. 2021b). Though there are extensive studies for
the latter, the former seems more realistic. In this paper, we consider theoretically the
above four cases for the transmissions of the same diseases, namely, we investigate
the four classes of epidemic models with different interpretations of the latent phase.

In Sect. 2, we first formulate a model consisting of ODEs and PDE to describe
infectious diseases with latency and differential infectivity. Then based on the different
assumptions on how latent individuals leave the latent stage, an ODE model and two
DDE models are resulted. The well-posedness of the four models is not difficult to
obtain. Thus we leave out the detail. Our main goal is to establish global stability of
equilibria of the models by the Lyapunov direct method. See Sect. 3 for the statement
on the threshold dynamics and Sect. 4 for the proof.

For the endemic equilibrium of the ODE model, the commonly used linear combi-
nation of the Volterra-type function,

L =
n∑

i=0

ai (ui − 1 − ln ui ) , ai > 0 (1)

serves the candidate of Lypunov functions and that for the disease-free equilibrium
is an obvious modification of (1). We mention that the integral form of (1) (i.e.,
Lyapunov functionals) has been extensively used to prove global stability of positive
equilibria of some epidemic models with age-structure (Li et al. 2016, 2012b; Huang
et al. 2010, 2012; McCluskey 2012; Mccluskey 2016) or delay (Li et al. 2016; Yan
and Zhang 2021; Zhou et al. 2021a; McCluskey 2015). In either situation, on the one
hand, it is important to determine the appropriate coefficients (ai ) of the Lyapunov
function/functional; On the other hand, for given coefficients, sometimes it may be
difficult to determinewhether the derivative of the Lyapunov function/functional along
solutions of the model is negative (semi-)definite.

For the Lyapunov function of the form (1) for endemic equilibria of ODE models,
based on the method of proving global stability in Korobeinikov (2004), a systematic
algebraic approach is proposed in Li et al. (2011, 2012a) to determine the coefficients
and to show the negative (semi-)definiteness of the derivative. The main idea is to
express the derivative in terms of expressions such that the AM(arithmetic mean)-
GM(geometric mean) inequality can be applied. This approach has certain generality
and is suitable for many types of models. Also, a method based on graph theory is
established to prove the global stability of the endemic equilibria of some multigroup
epidemic models in Guo et al. (2006, 2008).

As we have seen, models of DDEs and PDEs for age structured populations are
closely related to some models of ODEs. By treating DDE models as perturbation of
ODEs,McCluskey (McCluskey 2015) proposed an approach to constructingLyapunov
functionals based on those for the corresponding ODEmodels, where an integral term
is added. The Lyapunov functionals for theDDEmodels are constructed directly in this
way. But, PDEmodels are not considered inMcCluskey (2015), by analogy with ODE
models and DDE models, we give similar idea on constructing Lyapunov functionals
for ODEs-PDE models.

The paper concludes with a brief discussion.
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2 Formulation of themodels

In this section, we formulate four classes of epidemic models with differential infec-
tivity to describe the same process of a disease transmission, where the development of
latent individuals is reflected in four forms and it is assumed that infectious individuals
with two-stage feature have differential infectivity.

We divide the population into five classes, susceptible, latent, infectious-1,
infectious-2, and recovered. Here infectious-1 individuals have different infectivity
from infectious-2 individuals andmay develop into infectious-2 individuals. For exam-
ple, after a susceptible individual is infected, he/she first enters the latent stage, and
then becomes asymptomatic, symptomatic or recovered. Generally, the infectivities
of asymptomatic and symptomatic individuals are different, so they are referred to as
the infectious-1 individuals and the infectious-2 individuals, respectively.

Let S(t), I1(t), I2(t), and R(t) denote the numbers of the susceptible, infectious-1,
infectious-2, and removed individuals at time t , respectively, and v(t, a) denote the
density of the latent individuals with latency-age a at time t . Then an epidemic model
with latency-age structure can be described by the following ODEs-PDE system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = A − μS(t) − S(β1 I1(t) + β2 I2(t)), t > 0,

∂v(t,a)
∂t + ∂v(t,a)

∂a = −[μ + ε(a)]v(t, a), a > 0,

d I1
dt = k1

∫ ∞
0 ε(a)v(t, a)da − (μ + γ + α1 + δ1)I1(t),

d I2
dt = k2

∫ ∞
0 ε(a)v(t, a)da + γ I1(t) − (μ + α2 + δ2)I2(t),

dR
dt = k3

∫ ∞
0 ε(a)v(t, a)da + δ1 I1(t) + δ2 I2(t) − μR(t),

(2)

with the boundary condition

v(t, 0) = S(t)(β1 I1(t) + β2 I2(t)) (3)

and the initial conditions

S(0) = Sb ≥ 0, v(0, a) = vb(a) ∈ L1+(0,∞),

I1(0) = I1b ≥ 0, I2(0) = I2b ≥ 0, R(0) = Rb ≥ 0.
(4)

Here A is the recruitment rate of susceptible individuals; μ is the per capita natural
death rate; βi (i = 1, 2) is the transmission coefficient of infectious-i individuals;
ε(a) is the per capita transfer rate of latent individuals with latency-age a; k1, k2, and
k3 (k1 + k2 + k3 = 1) are the proportions of the latent individuals transferring to
infectious-1, infectious-2, and recovered individuals, respectively; γ is the per capita
transfer rate of infectious-1 individuals to infectious-2 individuals; αi and δi (i = 1, 2)
are the disease-induced death rates and the recovery rates of infectious-i individuals,
respectively. All the parameters are positive except for k3 ≥ 0 and ε(a) is assumed to
be nonnegative, continuous, and bounded for a ≥ 0. Since it is impossible that the age
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of a latent individual is infinite, it is natural to impose the condition on v(t, a) that

v(0,∞) = vb(∞) = 0. (5)

Note that the equations of S(t), v(t, a), I1(t), and I2(t) in (2) are independent
of R. Thus we will focus on the following subsystem with the above corresponding
assumptions,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS
dt = A − μS(t) − S(t)(β1 I1(t) + β2 I2(t)), t > 0,

∂v(t,a)
∂t + ∂v(t,a)

∂a = −[μ + ε(a)]v(t, a), a > 0,

d I1
dt = k1

∫ ∞
0 ε(a)x(t, a)da − μ1 I1(t),

d I2
dt = k2

∫ ∞
0 ε(a)x(t, a)da + γ I1(t) − μ2 I2(t)

(6)

with the associated conditions (3) and (4). Here μ1 = μ + γ + α1 + δ1 and μ2 =
μ + α2 + δ2. The phase space of (6) with conditions (3) and (4) is Xp � R+ ×
L1+(0,∞)×R+ ×R+ withR+ = [0,∞), which is a nonnegative cone of the Banach
space R × L1+(0,∞) × R × R equipped with the product norm.

In the following, we consider a few special cases of (6) according to different
features of latent individuals.

Firstly, we assume that the transfer rate of the individuals leaving the latent stage
does not depend on the latency-age, i.e., ε(a) is a constant (denoted by ε). Let E(t) =∫ ∞
0 v(t, a)da, which is the number of latent individuals at time t . Then one can get
from the equation satisfied by v(t, a) in (6) and the conditions (3) and (5) that E
satisfies

dE

dt
= S(t)(β1 I1(t) + β2 I2(t)) − (μ + ε)E(t)

and hence (6) with (3) reduces to the following ODE model

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS
dt = A − μS − S(β1 I1 + β2 I2),

dE
dt = S(β1 I1 + β2 I2) − (μ + ε)E,

d I1
dt = k1εE − μ1 I1,

d I2
dt = k2εE + γ I1 − μ2 I2.

(7)

Then the phase space for (7) becomes X1 = R
4+ and it is positively invariant for (7).

Next, we assume that a latent individual must pass through a certain period (denoted
by τ ) before gradually leaving this stage and transferring to infectious-1, or infectious-
2, or recovered. We also assume that the transfer rate after τ is independent of the
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latency-age. Thus ε(a) is a step function,

ε(a) =
{
0, a < τ ;
ε, a ≥ τ.

This time, denote E0(t) = ∫ τ

0 v(t, a)da and E(t) = ∫ ∞
τ

v(t, a)da, which represent
the numbers of latent individuals in the initial stage and the stage capable of leaving
the stage, respectively. Then system (6) with conditions (3) and (5) reduces to the
following DDE model,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = A − μS(t) − S(β1 I1(t) + β2 I2(t)),

dE0
dt = S(t)(β1 I1(t) + β2 I2(t)) − μE0(t)

−S(t)(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)]e−μτ ,

dE
dt = S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)]e−μτ − (μ + ε)E(t),

d I1
dt = k1εE(t) − μ1 I1(t),

d I2
dt = k2εE(t) + γ I1(t) − μ2 I2(t).

(8)

We refer to “Appendix A” for the derivation of the equations for E0 and E . Note that
the variable E0 does not appear in the other equations of (8). Thus we will only focus
on the following subsystem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS
dt = A − μS(t) − S(t)(β1 I1(t) + β2 I2(t)),

dE
dt = S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)]e−μτ − (μ + ε)E(t),

d I1
dt = k1εE(t) − μ1 I1(t),

d I2
dt = k2εE(t) + γ I1(t) − μ2 I2(t).

(9)

Obviously, when τ = 0, system (9) becomes system (7). Without loss of generality,
the initial conditions for system (9) can take the form

S(θ) = φ1(θ), E(θ) = φ2(θ), I1(θ) = φ3(θ), I2(θ) = φ4(θ), θ ∈ [−τ, 0],

where (φ1, φ2, φ3, φ4) ∈ X2 � C
([−τ, 0],R4+

)
, the nonnegative cone of the Banach

space C([−τ, 0],R4) of continuous functions from [−τ, 0] intoR4 equipped with the
supremum norm.

Finally,we assume that all the latent individuals have the same latent period (denoted
by τ ), that is, they all leave the latent stage at the same latent age τ . Then the transfer
rate can be expressed by a delta function, i.e., ε(a) = 0 for a �= τ , and ε(a) �= 0 for
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a = τ . Thus system (6) with condition (3) becomes the following DDE system,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = A − μS(t) − S(t)(β1 I1(t) + β2 I2(t)),

dE
dt = S(t)(β1 I1(t) + β2 I2(t)) − μE(t)

−S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)]e−μτ ,

d I1
dt = k1e−μτ S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)] − μ1 I1(t),

d I2
dt = k2e−μτ S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)]

+γ I1(t) − μ2 I2(t),

(10)

where as before E = E(t) is the number of latent individuals at time t . See
“Appendix B” for the derivation of the equation for E . Again, noting that the variable
E is decoupled from the other equations, we only consider the related subsystem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dS
dt = A − μS(t) − S(t)(β1 I1(t) + β2 I2(t)),

d I1
dt = k1S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)] − μ1 I1(t),

d I2
dt = k2S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)] + γ I1(t) − μ2 I2(t),

(11)

where k1 and k2 still denote k1e−μτ and k2e−μτ , respectively. Similar to model (9),
the initial conditions for system (11) take the form

S(θ) = φ0(θ), I1(θ) = φ1(θ), I2(θ) = φ2(θ), θ ∈ [−τ, 0],

where (φ0, φ1, φ2) ∈ X3 � C
([−τ, 0],R3+

)
.

For the original model (6) with conditions (3) and (4), the existence and uniqueness
of solutions can be established by using the standard theory for age-dependent models
(Webb 1985). For models (9) and (11), by the fundamental theory of functional differ-
ential equations (Hale 2003), there are global and unique solutions through available
initial conditions.Moreover, all solutions of the fourmodels, (6), (7), (9), and (11),with
available nonnegative initial conditions will remain nonnegative. Therefore, we only
concentrate on their global stability in the sequel,which is discussedwith theLyapunov
direct method. Here, by observing some common features regarding constructing
Lyapunov functions/functionals for the fourmodels, we provide an idea on how to con-
struct appropriate Lyapunov functions/functionals for age-dependent/delayed models.

3 Main results

It is easy to see that all the four models always have the disease-free equilibrium
P0 (S0, 0, 0, 0), where S0 = A

μ
.
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For simplicity of notations, we denote μ1μ2
β1k1μ2+β2(k1γ+k2μ1)

by �. Then the basic

reproduction numbers of the fourmodels are as follows. Formodel (7), R01 = S0ε
�(μ+ε)

;

for model (9), R02 = S0εe−μτ

�(μ+ε)
; for (11), R03 = S0

�
; for model (6) with (3), R04 =[

S0
∫ ∞
0 ε(a)e− ∫ a

0 [μ+ε(θ)]dθda
]

/�.

When the basic reproduction number R0i (i = 1, 2, 3, 4) of each model is greater
than one, it has a unique endemic equilibrium P∗, denoted by P∗(S∗, v∗(a), I ∗

1 , I ∗
2 )

for (6) with (3), P∗(S∗, E∗, I ∗
1 , I ∗

2 ) for (7) and (9), and P∗(S∗, I ∗
1 , I ∗

2 ) for (11).
Obviously,

I ∗
2 = k1γ + k2μ1

k1μ2
I ∗
1 (12)

from the last two equations of every model. With the help of (12), solving directly the
equations satisfied by the endemic equilibrium gives

S∗ = �(μ + ε)

ε
, E∗ = μ1 I ∗

1

k1ε

for (7);

S∗ = �(μ + ε)eμτ , E∗ = μ1 I ∗
1

k1ε

for (9);

S∗ = �

for (11); and

S∗ = �
∫ ∞
0 ε(a)e− ∫ a

0 [d+ε(θ)]dθda
,

v∗(a) = S∗(β1 I
∗
1 + β2 I

∗
2 )e− ∫ a

0 [d+ε(θ)]dθ

for (6) with (3). Furthermore, combining the first equation of each model with the
corresponding expression of S∗ gives I ∗

1 = μk1�
μ1

(R0i − 1) (i = 1, 2, 3, 4).
It is routine to show that the disease-free equilibrium P0 is locally asymptotically

stable if the basic reproduction number R0i < 1 and is unstable if R0i > 1. Moreover,
when R0i > 1 the corresponding model is persistent. The main result on the global
stability of equilibria is summarized below, which is proved in the coming section.

Theorem 1 For each of the models (7), (9), (11), and (6) with (3),

(a) the disease-free equilibrium P0 is globally asymptotically stable (GAS) on the
feasible region when the corresponding basic reproduction number is less than or
equal to unity;
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(b) the endemic equilibrium P∗ is GAS in the feasible region when the corresponding
basic reproduction number is greater than unity.

The corresponding feasible region will be mentioned in the proof.

4 Proof of main results

As mentioned before, the stability stated in Theorem 1 is established by constructing
appropriate Lyapunov functions/functionals. For this purpose, we introduce the func-
tion g(u) = u − 1 − ln u for u > 0. It is easy to see that g(u) ≥ 0 and that g(u) = 0
if and only if u = 1. We discuss the systems one by one with the stability of P∗ first.
When arranging terms of the derivatives along solutions of the models, we omit some
detail in using the equalities satisfied by the equilibria.

4.1 Stability of model (7)

(a) First, we prove the global stability of P∗ of model (7) in the feasible region
X10 = {(S, E, I1, I2) ∈ X1 : E + I1 + I2 > 0}. It is not difficult to see that
solutions with initial conditions in X10 will be positive on (0,∞). Thus we can
define a function

L∗
1 = S∗g

(
S

S∗

)
+ n̄0E

∗g
(

E

E∗

)
+ n∗

1 I
∗
1 g

(
I1
I ∗
1

)
+ n∗

2 I
∗
2 g

(
I2
I ∗
2

)
,

where n̄0, n∗
1, and n∗

2 are positive constants to be specified later on. Then the
derivative of L∗

1 with respect to t along solutions of (7) is given by

D(7)L
∗
1 =

(
1 − S∗

S

)
dS

dt
+ n̄0

(
1 − E∗

E

)
dE

dt

+ n∗
1

(
1 − I ∗

1

I1

)
d I1
dt

+ n∗
2

(
1 − I ∗

2

I2

)
d I2
dt

.

According to the approach provided in Li et al. (2011, 2012a), we find that

n̄0 = 1, n∗
1 = β1μ2 + β2γ

μ1μ2
S∗, n∗

2 = β2S∗

μ2
(13)

are appropriate to make D(7)L∗
1 negative (semi-)definite with respect to P∗. In

fact, with them, we have

D(7)L
∗
1 = μS∗

(
2 − x − 1

x

)
+ β1S

∗ I ∗
1

(
3 − 1

x
− u

y1
− xy1

u

)

+ n∗
2k2εE

∗
(
2 − 1

x
− u

y2
− xy2

u

)
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+ n∗
2γ I ∗

1

(
4 − 1

x
− u

y1
− y1

y2
− xy2

u

)
,

where x = S
S∗ , u = E

E∗ , y1 = I1
I ∗
1
, and y2 = I2

I ∗
2
. Thus D(7)L∗

1 ≤ 0 by the AM-GM

inequality. Moreover, the equality holds if and only if x = 1 (i.e., S = S∗) and
u = y1 = y2 (i.e., E

E∗ = I1
I ∗
1

= I2
I ∗
2
), from which we can easily verify that the

largest invariant set of (7) in the set

{
(S, E, I1, I2) ∈ X10 : D6L

∗
1 = 0

}

is the singleton {P∗}. By LaSalle Invariance Principle (LaSalle 1976), we know
that P∗ is GAS in X10.

(b) Now, for the disease-free equilibrium P0 of (7), define a function

L(0)
1 = S0g

(
S

S0

)
+ n̄0E + n(0)

1 I1 + n(0)
2 I2,

where n̄0, n
(0)
1 , and n(0)

2 are given by (13) with S∗ being replaced by S0, namely,

n̄0 = 1, n(0)
1 = β1μ2 + β2γ

μ1μ2
S0, n(0)

2 = β2

μ2
S0. (14)

Note that L(0)
1 can be regarded as well-defined as for any solution of (7) with the

initial condition in X1, one has S(t) > 0 for t > 0. Then the derivative of L(0)
1

with respect to t along solutions of (7) is

D(7)L
(0)
1 = −μ(S − S0)2

S
−

[
n̄0(μ + ε) − (n(0)

1 k1 + n(0)
2 k2)ε

]
E

= −μ(S − S0)2

S
− (μ + ε)(1 − R01)E,

where A = μS0 and n̄0(μ + ε) − (n(0)
1 k1 + n(0)

2 k2)ε = (μ + ε)(1 − R01) have

been used. Clearly, D7L
(0)
1 ≤ 0 when R01 ≤ 1. Furthermore, D(7)L

(0)
1 = 0 if and

only if S = S0 and E = E0 when R01 < 1 while D(7)L
(0)
1 = 0 only for S = S0

when R01 = 1. It is not difficult to check that, in either case, the largest invariant
set of (7) in {(S, E, I1, I2) ∈ X1 : D(7)L0

1 = 0} is {P0}. Therefore, by LaSalle
Invariance Principle (LaSalle 1976) again, P0 is GAS in the feasible region X1
when R01 ≤ 1.

123



Global stability of latency-age/stage-structured… Page 11 of 27 80

4.2 Stability of model (9)

(a) For the endemic equilibrium P∗ of (9), we first define a function

L∗
21 = S∗g

(
S(t)

S∗

)
+ n0E

∗g
(
E(t)

E∗

)
+ n∗

1 I
∗
1 g

(
I1(t)

I ∗
1

)
+ n∗

2 I
∗
2 g

(
I2(t)

I ∗
2

)

in the feasible regionX20 = {(φ1, φ2, φ3, φ4) ∈ X2 : φ2(0)+φ3(0)+φ4(0) > 0},
where n0 = eμτ , n∗

1 and n
∗
2 are the same as those in (13). For any initial condition

in X20, one can show that the corresponding solution is positive on [τ,∞). As a
result, L∗

21 is well-defined, without loss of generality. Then the derivative of L∗
21

with respect to t along solutions of (9) is

D(9)L
∗
21 =

(
1 − S∗

S(t)

)
dS

dt
+ n0

(
1 − E∗

E(t)

)
dE

dt

+ n∗
1

(
1 − I ∗

1

I1(t)

)
d I1
dt

+ n∗
2

(
1 − I ∗

2

I2(t)

)
d I2
dt

.

For simplicity, denote x(t) = S(t)
S∗ , u(t) = E(t)

E∗ , y1(t) = I1(t)
I ∗
1
, and y2(t) = I2(t)

I ∗
2
.

We rewrite D9L∗
21 as

D(9)L
∗
21 = (

A + μS∗) + [
n0(μ + ε) + n∗

1μ1 + n∗
2μ2

]
E∗

− A

x(t)
− μS∗x(t) − S∗x(t − τ)

[
β1 I ∗

1 y1(t − τ) + β2 I ∗
2 y2(t − τ)

]

u(t)

− n∗
1k1εE

∗ u(t)

y1(t)
− n∗

2k2εE
∗ u(t)

y2(t)
− n∗

2γ I ∗
1
y1(t)

y2(t)
+ �,

where

� = β1S
∗ I ∗

1 [x(t − τ)y1(t − τ) − x(t)y1(t)]
+ β2S

∗ I ∗
2 [x(t − τ)y2(t − τ) − x(t)y2(t)]. (15)

In order to cancel out � in D(9)L∗
21 and ensure the positive definiteness of the

constructed Lyapunov functionals, we define a functional

L∗
22 = β1S

∗ I ∗
1

∫ t

t−τ

g

(
S(θ)I1(θ)

S∗ I ∗
1

)
dθ + β2S

∗ I ∗
2

∫ t

t−τ

g

(
S(θ)I2(θ)

S∗ I ∗
2

)
dθ,

that is,

L∗
22 = β1S

∗ I ∗
1

∫ t

t−τ

g (x(θ)y1(θ)) dθ + β2S
∗ I ∗

2

∫ t

t−τ

g (x(θ)y2(θ)) dθ.
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Then, for L∗
2 = L∗

21 + L∗
22, we have

D(9)L
∗
2 = μS∗

(
2 − x(t) − 1

x(t)

)
+ β1S

∗ I ∗
1 �21 + n2k2E

∗�22 + n2γ I ∗
1 �23,

where

�21 = 3 − 1

x(t)
− u(t)

y1(t)
− x(t − τ)y1(t − τ)

u(t)
+ ln

x(t − τ)y1(t − τ)

x(t)y1(t)
,

�22 = 3 − 1

x(t)
− u(t)

y2(t)
− x(t − τ)y2(t − τ)

u(t)
+ ln

x(t − τ)y2(t − τ)

x(t)y2(t)
,

�23 = 4 − 1

x(t)
− u(t)

y1(t)
− y1(t)

y2(t)
− x(t − τ)y2(t − τ)

u(t)
+ ln

x(t − τ)y2(t − τ)

x(t)y2(t)
.

From Lemma 1 in “Appendix A”, we know that �2i ≤ 0 (i = 1, 2, 3); moreover,
�21 = 0 if and only if x(t) = 1 and y1(t) = y1(t−τ) = u(t);�22 = 0 if and only
if x(t) = 1 and y2(t) = y2(t − τ) = u(t); and �23 = 0 if and only if x(t) = 1
and y1(t) = y2(t) = y2(t − τ) = u(t). Therefore, the largest invariant set of (9)
in the region making D(9)L∗

2 = 0 is the singleton {P∗}. It follows that P∗ is GAS
in the feasible region X20 by LaSalle Invariance Principle (LaSalle 1976).

(b) Next, we prove the global stability of P0 of (9) in the feasible region X2. Note
that any solution of (9) with the initial condition inX2 satisfies S(t) > 0 for t > 0.
We first define

L(0)
21 = S0g

(
S(t)

S0

)
+ n0E(t) + n(0)

1 I1(t) + n(0)
2 I2(t)

with n0 = eμτ , n(0)
1 and n(0)

2 are the same as those in (14). Without loss of

generality, we can assume that L(0)
21 is well-defined on X2. Then the derivative of

L(0)
21 with respect to t along solutions of (9) is

D(9)L
(0)
21 = −μ(S(t) − S0)2

S(t)
−

[
n0(μ + ε) − (n(0)

1 k1 + n(0)
2 k2)ε

]
E(t)

+ S(t − τ) [β1 I1(t − τ) + β2 I2(t − τ)] − S(t) [β1 I1(t) + β2 I2(t)] ,

where A = μS0 was used.
Further, define

L(0)
2 = L(0)

21 +
∫ t

t−τ

S(θ) [β1 I1(θ) + β2 I2(θ)] dθ.

Then the derivative of L(0)
2 with respect to t along solutions of (9) is

D(9)L
(0)
2 = −μ(S(t) − S0)2

S(t)
−

[
n0(μ + ε) − (n(0)

1 k1 + n(0)
2 k2)ε

]
E(t).
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Astraightforward calculation shows that n0(μ+ε)−(n(0)
1 k1+n(0)

2 k2)ε = eμτ (μ+
ε)(1− R02). Then, similar to the case for (7) in the previous subsection, P0 is GAS
in the feasible region X2 when R02 ≤ 1 by LaSalle Invariance Principle (LaSalle
1976).

4.3 Stability of model (11)

(a) In order to prove the global stability of the endemic equilibrium P∗ of (11) in the
feasible region X30 = {(φ0, φ1, φ2 ∈ X3 : φ1(0) + φ2(0) > 0}, as for (9), we first
define a function

L∗
31 = S∗g

(
S(t)

S∗

)
+ n∗

1 I
∗
1 g

(
I1(t)

I ∗
1

)
+ n∗

2 I
∗
2 g

(
I2(t)

I ∗
2

)

where n∗
1 and n

∗
2 are the same as those in (13). Then its derivative along solutions

of (11) is

D(11)L
∗
31 =

(
1 − S∗

S

)
dS

dt
+ n∗

1

(
1 − I ∗

1

I1

)
d I1
dt

+ n∗
2

(
1 − I ∗

2

I2

)
d I2
dt

= (
A∗ + μS∗ + n∗

1μ1 I
∗
1 + n∗

2μ2 I
∗
2

) − A

x
− μS∗x − n∗

2γ I ∗
1 y1

y2

−
(
n∗
1k1
y1

+ n∗
2k2
y2

)
S∗x(t − τ)

[
β1 I

∗
1 y1(t − τ) + β2 I2y2(t − τ)

]

+�0,

where x(t) = S(t)
S∗ , y1(t) = I1(t)

I ∗
1
, y2(t) = I2(t)

I ∗
2
, and

�0 = β1S
∗ I ∗

1 [(n∗
1k1 + n∗

2k2)x(t − τ)y1(t − τ) − x(t)y1(t)]
+β2S

∗ I ∗
2 [(n∗

1k1 + n∗
2k2)x(t − τ)y2(t − τ) − x(t)y2(t)].

Note that S∗ = � implies that n∗
1k1 + n∗

2k2 = 1. Thus

�0 = β1S
∗ I ∗

1 [x(t − τ)y1(t − τ) − x(t)y1(t)]
+β2S

∗ I ∗
2 [x(t − τ)y2(t − τ) − x(t)y2(t)],

which is the same as that defined in (15). Then, similarly as for L∗
2, we now define

L∗
3 = L∗

31 + β1S
∗ I ∗

1

∫ t

t−τ

g

(
S(θ)I1(θ)

S∗ I ∗
1

)
dθ + β2S

∗ I ∗
2

∫ t

t−τ

g

(
S(θ)I2(θ)

S∗ I ∗
2

)
dθ,

whose derivative with respect to t along solutions of (11) is

D(11)L
∗
3 = (

A + μS∗ + n∗
1μ1 I

∗
1 + n∗

2μ2 I
∗
2

) − A

x
− μS∗x
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+ S∗
[
β1 I

∗
1 ln

x(t − τ)y1(t − τ)

x(t)y1(t)
+ β2 I

∗
2 ln

x(t − τ)y2(t − τ)

x(t)y2(t)

]

− n∗
2γ I ∗

1
y1(t)

y2(t)
− n1k1

S∗x(t − τ)[β1 I ∗
1 y1(t − τ) + β2 I ∗

2 y2(t − τ)]
y1(t)

− n∗
2k2

S∗x(t − τ)[β1 I ∗
1 y1(t − τ) + β2 I ∗

2 y2(t − τ)]
y2(t)

.

Further, by applying the equalities satisfied by P∗(S∗, I ∗
1 , I ∗

2 ), we can reexpress
D(11)L∗

3 as

D(11)L
∗
3 = μS∗

(
2 − x(t) − 1

x(t)

)
+ n∗

1k1β1S
∗ I ∗

1 �31

+n∗
2γ I ∗

1 �32 + n∗
2k2β2S

∗ I ∗
2 �33, (16)

where

�31 = 2 − 1

x(t)
− x(t − τ)y1(t − τ)

y1(t)
+ ln

x(t − τ)y1(t − τ)

x(t)y1(t)
,

�32 = 3 − 1

x(t)
− y1(t)

y2(t)
− x(t − τ)y1(t − τ)

y2(t)
+ ln

x(t − τ)y2(t − τ)

x(t)y2(t)
,

�33 = 6 − 3

x(t)
− x(t − τ)y2(t − τ)

y1(t)
− x(t − τ)y1(t − τ)

y2(t)

− x(t − τ)y2(t − τ)

y2(t)
+ ln

x3(t − τ)y1(t − τ)y22 (t − τ)

x3(t)y1(t)y22 (t)
.

By Lemma 1 in “Appendix C”, �3i ≤ 0 (i = 1, 2, 3) and

�31 = 0 if and only if x(t) = 1 and
y1(t − τ)

y1(t)
= 1;

�32 = 0 if and only if x(t) = 1 and
y1(t)

y2(t)
= y1(t − τ)

y2(t)
= 1;

�33 = 0 if and only if x(t) = 1 and y1(t) = y2(t).

Thus D(11)L∗
3 ≤ 0 and the equality holds if and only if x(t) = y1(t) = y2(t) = 1,

that is, S = S∗, I1 = I ∗
2 , and I2 = I ∗

2 . Therefore, by Lyapunov Theorem (Hale
2003), P∗ of (11) is GAS in the feasible region X30.

(b) Now we prove the global stability of P0 in the feasible regionX3. For this end, we
first define

L(0)
31 = S0g

(
S(t)

S0

)
+ n(0)

1 I1(t) + n(0)
2 I2(t),
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where n(0)
1 and n(0)

2 are the same as those in (14). Note that

n(0)
1 k1 + n(0)

2 k2 = β1k1μ2 + β2(k1γ + k2μ1)

μ1μ2
S0 = R03.

Then the derivative of L(0)
31 along solutions of (11) is

D(11)L
(0)
31 = −μ(S(t) − S0)2

S(t)
− S(t)(β1 I1(t) + β2 I2(t))

+ (n1k1 + n2k2)S(t − τ) [β1 I1(t − τ) + β2 I2(t − τ)]

= −μ(S(t) − S0)2

S(t)
− S(β1 I1(t) + β2 I2(t))

+ R03S(t − τ) [β1 I1(t − τ) + β2 I2(t − τ)] ,

where A = μS0 was used. In order to remove the term R03S(t − τ)

[β1 I1(t − τ) + β2 I2(t − τ)], we again define a functional

L(0)
3 = L(0)

31 + R03

∫ t

t−τ

S(θ) [β1 I1(θ) + β2 I2(θ)] dθ.

The derivative of L(0)
3 along solutions of (11) is

D(11)L
(0)
3 = −μ(S(t) − S0)2

S(t)
+ (R03 − 1)S(t)(β1 I1(t) + β2 I2(t)).

Therefore, similar to the cases in the above two subsections, we can show that the
equilibrium P0 of model (11) is GAS in the feasible region X3 when R03 < 1
by Lyapunov Theorem (Hale 2003) and when R03 = 1 by LaSalle Invariance
Principle (LaSalle 1976).

4.4 Stability of model (6)

Let

Xp0 = {(S, v, I1, I2) ∈ Xp : there exists t0 ≥ 0 such that β1 I (t0) + β I2(t0) > 0}.

When R04 > 1, model (6) has global attractor A in Xp0. Moreover, there exists
η > 0 such that for a total trajectory (S(t), v(t, ·), I1(t), I2(t)) in A , S(t), v(t, 0),
I1(t), I2(t) ≥ η. Also, note that v(t,a)

v∗(a)
= v(t−a,0)

v∗(0) . The proofs are standard. See, for
example, (Liu et al. 2015; Zhong et al. 2019).

(a) For the endemic equilibrium P∗ of (6), according to the above cases, the function

L∗
41 = S∗g

(
S(t)

S∗

)
+ n∗

1 I
∗
1 g

(
I1(t)

I ∗
1

)
+ n∗

2 I
∗
2 g

(
I2(t)

I ∗
2

)
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is still used, where n∗
1 and n∗

2 are the same as those in (13). We only need to
consider L∗

41 onA , which is well-defined by the discussion above. The derivative
of L∗

41 with respect to t along solutions of (6) with (3) is calculated to be

D(6)L
∗
41 =

(
1 − S∗

S(t)

)
[A − μS(t) − S(t)(β1 I1(t) + β2 I2(t))]

+n∗
1

(
1 − I ∗

1

I1(t)

) [
k1

∫ ∞

0
ε(a)v(t, a)da − μ1 I1(t)

]

+n∗
2

(
1 − I ∗

2

I2(t)

)[
k2

∫ ∞

0
ε(a)v(t, a)da + γ I1(t) − μ2 I2(t)

]
.

Similarly as before, let x(t) = S
S∗ , u(t, a) = v(t,a)

v∗(a)
, y1(t) = I1(t)

I ∗
1
, and y2(t) =

I2(t)
I ∗
2
. Then D(6)L∗

41 can be rewritten as

D(6)L
∗
41 = (

A + μS∗ + n∗
1μ1 I

∗
1 + n∗

2μ2 I
∗
2

) − A

x
−μS∗x − S∗x(β1 I

∗
1 y1 + β2 I

∗
2 y2)

+
∫ ∞

0

S∗

�
ε(a)v∗(a)u(t, a)da − n∗

1k1

∫ ∞

0
ε(a)v∗(a)

u(t, a)

y1(t)
da

−n∗
2k2

∫ ∞

0
ε(a)v∗(a)

u(t, a)

y2(t)
da − n∗

2γ I ∗
1
y1
y2

,

where n∗
1k1 + n∗

2k2 = S∗
�

was used.
Next, define a functional

L∗
42 =

∫ ∞

0
n∗(a)x∗(a)g

(
v(t, a)

v∗(a)

)
da,

where n∗(a) is a nonnegative differentiable and bounded function on [0,∞) to be
specified. With the assistance of the second equation of (6), we get

D(6)L
∗
42 =

∫ ∞

0
n∗(a)

[
1 − v∗(a)

v(t, a)

]
∂v(t, a)

∂t
da

= −
∫ ∞

0
n∗(a)

[
1 − v∗(a)

v(t, a)

] {
∂v(t, a)

∂a
+ [μ + ε(a)]v(t, a)

}
da.

Note that v∗(a) satisfiesμ+ε(a) = − 1
v∗(a)

· dv∗(a)
da . Then D(6)L∗

42 can be rewritten
as

D(6)L
∗
42 = −

∫ ∞

0
n∗(a)

[
1 − v∗(a)

v(t, a)

] [
∂v(t, a)

∂a
− v(t, a)

v∗(a)
· dv∗(a)

da

]
da

= −
∫ ∞

0
n∗(a)v∗(a)

[
1 − v∗(a)

v(t, a)

] {
1

v∗(a)
· ∂v(t, a)

∂a
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− v(t, a)

[v∗(a)]2
· dv∗(a)

da

}
da

= −
∫ ∞

0
n∗(a)v∗(a)

[
1 − v∗(a)

v(t, a)

]
∂

∂a

(
v(t, a)

v∗(a)

)
da

= −
∫ ∞

0
n∗(a)v∗(a)

∂

∂a

[
v(t, a)

v∗(a)
− 1 − ln

v(t, a)

v∗(a)

]
da

= −
∫ ∞

0
n∗(a)v∗(a)

∂

∂a
g

(
v(t, a)

v∗(a)

)
da.

Further, with integration by parts, we obtain

D(6)L
∗
42 = n∗(0)v∗(0)g

(
v(t, 0)

v∗(0)

)
−

[
n(a)∗v∗(a)g

(
v(t, a)

v∗(a)

)]

a=∞

+
∫ ∞

0
g

(
v(t, a)

v∗(a)

)
d (n∗(a)v∗(a))

da
da

≤ n∗(0)v∗(0)
[
v(t, 0)

v∗(0)
− 1 − ln

v(t, 0)

v∗(0)

]

+
∫ ∞

0

[
v(t, a)

v∗(a)
− 1 − ln

v(t, a)

v∗(a)

]
d (n∗(a)v∗(a))

da
da,

where
[
n∗(a)v∗(a)g

(
v(t,a)
v∗(a)

)]

a=∞ ≥ 0 was used. Substituting v(t, 0) =
S∗x(β1 I ∗

1 y1 + β2 I ∗
2 y2), v∗(0) = S∗(β1 I ∗

1 + β2 I ∗
2 ), and v(t, a) = v∗(a)u(t, a)

into the last expression gives

D(6)L
∗
42

≤ n∗(0)
[
S∗x(β1 I

∗
1 y1 + β2 I

∗
2 y2) − v∗(0) − v∗(0) ln

x(β1 I ∗
1 y1 + β2 I ∗

2 y2)

β1 I ∗
1 + β2 I ∗

2

]

+
∫ ∞

0
[u(t, a) − 1 − ln u(t, a)]

d (n∗(a)v∗(a))

da
da.

To sum up, for the functional L∗
4 = L∗

41 + L∗
42, we have got

D(6)L
∗
4 ≤ [

A + μS∗ + n∗
1μ1 I

∗
1 + n∗

2μ2 I
∗
2 − n∗(0)v∗(0)

]

−μS∗x − A

x
+ [n∗(0) − 1]S∗x(β1 I

∗
1 y1 + β2 I

∗
2 y2)

+
∫ ∞

0

[
S∗

�
ε(a)v∗(a) + d (n∗(a)v∗(a))

da

]
u(t, a)da − n∗

2γ I ∗
1
y1
y2

−
∫ ∞

0

{[
n∗
1k1

u(t, a)

y1(t)
+ n∗

2k2
u(t, a)

y2(t)

]
ε(a)v∗(a)

+ [1 + ln u(t, a)]
d (n∗(a)v∗(a))

da

}
da
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− n∗(0)v∗(0) ln
x(β1 I ∗

1 y1 + β2 I ∗
2 y2)

β1 I ∗
1 + β2 I ∗

2
. (17)

To make D(6)L∗
4 ≤ 0, let n∗(a) satisfy

S∗

�
ε(a)v∗(a) + d (n∗(a)v∗(a))

da
= 0, n∗(0) = 1.

Solving it gives

n∗(a) = e
∫ a
0 [μ+ε(θ)]dθ

∫ ∞
a ε(θ)e− ∫ θ

0 [μ+ε(ξ)]dξdθ
∫ ∞
0 ε(a)e− ∫ a

0 [μ+ε(θ)]dθdα
.

With this choice of n∗(a), (17) becomes

D(6)L
∗
4 ≤ [

2μS∗ + S∗(β1 I
∗
1 + β2 I

∗
2 ) + n∗

2γ I ∗
1

] − μS∗x

− μS∗ + S∗(β1 I ∗
1 + β2 I ∗

2 )

x
− n∗

2γ I ∗
2
y1
y2

− S∗(β1 I
∗
1 + β2 I

∗
2 ) ln

x
(
β1 I ∗

1 y1 + β2 I ∗
2 y2

)

β1 I ∗
1 + β2 I ∗

2

−
∫ ∞

0

{[
n∗
1k1

u(t, a)

y1(t)
+ n∗

2k2
u(t, a)

y2(t)

]

− [1 + ln u(t, a)]
S∗

�

}
ε(a)v∗(a)da

= H∗
0 + H∗,

where

H∗
0 = μS∗

(
2 − x − 1

x

)
+ S∗(β1 I

∗
1 + β2 I

∗
2 )

(
1 − 1

x
− ln x

)
,

H∗ = n∗
2γ I ∗

1

(
1 − y1

y2

)
− S∗(β1 I

∗
1 + β2 I

∗
2 ) ln

β1 I ∗
1 y1 + β2 I ∗

2 y2
β1 I ∗

1 + β2 I ∗
2

−
∫ ∞

0

{[
n∗
1k1

u(t, a)

y1(t)
+ n∗

2k2
u(t, a)

y2(t)

]

− [1 + ln u(t, a)]
S∗

�

}
ε(a)v∗(a)da.

Obviously, H∗
0 ≤ 0 and H∗

0 = 0 if and only if x = 1.

Note that k1
∫ ∞
0 ε(a)v∗(a)da = μ1 I ∗

1 implies
∫ ∞
0

k1ε(a)v∗(a)
μ1 I ∗

1
da = 1. Then H∗

can be expressed as

H∗ =
∫ ∞

0
ε(a)v∗(a)H(t, a)da,
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where

H(t, a) = k1n∗
2γ

μ1

(
1 − y1

y2

)
− k1S∗(β1 I ∗

1 + β2 I ∗
2 )

μ1 I ∗
1

ln
β1 I ∗

1 y1 + β2 I ∗
2 y2

β1 I ∗
1 + β2 I ∗

2

− n∗
1k1

[
u(t, a)

y1(t)
− 1 − ln u(t, a)

]
− n∗

2k2

[
u(t, a)

y2(t)
− 1 − ln u(t, a)

]

= k1n∗
2γ

μ1

(
1 − y1

y2

)
− (n∗

1k1 + n∗
2k2) ln

β1 I ∗
1 y1 + β2 I ∗

2 y2
β1 I ∗

1 + β2 I ∗
2

− n∗
1k1

[
u(t, a)

y1(t)
− 1 − ln u(t, a)

]
− n∗

2k2

[
u(t, a)

y2(t)
− 1 − ln u(t, a)

]
.

Here we have used
k1S∗(β1 I ∗

1 +β2 I ∗
2 )

μ1 I ∗
1

= S∗
�

= n∗
1k1 + n∗

2k2. As I ∗
2 = k1γ+k2μ1

k1μ2
I ∗
1 ,

n∗
1 = β1n2+β2γ

μ1μ2
S∗, and n∗

2 = β2S∗
μ2

, we further have

H(t, a)

= β2S∗

μ2

{
k1γ

μ1

[
2 − y1(t)

y2(t)
− u(t, a)

y1(t)
+ ln

u(t, a)

y2(t)

]

+k2

[
1 − u(t, a)

y2(t)
+ ln

u(t, a)

y2(t)

]}
+ k1β1S∗

μ1

[
1 − u(t, a)

y1(t)
+ ln

u(t, a)

y1(t)

]

+k1β1S∗

μ1
ln

y1(β1 I ∗
1 + b2 I ∗

2 )

β1 I ∗
1 y1 + β2 I ∗

2 y2
+ β2S∗

μ2

(
k1γ

μ1
+ k2

)
ln

y2(β1 I ∗
1 + b2 I ∗

2 )

β1 I ∗
1 y1 + β2 I ∗

2 y2
= H1 + H2,

where

H1 = β2S∗

μ2

{
k1γ

μ1

[
2 − y1(t)

y2(t)
− u(t, a)

y1(t)
+ ln

u(t, a)

y2(t)

]

+k2

[
1 − u(t, a)

y2(t)
+ ln

u(t, a)

y2(t)

]}
+ k1S∗

μ2 I ∗
1

· β1 I
∗
1

[
1 − u(t, a)

y1(t)
+ ln

u(t, a)

y1(t)

]

and

H2 = k1β1S∗

μ1
ln

y1(β1 I ∗
1 + b2 I ∗

2 )

β1 I ∗
1 y1 + β2 I ∗

2 y2
+ k1β2S∗ I ∗

2

μ1 I ∗
1

ln
y2(β1 I ∗

1 + b2 I ∗
2 )

β1 I ∗
1 y1 + β2 I ∗

2 y2
. (18)

It follows from Lemma 1 in “Appendix C” that H1 ≤ 0 and H1 = 0 if and
only if y1(t) = y2(t) = u(t, a). Note that the expression H2 can be rewritten as

H2 = − k1β2S∗ I ∗
2

μ1 I ∗
1

φ
(

β1 I ∗
1 y1

β2 I ∗
2 y2

,
β1 I ∗

1
β2 I ∗

2

)
, where φ(u, u∗) = (1 + u∗) ln 1+u

1+u∗ − u∗ ln u
u∗

(u, u∗ > 0) is positive definite with respect to u = u∗ (the function φ(u, u∗) has
been used to prove the global stability of the positive equilibrium of an epidemic
model in Li et al. (2021)). Thus H2 ≤ 0 and H2 = 0 if and only if y1 = y2.
From the above discussion, we see that H ≤ 0 and H = 0 if and only if y1(t) =
y2(t) = u(t, a), i.e., I1(t)I ∗

1
= I2(t)

I ∗
2

= v(t,a)
v∗(a)

. Similarly as before, the largest invariant
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set of (6) in the region where D(6)L∗
4 = 0 is the singleton {P∗}. Therefore, the

endemic equilibrium P∗ of (6) is GAS in the feasible region Xp0 when R04 > 1
according to LaSalle Invariance Principle (LaSalle 1976).

(b) Next, we prove the global stability of the disease-free equilibrium P0. First, define
a function

L(0)
41 = S0g

(
S(t)

S0

)
+ n(0)

1 I1(t) + n(0)
2 I2(t),

where n(0)
1 and n(0)

2 are the same as those in (14). Then

D(6)L
(0)
41 = −μ(S(t) − S0)2

S(t)
− S(t)(β1 I1(t) + β2 I2(t)) + S0

�

∫ ∞

0
ε(a)v(t, a)da,

where A = μS0 was used.
Again, let L(0)

42 = ∫ ∞
0 n(0)

4 (a)v(t, a)da, where n(0)
4 (a) is a nonnegative differen-

tiable and bounded function on [0,∞) to be determined. Similarly as in (a), we
get

D(6)L
(0)
42 =

∫ ∞

0
n(0)
4 (a)

v(t, a)

dt
da

= −
∫ +∞

0
n(0)
4 (a)

{
[μ + ε(a)] v(t, a) + ∂v(t, a)

∂a

}
da

= −
∫ ∞

0
n(0)
4 (a) [μ + ε(a)] v(t, a)da −

[
n(0)
4 (a)v(t, a)

]

a=∞

+n(0)
4 (0)x(t, 0) +

∫ ∞

0

dn(0)
4 (a)

da
v(t, a)da

≤ n(0)
4 (0)S(t)(β1 I1(t) + β2 I2(t))

+
∫ ∞

0

{
dn(0)

4 (a)

da
− n(0)

4 (a) [μ + ε(a)]

}
v(t, a)da

since
[
n(0)
4 (a)v(t, a)

]

a=∞ ≥ 0 and x(t, 0) = S(t)(β1 I1(t) + β2 I2(t)).

Now, for the functional

L(0)
4 = L(0)

41 + L(0)
42 ,

we have

D(6)L
(0)
4 ≤ −μ(S(t) − S0)2

S(t)
+ [n(0)

4 (0) − 1]S(t)(β1 I1(t) + β2 I2(t))

+
∫ ∞

0

{
dn(0)

4 (a)

da
− n(a) [μ + ε(a)] + S0

�
ε(a)

}
v(t, a)da. (19)
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Obviously, if we choose

n(0)
4 (a) = e

∫ a
0 [μ+ε(θ)]dθ

{
1 − S0

�

∫ a

0
ε(θ)e− ∫ θ

0 [μ+ε(ξ)]dξdθ

}

= e
∫ a
0 [μ+ε(θ)]dθ

{
1 − R04

∫ a
0 ε(θ)e− ∫ θ

0 [μ+ε(ξ)]dξdθ
∫ ∞
0 ε(θ)e− ∫ θ

0 [μ+ε(ξ)]dξdθ

}
,

then n(0)
4 (a) is nonnegative with n(0)

4 (0) = 1 and
dn(0)

4 (a)

da − n(0)
4 (a) [μ + ε(a)] +

S0
�

ε(a) = 0. With this choice of n(0)
4 (a), (19) becomes

D(6)L
(0)
4 ≤ −μ(S(t) − S0)2

S(t)
≤ 0.

Further, it is easy to verify that the largest invariant set of (6) with (3) in the
set where D(6)L

(0)
4 = 0 is the singleton {P0}. Therefore, By LaSalle Invariance

Principle (LaSalle 1976), P0 is GAS in the feasible region Xp when R04 ≤ 1.

5 Discussion

In this paper, we first proposed an epidemic model with latency-age and differential
infectivity. Then we made different assumptions on the characteristics of leaving the
latent stage by the latent individuals. This leads to models described by either ODEs
or DDEs. Thus these models are closely related and so that they have similar threshold
dynamics, namely, the basic reproduction numbers completely determine their global
stability (see Theorem 1).

The basic reproduction numbers of the four models in this paper are consistent to
some extent.

Firstly,when τ = 0, theDDEmodel (9) reduces to theODEmodel (7).Accordingly,
the basic reproduction number R01 of (7) can be obtained by replacing τ in R02 with
τ = 0.

Secondly, if ε(a) is a constant (denoted by ε), which implies that the rate leaving
the latent stage of latent individuals does not depend on the latency-age, the model
corresponding to the ODEs-PDE model is an ODE one. Then the basic reproduction
number R01 of the ODE model (7) is a special case of R04 of the ODEs-PDE model
(6) and R01 can be obtained from R04 by replacing ε(a) in R04 with the constant ε.

Finally, when establishing model (9), the assumption that ε(a) is a delta function
implies that ε(a) satisfies

∫ ∞
0 ε(a)da = 1. Thus the basic reproduction numbers R03

for the DDE model (11) and R04 for the ODEs-PDE model are unified.
The global stability of the equilibria of the four models is established by applying

the Lyapunov direct method. There are some common points about constructing the
Lyapunov functions/functionals for models (9), (11), and (6). Each consists of two
parts with the first part just being the one for the ODE model (7) and the second part
an integral. We provide some detail below.
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First, for the ODE model (7), a linear combination of the Volterra-type function,
(1), is taken as a candidate of the Lyapunov functions for the endemic equilibrium.
The suitable coefficients are found by employing the algebraic approach proposed in
Li et al. (2011, 2012a). Then a little obvious modification is made to construct the
Lyapunov function for the disease-free equilibrium. It is a surprise that the coefficients
except that for the S component are the same.

Next, for the DDE models and the ODEs-PDE model, the used Lyapunov func-
tionals all consist of function parts and functional parts of integral form. Specifically,
the two DDE models can be regarded as perturbations of the ODE model (7) and
thus the Lyapunov functions for (7) are backbones of their Lyapunov functionals (see
McCluskey (2015)), which are the sum of the Lyapunov function and an integral form.
The integral is to balance the extra terms arising from just considering the derivative
of the Lyapunov function along solutions. But for the ODEs-PDE model, the function
parts correspond to the state variables without age feature, while the integral parts are
only for the variable with age feature, the integrands (age a as the integral variable)
have the same form as those of ODE models and the corresponding coefficient (n(a))
equals that of the ODE model at zero age (a = 0) (i.e., n(0) = 1).

The features of the above Lyapunov functions/functionals indicate a connection
between constructed Lyapunov functions/functionals for related different models.
Moreover, the relationship between the Lyapunov functions/funnctionals about the
different equilibria for the same model certainly provides an idea on how to construct
appropriate Lyapunov functions/functionals.

Finally, when applying the Lyapunov direct method, it is required to prove the
negative (semi-)definiteness of the derivative. This is a skillful task. Here the inequality
in Lemma 1 of “Appendix C” is novel and generalizes some existing ones. With
this inequality, it is quite easy to know that the last part of (16) is negative semi-
definite. In addition, the introduction of the positive definite function φ(u, u∗) =
(1+ u∗) ln 1+u

1+u∗ − u∗ ln u
u∗ (u, u∗ > 0) proposed in Li et al. (2021) plays a key role in

showing that H2 in (18) is negative definite with respect to y1 = y2. This suggests that,
with new techniques or method, it is possible to prove the negative (semi-)definiteness
of the derivative along solutions of a Lyapunov function/functional constructed in the
usual way.
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Appendix A. Derivations of the equations on E0 and E in (8)

Firstly, integrate the second equation of (6) with conditions (3) and (5) along its
characteristic line t − a = constant gives us

v(t, a) =
{
S(t − a) [β1 I1(t − a) + β2 I2(t − a)] e− ∫ a

0 [μ+ε(θ)]dθ , 0 < a ≤ t,

vb(a − t)e− ∫ a
a−t [μ+ε(θ)]dθ , a ≥ t > 0.

(A1)

Then v(t,∞) = 0 due to (5) and (A1). Moreover, as ε(θ) = 0 for 0 < a < τ , we get

v(t, τ ) = S(t − τ) [β1 I1(t − τ) + β2 I2(t − τ)] e−μτ . (A2)

Next, for E0(t) = ∫ τ

0 v(t, a)da and E(t) = ∫ ∞
τ

v(t, a)da, integrating both sides
of the second equation of (6) on the intervals [0, τ ] and [τ,∞), respectively, yields

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dE0
dt = − ∫ τ

0
∂v(t,a)

∂a da − ∫ τ

0 [μ + ε(a)]v(t, a)da

= v(t, τ ) − v(t, 0) − μE0(t),
dE
dt = − ∫ ∞

τ
∂v(t,a)

∂a da − ∫ ∞
τ

[μ + ε(a)]v(t, a)da

= v(t, τ ) − v(t,∞) − (μ + ε)E(t).

(A3)

This, combined with (A2), v(t,∞) = 0, and condition (3) to (A3), implies that

⎧
⎪⎨

⎪⎩

dE0
dt = S(t)(β1 I1(t) + β2 I2(t))

−S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)]e−μτ − μE0(t),
dE
dt = S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)]e−μτ − (μ + ε)E(t).

Appendix B. Derivation of the equation on E in (10)

According to (A1), the number of latent individuals for t > τ is

E(t) =
∫ τ

0
S(t − a) [β1 I1(t − a) + β2 I2(t − a)] e− ∫ a

0 [μ+ε(θ)]dθda.

As all the latent individuals must stay in the latent stage before latency-age τ and leave
the stage at this latency-age, we have ε(a) = 0 for a < τ and hence

E(t) =
∫ τ

0
S(t − a) [β1 I1(t − a) + β2 I2(t − a)] e−μada

or

E(t) =
∫ t

t−τ

S(θ) [β1 I1(θ) + β2 I2(θ)] e−μ(t−θ)dθ.
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Differentiating both sides with respect to t yields

dE

dt
= S(t)(β1 I1(t) + β2 I2(t))

−S(t − τ)[β1 I1(t − τ) + β2 I2(t − τ)]e−μτ − μE(t).

Appendix C. A generalized inequality

Lemma 1 Let n be a positive integer. Then, for positive integers m1, m2, . . ., mn and
positive c1, c2, . . ., cn, one has

(
n∑

i=1

mi

)
−

(
n∑

i=1

mici

)
+ ln

(
n∏

i=1

cmi
i

)
≤ 0

and the equality holds if and only if c1 = c2 = · · · = cn = 1.

Proof Noting

ln

(
n∏

i=1

cmi
i

)
=

n∑

i=1

(mi ln ci ),

we have

(
n∑

i=1

mi

)
−

(
n∑

i=1

mici

)
+ ln

(
n∏

i=1

cmi
i

)

=
n∑

i=1

mi (1 − ci + ln ci )

= −
n∑

i=1

mi g(ci ).

Here g(u) = u − 1 − ln u for u > 0, which is positive and g(u) = 0 if and only if
u = 1. Then the result follows immediately. �	
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