
Journal of Mathematical Biology (2023) 86:77
https://doi.org/10.1007/s00285-023-01911-x Mathematical Biology

Forward-backward and period doubling bifurcations in a
discrete epidemic model with vaccination and limited
medical resources

Yu-Jhe Huang1 · Jonq Juang1 · Tai-Yi Kuo1 · Yu-Hao Liang2

Received: 6 August 2022 / Revised: 16 March 2023 / Accepted: 31 March 2023 /
Published online: 19 April 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
A discrete epidemic model with vaccination and limited medical resources is pro-
posed to understand its underlying dynamics. The model induces a nonsmooth two
dimensional map that exhibits a surprising array of dynamical behavior including the
phenomena of the forward-backward bifurcation and period doubling route to chaos
with feasible parameters in an invariant region. We demonstrate, among other things,
that the model generates the above described phenomena as the transmission rate or
the basic reproduction number of the disease gradually increases provided that the
immunization rate is low, the vaccine failure rate is high and the medical resources are
limited. Finally, the numerical simulations are provided to illustrate our main results.
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1 Introduction

Mathematical modeling is a fundamental tool to investigate the asymptotic behavior
of epidemic models. The classical results (Anderson and May 1991; Diekmann and
Heesterbeek 2000; Hethcote 2000) of epidemic models are such that the disease is
persistent provided that the basic reproduction number is greater than one. Otherwise,
the disease dies out.Moreover, the portion of infected population depends continuously
on the parameters. On the other hand, the backward bifurcation has been found by
more and more researchers in their papers (Feng et al. 2000; Brauer 2004, 2011;
Castillo-Chavez et al. 1989a, b; Dushoff et al. 1998; Sharomi et al. 2007; Elbasha
and Gumel 2006; Kribs-Zaleta and Valesco-Hernández 2000; Gumel and Song 2008;
Hadeler and Castillo-Chavez 1995; Reluga and Medlock 2007; Gómez-Acevedo and
Li 2005; Julien et al. 2003). The typical features of such bifurcations are that, in the
early stages of disease spreading when the infected population is small, the models
exhibit a discontinuous outbreak transition from the disease free state to the high
prevalence state, as the basic reproduction number R0 crosses an outbreak threshold
R̄o, which is equal to one. Furthermore, in the reverse scenario, when the outbreak
of the disease occurs, they exhibit discontinuous eradication transition from the high
prevalence state to the disease free state, as the basic reproduction number R0 reaches
an eradication threshold Re(< R̄o) from the above. The above described phenomena
are called a backward bifurcation. The difference in Re and R̄o highlights that once the
outbreak of the disease occurs, driving down the basic reproduction number to one is
not enough to eradicate the diseases. In fact,we need to drive the rate further down to Re

for the epidemic to die out, which requires more effort and results in greater economic
costs.We also remark that the backward bifurcation has been classified into three types
(Song et al. 2013). Another similar type of phenomena is termed the forward-backward
bifurcation (Wang 2006; Rodriguez et al. 2018). One difference between these two
types of bifurcations lies in that for the latter its corresponding outbreak threshold R̄o

is greater than one. That is to say that the corresponding model exhibits discontinuous
jump from the low prevalence state to the high prevalence state. Furthermore, the
corresponding eradication threshold Re(< R̄o) could be either no greater than one or
greater than one. This implies that the model exhibits either the eradication transition
from the high prevalence state to the disease free state or the low prevalence state,
depending on the value of Re. It is also worth mentioning that seasonal influenza
models [see e.g., Roberts et al. (2019),Huang et al. (2022a),Yakubu andFranke (2006)
and the works cited therein] are capable of generating complicated and unpredictable
dynamics such as period states, bistable periodic states, or chaotic attractors.

The treatment and vaccination are important methods (Brauer 2011; Arino et al.
2008; Feng and Thieme 1995; Hyman and Li 1998; Wu and Feng 2000) to prevent
the spread of the infectious diseases. In classical epidemic models, the treatment rate
of infectives is assumed to be proportional to the number of infectives. However,
hospitals can be overwhelmed by high volumes of infected patients. Indeed, surges in
Covid-19 cases have stressed hospital systems in many regions of the world. To cope
with this situation, it is then essential to have limited medical resources placed on
disease spreading models. We shall adopt the concept first proposed in Wang (2006)
by assuming that the treatment rate is proportional to the percentage of the number
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of the infectives up to a certain maximal capacity. Moreover, the vaccination is an
effective tool to fight against the spread of epidemic diseases, e.g., pertussis, measles,
influenza, or covid-pandemic. Therefore, prevention and intervention measures are
essential to control and eliminate disease. Inclusion of vaccination in mathematical
models also aids in deciding on an optional vaccination strategy (Huang et al. 2022b;
Klepac et al. 2011).

In this work, we consider a discrete epidemic spreading model consisting of three
states: susceptible (S), infectious (I ), and vaccinated (V ), for which the changes of
states between S and I or S and V take into account the limited medical resources.
The continuous S − (I , V ) − S models (Kribs-Zaleta and Valesco-Hernández 2000;
Gumel and Moghadas 2003; Knipl et al. 2015; Peng et al. 2013, 2016; Lv et al. 2020)
with limited medical resources have been extensively studied partly because there are
more tractable mathematically. However, a good reason for studying discrete models
is that data are collected at discrete times and hence it may be easier to compare
data with the output of a discrete model. Moreover, the discrete model even in lower
dimension, is capable of generating complicated dynamics. Indeed, ourmodel exhibits
both the forward-backward bifurcation and period doubling route to chaos in a feasible
invariant region. Specifically, our main results contain the following. First, we are
able to obtain a sufficient condition on parameters so that our model is invariant in
a region with feasible parameters. Second, the existence and stability/instability of
equilibria can be completely characterized. As a result, we are able to obtain two
types of forward-backward bifurcations. Third, it is demonstrated numerically that
as the transmission rate β or the basic reproduction number R0 becomes larger the
model exhibits period doubling route to chaos in the invariant region provided that the
immunization rate is low, the vaccine failure rate is high and the the medical resources
are limited. This, in turn, makes the another valid point that vaccination and medical
resources are important tools to combat the highly transmissible diseases. Finally, the
numerical simulations are provided to illustrate our main results.

We will conclude the introductory section by mentioning the organization of the
paper. The derivation of the model and its invariant region under suitable param-
eter conditions are presented in Sect. 2. The main results containing, among other
things, the forward-backward bifurcation and period doubling route to chaos are given
in Sect. 3. In Sect. 4, we numerically illustrated our main results. Some concluding
remarks are given in Sect. 5.

2 Model and its invariance

An S−(I , V )−Smodel of N individualswith treatment and vaccination is considered,
based on themicroscopicMarkov-chain approximation (Wang et al. 2003;Gómez et al.
2010; Granell et al. 2013). Specifically, every individual i has a certain probability of
being in one of the three states, susceptible, infected and vaccinated, at time n, denoted
by Si (n), Ii (n) and Vi (n), respectively. Moreover, it is assumed that Si (n) + Ii (n) +
Vi (n) = 1 for all time n. The equation can then be simplified as follows.

Ii (n + 1) = (1 − ζi )(1 − δ)(1 − Ii (n) − Vi (n)) + f (Ii (n)), (1a)

Vi (n + 1) = δ(1 − Ii (n) − Vi (n)) + (1 − α)Vi (n), (1b)
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where 1 ≤ i ≤ N ,
ζi =

∏

j∈Ni

(1 − β̃ I j (n)), (1c)

and

f (Ii (n)) =
{

(1 − (r1 + r2))Ii (n),

∑N
i=1 Ii (n)

N ≤ I0,

(1 − (r1 + r2))I0 + (1 − r1)(Ii (n) − I0),
∑N

i=1 Ii (n)

N > I0.
(1d)

The amount of Ii (n+1) comes from two contributions. The first one is the probability
of individual i who is in the susceptible state at time n and becomes infected at time
n + 1. In particular, 1 − ζi is the infection rate for an individual in the susceptible
state becoming the infected state, where β̃ is the contact rate for an individual in an
infected state passing a virus to person in the susceptible state. Ni is the neighborhood
of individual i . The second contribution, f (Ii (n)), is the probability of individual i in
the infected state at timen and remains infected at the next time step.Here r1 and r1+r2,
r1, r2 > 0, denote, respectively, the natural recovery rate and treatment rate.Moreover,
I0 denotes the ratio of the maximum capacity of medical resources versus the total
population N . The parameters δ and α in (1b) are, respectively, the immunization rate
and vaccine failure rate. For a homogeneous society, we may assume that everyone
has the same number of the neighborhoods, say |Ni | = k, k ≤ N − 1. For such a
society, we seek the uniform solutions, independent of the index i , of (1a)-(1d). Upon
using the first order approximation on 1 − ζi , we have that (1a)-(1d) reduced to

I (n + 1) = (1 − (1 − β̃ I (n))k)(1 − δ)(1 − I (n) − V (n)) + f (I (n))

≈ kβ̃(1 − δ)I (n)(1 − I (n) − V (n)) + f (I (n))

=: β(1 − δ)I (n)(1 − I (n) − V (n)) + f (I (n)) (2a)

=: β ′ I (n)(1 − I (n) − V (n)) + f (I (n)) =: g1(I (n), V (n)),

V (n + 1) = (1 − α)V (n) + δ(1 − I (n) − V (n)) =: g2(I (n), V (n)). (2b)

Such discrete model is characterized by a nonsmooth two-dimensional map F of the
following form

F(I , V ) = (β ′ I (1 − I − V ) + f (I ), (1 − α)V + δ(1 − I − V )). (3)

Note that all the parameters in (2a) and (2b) are assumed to be in between zero and
one except that β, to be termed transmission rate, is allowed to be greater than one.

We next derive conditions for which the following feasible region

�:= {(I , V ) : I , V ≥ 0 and I + V ≤ 1} (4)

is invariant with respect to the map F defined in (3). For discrete model, unlike its
continuous counterpart, finding an effective parameter region for which the region� to
be invariant with respect to F is a nontrivial matter. Since g1 and g2 are greater than or
equal to zero, it suffices to show that g1(I , V )+g2(I , V ) ≤ 1whenever (I , V ) ∈�. To
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verify the above inequality, we need to only prove that g(I ) := g1(I , 0) + g2(I , 0) =
(β ′ I + δ)(1 − I ) + f (I ) ≤ 1 for 0 ≤ I ≤ 1. Note that g(I ) has the following form.

g(I ) =
⎧
⎨

⎩

−β ′(I − a1)2 + C1(β
′, δ), 0 ≤ I ≤ I0,

−β ′(I − a2)2 + C2(β
′, δ), I0 ≤ I ≤ 1.

(5)

Here a1 = 1−r1−r2+β ′−δ
2β ′ , C1(β

′, δ) = δ + (1−r1−r2+β ′−δ)2

4β ′ , a2 = 1−r1+β ′−δ
2β ′ and

C2(β
′, δ) = δ − r2 I0 + (1−r1+β ′−δ)2

4β ′ . To show that g(I ) ≤ 1 for 0 ≤ I ≤ 1, we first
need the following lemma.

Lemma 2.1 If a1 /∈ [0, I0] and a2 /∈ [I0, 1], then g(I ) ≤ 1 for 0 ≤ I ≤ 1.

Proof Suppose a1 and a2 are as defined. Hence, a2 ≥ a1. Then the maximum of g(I )
for 0 ≤ I ≤ 1 occurs at the endpoints 0 or 1. Some direct calculations would yield
that max{g(0), g(1)} ≤ 1. ��
Note that a1 ∈ [0, I0] is equivalent to

− β ′ + δ ≤ 1 − r1 − r2, (6a)

and
− (1 − 2I0)β

′ + δ ≥ 1 − r1 − r2. (6b)

Similarly, a2 ∈ [I0, 1] is equivalent to

β ′ + δ ≥ 1 − r1, (6c)

and
− (1 − 2I0)β

′ + δ ≤ 1 − r1. (6d)

Denote by equalities in (6a)-(6d), representing the straight lines, �1, �2, �3 and �4,
respectively, with I0, r1 and r2 arbitrarily fixed in the β ′ − δ plane.

Let�1(resp.,�2)denote the region satisfying(6a) and (6b)(resp.,(6c) and (6d)) (7)

Lemma 2.1 amounts to saying that, for those parameter pairs (β ′, δ) in �c
1 ∩ �c

2, the
region � is invariant with respect to the map F , as defined in (3). Here �c denotes the
complement of �. Our goal next is to find a sufficient condition on parameters so that
if the parameter pairs (β ′, δ) in �1 ∪ �2, then the corresponding model is invariant
on �.

Theorem 2.1 Let 0 ≤ α, δ, r1 + r2 := r , I0 ≤ 1, r1, r2 ≥ 0 and β ′ ≥ 0. The region �
is invariant with respect to map F provided that

(i) (β ′, δ) ∈ �c
1 ∩ �c

2, where �1 and �2 are defined in (7), or
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Fig. 1 The light green (resp., light pink) region is �c
1 ∩ �c

2 (resp., (�1 ∪ �2) ∩ �3). Here �3 is the region
determined by the inequality in (8) and (r1, r2, I0) = (0.6, 0.3, 0.5) (colour figure online)

(ii) If (β ′, δ) ∈ �1 ∪ �2 and (β ′, δ) satisfies the following inequality

β ′ ≤ min{(√1 − δ + √
r)2, (

√
1 − δ + r2 I0 + √

r1 + r2 I0)
2}

=: β̄ ′
u,

(8)

or
(iii)

β ≤ min{(1 + √
r)2, (

√
1 + r2 I0 + √

r1 + r2 I0)
2} =: β̄u . (9)

Consequently, (8) or (9) is a sufficient condition for � to be invariant.

Proof It follows from Lemma 2.1 that if (β ′, δ) ∈ �c
1 ∩ �c

2, then the region � is
invariant. To prove the assertion in (ii), we first note thatC1(β

′, δ) ≤ 1 andC2(β
′, δ) ≤

1, respectively, are equivalent to

1 + r − 2
√

(1 − δ)r ≤ β ′ + δ ≤ 1 + r + 2
√

(1 − δ)r (10a)

and

1 + r1 + 2r2 I0 − 2
√

(1 − δ + r2 I0)(r1 + r2 I0) := A − 2
√
B ≤ β ′ + δ ≤ A + 2

√
B.

(10b)
To get (8), it will be helpful if we are able to visualize the region represented by the
inequalities C1(β

′, δ) ≤ 1 and C2(β
′, δ) ≤ 1. To this end, we shall momentarily treat

β ′ and δ as two independent variables. So, the equation C1(β
′, δ) = 1 represents a

parabola for which its axis is β ′+δ = 1. The equality of the right (resp., left) hand side
of the inequalities in (10a) is upper (resp., lower) part of the parabola C1(β

′, δ) = 1,
i.e., the one portion of the parabola above (resp., below) its axis is β ′ + δ = 1, see
Fig. 1. Assume that (β ′, δ) ∈ �1. The inequality in (8) is equivalent to both right hand
side of the inequalities in (10a) and (10b) being satisfied. Let A1 (resp., B1) be the
intersection of the equality in (6a) (resp., (6b)) and the line δ = 1 (resp., the δ-axis).
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Using the assumption that the inequality (8) is satisfied, we conclude that inequalities
in (10a) must be satisfied. And, so, C1(β

′, δ) ≤ 1. Similarly, if (β ′, δ) ∈ �2, and
the inequality in (8) is satisfied, then inequalities in (10b) must be satisfied. And so
C2(β

′, δ) ≤ 1. Thus, if statement in (ii) is fulfilled, then the region � is invariant.
To proof the assertion in (iii), wefirst verify that (1−δ)(1+√

r)2 ≤ (
√
1 − δ+√

r)2

and (1 − δ)(
√
1 + r2 I0 + √

r1 + r2 I0)2 ≤ (
√
1 − δ + r2 I0 + √

r1 + r2 I0)2. It then
follows from (8) that (9) holds as claimed. We have just completed the proof of the
theorem. ��

It should be remarked that the sufficient condition (9) is independent of vaccination
parameters α and δ.

3 Main results

The dynamics ofmodel (2a) and (2b) is to be investigated in this section.We beginwith
the existence of the equilibria of (2a) and (2b). The equation that the I -coordinates of
the equilibria of (2a) and (2b) satisfy is to be expressed as a function of I and to be
displayed in the β − I plane. The results are summarized in Proposition 3.1.

Proposition 3.1 (i) The disease free equilibrium (I , V ) = (0, δ
α+δ

) exists for all
feasible parameters.

(ii) For 0 < I ≤ I0, let the endemic equilibrium of (2a) and (2b) be (I , V ), then

β = βc

1 − I
:= h1(I ), where βc = (α + δ)r

α(1 − δ)
. (11a)

(iii) For I ≥ I0, let the endemic equilibrium of (2a) and (2b) be (I , V ), then

β = (
α + δ

α(1 − δ)
)
r1 I + r2 I0
I (1 − I )

=: h2(I ). (11b)

Moreover, let

Ie = r2 I0

r2 I0 +
√
r22 I

2
0 + r1r2 I0

. (11c)

Then

βe := h2(Ie) = α + δ

α(1 − δ)
r̄ , (11d)

where
r̄ = (

√
r1 + r2 I0 + √

r2 I0)
2, (11e)

and

dβ

d I
≥ 0 (resp., ≤ 0) according as I ≥ Ie (resp., ≤ Ie) on I ∈ [0, 1]. (11f)
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(iv) Ie ≥ I0 according as
r2

r1 + 2r2
≥ I0.

(v) βe ≥ βc, or equivalently, r̄ ≥ r , according as I0 ≥ r2
4(r1 + r2)

.

Proof We skip the proof of the first two assertions of the proposition. To see the
assertion in (iii), we first note that I satisfies the following algebraic equation αβ

α+δ
I 2+

(r1 − αβ
α+δ

)I + r2 I0 = 0, or equivalently, β = h2(I ). Some direct calculation would
yield that the critical points satisfy the following equation

r1 I
2 + 2r2 I0 I − r2 I0 = 0. (12)

The only positive critical point of h(I ) occurs at Ie, which is in between zero and one.
To see βe = α+δ

α(1−δ)
r̄ , it suffices to show that r1 Ie+r2 I0

Ie(1−Ie)
= r̄ . To this end, we first note,

via (12), that Ie − (Ie)2 = ( 2r2 I0r1
+ 1)Ie − r2

r1
I0. Consequently,

r1 Ie + r2 I0
Ie(1 − Ie)

= C

( 2r2 I0r1
+ 1)(− r2

r1
I0 + C

r1
) − r2

r1
I0

= r21C

(2r2 I0 + r1)(−r2 I0 + C) − (C2 − r22 I
2
0 )

= r21C

−2C2 + r1C + 2r2 I0C
= r21

r1 + 2r2 I0 − 2C

= r21
(
√
r1 + r2 I0 − √

r2 I0)2
= r̄ ,

where C =
√
r22 I

2
0 + r1r2 I0. The last two assertions of the Proposition 3.1 can be

easily verified. ��
The main points of Proposition 3.1 can be summarized in the following. Let (I , V )

be endemic equilibrium of (2a) and (2b). Then the corresponding graphs of β = h(I ),
a continuous function, are displayed in Figs. 2, 3 and 4. Here,

h(I ) =
{
h1(I ), 0 < I ≤ I0,
h2(I ), I0 ≤ I ≤ 1.

In particular, we have the following.

(i) I = 0 exists for all β, see Figs. 2, 3 and 4.
(ii) For I0 ≥ r2

r1+2r2
, h(I ) is increasing in I and h(0) = βc. A generic graph of such

h(I ) is given in Fig. 2.
(iii) For I0 < r2

r1+2r2
, the function β = h(I ) has a local maximum h(I0) := βo and

local minimum βe, respectively. Moreover, βe ≥ βc according as I0 ≥ r2
4(r1+r2)

,
a generic graph of such h(I ) is displayed in Figs. 3 and 4. In fact, βo and βe are
to be termed the outbreak threshold and the eradication threshold, respectively,
with respect to the transmission rate.

123



Backward and period doubling bifurcations... Page 9 of 22 77

Fig. 2 The graphs of h1(I ) and h2(I ) with I0 ≥ r2
r1+2r2

. Here βc = α+δ
α(1−δ)

r and βo = h(I0)

It should be noted that the function β = h(I ) can be equivalently expressed as a
function of R0 = h̄(I ). Specifically, it follows from (11a) that

R0 = α(1 − δ)β

(α + δ)r
(13)

and, so,

h̄(I ) =
{
h̄1(I ), 0 < I ≤ I0,
h̄2(I ), I0 ≤ I ≤ 1.

Here h̄1(I ) = 1
1−I and h̄2(I ) = r1 I+r2 I0

r I (1−I ) . It follows from (13) that the graphs of

h(I ) and h̄(I ) are similar. In fact, the graph of h̄(I ) can be obtained from that of
h(I ) in the horizontal direction by a scale factor of α(1−δ)

(α+δ)r . The graphs of h̄(I ), the

counterparts to Figs. 3 and 4, having two turning points of h̄(I ) also occur at I = I0
and Ie. Likewise, we define the outbreak threshold R̄o and eradication threshold Re

with respect to the basic reproduction number to be h̄1(I0) = 1
1−I0

and h̄2(Ie) = r̄
r ,

respectively. Furthermore, β = βc is equivalent to R0 = 1.
We next investigate the stability of equilibrium (I , V ) of model (2a) and (2b). To

this end, we see that its Jacobian matrix with respect to model (2a) and (2b) at (I , V )

is of the the following form.

J (I , V ) =
[
1 + aI − β ′ I −β ′ I

−δ 1 − α − δ

]
. (14a)

Here

aI =
{

−r + αβ ′
α+δ

(1 − I ) = 0, if I < I0,

−r1 + αβ ′
α+δ

(1 − I ) = r2
I0
I , if I > I0.

(14b)

We have used (11a) and (11b) to justify the equalities in (14b).
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Fig. 3 The graphs of h1(I ) and h2(I ) with r2
4(r1+r2)

≤ I0 <
r2

r1+2r2
. Here βe = α+δ

α(1−δ)
r̄ ≥ βc and

Ie > I0

Fig. 4 The graphs of h1(I ) and h2(I ) with I0 <
r2

4(r1+r2)
. Here βe < βc and Ie > I0

Proposition 3.2 (i) For any equilibrium (I , V ) of model (2a) and (2b), both eigen-
values of J (I , V ) are real.

(ii) Equilibrium (I , V ) is stable provided that

det(J ± I2) > 0, tr(J − I2) < 0 and tr(J + I2) > 0,

where I2 is the 2 × 2 identity matrix.

Proof Let J = J (I , V ). It is clear that

tr(J ) = (1 − α + 1 + aI − β ′ I ) − δ (15a)

and
det(J ) = (1 − α)(1 + aI − β ′ I ) − δ(1 + aI ). (15b)
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Then

(tr(J ))2 − 4 det(J ) = [(1 − α) + (1 + aI − β ′ I )]2 − 2δ(2 + aI − α − β ′ I ) + δ2

− 4(1 − α)(1 + aI − β ′ I ) + 4δ(1 + aI )

= (aI + α − β ′ I )2 + 2δ(aI + α + β ′ I ) + δ2 ≥ 0.

We have just completed the proof of the first assertion of the proposition. The second
assertion of the proposition now follows directly from (i). ��

We are now in a position to state the stability results of model (2a) and (2b).

Theorem 3.1 (i) The disease free equilibrium is stable provided that β ≤ βc. Oth-
erwise, it is unstable.

(ii) Let β ′
u be defined as the follow.

β ′
u := min{1 − δ + r , 1 − δ + r̄}. (16)

Let (I , V ), 0 < I ≤ I0, be the endemic equilibrium. Then it is stable provided
that β ′ < β ′

u. Here r̄ is defined as in (11e).
(iii) Let I > I0. Then the corresponding endemic equilibrium, if exists, is unstable

whenever dβ
d I = dh2(I )

d I < 0. Moreover, its associated endemic equilibrium is

stable whenever dβ
d I > 0 and β ′ ≤ β ′

u.
(iv) Let βu be defined as the follow.

βu := min{1 + r , 1 + r̄}. (17)

Let (I , V ), 0 < I ≤ I0, be the endemic equilibrium. Then it is stable provided
that β < βu. Furthermore, if I > I0, then the corresponding endemic equilib-
rium, if exists, is unstable whenever dβ

d I = dh2(I )
d I < 0. Moreover, its associated

endemic equilibrium is stable whenever dβ
d I > 0 and β ≤ βu.

Proof We skip the first assertion of the theorem. To prove (ii), we first note that if I
is as assumed, then β > βc, see Figs. 2, 3 and 4. Now aI , as given in (14b), reduces
to 0. Let J be the corresponding J (I , V ), as defined in (14a). Clearly, −tr(J − I2),
tr(J + I2) and det(J − I2) are all greater than zero. Moreover, det(J + I2) = 4 −
2(β ′ I + α + δ) + αβ ′ I ≥ 4 − 2(1 − α) + 2 δ

α
r + αβ ′ I > 0. We have used (11a)

and (16) to justify the last inequality above. The assertion of theorem (ii) now follows
from Proposition 3.2 (ii). To prove (iii), we first note, via (11b), that there are possibly
two endemic equilibria (I±, V±) depending on the range of I0 and β ′, see Figs. 2, 3
and 4. Specifically, if exists, then I± have the following form.

I± = 1

2
− r1(α + δ)

2αβ ′ ± α + δ

2αβ ′
√
d, (18a)
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where

d = α2

(α + δ)2
β ′2 − 2α(r1 + 2r2 I0)

α + δ
β ′ + r21

=
(

α

α + δ

)2 (
β ′ − (α + δ)(r1 + 2r2 I0)

α

)2

− (r1 + 2r2 I0)
2 + r21 .

(18b)

We next show that (I−, V−) is unstable. To this end, it suffices to prove that
det(J (I−, V−)− I2) =: J− < 0. Note, via Proposition 3.1 (iii), that

√
d ≥ 0 according

as β ≥ βe. We have, via (14a) and (14b), that J− = (α + δ)r1 − αβ ′ + 2αβ ′ I−. Upon
using (18a), we get that J− = −(α + δ)

√
d < 0. Hence, (I−, V−) is unstable.

To complete the proof of the theorem, it remains to show that (I+, V+) is stable
provided that β ′ is as assumed. Clearly, tr(J (I+, V+) + I2) > 0.

tr(J (I+, V+) − I2) = −r1 − α − δ + αβ ′

α + δ
− 2α + δ

α + δ
β ′ I+

< −α − δ − δβ ′

2(α + δ)
+ δr1

2α
< −α − δ ≤ 0.

We have used (18a), (11d), (11e) and (11f) to justify the above inequalities. We also
have that

det(J (I+, V+) − I2) = (α + δ)r1 − αβ ′ + 2αβ ′ I+ = (α + δ)
√
d > 0.

Finally,

det(J (I+, V+) + I2)

= 4 + 2tr(J (I+, V+) − I2) + det(J (I+, V+) − I2)

= (−2 − δ

α
+ α + δ)

√
d + 4 − 2α − 2δ + δr1

α
− δβ ′

α + δ

> (−2 − δ

α
+ α + δ)(

αβ ′

α + δ
− r1 − 2r2 I0) + 4 − 2α − 2δ + δr1

α
− δβ ′

α + δ

=: �(α, β ′, δ).

Some direction calculations would yield that

∂

∂α
�(α, β ′, δ) = − 1

α2 ((2 − β ′ + r1 + 2r2 I0)α
2 + 2δ(r1 + r2 I0)) < 0. (19)

Hence, �(α, β ′, δ) ≥ �(1, β ′, δ) = 2−β ′ + r1 +2r2 I0 + (r1 −2)δ. We have used the
fact that β ′ < β ′

u ≤ 2 to justify the above inequality. It then follows from Proposition
3.1 (v) and the assumption on β ′ that �(1, β ′, δ) ≥ �(1, 1 + r̄ − δ, δ) whenever
I0 ≤ r2

4r and �(1, β ′, δ) ≥ �(1, 1 + r − δ, δ) whenever I0 ≥ r2
4r . We next show that
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1
1+r̄ is an upper bound for δ. To see this, we have, via the assumption on β ′, that
(α+δ)

α
r̄ < 1 − δ + r̄ , and so δ < 1

1+r̄ . Let

�(1, 1 + r − 1

1 + r̄
,

1

1 + r̄
) =: f1(r1, r2, I0)

and

�(1, 1 + r̄ − 1

1 + r̄
,

1

1 + r̄
) =: f2(r1, r2, I0).

To complete the proof of the theorem, it then suffices to show that f1(r1, r2, I0) ≥ 0
(resp., f2(r1, r2, I0) ≥ 0) for I0 ≥ r2

4r (resp., I0 ≤ r2
4r ). Now,

f1(r1, r2, I0) = 1 + r1 + 2r2 I0 − 1 − r1
1 + r̄

− r

≥ 1 + r1 + r22
2r

− 1 − r1
1 + r

− r

= −(2r1 + r2)(r22 + (r1 − 1)r2 − 2r1)

2r(1 + r)

≥ 0.

The facts that 0 ≤ r2 ≤ 1 − r1 and Proposition 3.1 (v) have been used to justify the
last inequalities above. Now,

f2(r1, r2, I0) = 1 − 1 − r1
1 + (

√
r1 + r2 I0 − √

r2 I0)2
− 2

√
r1 + r2 I0

√
r2 I0

=: 1 − 1 − r1
1 + (

√
r1 + x − √

x)2
− 2

√
r1 + x

√
x

=: g1(x),

where x = r2 I0 and 0 ≤ x ≤ r22
4(r1+r2)

:= x̂ . Furthermore,

g1(x) = 2
√
r1 + x

1 + r1 + 2x + 2
√
x
√
r1 + x

(−r1x
1
2 − 2x

3
2 − 2x(r1 + x)

1
2 + (r1 + x)

1
2 )

=: 2
√
r1 + x

1 + r1 + 2x + 2
√
x
√
r1 + x

g2(x).

Then g2(x) ≥ 0, if

d(x) := 4x2 + (r21 + 4r1 − 1)x − r1 ≤ 0.

Indeed, since d(x) is a parabola that intercepts the x-axis at two points x± with

(x+)(x−) = −r1 < 0, we get that d(x) ≤ 0 for x ∈ [0, x̂] provided that d(
(1−r1)2

4 ) ≤
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0. A direct calculation yields that

d

(
(1 − r1)2

4

)
= (1 − r1)4

4
+ (r21 + 4r1 − 1)(1 − r1)2

4
− r1

= r1(r31 − r21 − r1 − 1)

2
≤ 0.

To show (iv), we first verify that (1− δ)(1+ r) ≤ 1− δ + r and (1− δ)(1+ r̄) ≤
1 − δ + r̄ . It then follows from (ii) and (iii) that (iv) holds as claimed.

We have completed the proof of the theorem. ��
We remark that Theorem 3.1, by replacing β, βc, βu by R0, 1 and

α(1−δ)
(α+δ)r βu := Ru ,

respectively, can be easily stated in terms of the basic reproduction number. InTheorem
2.1 (iii), β ≤ β̄u , or equivalently, R0 ≤ α(1−δ)

(α+δ)r β̄u := R̄u , is a sufficient condition for
� to be invariant.

The model is said to exhibit a type I forward-backward bifurcation provided that it
has the following dynamical behavior. The model exhibits a discontinuous outbreak
transition from the low prevalence state to the high prevalence state as the basic
reproduction number R0 crosses an outbreak threshold R̄o > 1, an indication of the
forward bifurcation occurring at R0 = 1. Moreover, it exhibits the discontinuous
eradication transition from the high prevalence state to the low prevalence state as R0
decreases to an eradication threshold Re(> 1), see Fig. 6. A type II forward-backward
bifurcation has a similarly outbreak transition. However, the eradication transition for
Type II is from the high prevalence state to the disease free state as R0 decreases to
an eradication threshold Re(< 1), see Fig. 7.

FollowingProposition3.1,we see that the graphofh(I )has three types, seeFigs. 2, 3
and 4, depending on the size of I0. Upon using Theorem 3.1, we are able to obtain the
following.

Corollary 3.1 (i) Assume that the medical resources are sufficient, i.e., I0 ≥ r2
r1+2r2

.
Then model (2a) and (2b) behaves like a classical epidemic model in which the
infected portion of the population depends continuously on parameters.

(ii) Assume that the medical resources are mildly insufficient, i.e., r2
4(r1+r2)

≤ I0 <
r2

r1+2r2
. Then model (2a) and (2b) exhibits type I forward-backward bifurcation.

(iii) Assume that the medical resources are highly insufficient, i.e., I0 < r2
4(r1+r2)

.
Then model (2a) and (2b) exhibits type II forward-backward bifurcation.

4 Numerical simulations

The purpose of this section is two-fold. First, we provide some numerical simulation
results formodel (2a) and (2b) to support ourmain analytical theorem provided in The-
orem 3.1. Second, it is numerically demonstrated that the model has period doubling
route to chaos.

In Figs. 5, 6 and 7, we run the numerical simulations for model (2a) and (2b)
with (α, r1, r2, δ) = (0.1, 0.1, 0.2, 0.2) and the parameter I0 satisfy the assumptions
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Fig. 5 Let (α, δ, r1, r2) = (0.2, 0.2, 0.1, 0.1) and I0 = 0.45. Then the corresponding (βo, βu , β̄u) ≈
(0.909, 1.2, 1.969), or, equivalently, (R̄o, Ru , R̄u) ≈ (1.818, 2.4, 3.937) and I0 ≥ r2

r1+2r2
. Note that

β = βc = 0.5 is corresponding to R0 = 1. The black circles and red stars represent the eventual states of I
generated by 1,000 iterations of the model (2a) and (2b) with initial value (0.01, 0), (0.99, 0), respectively,
for some values of β ∈ [0, 1.15]. In particular, a red star inside the black circle means that both initial
values converge to the same I state

Fig. 6 Let (α, δ, r1, r2) = (0.2, 0.2, 0.1, 0.1) and I0 = 0.2. Then the corresponding (βe, βo, βu , β̄u) ≈
(0.595, 0.625, 1.2, 1.840), or, equivalently, (Re, R̄o, Ru , R̄u) ≈ (1.190, 1.25, 2.4, 3.679) and r2

4(r1+r2)
≤

I0 <
r2

r1+2r2
. Note that β = βc = 0.5 is corresponding to R0 = 1. The black circles and red stars are the

eventual states of I generated by 1,000 iterations of the model (2a) and (2b) with initial values (0.01, 0),
(0.99, 0), respectively, for some values of β ∈ [0, 1.15]. In particular, a red star inside the black circle
means that both initial values converge to the same I state (colour figure online)

I0 ≥ r2
r1+2r2

, r2
4(r1+r2)

≤ I0 < r2
r1+2r2

, and I0 < r2
4(r1+r2)

, respectively. We run the
numerical simulation of the model with two initial states (0.01, 0), (0.99, 0). The
initial state (0.01, 0) (respectively, (0.99, 0)) represents the early stage of the epidemic
(respectively, the peak period of the epidemic). The eventual states with two initial
states (0.01, 0), (0.99, 0), stopped at n = 1000, are denoted by the black circle and red
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star, respectively, which match quite well with our predicted branches, see Figs. 2, 3
and 4. In Figs. 5, 6 and 7, a red star inside the black circle means that both initial
states converge to the same I state. As expected, the numerical results in Figs. 5, 6
and 7 are consistent with Corollary 3.1. That is to say that all initial states converge to
the increasing branches of the function β = h(I ) for β < βu . Specifically, in Fig. 5,
we see that I0 = 0.45 > r2

r1+2r2
= 1

3 and the infection portion of the population
depends continuously on the parameter β as predicated by Corollary 3.1 (i). In Fig. 6,
we have that r2

4(r1+r2)
= 1

8 < I0 = 0.2 < 1
3 . Hence, as β races pass βo = 0.625, the

infected portion of the population jumps from the lower prevalence state I0 = 0.2 to
the high prevalence state h−1

2 (βo) = 0.4. Furthermore, at the peak of the epidemic to
eradicate the disease we need to drive β further down to a number smaller than βe,
which results in the infected portion of the population from the high prevalence state
h−1
2 (βe) ≈ 0.290 to h−1

1 (βe) ≈ 0.160 as predicted in Corollary 3.1 (ii). It implies the
model exhibits type I forward-backward bifurcation whenever I0 ∈ [ r2

4(r1+r2)
, r2
r1+2r2

).

In Fig. 7, we have that I0 = 0.1 < r2
4(r1+r2)

= 1
6 . The numerical simulation indicates

that, in the early stage of the epidemic, the infected portion of the population jumps
from I0 = 0.1 to h−1

2 (βo) = 0.45 as β races pass βo. To eradicate the disease at
the peak of the pandemic, we need to drive β down further to a number smaller that
βe. As a result, we observe the infected portion of the population dropping from
h−1
2 (βe) ≈ 0.232 to zero. Hence, a type II forward-backward bifurcation occurs as

predicted in Corollary 3.1 (iii). The facts that the numbers in Fig. 7 for three quantities
βo − βe, h

−1
2 (βo) − I0 and h−1

2 (βe) − h−1
1 (βe) are all greater than those of in Fig. 6

are indications that the phenomena of type II forward-backward bifurcation are even
more dire than those of type I. We also note that for the parameters chosen in Figs. 5, 6
and 7 their corresponding (βu, β̄u) are (1.2, 1.969),(1.2, 1.840) and (1.186, 1.787),
respectively. All the quantities in Figs. 5, 6 and 7 associated with the transmission rate
β can be converted, via (13), into the corresponding basic reproduction numbers R0.
Specifically, the scale factor α(1−δ)

(α+δ)r = 2, and so (Re, R̄o, Ru, R̄u) = 2(βe, βo, βu, β̄u).
In Figs. 8, 9, 10, 11 and 12 with the parameters (α, δ, r1, r2) set to (0.5, 0.03,

0.75, 0.15), we demonstrate that the period doubling route to chaos can occur regard-
less of whether medical resources are sufficient. In Figs. 8, 9 and 10, we have that
I0 = 0.2 > r2

r1+2r2
≈ 0.1429. All three figures demonstrate that the standard period

doubling route to chaos can be observed as β varies from zero to β̄u ≈ 3.6027 versus
eventual states of I , S and V , respectively. Note that β̄u is only a sufficient condition
on β for � being invariant. In Fig. 11, r2

4(r1+r2)
≈ 0.0416 < I0 = 0.1 < 0.1429. The

model exhibits both type I forward-backward bifurcation and period doubling route
to chaos as β varies from zero to β̄u ≈ 3.5424. The zoom in numerical simulation for
β ∈ [1.07, 1.1] ⊃ [βe, βo] ≈ [1.086, 1.093] is displayed in the upper left corner. We
run two initial states for such ranges of β. Their eventual I states are colored by red
circles and blue solid circles. A blue solid circle inside a red circle means that both
initial states converge to the same I state. In Fig. 12, I0 = 0.02 < r2

4(r1+r2)
≈ 0.0416,

we see that model (2a) and (2b) exhibits both type II forward-backward bifurcation
and period doubling route to chaos as β varies from zero to β = β̄u ≈ 3.4941 as pre-
dicted in Corollary 3.1 (iii). Figure13 is to illustrate that if the bifurcation parameters
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Fig. 7 Let (α, δ, r1, r2) = (0.2, 0.2, 0.1, 0.1) and I0 = 0.1. Then the corresponding (βe, βo, βu , β̄u) ≈
(0.466, 0.556, 1.186, 1.787), or, equivalently, (Re, R̄o, Ru , R̄u) ≈ (0.932, 1.111, 2.373, 3.573) and I0 <

r2
4(r1+r2)

. Note that β = βc is corresponding to R0 = 1. The black circles and red stars are the eventual

states of I generated by 1,000 iterations of the model (2a) and (2b) with initial values (0.01, 0), (0.99, 0),
respectively, for some values of β ∈ [0, 1.15] In particular, a red star inside the black circle means that both
initial values converge to the same I state (colour figure online)

Fig. 8 Bifurcation diagram of the eventual state of I versus β. Here (α, δ, r1, r2) = (0.5, 0.03, 0.75, 0.15),
I0 = 0.2 and the corresponding (βu , β̄u) ≈ (1.9, 3.6027) and the corresponding β2 ≈ 2.93. Here β2 is
so defined that the smaller eigenvalue of J (I , V ), defined in (14a) and (14b), is −1 at β = β2. For such
choice of the parameters, the model exhibits the period doubling route to chaos as β varies from 0 to β̄u

is to be replaced by other variables, say α, then similar figures as those provided in
Figs. 8, 9, 10, 11 and 12 can still be obtained.

The choice of the first two variables α and δ plays the key roles in producing chaotic
dynamic. It is intuitively clear that the model is more prone to chaotic dynamic in case
that the vaccine failure rate is high, the immunization rate is low and the medical
resource are limited. It is also worth mentioning that the period doubling bifurcation
occurs when the smaller eigenvalue of the Jacobian matrix J (I , V ), defined in (14a)
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Fig. 9 Bifurcation diagram of the eventual state of S versus β. Here (α, δ, r1, r2) = (0.5, 0.03, 0.75, 0.15),
I0 = 0.2 are the same as those in Fig. 8

Fig. 10 Bifurcationdiagramof the eventual state ofV versusβ.Here (α, δ, r1, r2) = (0.5, 0.03, 0.75, 0.15),
I0 = 0.2 are the same as those in Fig. 8

and (14b), ofmap F at an endemic point (I , V ) is−1.Here I is on the increasingbranch
of β = h2(I ). In the cases presented in Figs. 8, 9, 10, 11 and 12with (α, δ, r1, r2) being
as given, we denote by λ−

β and λ+
β the smaller eigenvalue and the larger eigenvalue

of J (I , V ), respectively. Then there exists a β2, βu < β2 < β̄u , such that |λ±
β | < 1

for β < β2 and λ−
β < −1 for β slightly larger than β2. At β = β2, λ−

β2
= −1

and |λ+
β2

| < 1. Hence, the corresponding endemic equilibrium becomes unstable for
β > β2. The stable period two orbits are then created. This process seems to repeat
itself. This sequence of bifurcations is the so called period doubling route to chaos.

123



Backward and period doubling bifurcations... Page 19 of 22 77

Fig. 11 Bifurcation diagram of the eventual state of I versusβ. Here (α, δ, r1, r2) = (0.5, 0.03, 0.75, 0.15),
I0 = 0.1 and the corresponding (βu , β̄u) ≈ (1.9, 3.5424) and the corresponding β2 ≈ 2.88, as similarly
defined in the caption of Fig. 8. For such choice of the parameters, the model exhibits both Type I forward-
backward bifurcation and period doubling route to chaos as β varies from 0 to β̄u

Fig. 12 Bifurcation diagram of the eventual state of I versusβ. Here (α, δ, r1, r2) = (0.5, 0.03, 0.75, 0.15),
I0 = 0.02 and the corresponding (βu , β̄u) ≈ (1.8511, 3.4941) and the corresponding β2 ≈ 2.85, as
similarly defined in the caption of Fig. 8. For such choice of the parameters, the model exhibits both Type
II forward-backward bifurcation and period doubling route to chaos as β varies from 0 to β̄u
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Fig. 13 Bifurcation diagram of the state of I variable versus α. Here (β, δ, r1, r2) = (3.5, 0.03, 0.75, 0.15)
and I0 = 0.1. The corresponding model exhibits both type I forward-backward bifurcation and period
doubling route to chaos as α varies from 0 to 1

5 Conclusions

In this paper, we consider a discrete epidemic model with vaccination and limited
medical resources. We prove, among other things, that our model exhibits classical
results, type I forward-backward bifurcation and type II forward-backward bifurcation
according as the medical resources are sufficient, mildly insufficient and highly insuf-
ficient. Moreover, we numerically demonstrate that period doubling route to chaos
occurs provided that the immunization is low, the vaccine failure rate is high and the
medical resources are limited.
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