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Abstract

The burden of sexually transmitted infections (STIs) poses a challenge due to its
large negative impact on sexual and reproductive health worldwide. Besides simple
prevention measures and available treatment efforts, prophylactic vaccination is a
powerful tool for controlling some viral STIs and their associated diseases. Here, we
investigate how prophylactic vaccines are best distributed to prevent and control STIs.
We consider sex-specific differences in susceptibility to infection, as well as disease
severity outcomes. Different vaccination strategies are compared assuming distinct
budget constraints that mimic a scarce vaccine stockpile. Vaccination strategies are
obtained as solutions to an optimal control problem subject to a two-sex Kermack—
McKendrick-type model, where the control variables are the daily vaccination rates
for females and males. One important aspect of our approach relies on conceptualizing
a limited but specific vaccine stockpile via an isoperimetric constraint. We solve the
optimal control problem via Pontryagin’s Maximum Principle and obtain a numerical
approximation for the solution using a modified version of the forward—backward
sweep method that handles the isoperimetric budget constraint in our formulation. The
results suggest that for a limited vaccine supply (20%—-30% vaccination coverage), one-
sex vaccination, prioritizing females, appears to be more beneficial than the inclusion
of both sexes into the vaccination program. Whereas, if the vaccine supply is relatively
large (enough to reach at least 40% coverage), vaccinating both sexes, with a slightly
higher rate for females, is optimal and provides an effective and faster approach to
reducing the prevalence of the infection.
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1 Introduction

According to global estimates of the World Health Organization (2021), the burden of
sexually transmitted infections (STIs) remains high, counting over 350 million new
infections annually with one of the four most common STIs—chlamydia, gonorrhea,
syphilis, and trichomoniasis. Although the majority of these infections can be cured,
when not treated, STIs might lead to serious health consequences. In 2020, the human
papillomavirus (HPV) caused over 600,000 new cases of cervical cancer and 342,000
deaths (Sung et al. 2021). Mother-to-child transmission of syphilis, or congenital
syphilis, leads to over 350,000 adverse birth outcomes such as early fetal and neonatal
deaths, stillbirths, and preterm or low-birth-weight babies (Korenromp et al. 2019).
Negative effects associated with untreated gonorrhea and chlamydia infections include
reproductive tract morbidities, such as tubal factor infertility and pelvic inflammatory
diseases among women (Tsevat et al. 2017). Gonorrhea, syphilis, or genital herpes
simplex virus infection (HSV) are associated with an increased risk of acquiring or
transmitting HIV (Unemo et al. 2017). Moreover, a recent observational trend study
showed that the absolute incidence of STI cases increased in the last 30 years, especially
in sub-Saharan Africa and Latin America (Zheng et al. 2022). In view of this, more
attention should be given to the prevention and control of STIs, particularly in low-
and middle-income countries, evaluating the benefits of implementing different public
health control strategies.

The spread of STIs can be significantly reduced by a number of non-pharmaceutical
interventions including sex abstinence, reduction in the number of sex partners, mutu-
ally monogamous relationships, and correct and consistent use of latex condoms
(Workowski and Bolan 2015). Effective treatment is available for bacterial and par-
asitic STIs. For example, gonorrhea, syphilis, chlamydia, and trichomoniasis can be
treated with antibiotics, often in a single dose (World Health Organization 2021;
Workowski and Bolan 2015). Viral STIs including HIV, genital HSV, viral hepatitis B,
and HPV have limited treatment options, but disease symptoms can be weakened or
controlled with systematic treatment (World Health Organization 2021; Workowski
and Bolan 2015). Antiviral drugs typically reduce the viral load limiting clinical
symptoms, though virus eradication is difficult (World Health Organization 2021;
Workowski and Bolan 2015). The spread of STIs can also be limited via vaccination,
which is the main tool for the primary prevention of disease, and one of the most
cost-effective public health measures. Therefore, the development of vaccines against
STIs is essential to reduce the vast number of infections globally, and their adverse
health outcomes (Gottlieb et al. 2016). Currently, there are vaccines for viral STIs
that have been proven to be safe and effective, including vaccines against HPV and
hepatitis B virus (Gottlieb et al. 2016). Major efforts continue in the development
of vaccines against other STIs e.g. herpes and HIV, with several vaccine candidates
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in early clinical development (World Health Organization 2021). Nevertheless, as the
COVID-19 pandemic has shown, even after successful vaccine development, vaccines
usually come on a limited budget and the available stockpile is rarely enough to guar-
antee the immunization of the entire population (Yamey et al. 2022). Generally, in
addition to non-pharmaceutical interventions, public health authorities rely on a fixed
amount of vaccines to control an outbreak, and therefore, optimizing the allocation of
scarce vaccines becomes an important problem.

For an effective vaccination program, it is extremely important to identify subgroups
within the general population that should be prioritized to be vaccinated (Hansen and
Day 2011). In the context of STIs, the key allocation problem is to investigate how to
effectively distribute a limited vaccine stockpile among individuals, females and males,
to minimize the prevalence of the infection in a population (Bogaards et al. 2015; Hef-
fernan et al. 2014; Saldafia et al. 2019). Strategic mathematical modeling has already
been directed to study resource allocation problems using different approaches such
as mixed-integer linear programming models (Saif and Elhedhli 2016; Tavana et al.
2021), feedback control (Camacho et al. 2019), analytical insights from compartmen-
tal models (Bogaards et al. 2011; Duijzer et al. 2018; Heffernan et al. 2014; Gao et al.
2021; Vo et al. 2021), and optimal control (Estadilla et al. 2021; Malik et al. 2016; Sal-
dafia et al. 2019). Here, we focus on optimizing time-dependent control interventions
in an epidemiological model, using the optimal control theory (OCT) as a method-
ology for designing effective vaccination strategies. The OCT has been proven to be
a powerful tool in the development and evaluation of intervention strategies to cope
with the burden of infectious diseases (Bussell et al. 2019). Several studies have used
Kermack—McKendrick-type models coupled with the optimal control theory to devise
vaccine prioritization for specific diseases such as influenza (Matrajt et al. 2013; Shim
2013), dengue (Maier et al. 2017; Rodrigues et al. 2014), and COVID-19 (Estadilla
et al. 2021; Libotte et al. 2020; Saldafia and Velasco-Hernandez 2021). Nevertheless,
to the best of the authors’ knowledge, the number of studies investigating vaccine
allocation via optimal control theory for STIs is relatively low. For example, Brown
and White (2011) used an optimal control model to investigate targeted immunization
programs for HPV in the United Kingdom. They found that the inclusion of both
males and females into vaccination programs would be cost-effective and that vac-
cinating older individuals is also relevant for controlling the infection. Malik et al.
(2016), explored the optimal vaccination rates of the bivalent, quadrivalent and non-
avalent HPV vaccines if all three vaccines are in use but only in the female population.
Their main conclusion was that immunization programs can optimally administer the
three vaccines simultaneously by administering the quadrivalent and nonavalent vac-
cines at the maximum rates and the bivalent vaccine at moderate rates. Camacho et al.
(2019) used a compartmental pair model coupled with optimal and feedback control to
explore different public health strategies for the control of trichomoniasis, gonorrhea,
chlamydia, and HPV. Saldafia et al. (2019) used optimal control theory to investi-
gate the best combination of vaccination and screening to reduce the spread of HPV
infection, as well as the cost of the intervention strategy. The results in these previous
studies are deduced by employing commonly used L>-type objective functionals. The
approach presented in this study differs from previous methodologies in the sense that
we consider a limited but specific vaccine supply via an isoperimetric constraint.
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In this work, we contribute to the vaccine allocation literature investigating how
prophylactic vaccines are best distributed in a population. Assuming sex-specific dif-
ferences in susceptibility and disease outcomes, the main focus of our study is to
investigate under which conditions the inclusion of both sexes into vaccination pro-
grams adds to the population-level impact of one-sex-only interventions. Theoretically,
high vaccination coverage for one sex might be enough to reach herd immunity and
eradicate an STI in a heterosexual population (Bogaards et al. 2011). Yet, some com-
plications can arise depending on many factors such as (i) the male-to-female sexual
infectivity rate is generally higher than that of female-to-male (Low et al. 2006; Wong
et al. 2004) (ii) the health risks associated with the infection are considerably higher
for females e.g. pelvic inflammatory disease, chronic pelvic pain, ectopic pregnancy,
infertility, and cervical cancers (Low et al. 2006; Wong et al. 2004). Further, in some
cases, there can be a group who is reluctant towards the vaccination; thus, a high
vaccination coverage can be difficult to achieve even when targeting one sex-specific
group (Saldafa et al. 2019). Our approach to addressing these issues relies on an opti-
mal control problem, where the cumulative level of infected individuals is minimized
under a limited vaccine stockpile and subject to a two-sex epidemic model.

The rest of this paper is organized as follows. In Sect.2, we propose a two-sex
Kermack—McKendrick-type model to describe the spread of an STT in a heterosexual
population. The model considers prophylactic vaccine strategies that might include
both genders. The analysis of equilibria together with the basic and control repro-
duction numbers are also investigated in Sect.2. In Sect. 3, we formulate an optimal
control problem (OCP) to seek optimal sex-specific vaccination programs aiming to
minimize the total number of infections in the population. In Sect.4, we provide a
numerical approximation to the solution of OCP for several realistic vaccine scenarios
with budget constraints that mimic a scarce vaccine stockpile insufficient to immunize
the total population. We conclude by discussing the implications of our findings for
gender-specific vaccination programs against STIs.

2 Methods
2.1 Model formulation

The model stratifies the total population at time ¢, denoted N (¢) according to gender,
so N(t) = Ny(t) + Ny (t), where Ny and Ny, represent the number of sexually active
females and males, respectively. Both populations Ny (k = f,m) are subdivided
into mutually exclusive compartments according to infection status as unvaccinated
susceptible (Sx), vaccinated susceptible (Vy), and infectious individuals (I;). Hence,
Ni(t) = Si(t) + Vi(t) + Ik (t), (k = f,m). The transmission dynamics of a sexu-
ally transmitted infection in a heterosexual population are described by the following
system of differential equations:
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Table 1 Baseline model (1) parameters (k = f, m). References for the parameter values are given in the
main text. The total population is assumed to be N = 100,000 with a gender distribution N}" = 0.5052N

and N}, = 0.4948N

Parameters Values-ranges Units
Female’s sexually active life expectancy 1/d ¢ 30.7-(30,31.4) Year

Male’s sexually active life expectancy 1/d;, 34.7-(34.1,35.3) Year

Average number of sexual contacts for males cr 52-Tri(0, 100, 52) Year—!
Average number of sexual contacts for females ¢, 50-Tri(0, 97, 50) Year—!
Probability of female infection py,— ¢ 0.70-Tri(0, 1, 0.70) dimensionless
Probability of male infection p s, 0.40-T'ri(0, 1, 0.40) dimensionless
Vaccine efficacy € 0.80-(0.60, 0.95) dimensionless
Duration of the infectious period 1/o 20-(10, 100) Days
Vaccination rates uy 0.50-(0.0, 1.60) Year~!
Duration of vaccine-induced protection 1/6; 20—(1, 30) Year

Sk = b Nk — (hjsk + uk + di) Sk + il + Ok Vi,
Vie = u Sk — (1 — €)h jsi Vi — (di + ) Vi, k,j=f.m, k#j 1
I = M jok(Sk + (1 — €) Vie) — (g + di) I,

where all the parameters and initial conditions are non-negative.

We assume individuals are recruited into the sexually active population as unvac-
cinated susceptible at a constant rate by proportional to Ni and 1/d is the average
duration of the sexual life for sex k = f, m. Prophylactic immunization occurs at a
rate ug. The vaccine reduces the force of infection by a factor €; € [0, 1]; thus, € is the
vaccine effectiveness and the vaccine is 100% effective when €, = 1. Vaccine-induced
immunity wanes at a rate 6, thus if 9y = 0, protection is lifelong. Individuals recover
naturally from the infection at a rate ox. No immunity is assumed after recovery. The
acquisition of infection occurs with a sex-specific force of infection given by

1 -1
)Lfam:ﬁf;—;?fv )\m%fzﬂml_\;#« ()
Here, B¢ m (B r) is the female-to-male (male-to-female) transmission rate. We
remark that although system (1) is a minimalist model, it captures the core characteris-
tics of sexually transmitted infections in a heterosexual population under vaccination.
For a full description of model parameters, together with their ranges and baseline
values see Sect. 4.1 and Table 1.

2.2 Mathematical analysis

From system (1) it is immediate that the total population for sex k = f, m satisfies

Ny = (br — di)Ng. Since we are interested in studying model (1) over a finite time
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interval [0, ¢7], we assume that the population for both sexes is constant i.e. Ni(¢) =
Ni(0) = N,f for all ¢ € [0, 5], so by = dy. We stress that the constant population
size assumption is standard in epidemic modeling and is based on the fact the time
scale of the epidemic process is considerably faster than that of the demographic one
for a short time horizon. Therefore, the biologically feasible region for system (1) is
given by Q = QU Q,, where

= {(Sk, Vi o) € RS 2 N = Si(t) + Vi(6) + I (1), ¢ € [0, zf]} k= f.m)

Let x; be an state variable of model (1), then if x; = 0 then x; > 0. It follows that all
solutions of the system (1) with an initial condition in €2 remain in €2 for all # > 0 and
Q2 is forward invariant. The basic existence, uniqueness, and continuation results for
model (1) hold in 2 (Wiggins et al. 2003). Therefore system (1) is epidemiologically
well-posed (Hethcote 2000) and it is sufficient to study its dynamics in 2.

The disease-free equilibrium (DFE) of model (1) is given by

Eo= (S}, V2, 19, Sp. Vs 1)

_ (dr + 9f)N; qu; (dm + 6m)N,} N
up+dr+07 up+dr+05" " wm+dp + 6 wm +dp + 6’

Therefore, the susceptible and vaccinated fractions at equilibrium are

0 0
sozsl:M UOZV_kzu—" k= f,m. (3
TN T werde+ 60 T ONE T ue+di+ 6 ’

Observe that in the absence of vaccination, at the DFE, the whole population remains
susceptible. Using the next-generation operator (Diekmann et al. 1990) and the method
of Van den Driessche and Watmough (2002) we obtain the following next-generation
matrix

0 B s (S§ + (1 =€) V)

— (@m +d)NY
K=1 om0 + (1 eV . @
(ay + df)N;Z

The control reproduction number is defined as the spectral radius p (K), that is, the
largest eigenvalue of the next generation matrix. Therefore, the analytic expression
for the control reproduction number is

0 (1= et B g 6T+ (1= e)0)
Rc<uf,um>=\/ﬂ/ﬁm“m+(l wlin) | POy AZepvp )

(ay+dy) (am + dm)

The notation R, is used to emphasize that the reproduction number is derived under
control measures, in this case, vaccination. The square root in (5) arises since it takes
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two generations for infected hosts to produce newly infected hosts of the same sex
(Van den Driessche and Watmough 2008). For a biological intuition of R. observe
that an infectious individuals of sex j produces on average 8 j%k(s,? + (1 - ek)vg)
infections on the opposite sex k (k, j = f,m, k # j), during his/her infectious
period 1/(a; + d;).

The basic reproduction number in the absence of vaccination, Ry, satisfies

,8f—>m ﬂm—)f
(af +df) (am + dn)

Ry = R:(0,0) =\/ > Re(uy,up) forup, uy >0.  (6)

As adirect consequence of Theorem 2 in Van den Driessche and Watmough (2002),
we obtain the local stability for the DFE. The result is formalized as follows.

Theorem 1 The disease-free equilibrium Eq for model (1) is locally asymptotically
stable if R. < 1 and unstable if R, > 1.

We now investigate the existence of the endemic equilibria of the form
(Sh VI I}, Sh. Vi, 1) where 0 < I} < N%,and 0 < I, < N (a straightfor-

ward computation can show that I; = 0 implies I,_l', = 0, and vice-versa). Further,
since we are dealing with constant population for both sexes, we can express the
endemic equilibria for the susceptible as S,j = N; — VkT -1 ,j (k = f, m). Then we
can solve the equilibrium equations for the vaccinated classes V} and V,; in terms of

the infected classes 1; and I,L as

U (N — L)
dyy + ttm + O+ (1= €n)Brml /N
* T
VT= uf(Nf—]f) | .
f di+ur+0r+ A —€f)Bmoyrln/Nj

vi=

m

Next, defining

§=dm+n+ 1 —€en)um,
¢ = @n + dw)N; (@t + 0)NF + (1 = émBroml})

we can express the infected males as I,Jr = I}F (1;) where

BronNu@NF + (1 = en)Brml})
BromSNEIF+ (1= en)Broml D2+

F(I;E) - @)
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Fig. 1 Endemic equilibria for the Infected females I
infected female sub-population, 30000F
If, as a function of the expected

25000+
number of sexual contacts that a
typical man carries out per year 20000¢
¢ r. Vaccine effectiveness for 15000F

both sexes is 80%. Parameter

. 10000
values are shown in Table 1

5000

40 50 60 70 80

Finally, the infected females at the endemic equilibrium I; correspond to the zeros

of the following four order polynomial
ATN(FU})? + BF(I))+C =0 (8)
where
_ 22 * T
A=B, ;A —epNy—1p)

B =Bues Ny (—(as +dp)(1 = eI} + (NF = ID) s + 05 + (1 = €pup) )
C =—(ay+dp)ds+07 +up)Ny)?

In the particular case for which the vaccine efficacy is 100%, thatis, € f = €, =1,
we can find a unique endemic equilibrium given by

Iy RG(dm +0u)(df +65) = (dm + O +un)(dy + 605 +uy)

i
5 RY(dm A+ Om)(dy 4 0p) + B £ + On)(dy +0p +up)/(cm +dn)’
:
*
m

;
_ (af +dp)l; .
Bus G (NG = I})

N
I ©
N )

Observe that the above equilibrium only exists if the condition
R(%(dm + em)(df + ef) > (dm + O + um)(df + Qf + uf)

is fulfilled. This occurs if and only if R, > 1, therefore the classical forward bifurcation
occurs when the vaccine is 100% effective and the two-sex epidemic model (1) presents
aunique endemic equilibrium. In the general case, it is not possible to obtain a closed-
form solution for the endemic equilibria but numerical results indicate that the number
of endemic equilibria is at most two. Furthermore, a backward bifurcation can occur if
the vaccine effectiveness €; (k = f, m) is below a certain threshold. Figure 1 depicts
the typical dynamics for the endemic equilibria of the infected female class where the
backward bifurcation is present. The equilibrium dynamics for the male infected class
follow the same qualitative behavior (not shown).
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3 Optimal vaccine allocation

In this section, we propose an optimal control problem with an isoperimetric constrain
to investigate the best sex-specific vaccine deployment under a limited vaccine budget.
For this, we consider time-dependent vaccination rates u ¢ (¢) and u,,(¢) per unit of
time, thus the controlled model becomes

Sk = b Nk — (hjsk + ug(t) + di) Sk + o I + 6k Vi,
Vi =urSk — (1 — €)M Vi — (di +00) Vi, (k, j=f,m, k#j) (10)
I = (S + (1 — ) Vi) — (o + di) I,

subject to non-negative initial conditions. The vaccination rates will be called controls
and denoted by the vector ¢(t) = (ur(2), up on'T.

We conceptualize a limited vaccine supply assuming that the number of vaccines
available under the time interval of interest [0, ¢ 7] is fixed with a value W and that
all vaccines will be delivered to the population. We further assume that the vaccine
stockpile is not enough to vaccinate the whole populationi.e. W < N since in another
case there is no need to optimize vaccine allocation.

This condition can be modeled by the following isoperimetric constraint (Kamien
and Schwartz 2012; Lenhart and Workman 2007):

t
/ﬁfuf(nsf(n-fum(msm(odz==w& (11)
0

The problem for public health officers is to choose an optimal vaccine deployment
to minimize the prevalence of the infection, as well as the overall costs of vaccine
deployment. In mathematical terms, such a goal can be achieved by minimizing the
following objective functional

ty
Jz/‘Aﬂﬂﬂ+AﬂMU+Aw%U+Awimm. (12)
0

The weight parameters A; (i = 1, ..., 4) describe the relative impact of the control
or state variables on the value of the objective functional (see Sect.4.3). The depen-
dence on the control in the objective functional (12) is assumed to be a quadratic
function of the control itself. A reason for such a choice is that the quadratic terms
penalize high levels of vaccine deployment in comparison with the cost of low levels
(Saldafia et al. 2019). We follow this approach but we remark that this formulation
offers important mathematical and numerical advantages, as for such L,-type func-
tionals, the application of Pontryagin’s Maximum Principle allows us to obtain a
closed-form formula for the controls as a function of the states and adjoints that can
be solved numerically as a boundary value problem (Lenhart and Workman 2007).

The control set is defined by

U = {c(?) : ux(t) bounded and Lebesgue measurable on [0, t¢], k = f,m}, (13)
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with bounds
OSMJ‘(t),Mm(I) < Umax, VYt €O, tf]~ (14)
Observe that besides the budgetary constraint (11), the vaccination rates should be
constrained (due to logistic limitations) under a maximum vaccination rate u,,,, per

unit of time e.g. daily vaccination rate. As shown in Saldafia et al. (2022), a vaccination
rate u can be approximated by

u=—In(1—-V.(1))/t (15)
where V,(¢) is the fraction of vaccinated individuals at time ¢, that is, the vaccination
coverage. Considering a very optimistic case in which health authorities achieve a
vaccination coverage V. (t) = 80% of the population in = 1 year, we obtain that the
constant vaccination rate u ~ 1.60 per year. Therefore, we choose a maximum daily
vaccination rate as u,,,x = 1.60/365.

Given the special structure of (11), we can convert the isoperimetric constraint (11)
into a fixed endpoint constrain (Kamien and Schwartz 2012), by defining

t
Z(1) =/ upr()Sr(s) + up(s)Spu(s)ds. (16)
0

The additional state variable, Z(¢), represents the cumulative number of vaccines
that have been given at time ¢, and satisfies

ZO) =up®)Sr(t) + um(OSu(t), Z(©0)=0, Z(ty)=W. (17)
The Optimal Control Problem (OCP) is stated as follows:

mirg{ J (¢) subject to model (10) coupled with constrain (17). (18)
(WSS

An application of the Fillipov-Cesari theorem (Fleming and Rishel 1975, Chapter
III, Theorem 4.1) gives conditions to assert the existence of an optimal control pair

(1) = (), up, (1)
and corresponding optimal state solutions
X*(1) = (S5(0), VF@), T5@), Sp(0), Vo (1), L (1), Z*(0)”
for the OCP (18). The proof is standard for L,-type objective functionals and we
omit it. Proofs of such statements can be found in Camacho et al. (2019); Saldafia
et al. (2019); Sepulveda-Salcedo et al. (2020). We now use Pontryagin’s Maximum

Principle to state the necessary criterion satisfied by an optimal control (Fleming and
Rishel 1975; Kamien and Schwartz 2012).
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Theorem 2 IfX*(¢) and ¢*(t) are optimal for the OCP (18), then there exist a constant
Ao and piecewise differentiable functions M(t) = (A1, ..., A7), whereforallt € [0, ]
we have (Ao, A(t)) # (0, 0), such that for every t € [0, t7]
H(t, X*(1), " (1), A(t)) < H(t, X*(1), c(t), (1)) (19)
for all admissible controls ¢ € U, where the Hamiltonian function H is defined by
H(t,X, ¢, %) = Ao [Allf + Agly + Azt + A4u%1]
+ a1 [bf Ny = G g +up +dp)Sy+oply +05Vy]

+aofurSy— (= €p)hmo V= +07)Vy]

+ A3 [A ,,Hf(sf +(L—€p)Vy) = (af +dp)ly] 20)
+ 2t [bin N — G psm + thm + dn) Sy G Ly + 63 Vi ]

+ As [umS, —(1 — €m)AfosmVim — (dm + Om) Vi |

+ A6 [A fom(Sm 4+ (1 — €m) Vi) — (m + d) I |

+ A7 [ug S+ tumSn] .

Except at points of discontinuity of ¢*(t), the adjoint variable \(t) satisfies

N ﬂm—>f1;:l % ,Bm—>f1
AM=M (—'+M +df — Aut — A ——A7u*-,

N* f / N f

I*
hy=—nbf + Ao [(1—6 )M + (dy +ef)] —Aa(l—ef)ﬁ”’;%,
m
)\. = —MA1 — Moy +A3(ay +dy) +)L413f—>m S* + As(1 — Gm)ﬂf_*)m V:
f f
lgf—>m *
— A6 N Sy + A =€)V,

f
: ﬂf—””I* /3]"—>ml* 2
)\.4: 4<Tf+l/l; +dm _)\.SM;;—)\.GT}F—)\JM:(",

f f
. ,8 —m I* ﬂf—)ml;‘;
As = —24Om + s | (1 — em)— + dm +0m) | — Ae(1 — Em)—*a
NG Ny
o = o + 1Pt a0 —ep Pty Bl s epv
m m m
— Aoty + Ao (@ + dim),
A =0.
Furthermore,
=1 or X =0. (22)
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Last, the following transversality conditions are satisfied:
Aitp) =0 i=1,...,6, A7(ty) = free. (23)

The adjoint variables 1;(¢) (i =1, ..., 6) have a classical interpretation in OCP as
the marginal valuation of the associated state variable at time # (Kamien and Schwartz
2012). The value of the constant Aq in the Hamiltonian (20) is either Oor 1. If A9 = 1,
then the OCP (18) would have a solution in which the objective matters (Kamien and
Schwartz 2012). In this scenario, the Hamiltonian function has the standard form, and
minimization of the objective functional (12) is equivalent to minimization of H as
a function of ¢(¢) along the optimal path. This is not always possible for OCPs that
include an isoperimetric constraint (Fleming and Rishel 1975). This results from the
fact that the controlled system (10) coupled with (17), has more endpoint conditions
than differential equations. Hence, the system is over-determined and the optimization
problem may become unfeasible. If Ao = 0, one can handle the OCP finding an
admissible control ¢*(¢) that satisfies the isoperimetric constrain (11). However, such
control will neglect the value of the objective functional (Sepulveda-Salcedo et al.
2020). Problems in which Ag = 0 are called abnormal (Fleming and Rishel 1975) and
the optimal control usually presents a bang-bang structure since H is a linear function
in the control. A feasible control, in this case, is to start vaccinating with the maximal
effort at the initial phase and to continue vaccinating with a maximal effort to deploy
all the vaccines at a time 7 € (0, ¢ 1) (Hansen and Day 2011; Sepulveda-Salcedo et al.
2020).

In our context, we cannot disregard the value of the objective functional since is
essential to find the optimal vaccine deployment. Hence, hereafter we assume 1o = 1.
From the first-order optimality conditions we have

0H (¢, X*(1), c* (1), A(2))
ouy
OH (t, X*(1), c* (1), A(1))

oy,

=2A3u7 (1) — (M () — 22(t) — K)S}(1) =0, (24)

= 2A4u;, (1) — (Aa(t) — As(1) — K)S,, (1) = 0. (25)

Considering the lower and upper bounds for the controls and the optimality
conditions (24)—(25), we obtain the following characterization of the optimal controls:

R 0 (A1) = 22(r) — K)S3(0) Y

uf(t)—mln max 4 0, 245 s Umax ( » (26)

u), () = min {max {0, (a(t) = As5®) = KOSy, () } , Mmax} . 27
2A4

The constant K € R comes from the solution of the last equation in the adjoint
system (21), which implies A7 = K, where K should be chosen to fulfill the condition
Z(tf)=W.
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4 Numerical results

Here, we complement the analytical results in the previous sections with the numerical
computation of the optimal control. To obtain the optimal control solutions we must
solve the optimality system which is a boundary value problem involving the state
equations (10), coupled with the fixed endpoint constrain (17), and the adjoint system
(21). The characterization of the optimal control (26)—(27) has to be substituted in the
latter equations to get a system that only depends on the state and adjoint variables.
Observe that although the model variables for the controlled system (10) have free end
conditions, the additional state variable Z(¢) has a specified endpoint (17). Therefore,
the forward—backward sweep method (FBSM) cannot be applied directly to solve the
optimality system (Lenhart and Workman 2007). Instead, we need to find the value
K for the adjoint variable A7 = K such that Z(zy) = W. To this end, we consider
an adapted FBSM that takes as an input a guess for K, and solves the corresponding
OCP. The solution obtained by the implementation of FBSM is denoted as ¢ (K), and
the corresponding final value for the auxiliary function Z that computes the number
of cumulative vaccinated individuals is denoted Zk (¢7). The adapted FBSM is an
iterative process that seeks the value of K that minimizes the difference Zg (7)) — W.
We use the classical secant method to solve this outer iterative process which usually
involves several iterations of the FBSM.

The algorithm for the inner FBSM obtains a control update ¢ for step m solving
the optimality system. Often, a direct update of the control cm —gm p—112 ...
is sufficient for convergence. Nevertheless, a weighted update such that

™ =1 —we™ 4+ pue™ D pero, 1), k=1,2,... (28)

is commonly used to improve convergence properties (Lenhart and Workman 2007).
The choice of w significantly accelerates convergence relative to the direct update
(Sharp et al. 2021), particularly if u is updated between iterations. However, since the
optimal choice for p is problem-dependent, here we use a constant . = 0.9 for all
iterations. Convergence properties for the FBSM for this case are discussed in Lenhart
and Workman (2007); Sharp et al. (2021). As a convergence criterion, we require the
relative error to be negligibly small so that

Sle™ 1 = fe™ — eV =0, (29)
is satisfied. Here, || - || is the Euclidean norm and § is the accepted tolerance (fixed as
8 = 0.0001). The equivalent convergence criteria should be satisfied by the state and

adjoint variables. For the outer FBSM we seek that Zg (1y) = W is satisfied with a
desired tolerance using || Zg (tf) — W] < 1074w,

4.1 Model parameters

We retrieved the baseline values for some of our model parameters using sexual behav-
ior data from the United States of America (USA) and estimations from previous
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studies on STIs. Rather than studying a single disease, our approach is to investigate
a set of scenarios of interest that might be plausible for the most common STIs. The
selection of parameters is outlined as follows.

The sexually active life expectancy has been estimated to be on average higher for
males than for females (Lindau and Gavrilova 2010). In particular, the sexually active
life expectancy for males is 34.7 years with a 95% confidence interval (34.1, 35.3).
Thus, 1/d,, € (34.1, 35.3) years. The sexually active life expectancy for females is
30.7 years with a 95% confidence interval (30, 31.4). Thus, 1/dy € (30, 31.4) years.
In 2020, it was estimated in the USA that the percentage of the female population is
50.52% compared to 49.48% in the male population (United Nations 2020). There-
fore, N; = 0.5052N and N, = 0.4948N. For simplicity, we assume that the total
population is N = 100, 000.

The parameter B, f = ¢y pm—s s is the transmission rate from males to females,
where ¢, is the expected number of sexual contacts with men that a typical woman
carries out per unit of time and p,, y is the probability of female infection given con-
tact with an infectious male. Likewise, the transmission rate from females to males
Bf—m = cypf—m, is the product of the expected number of sexual contacts with
women that a typical man carries out per unit of time ¢ and the probability of male
infection given contact with an infectious female py_.,. To obtain the conserva-
tion of total sex contacts, the mixing function should satisfy the following condition
(Busenberg and Castillo-Chavez 1991):

cfN, = cmN¥. (30)

Observe thatif N ;’E # N then the parameters ¢ r and c;, can differ substantially. Under
our conditions, if we assume that c ¢ is fixed, we can obtain ¢,, = 0.4948¢/0.5052 =
0.9794c y. Men and women in good health report frequent sex (once or more weekly)
(Lindau and Gavrilova 2010). In our study, we assume that the expected number of
sexual contacts that a typical man carries out follows a triangular distribution ¢y ~
Tri(0, 100, 52) per year (Lindau and Gavrilova 2010). Furthermore, there is evidence
that the male-to-female sexual infectivity rate is generally greater than that for female-
to-male (Low et al. 2006; Wong et al. 2004). For example, for genital herpes HSV-
2, estimations indicate that p,,_ r ~ 4pr_., (Heffernan et al. 2014). Therefore,
we Set py—s f > Pfom, and we propose py s ~ Tri(0,1,0.70), and ps_,,, ~
Tri(0, 1,0.40).

According to the WHO, to be approved, vaccines are required to have a high efficacy
rate of at least 50% (World Health Organization 2021). Current vaccines against STIs
have been proven to be highly effective to prevent infection e.g. vaccines against HPV,
and hepatitis B virus (Gottlieb et al. 2016). In this study, we consider vaccine efficacy
between 60%-95% for both sexes (e, €, € [0.60,0.95]). The average infectious
period might vary substantially in STIs, depending on the disease, ranging from a
few days up to several months (Workowski and Bolan 2015). As a consequence,
we assume 1/a; € [10, 100] days (k = f, m). Regarding the duration of vaccine-
induced immunity, we assume that the protection last from at least one year and can be
maintained up to 30 years, hence 1/6; € [1, 30] years (k = f, m). Model parameters
are summarized in Table 1.
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Fig.2 a First (blue) and total (red) Sobol’s indices for the basic reproduction number Rg. The ranges for the
parameters are listed in Table 1. The vertical black lines in the indices represent 95% confidence intervals. b
Histogram for the distribution of R. The solid line represents a kernel density estimation for the continuous
distribution (color figure online)

4.2 Global sensitivity analysis for the reproduction numbers

Here, a global sensitivity analysis is performed to provide a quantitative measure of the
contributions of the model parameters on the reproduction numbers Ry and R.. We use
a variance-based sensitivity analysis classically referred as the Sobol method which is,
so far, one of the most powerful techniques among current global sensitivity analysis
methods (Zhang et al. 2015). Sobol sensitivity analysis determines the contribution of
input parameters to the overall variance of a model outcome of interest, in our case, the
reproduction numbers. In particular, the so-called first-order Sobol indices measure
the contribution to the output variance by a single model input alone. Whereas, the
total-order index measures the contribution to the output variance caused by a model
input, including both its first-order effects and all higher-order interactions (Saltelli
et al. 2008). We perform numerical experiments (100,000 samples) using SALib, an
open-source library written in Python for performing sensitivity analyses (Herman
and Usher 2017). The ranges used for the parameters are listed in Table 1.

Figure 2a shows the first (blue) and total (red) Sobol’s indices for the basic reproduc-
tion number Ry. The dark marks on top of the bars in Fig. 2a represent 95% confidence
intervals for the sensitivity indices. Notice that they are very small. Observe that the
expected number of sexual contacts c; together with the recovery rates oy (k = f, m)
are the parameters that contribute the most to the variability of Ry. Whereas, the contri-
bution to the variability of Ry given by the mortality rates dy (k = f, m) is practically
zero. Figure 2b shows a histogram for the distribution of Ry. The solid line represents
a kernel density estimation for the continuous distribution. Observe that although in
most cases Ry value is below 1, in some extreme scenarios Rp can be as high as 3.

Figure 3a shows the first (blue) and total (red) Sobol’s indices for the control repro-
duction number R.. As in the case for Ry, the parameters cx and o (kK = f,m)
contribute the most to the variance of R.. Figure 3b shows a histogram for the distri-
bution of R.. Observe that the distribution for R, is closer to low values in comparison
with the Ry distribution (see Fig. 2b). Hence, even though the vaccine parameters (e,
ur, 0y) are not the most influential parameters on R, they still can significantly reduce
the value of R..
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Fig. 3 a First (blue) and total (red) Sobol’s indices for the control reproduction number R.. The ranges
for the parameters are listed in Table 1. The vertical black lines in the indices represent 95% confidence
intervals. b Histogram for the distribution of R.. The solid line represents a kernel density estimation for
the continuous distribution (color figure online)

4.3 Vaccination scenarios

We investigate several vaccination scenarios to evaluate the optimal sex-specific vac-
cine deployment among the population. The time horizon for our simulations is 365
days, that is, ty = 365 days and ¢ € [0, z7]. In the objective functional (12), the
parameters A1 and A; balance the cost of the reduction in health and well-being of
infected females and males, respectively. These costs related to pain and suffering
are sometimes referred to as morbidity costs (Muennig and Bounthavong 2016). On
the other hand, A3 and A4 represent the costs of vaccine deployment in females and
males, respectively. In real-life scenarios, the monetary costs and side effects of a
vaccination program are typically small compared with the potential losses that an
outbreak can inflict. Hence, we assume A, A» > A3, A4. Furthermore, females are
more severely affected by STIs because of anatomical physiological characteristics.
So in a heterosexual setting, women bear the largest burden (Workowski and Bolan
2015). The classical example is HPV infection. While HPV infection can lead to cer-
vical cancer and death in women, the infection in men rarely leads to severe health
problems (penile cancer from HPV might happen but the rate is far lower than the
rate for cervical cancer) (Sung et al. 2021). Therefore, A1 > Aj. In particular, for the
numerical simulations, we assume A| = 10, Ay = 1. The cost of vaccine deployment
is assumed to be the same for both sexes and is fixed as A3 = A4 = Ay /2.
To better quantify the gender-specific optimal vaccine deployment we define

t t
Zys(t) =/ up(s)Sr(s)ds, Zp(t) :/ U, (8) S (8)ds. 3D
0 0

Observe that Z ¢ (¢) and Z,, () represent the cumulative number of vaccinated females
and males, respectively, at time ¢, and Z(t) = Zy(t) + Z,,(t) for all t € [0, 15].
Furthermore, since vaccinated individuals can still getinfected, it follows that Z ¢ (¢) >
Vi@), Zn(t) = Vin(t) forall ¢ € [0, £7].
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4.3.1 A starting vaccination roll-out program

As a first scenario, we consider a starting vaccination roll-out program where no
individuals in the population have been vaccinated. Initial conditions are set as follows:
Ir(0) = 1,,(0) = 10, V¢(0) = V;,(0) = 0, and S;(0) = N? — 17(0) — V(0),
Sm(0) = N,k —1,,(0)—V,,, (0). Regarding the vaccine stockpile, we consider three cases
corresponding to the supply of vaccines for 20% (W = 0.2N), 30% (W = 0.3N),
and 40% (W = 0.4N) of the total population.

The first column in Fig.4 shows the optimal control solutions, that is, the optimal
time-dependent vaccination rates for females u’}(t) (blue) and males u}, (t) (red). The
second column shows the sex-specific optimal vaccine deployment using cumulative
vaccinated individuals. The cumulative number of vaccinated females Z ¢ (¢) (blue),
and males Z,, (t) (red) are obtained from the optimal states corresponding to the opti-
mal controls on the first column. The variable Z (¢) that represents the total cumulative
number of vaccines administered is also shown. Observe that Z(ty) = W for each
of the cases investigated: W = 0.2N* (first row), W = 0.3N* (second row) and
W = 0.4N* (third row). For all cases (see Fig.4a, c, e), the optimal control solutions
suggest that health officers must use all the vaccines available as soon as possible at
the early phase of the outbreak.

One important result from Fig.4a, c, d is that although the vaccination rate for
females should be higher than the one for males, this difference is relatively small.
Hence, under these conditions, men should be included in vaccination programs
together with females. The right column in Fig. 4 shows, as expected from the optimal
controls, that the cumulative number of vaccinated females is above the one for males.
Nevertheless, the key point to notice is that the difference in the sex-specific cumula-
tive vaccination increases as the vaccine stockpile reduces (note that the difference is
bigger in Fig.4b in comparison with Fig. 4f).

We remark that for all the scenarios explored, the implementation of the vaccination
program manages to significantly reduce the prevalence of the infection in comparison
with the no-control case. Figure 5deploys the number of infected individuals without
control (solid red line) and under the application of the optimal vaccination rates (solid
blue line) corresponding to the three cases W = 0.2N, W = 0.3N, and W = 0.4N.
Females and males are presented in the left and right columns in Fig. 5, respectively.
The integral of the shaded area corresponds to the number of infections averted by the
vaccination programs.

4.3.2 The case of an already existing single-sex vaccination program

The results in Fig. 4 were derived for a starting vaccination roll-out program. Another
scenario of interest is when a single-sex vaccination strategy is already established. In
this context, public health authorities would like to evaluate if it is better to increase
coverage in the existing single-sex program or to vaccinate both sexes simultaneously
(Bogaards et al. 2011). To simulate this scenario, we assume that u (t) = uqx and
un, (t) = 0 over an initial period such that at the end of the period 10000 females have
been vaccinated. Hence, a substantial number of females have already been vaccinated,
but no males have been vaccinated. Then, the optimal vaccine allocation begins. This
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Fig. 4 First column: Optimal time-dependent vaccination rates for females u*.(r) (blue) and males u?(t)
(red). Second column: Cumulative number of vaccinated females (blue) and vaccinated males (red) com-
puted from the optimal states corresponding to the optimal controls on the first column. The total cumulative
number of vaccines administered, Z(t), is shown in yellow. For both columns, the supply of vaccines
corresponds to 20% (a, b) (first row), 30% (¢, d) (second row), and 40% (e, f) (third row) of the total
population. Baseline parameter values are listed in Table 1. Initial conditions are I(0) = I, (0) = 10,
V#(0) = Vin(0) = 0, and S¢(0) = NJ’E —17(0) = Vy(0), Sm(0) = N} — Ly (0) — Vi, (0) (color figure
online)

scenario mimics HPV vaccination programs in several countries currently directed at
females only (Bruni et al. 2021). Other model parameters are fixed as shown in Table
1, except the total vaccine stockpile W that now counts 10000 vaccines less (the ones
that are already delivered for females).

The optimal control profiles and cumulative vaccinated individuals for these condi-
tions are shown in Fig. 6. The resulting optimal control profiles for the cases W = 0.2N
and W = 0.3N (see Fig. 6a, c), are significantly different in comparison with the cor-
responding cases (see Fig. 4a, c). The first difference is that now the control profiles no
longer suggest that health authorities should deploy as many vaccines as possible at
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Fig.5 (Left column) Number of infected females as a function of time without control (red line) and with
optimal vaccination rates (blue line) for the three casesa W = 0.2N, ¢ W = 0.3N,e W = 0.4N. (Right
column) The number of infected males as a function of time without control (red line) and with optimal
control (blue line) for the three casesb W = 0.2N,d W = 0.3N,f W = 0.4N. For all plots, the integral
of the shaded area represents the number of infections averted by the optimal vaccination strategies (color
figure online)

the beginning of the outbreak. Instead, immunization should be delayed by at least 60
days. Second, the optimal vaccination rate for males is now strictly zeroi.e. u), (t) = 0.
As a consequence, the total number of vaccinated individuals is equal to the number
of vaccinated females, Z(t) = Z r(t) (see Fig.6b, d). For the case of a starting vacci-
nation roll-out program (see Fig. 4), results showed that females should be vaccinated
at a higher rate than males. However, even in the scenario with the lowest vaccine
supply, the optimal vaccination rate for males was greater than zero. Finally, observe
that for the case W = 0.4N (see Fig.6e, f), the control profiles present again the
same qualitative behavior as the ones in the starting vaccination roll-out program. To
summarize, for a scenario of very limited vaccine stockpile, i.e. W < 0.3N, vaccine
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Fig. 6 First column: Optimal time-dependent vaccination rates for females u*.(r) (blue) and males u?(t)
(red). Second column: Cumulative number of vaccinated females (blue), and males (red) computed from
the optimal states corresponding to the optimal controls on the first column. The total cumulative number
of vaccines administered, Z(¢), is shown in yellow. For both columns, the supply of vaccines corresponds
to 20% (first row), 30% (second row), and 40% (third row) of the total population but 10000 vaccines
have already been directed to females. Baseline parameter values are listed in Table 1. Initial conditions
17(0) = 1537, I, (0) = 1157, V¢(0) = 10000, Vj,(0) = 0, and S¢(0) = N;’Z = 1£(0) — V¢(0),
Sm(0) = N;i — L, (0) — V4, (0) (color figure online)

administration should continue prioritizing the female-only target population. How-
ever, if the stockpile is relatively large, i.e. W > 0.4N, the inclusion of males in the
vaccination program is the optimal strategy to effectively eliminate the epidemic in
the population.
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5 Discussion

The prevention and control of sexually transmitted infections have extensive pub-
lic health benefits including the reduction of preventable deaths of newborns, and
improved sexual and reproductive health (World Health Organization 2021). Vaccine
development and successful implementation of effective immunization programs are
critical actions to progress in the control of STIs (Gottlieb et al. 2019). Nevertheless,
due to cost and logistical challenges, vaccine stockpile is typically limited and not
enough to achieve high-immunization coverage, particularly in low-middle-income
settings (Yamey et al. 2022). Data reports significant sex-specific differences in bio-
logical risks for STI acquisition, the clinical manifestation of the infection, and their
potential for transmission to the opposite sex (Hook 2012; Wong et al. 2004). Hence,
determining optimal sex-specific vaccination programs against STIs is a challenging
task that deserves more attention. A major example are HPV vaccination programs
which were introduced in several countries for young girls. These early female-only
HPV immunization programs have been found to be cost-effective when cervical can-
cer prevention is the main objective (see Brisson et al. (2020) and the references
therein). Yet, a number of studies (Elfstrom et al. 2016; Stanley 2012) have suggested
that if rather than preventing cervical cancer alone, the aim is to reduce all HPV-
associated diseases, then the inclusion of males can be cost-effective. Currently, more
than 30% of the HPV programs are gender-neutral (GN), i.e. with both females and
males receiving the vaccine. However, 79% of GN programs are from high-income
countries whereas only 21% are from upper-middle-income countries (Bruni et al.
2021).

In this study, we investigate under which conditions the inclusion of both males and
females into vaccination programs adds to the population-level impact of female-only
interventions. Considering sex-specific differences in transmissibility and severity in
disease outcomes, we compare vaccination strategies against STI transmission for
different realistic settings described by distinct budget constraints associated with the
vaccine supply. The vaccination strategies are obtained as solutions to an optimal
control problem aiming to reduce the total prevalence of the infection subject to a
minimalist two-sex Kermack—McKendrick-type model. The control variables are the
daily vaccination rates for females and males, respectively, that mimic a prophylactic
vaccine with effectiveness not necessarily equal to 100%. One important aspect of
our approach relies upon modeling a limited but specific vaccine stockpile via an
isoperimetric constraint (Kamien and Schwartz 2012). We solve the optimal control
problem via Pontryagin’s Maximum Principle and obtain a numerical approximation
for the solution using a modified version of the FBSM which handles the isoperimetric
budget constraint in our formulation.

We considered two main scenarios regarding the current immunization coverage in
the population (i) a starting vaccination roll-out program where no individuals in the
population have been vaccinated (see Fig.4) and (ii) a female-only vaccination strat-
egy which is already established and has reached around 20% coverage in females
(see Fig.6). The second scenario is relevant for public health authorities who would
like to evaluate if it is better to increase coverage in the existing female-only program
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or to vaccinate both sexes simultaneously. Each of these scenarios is further subdi-
vided according to the total vaccine supply available which is incorporated via the
isoperimetric constraint (11). The simulations for the first scenario show that although
the vaccination rate for females should be higher than the one for males. Hence,
under these conditions, vaccinating both sexes, with a slightly higher rate for females,
is optimal and provides an effective and faster approach to reducing the prevalence
of the infection. These results agree with the HPV immunization program currently
used in Spain (Linertova et al. 2022). However, the difference in sex-specific vaccine
distribution increases as the vaccine stockpile reduces. For the case in which a female-
only program is already ongoing, vaccine administration should continue prioritizing
the female-only target population and males should only be included if the vaccine
stockpile is large (enough to reach at least 40% total coverage). In other words, for a
very limited vaccine supply (30% coverage or less), female-only vaccination can be
more beneficial than the inclusion of both sexes into the vaccination program. Since
the male-to-female sexual infectivity rate is generally higher than that of female-to-
male, prioritizing female vaccination might seem counterintuitive, because vaccinating
super-spreaders (in this case males) is usually effective to reduce the prevalence of the
infection. Yet, this may be due to the fact that the health risks associated with STIs
are considerably higher for females in comparison with men. This is considered in the
solution of our optimal control problem using the weight parameters in the objective
functional.

As with the majority of studies, we considered some simplifying modeling assump-
tions that can be improved in further studies. First, we assumed that single-dose
vaccination is enough to reach full immunity. Nevertheless, a two-dose series is often
needed and there might be a delay of some days (or weeks) to achieve full immunity.
Second, we assumed that susceptible individuals are easily identified for a prophylactic
vaccine that lacks therapeutic effects and is therefore not effective in already infected
individuals. On the contrary case, some vaccines can be misdirected in the infected
population. Finally, we have considered a heterosexual population but the inclusion
of individuals with another sexual orientation can play a key role in disease dynamics.
Future investigations are necessary to validate if the principal properties of the optimal
vaccination policies drawn from this study are affected when these assumptions are
relaxed.
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