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Abstract
The viral load is known to be a chief predictor of the risk of transmission of infectious
diseases. In this work, we investigate the role of the individuals’ viral load in the
disease transmission by proposing a new susceptible-infectious-recovered epidemic
model for the densities and mean viral loads of each compartment. To this aim, we for-
mally derive the compartmental model from an appropriate microscopic one. Firstly,
we consider a multi-agent system in which individuals are identified by the epidemi-
ological compartment to which they belong and by their viral load. Microscopic rules
describe both the switch of compartment and the evolution of the viral load. In par-
ticular, in the binary interactions between susceptible and infectious individuals, the
probability for the susceptible individual to get infected depends on the viral load of
the infectious individual. Then, we implement the prescribedmicroscopic dynamics in
appropriate kinetic equations, from which the macroscopic equations for the densities
and viral load momentum of the compartments are eventually derived. In the macro-
scopic model, the rate of disease transmission turns out to be a function of the mean
viral load of the infectious population.We analytically and numerically investigate the
case that the transmission rate linearly depends on the viral load, which is compared
to the classical case of constant transmission rate. A qualitative analysis is performed
based on stability and bifurcation theory. Finally, numerical investigations concerning
the model reproduction number and the epidemic dynamics are presented.
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1 Introduction

The route of transmission of many infectious diseases is given by social contacts
among individuals. The virus shed by an infectious individual may be transmitted to a
healthy one during an encounter, so that the disease also develops in the latter. There
is evidence that the quantity of virus carried by the infectious individual determines
the occurrence or not of the transmission: as it is reasonable to expect, higher is
the viral load of the infectious individual, higher is the probability of transmitting
the infection. For example, the quanta emission rate (ERq) measures the number of
quanta (a quantum is the dose of airborne droplet nuclei required to cause infection
in 63% of susceptible persons) into the air per time unit. The ERq for respiratory
diseases (including SARS-CoV-1, SARS-CoV-2, MERS, measles virus, adenovirus,
rhinovirus, coxsackievirus, seasonal influenza virus andMycobacterium tuberculosis)
has been estimated as directly [resp. inversely] proportional to the viral load in sputum
[resp. the infectious dose] (Mikszewski et al. 2021): a more contagious strain would
have higher ERq values through a higher median viral load and/or a lower infectious
dose. The viral load is also the chief predictor of the risk of sexually-transmitted
infections, like HIV/AIDS (Quinn et al. 2000; Wilson et al. 2008).

In the mathematical epidemiology community, the awareness of the importance of
the viral load in the dynamics of infectious diseases has recently led to the development
of epidemic models that explicitly incorporate such a microscopic trait (Banerjee et al.
2020; Della Marca et al. 2022; Loy and Tosin 2021a, b). Specifically, in the paper
(Loy and Tosin 2021a) the authors propose a modelling framework through kinetic
equations in which individuals are characterized by a discrete label and by their viral
load; then, a prototype epidemic model is introduced in order to illustrate the impact of
individuals’ viral load on test-and-isolate activities. This work is extended in the paper
(Loy and Tosin 2021b), where the authors propose a kinetic model for the spread of an
infectious disease on a graph, the nodes here representing different spatial locations.
By following the wake of papers (Loy and Tosin 2021a, b), in the paper (Della Marca
et al. 2022) the authors introduce a compartmental susceptible-infectious-isolated-
recovered model, in which the individual viral load evolves according to appropriate
microscopic rules and determines the probability of isolation of infectious individuals.

To the best of our knowledge, the first epidemic model that incorporates the role of
viral load in the disease transmission term has been proposed by Banerjee et al. (2020).
In the paper (Banerjee et al. 2020) an immuno-epidemiological model is introduced,
where the number of susceptible people depends on the number of infectious people
through the initial viral load acquiredduring the interactions.Moreprecisely, according
to the model (Banerjee et al. 2020), the growth in the number of infectious individuals
increases the initial viral load, and provides a switch from the first stage of the epidemic
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where only people with weak immune response can be infected, to the second stage
where also people with strong immune response can be infected.

In the present work, we investigate how the viral load of infectious individuals
affects the probability of disease transmission, and the consequent epidemic dynamics,
by relying on the modelling framework of kinetic equations for multi-agent systems.
Kinetic theory and Boltzmann-like equations have proved to be a very effective tool
to enhance the description of infectious diseases dynamics, by allowing the incorpo-
ration in the model of not only the role of viral load (Della Marca et al. 2022; Loy and
Tosin 2021a, b), but also that of: social structure and wealth distribution within the
host population (Bernardi et al. 2022; Dimarco et al. 2020, 2021; Zanella et al. 2021),
contact heterogeneity (Dimarco et al. 2022; Medaglia and Zanella 2021), implemen-
tation of lockdownmeasures (Albi et al. 2021) and spatial propagation of the infection
(Bertaglia et al. 2021; Bertaglia and Pareschi 2021; Loy and Tosin 2021b). Specifi-
cally, we follow the approach of the papers (Della Marca et al. 2022; Loy and Tosin
2021a, b), by starting from a detailed description of the microscopic dynamics of the
disease spread, microscopic dynamics that is shared by all the individuals (also called
the agents), that are assumed to be indistinguishable. Then, we introduce suitable
kinetic equations that give a statistical portrait of the agents of the system by follow-
ing exactly the prescribedmicroscopic rules. Eventually, from the kinetic equationswe
derive a macroscopic model for the aggregate description of the system that naturally
inherits the details of the microscopic dynamics.

We assume that the individuals are characterized by a double microscopic state:
a label, that denotes the epidemiological compartment to which they belong, and
a physical quantity that is chosen to be the individual viral load. The microscopic
dynamics is described in terms ofmicroscopic interactions, that allow the viral load to
evolve, andby themeans ofMarkovianprocesses ruling the switch of compartment.We
consider a basic susceptible-infectious-recovered (SIR) compartmental structure and
assume that the mechanism of disease transmission (leading the healthy individuals
to become ill) depends on the viral load of the infectious individuals.

The rest of the manuscript is organized as follows. In Sect. 2, we present our multi-
agent system and themicroscopic dynamics. Then, we revise themodelling framework
proposed in the paper (DellaMarca et al. 2022) in order to derive themacroscopic com-
partmental model including the role of viral load in the rate of disease transmission. In
Sect. 3, we perform a qualitative analysis of the proposed model by determining the
equilibria and investigating their stability in terms of the basic reproduction number
R0. In Sect. 4, some numerical simulations of the macroscopic model are performed:
both the reproduction number and the epidemic temporal dynamics under the assump-
tion of viral load-dependent rate of disease transmission are comparedwith those under
the classical assumption of constant rate of disease transmission. Finally, in Sect. 5,
we draw some conclusions.

123



61 Page 4 of 28 R. D. Marca et al.

2 Themathematical model: from amulti-agent system to
compartmental macroscopic equations

Let us consider an infectious disease spreading among individuals as a consequence
of social contacts. Individuals are modelled as agents of a multi-agent system and
characterized by a microscopic state. In particular, the agents are divided into disjoint
compartments depending on their state of health with respect to the disease. Moreover,
they are characterized by a physical quantity named viral load, that represents the
quantity of viral particles present in the organism.

2.1 Themicroscopic model

At any time t each agent of the system is characterized by a microscopic state (x, v),
where x ∈ X is a label that takes into account the epidemiological compartment to
which the agent belongs, and v ∈ [0, 1] is a normalized measure of the individual’s
viral load, being v = 1 the maximum observable value.

The evolution of both the label and the viral load may be described by the means of
microscopic stochastic processes, that can be expressed through Markovian processes
(Della Marca et al. 2022), namely through transition probabilities

P
(
( j, v) → (i, v′)

)
,

that is the conditional probability for an agent to change microscopic state from ( j, v)

to (i, v′), with ( j, v), (i, v′) ∈ X × [0, 1]. In general, the viral load of an individual
may change both simultaneously to and independently of the switch of compartment.
In the second case, we consider transition probabilities for the mere evolution of the
viral load of an individual in class i ∈ X that we denote by

Pi (v → v′) = P
(
(i, v) → (i, v′)

)
,

with v, v′ ∈ [0, 1].
Instead, if only the compartment changes, then we denote by P(i → j) the

probability for an agent to switch from the compartment i to the compartment j .

2.1.1 The compartmental structure

At any time t the agents, labelled with x ∈ X , are divided in the following disjoint
epidemiological compartments:

• Susceptible, x = S: individuals who are healthy but can contract the disease.
The susceptible population increases by a net inflow, incorporating new births and
immigration, and decreases due to disease transmission and natural death;

• Infectious, I : individuals who are infected by the disease and can transmit the virus
to others. Infectious individuals arise as the result of new infections of susceptible
individuals and diminish due to recovery and natural death;
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• Recovered, x = R: individuals who have recovered from the disease after the
infectious period. They come from the infectious class I and acquire long lasting
immunity against the disease. Recovered people diminish only due to natural death.

Specifically: susceptible individuals have v ≡ 0; once infected, an individual’s viral
load increases until reaching a peak value (that varies from person to person) and
then gradually decreases, see e.g. the representative plot of SARS-CoV-2 viral load
evolution given in the paper (Cevik et al. 2020), Fig. 2. Hence, for mathematical
convenience (Della Marca et al. 2022), we assume that members of the class I are
further divided into:

• infectious with increasing viral load, x = I1;
• infectious with decreasing viral load, x = I2.

Note that new infections enter the class I1, while recovery may occur only during
the stage I2. Finally, after the infectious period, recovered individuals may still have
a positive viral load which however definitively approaches zero, as live virus could
no longer be cultured (see e.g. the studies by Cevik et al. 2020; He et al. 2020 on
COVID-19 viral shedding).

Also, since our model incorporates birth and death processes, we introduce the
following two auxiliary compartments: individuals that enter the susceptible class by
newborn or immigration, x = B, and individuals who die of natural causes, x = D.
We assume that members of the class B have v ≡ 0, while those of the class D retain
the viral load value at the time they died. Individuals can switch from the class B to
the class S with frequency λb and probability P(B → S) = b/ρB(t). The quantity
ρB(t), that will be defined later, measures the size of the class B at time t . Moreover,
all the living individuals can die, thus moving to the class x = D, with frequency λμ

and probability P(i → D) = μ, being i ∈ {S, I1, I2, R}.
2.1.2 Evolution of the viral load

Let us now focus on the mathematical modelling of the evolution of an individual’s
viral load v. We distinguish the two following cases when v changes over time: (i) a
susceptible individual, having v = 0, acquires a positive viral load (and gets infected)
by interaction with an infectious individual; (ii) the viral loads of infectious (I1, I2)
and recovered (R) individuals evolve naturally in virtue of physiological processes.

Given an agent labelled with S, then the necessary condition for acquiring a positive
viral load is an encounter with an infectious agent (I1 or I2). Therefore, we model the
disease transmission process as a binary interaction, thus relying on the typical tools
of kinetic theory (Pareschi and Toscani 2013). Let us denote by λβ > 0 the frequency
of these interactions. Increasing [resp. decreasing] λβ corresponds to increasing [resp.
reducing] encounters among people: the lower λβ , the more strengthened social
distancing.

By interacting with an infectious individual carrying viral loadw > 0, a susceptible
individual does or does not get infected. In the first case his/her viral load after the
interaction (say, v′) is positive: v′ > 0; in the second case it remains null: v′ = 0.
Specifically, we consider the following microscopic binary interaction rule:

v′ = Tνβ v0, w′ = w,
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where Tνβ is a Bernoulli randomvariable of parameter νβ = νβ(w) ∈ (0, 1) describing
the case of successful transmission of the disease (Tνβ = 1) and the case of contact
without transmission (Tνβ = 0). It seems us reasonable to assume that νβ(w), that we
name transmission function, is a non-decreasing function of w, the viral load of the
infectious individual.

We assume that new infected individuals enter the class I1 and they all acquire
the same initial viral load, v0 (that can be interpreted as an average initial value).
We remark that this binary interaction process causes simultaneously a change of the
microscopic state v and a label switch, because as soon as v becomes positive, i.e.
if Tνβ = 1, the susceptible individual switches to the class I1. In terms of transition
probabilities for the susceptible individual, this can be expressed as

P((S, v) → (I1, v
′)) = νβ(w)PS(v → v′), PS(v → v′) = δ(v′ − v0),

given an encounter of the susceptible individual with an infectious one (belonging
to either I1 or I2) carrying viral load w and for whom P((i, w) → (i, w)) = 1,
i ∈ {I1, I2}.

Infectious and recovered individuals cannot change their viral load in binary inter-
actions, but the evolution reflects physiological processes. Starting from the initial
positive value v = v0, the viral load increases until reaching a given peak value and
then it decreases towards zero. In this framework, the microscopic state v varies as
a consequence of an autonomous process (also called interaction with a fixed back-
ground in the jargon ofmulti-agent systems (Pareschi andToscani 2013)). Specifically,
given an agent (I1, v), namely an infectious individual with increasing viral load, we
consider a linear-affine expression for the microscopic rule describing the evolution
of v into a new viral load v′:

v′ = v + ν1(1 − v). (1)

The latter is a prototype rule describing the fact that the viral load may increase up to
a certain threshold normalized to 1 by a factor proportional to (1 − v). In particular,
ν1 ∈ (0, 1) is the factor of increase of the viral load.

Similarly, given an agent (I2, v) or (R, v), namely an infectious individual with
decreasing viral load or a recovered individual, we consider the followingmicroscopic
rule for the evolution of v:

v′ = v − ν2v, (2)

being the parameter ν2 ∈ (0, 1) the factor of decay of the viral load. Thesemicroscopic
processes happen with frequency λγ > 0, i.e. 1/λγ is the average increase/decay time
of the viral load.

We observe here that the introduction of the sub-classes I1, I2 is needed in order
to implement the microscopic rules (1)–(2) in a kinetic equation. These two rules are
deliberately generic and very simple: the only aim is to distinguish individuals based
on whether their viral load is increasing or decreasing and to implement two different
factors ν1 and ν2 accordingly.
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Weassume that individuals in I1 move to the class I2 with frequencyλγ and constant
probability ν1. In turn, individuals in I2 move to the recovered class with frequency
λγ and constant probability ν2. These choices, that trace the same assumptions done
in the paper (Della Marca et al. 2022), allow to derive λγ ν1 as the rate of transition
from I1 to I2, that is also the increase rate of the viral load. Analogously, the rate of
recovery from the disease turns to be λγ ν2, that is the decay rate of the viral load.
Transitions I1 → I2 and I2 → R are assumed to take place at the same frequency
λγ because they are driven by a common cause, namely the progression of the viral
load. Hence, the rate of both transitions coincides with the progression rate of the
viral load. Formally, to describe these microscopic mechanisms in terms of transition
probabilities, we set

PI1(v → v′) = δ
(
v′ − (v + ν1(1 − v))

)
,

Pi (v → v′) = δ
(
v′ − (v − ν2v))

)
, i ∈ {I2, R},

P((I1, v) → (I2, v
′)) = ν1PI1(v → v′),

P((I2, v) → (R, v′)) = ν2PI2(v → v′).

2.2 The kinetic model and the derivation of themacroscopic model

In order to give a statistical description of the multi-agent system, whose total mass
is conserved in time, we introduce a distribution function for describing the statistical
distribution of the individuals characterized by the pair (x, v) ∈ X × [0, 1], as

f (t, x, v) =
∑

i∈X
δ(x − i) fi (t, v). (3)

In (3), δ(x − i) is the Dirac delta distribution centred at x = i , and fi = fi (t, v) ≥ 0
is the distribution function of the microscopic state v of the individuals that are in the
i th compartment at time t . Hence, fi (t, v)dv is the proportion of individuals in the
compartment i , whose microscopic state lies between v and v + dv at time t .

We assume that f (t, x, v) is a probability distribution, namely

∫ 1

0

∫

X
f (t, x, v)dxdv =

∑

i∈X

∫ 1

0
fi (t, v)dv = 1, ∀ t ≥ 0.

In general, the fi ’s, i ∈ X , are not probability density functions because their v-
integral varies in time due to the fact that individuals move from one compartment to
another.

We denote by

ρi (t) =
∫ 1

0
fi (t, v)dv
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the density of individuals in the class i , thus 0 ≤ ρi (t) ≤ 1 and

∑

i∈X
ρi (t) = 1, ∀ t ≥ 0.

Then, we define the viral load momentum of the i th compartment as the first moment
of fi for each class i ∈ X , i.e.

ni (t) =
∫ 1

0
fi (t, v)vdv.

If ρi (t) > 0, then we can also define the mean viral load as the ratio ni (t)/ρi (t).
Instead, ρi (t) = 0 implies necessarily fi (t, v) = 0. In this case, the mean viral load
is not defined because the corresponding compartment is empty.

Starting from the microscopic dynamics illustrated in the previous section, it is
possible to formally derive kinetic equations implementing exactly the microscopic
processes, similarly to what done in the paper (Della Marca et al. 2022). We report
here the weak kinetic equations for completeness. Let ϕ : [0, 1] → R be an arbitrarily
chosen test function of an observable quantity depending on the microscopic physical
quantity v. For i ∈ X \ {B, D}, namely the classes of living individuals, we get:

• susceptible individuals (i = S)

d

dt

∫ 1

0
ϕ(v) fS(t, v)dv =

∫ 1

0
ϕ(v)

(
λb

b

ρB(t)
fB(t, v) − λμμ fS(t, v)

)
dv

− λβ

∫ 1

0

∫ 1

0

∫ 1

0
ϕ(v)νβ(′w)PS(v) fS(

′v, t)
(
f I1(t,

′w)

+ f I2(t,
′w)

)
d ′vd ′wdv, (4)

where the last term on the r.h.s. accounts for the binary interactions between
susceptible individuals and infectious individuals in either I1 ( fS f I1 ) or I2 ( fS f I2 ),
leading to the transmission of the disease,

• infectious individuals with increasing viral load (i = I1)

d

dt

∫ 1

0
ϕ(v) f I1(t, v)dv = −λμμ

∫ 1

0
ϕ(v) f I1(t, v)dv

+ λβ

∫ 1

0

∫ 1

0

∫ 1

0
ϕ(v)νβ(′w)PS(v) fS(

′v, t)
(
f I1(t,

′w)

+ f I2(t,
′w)

)
d ′vd ′wdv

− λγ ν1

∫ 1

0

∫ 1

0
ϕ(v)PI1(

′v → v) f I1(t,
′v)d ′vdv

+ λγ

∫ 1

0

∫ 1

0
ϕ(v)(PI1(

′v → v) f I1(t,
′v)

− PI1(v → ′v) f I1(t, v))d ′vdv, (5)
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• infectious individuals with decreasing viral load (i = I2)

d

dt

∫ 1

0
ϕ(v) f I2(t, v)dv = −λμμ

∫ 1

0
ϕ(v) f I2(t, v)dv

+ λγ ν1

∫ 1

0

∫ 1

0
ϕ(v)PI1(

′v → v) f I1(t,
′v)d ′vdv

− λγ ν2

∫ 1

0

∫ 1

0
ϕ(v)PI2(

′v → v) f I2(t,
′v)d ′vdv

+ λγ

∫ 1

0

∫ 1

0
ϕ(v)(PI2(

′v → v) f I1(t,
′v)

− PI2(v → ′v) f I2(t, v))d ′vdv, (6)

• recovered individuals (i = R)

d

dt

∫ 1

0
ϕ(v) fR(t, v)dv = −λμμ

∫ 1

0
ϕ(v) fR(t, v)dv

+ λγ ν2

∫ 1

0

∫ 1

0
ϕ(v)PI2(

′v → v) f I2(t,
′v)d ′vdv

+ λγ

∫ 1

0

∫ 1

0
ϕ(v)(PR(′v → v) fR(t, ′v)

− PR(v → ′v) fR(t, v))d ′vdv. (7)

As far as the disease transmission rate λβνβ(·) is concerned, we consider that it is
given by

λβνβ(w) = βw p, (8)

with β positive constant and p ∈ {0, 1}.
The choice p = 0 corresponds to a constant transmission function, while p =

1 reflects the experimental evidence that higher is the viral load of an infectious
individual, higher is his/her ability of transmitting the disease. Of course, formulations
different from the linear one could be taken into account. However, since the novelty
of this assumption and in absence of exhaustive field data, the linear formulation can
be considered as a reasonable approximation at a first step.

In order to obtain the equations for themacroscopic densities and viral loadmomen-
tum of each compartment, we set ϕ(v) = vn in (4)–(7), with n = 0, 1, respectively.
Since we consider interaction rules that are linear in v and we assume that νβ(·) is a
constant or a linear function, we obtain an exact closed system of macroscopic equa-
tions, without the need of other assumptions. This also implies that at the macroscopic
level individuals in the same compartment may have heterogeneous viral loads that
can be different from the mean viral load of the compartment.
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The ensuing macroscopic model is given by the following system of non-linear
ordinary differential equations:

ρ̇S = b − β

(
nI1 + nI2
ρI1 + ρI2

)p
ρS

(
ρI1 + ρI2

) − μρS

ρ̇I1 = β

(
nI1 + nI2
ρI1 + ρI2

)p
ρS

(
ρI1 + ρI2

) − λγ ν1ρI1 − μρI1

ρ̇I2 = λγ ν1ρI1 − λγ ν2ρI2 − μρI2

ρ̇R = λγ ν2ρI2 − μρR

ṅ I1 = β

(
nI1 + nI2
ρI1 + ρI2

)p
v0ρS

(
ρI1 + ρI2

) + λγ ν1(1 − ν1)ρI1 − λγ ν1(2 − ν1)nI1 − μnI1

ṅ I2 = λγ ν21ρI1 + λγ ν1(1 − ν1)nI1 − λγ ν2(2 − ν2)nI2 − μnI2
ṅR = λγ ν2(1 − ν2)nI2 − λγ ν2nR − μnR, (9)

where we have set (with a slight abuse of notation)

b = λbb, μ = λμμ,

representing the net inflow of susceptibles and the rate of natural death, respectively.
Also, for convenience of notation, in (9) we have denoted with the upper dot the time
derivative and omitted the explicit dependence on time of the state variables.

From system (9) we note that the equations ruling the evolution of the densities of
the compartments have an SIR structure, but the transmission term may depend on
the mean viral load of the infectious population. In the simplest case that p = 0, i.e.
νβ(·) is a constant function, we retrieve a classical SIR model with standard incidence
(Hethcote 2000), which reduces to

ρ̇S = b − βρS(ρI1 + ρI2) − μρS

ρ̇I1 = βρS(ρI1 + ρI2) − λγ ν1ρI1 − μρI1

ρ̇I2 = λγ ν1ρI1 − λγ ν2ρI2 − μρI2 , (10)

by noting that the differential equations for ρR , nI1 , nI2 and nR are independent of
the other ones. In such a case, the analysis of the model turns to be trivial being the
equations for the densities independent of the viral load momentum.

In the present work, we take a step forward by assuming that νβ(·) is a linear
increasing function, i.e. by choosing p = 1 in the system (9). With this choice, the
model to be studied eventually reduces to

ρ̇S = b − βρS(nI1 + nI2) − μρS (11a)

ρ̇I1 = βρS(nI1 + nI2) − λγ ν1ρI1 − μρI1 (11b)

ρ̇I2 = λγ ν1ρI1 − λγ ν2ρI2 − μρI2 (11c)

ṅ I1 = βv0ρS(nI1 + nI2) + λγ ν1(1 − ν1)ρI1 − λγ ν1(2 − ν1)nI1 − μnI1 (11d)

ṅ I2 = λγ ν21ρI1 + λγ ν1(1 − ν1)nI1 − λγ ν2(2 − ν2)nI2 − μnI2 , (11e)
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by noting that the differential equations for ρR and nR are independent of the other
ones.

To models (10)–(11) we associate the following generic initial conditions

ρS(0) = ρS,0 > 0, ρi (0) = ρi,0 ≥ 0, ni (0) = ni,0 ≥ 0, i ∈ {I1, I2}. (12)

Equilibria and stability properties of model (11) are investigated in the following
section.

Remark 2.1 If field data concerning a specific disease showed evidence that the prob-
ability of disease transmission non-linearly depends on the viral load, one could
implement a non-linear transmission function νβ(·). In such a case, it could not be
possible to obtain an exact closed system of macroscopic equations, but other closure
assumptions could be required. For example, in the paper (Della Marca et al. 2022) a
monokinetic closure is used, implying that in the derivation of the macroscopic model
all the individuals of a given compartment are assumed to have as viral load the mean
value of that compartment.

3 Qualitative analysis

Let us start by ensuring that the model (11) is mathematically and epidemiologically
well posed. It is straightforward to verify that the region

D =
{(

ρS, ρI1 , ρI2 , nI1 , nI2
) ∈ [0, 1]5

∣∣
∣ 0 < ρS + ρI1 + ρI2 ≤ b

μ
, nI1 ≤ ρI1 , nI2 ≤ ρI2

}

with initial conditions in (12) is positively invariant formodel (11), namely any solution
of system (11) starting in D remains in D for all t ≥ 0.

3.1 The disease-free equilibrium and the basic reproduction number

The model (11) has a unique disease-free equilibrium (DFE), given by

DFE =
(
b

μ
, 0, 0, 0, 0

)
. (13)

It is obtained by setting the r.h.s. of equations (11) to zero and considering the case
ρI1 = ρI2 = 0.

Theorem 1 The DFE of model (11) is locally asymptotically stable (LAS) if R0 < 1,
where
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R0 = β
b

μ

λγ ν1(λγ ν1(1 − ν2)
2 + λγ ν2(2 − ν2) + μ) + v0(λγ ν1 + μ)(λγ ν1(1 − ν1) + λγ ν2(2 − ν2) + μ)

(λγ ν1 + μ)(λγ ν1(2 − ν1) + μ)(λγ ν2(2 − ν2) + μ)
.

(14)

Otherwise, ifR0 > 1, then it is unstable.

Proof The Jacobian matrix of system (11) evaluated at the DFE (13) reads

J (DFE) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−μ 0 0 −β
b

μ
−β

b

μ

0 −λγ ν1 − μ 0 β
b

μ
β
b

μ

0 λγ ν1 −λγ ν2 − μ 0 0

0 λγ ν1(1 − ν1) 0 βv0
b

μ
− λγ ν1(2 − ν1) − μ βv0

b

μ
0 λγ ν21 0 λγ ν1(1 − ν1) −λγ ν2(2 − ν2) − μ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

One can immediately get the eigenvalues l1 = −μ < 0, l2 = −λγ ν2 − μ, while the
other three are determined by the submatrix

J̄ =

⎛

⎜
⎜⎜
⎝

−λγ ν1 − μ β
b

μ
β
b

μ

λγ ν1(1 − ν1) βv0
b

μ
− λγ ν1(2 − ν1) − μ βv0

b

μ
λγ ν21 λγ ν1(1 − ν1) −λγ ν2(2 − ν2) − μ

⎞

⎟
⎟⎟
⎠

.

The characteristic polynomial of J̄ reads

p(l) = l3 + a1l
2 + a2l + a3,

where

a1 = −Tr( J̄ ) = − J̄11 − J̄22 − J̄33

a2 = 1

2

(
Tr2( J̄ ) − Tr( J̄ 2)

)
=

(
J̄22 − βv0

b

μ

)
J̄33(1 − R0) + J̄11

(
J̄22 + J̄33

)

− β
b

μ

λ2γ ν1ν2(1 − ν1)(2 − ν2)

J̄11

a3 = −Det( J̄ ) = − J̄11

(
J̄22 − βv0

b

μ

)
J̄33(1 − R0),

withR0 given in (14).
In particular, sgn(a3)=sgn(1 − R0). Also, R0 < 1 implies that J̄22 < 0, yielding

a1 > 0 and a1a2 − a3 > 0.
From the Routh–Hurwitz criterion it follows that, ifR0 < 1, then the DFE is LAS.

Otherwise, if R0 > 1, then it is unstable. 	
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The threshold quantity R0 is the so-called basic reproduction number for model
(11), a frequently used indicator for measuring the potential spread of an infectious
disease in a community. Epidemiologically, it represents the average number of sec-
ondary cases produced by one primary infection over the course of the infectious
period in a fully susceptible population.

The expression ofR0 for model (11) turns out to be much more complex than that
for the epidemic model (10) which assumes a constant disease transmission rate (we
investigate more in details this point in the subsection 4.2). Note that the R0 in (14)
depends also on v0, the initial viral load of infectious individuals, a parameter that is
not present in the differential equations for the densities of the compartments, namely
(11a)–(11c).

Remark 3.1 It would be interesting to investigate how the expression of the basic
reproduction number R0 varies by modifying some assumptions of model (11). For
instance, one can consider the case that individuals in one between the classes I1 and
I2 are infected but not infectious. Specifically, one can assume that

• individuals in I1 are not infectious because, for the specific disease, the period of
viral load increase can be approximated to the period of latency of the infection.
In such a case, the I1’s play the role of the exposed individuals E in an SEIR
model. This leads to the disappearance of the term βρSnI1 [resp. βv0ρSnI1 ] in the
Eq. (11b) [resp. (11d)]. The basic reproduction number proves to be

R0 = β
b

μ

λγ ν21 (λγ + μ) + v0(λγ ν1 + μ)λγ ν1(1 − ν1)

(λγ ν1 + μ)(λγ ν1(2 − ν1) + μ)(λγ ν2(2 − ν2) + μ)
;

• individuals in I2 are not infectious because they are isolated from the community
and receive treatment to decrease the viral load. This leads to the disappearance
of the term βρSnI2 [resp. βv0ρSnI2 ] in the Eq. (11b) [resp. (11d)]. In such a case,
the basic reproduction number proves to be

R0 = β
b

μ

λγ ν1(1 − ν1) + v0(λγ ν1 + μ)

(λγ ν1 + μ)(λγ ν1(2 − ν1) + μ)
.

3.2 The endemic equilibrium

Let us denote by

EE =
(
ρE
S , ρE

I1 , ρ
E
I2 , n

E
I1 , n

E
I2

)
(15)

the generic endemic equilibrium of model (11), obtained by setting the r.h.s. of equa-
tions (11) to zero and considering the case ρI1 + ρI2 > 0. Note that if it were ρE

I1
= 0

[resp. ρE
I2

= 0], from (11c) it would follow that ρE
I2

= 0 [resp. ρE
I1

= 0]. Hence, it

must be ρE
I1
, ρE

I2
> 0.
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More precisely, by rearranging equations (11a)–(11d), one obtains

ρE
S = b − (λγ ν1 + μ)ρE

I1

μ

ρE
I1 = nEI1

λγ ν1(2 − ν1) + μ

λγ ν1(1 − ν1) + v0(λγ ν1 + μ)

ρE
I2 = ρE

I1

λγ ν1

λγ ν2 + μ

nEI2 = b − βρE
S n

E
I1

− μρE
S

βρE
S

. (16)

Substituting the expressions (16) into (11e), one gets nEI1 as a positive root of the
equation

λγ ν1(n
E
I1 + ν1(ρ

E
I1 − nEI1)) − λγ ν2(2 − ν2)n

E
I2 − μnEI2 = 0,

that is

nEI1 = b
λγ ν1(1 − ν1) + v0(λγ ν1 + μ)

(λγ ν1 + μ)(λγ ν1(2 − ν1) + μ)

(
1 − 1

R0

)
. (17)

Then, one can make explicit also the other components of EE :

ρE
S = b

μ

1

R0

ρE
I1

= b

λγ ν1 + μ

(
1 − 1

R0

)

ρE
I2

= b
λγ ν1

(λγ ν1 + μ)(λγ ν2 + μ)

(
1 − 1

R0

)

nEI2
= μ

β

λγ ν21 (λγ + μ) + v0λγ ν1(1 − ν1)(λγ ν1 + μ)

λγ ν1(λγ ν1(1 − ν2)
2 + λγ ν2(2 − ν2) + μ) + v0(λγ ν1 + μ)(λγ ν1(1 − ν1) + λγ ν2(2 − ν2) + μ)

(R0 − 1) .

(18)

For the equilibrium to exist in D all its components must be positive. Hence, the
following result can be stated.

Theorem 2 If R0 < 1, then the model (11) has no endemic equilibria. Otherwise,
if R0 > 1, then the model (11) has an un unique endemic equilibrium (15) whose
components are given in (17)–(18).

Due to the complexity of the Jacobian matrix of system (11) evaluated at EE , we
renounce to study the local stability of the endemic equilibrium. However, we make
use of bifurcation analysis and show that a unique branch corresponding to the unique
endemic equilibrium emerges from the criticality, namely at DFE and R0 = 1. The
emerging EE is LAS in the neighbouring of R0 = 1 for R0 > 1.
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3.3 Central manifold analysis

To derive a sufficient condition for the occurrence of a transcritical bifurcation at
R0 = 1, we can use a bifurcation theory approach. We adopt the approach developed
by Dushoff et al. (1998); Van den Driessche and Watmough (2002), which is based
on the general center manifold theory (Guckenheimer and Holmes 1983). In short,
it establishes that the normal form representing the dynamics of the system on the
central manifold is, for u sufficiently small, given by

u̇ = Au2 + Bβu,

where

A = z
2

· DxxF(DFE, β)w2 ≡ 1

2

5∑

k,i, j=1

zkwiw j
∂2Fk(DFE, β)

∂xi∂x j
(19)

and

B = z · DxβF(DFE, β)w ≡
5∑

k,i=1

zkwi
∂2Fk(DFE, β)

∂xi∂β
. (20)

Note that in (19) and (20) the transmission rate β has been chosen as bifurcation
parameter, β is the critical value of β, x = (

ρS, ρI1 , ρI2 , nI1 , nI2
)
is the state variables

vector, F is the r.h.s. of system (11), and z andw denote, respectively, the left and right
eigenvectors corresponding to the null eigenvalue of the Jacobian matrix evaluated at
criticality (i.e. at DFE and β = β).

Observe thatR0 = 1 is equivalent to

β = β = μ

b

(λγ ν1 + μ)(λγ ν1(2 − ν1) + μ)(λγ ν2(2 − ν2) + μ)

λγ ν1(λγ ν1(1 − ν2)2 + λγ ν2(2 − ν2) + μ) + v0(λγ ν1 + μ)(λγ ν1(1 − ν1) + λγ ν2(2 − ν2) + μ)
,

so that the disease-free equilibrium is LAS if β < β, and it is unstable when β > β.
The direction of the bifurcation occurring at β = β can be derived from the sign

of coefficients (19) and (20). More precisely, if A > 0 [resp. A < 0] and B > 0, then
at β = β there is a backward [resp. forward] bifurcation.

For our model, we prove the following theorem.

Theorem 3 System (11) exhibits a forward bifurcation at DFE and R0 = 1.

Proof From the proof of Theorem 1, one can verify that, when β = β (or, equivalently,
when R0 = 1), the Jacobian matrix J (DFE) admits a simple zero eigenvalue and
the other eigenvalues have negative real part. Hence, the DFE is a non-hyperbolic
equilibrium.
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It can be easily checked that a left and a right eigenvector associated with the zero
eigenvalue so that z·w = 1 are

z =
(
0, λγ ν1

λγ ν2(1 − ν1)(2 − ν2) + λγ ν1 + μ

(λγ ν1 + μ)(λγ ν1(1 − ν1) + λγ ν2(2 − ν2) + μ)
z4, 0, z4,

λγ ν1 (2 − ν1) + μ

λγ ν1 (1 − ν1) + λγ ν2 (2 − ν2) + μ
z4

)

w =
(

−λγ ν1 + μ

μ
, 1,

λγ ν1

λγ ν2 + μ
,
v0(λγ ν1 + λμμ) + λγ ν1(1 − ν1)

λγ ν1 (2 − ν1) + λμμ
,w5

)T

,

with

z4 = K

λγ ν1
[
λγ ν2(1 − ν1)(2 − ν2) + λγ ν1 + μ

] + Kw4 + (λγ ν1 + μ)(λγ ν1(2 − ν1) + μ)w5

w5 = λγ ν1
ν1

(
λγ + λμμ

) + v0 (1 − ν1)
(
λγ ν1 + λμμ

)

(
λγ ν1 (2 − ν1) + λμμ

) (
λγ ν2 (2 − ν2) + λμμ

) ,

and

K = (λγ ν1 + μ)(λγ ν1(1 − ν1) + λγ ν2(2 − ν2) + μ).

The coefficients A and B may be now explicitly computed. Considering only the
non-zero components of the eigenvectors and computing the corresponding second
derivative of F, it follows that

A = z2w1w4
∂2F2(DFE, β)

∂ρS∂nI1
+ z2w1w5

∂2F2(DFE, β)

∂ρS∂nI2
+ z4w1w4

∂2F4(DFE, β)

∂ρS∂nI1

+ z4w1w5
∂2F4(DFE, β)

∂ρS∂nI2
= β (z2 + v0z4) w1(w4 + w5)

and

B = z2w4
∂2F2(DFE, β)

∂nI1∂β
+ z2w5

∂2F2(DFE, β)

∂nI2∂β
+ z4w4

∂2F4(DFE, β)

∂nI1∂β

+ z4w5
∂2F4(DFE, β)

∂nI2∂β

= b

μ
(z2 + v0z4)(w4 + w5),

where z2, z4, w4, w5 > 0 and w1 < 0. Then, A < 0 < B. Namely, when β − β

changes from negative to positive, the DFE changes its stability from locally asymp-
totically stable to unstable; correspondingly, an endemic and locally asymptotically
stable equilibrium emerges. This completes the proof. 	
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4 Numerical simulations

In this section, we numerically investigate how the viral load of the infectious individu-
als may affect the disease transmission among the population. To this aim, we compare
the basic reproduction number and the numerical solutions of the macroscopic model
(9) in the case of viral load-dependent rate of disease transmission (p = 1) with those
in the classical case of constant rate of disease transmission (p = 0).

Numerical simulations are performed inMatlab® (MATLAB.R 2022).We imple-
ment the 4th order Runge–Kutta method with constant step size for integrating the
system (9). Platform-integrated functions are used for getting the plots.

4.1 Parametrization

Since our investigations are purely qualitative, demographic and epidemiological
parameters values do not address a specific infectious disease and/or spatial area.
They refer to a generic epidemic course following an SIR-like dynamics.

We are considering a model with demography and constant net inflow of suscepti-
bles b. Since travel restrictions are usually implemented during epidemics, we assume
thatb accounts only for newbirths (which can be assumed to be approximately constant
due to the short time span of our analyses). Therefore, the net inflow of susceptibles
is given by

b = br
N̄

Ntot
,

where br is the birth rate, N̄ denotes the total resident population at the initial time,
and Ntot is the total (constant) system size. Note that Ntot accounts for individuals
belonging to all model compartments X (including B, D), whereas N̄ refers only to
living individuals.

We assume an initial population of N̄ = 106 individuals, representing, for example,
the inhabitants of a European metropolis. The most recent data by European Statistics
refer to 2020 andprovide an average crude birth rate br = 9.1/1000 years−1 (European
Commission 2022) and an average crude death rateμ = 11.6/1000 years−1 (European
Commission 2022). The total system size Ntot is set to Ntot = N̄/(1−btmax ), in such
a way Ntot = N̄ + btmax Ntot is given by the sum of the initial population, N̄ , and the
total inflow of individuals during the time interval [0, tmax ], btmax Ntot . The time tmax

is set to tmax = 20 years, that is much larger than the terminal time of our numerical
simulations, so ensuring that the compartment B remains not empty.

As far as the disease transmission rate λβνβ(·) is concerned, we numerically com-
pare the characteristics of the disease dynamics in the case that νβ(·) depends on the
individual viral load (p = 1 in (8)) w.r.t the classical case that νβ(·) is constant (p = 0
in (8)). Namely, we consider the following simulation scenarios:

Sv viral load-dependent transmission rate, as studied here: λβνβ(w) = βvw (i.e.,
model (11) with βv in place of β);
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Table 1 List of model parameters with corresponding description and baseline value

Parameter Description Baseline value

b Net inflow of susceptibles 2.11 × 10−5 days−1

μ Rate of natural death 3.18 × 10−5 days−1

βc Constant transmission rate See text

M Factor of transmission normalization See text

βv Viral load-dependent transmission factor βc/M

v0 Initial viral load of infectious individuals 0.01

λγ Frequency of viral load evolution 0.5 days−1

ν1 Factor of increase of the viral load 0.4

ν2 Factor of decay of the viral load 0.2

Sc constant transmission rate, as in classical epidemic models: λβνβ(w) = βc (i.e.,
model (10) with βc in place of β).

In order to make the two scenarios properly comparable, we make the following
considerations. In the case Sc, the quantity βc represents the rate at which infectious
individuals transmit the disease in the unit of time. In the case Sv , in the microscopic
model the same rate is given by βv multiplied by the microscopic viral load w of the
infectious individual I j , j ∈ {1, 2}; whereas, in the macroscopic model (9) this rate
is given by βv multiplied by the mean viral load of the total infectious population:
(nI1 + nI2)/(ρI1 + ρI2). Thus, we assume that the value of βv in scenario Sv is given
by the value βc adopted in scenario Sc rescaled by a normalization factor M ∈ (0, 1):

βv = βc

M
, (21)

where M represents an average quantity for (nI1 + nI2)/(ρI1 + ρI2). It follows that

βv > βc.

For the other epidemiological parameters we take the following baseline values from
the paper (Della Marca et al. 2022):

λγ = 1/2 days−1, ν1 = 1/(5λγ ), ν2 = ν1/2, v0 = 0.01.

In particular, the product λγ ν1 can be interpreted as the inverse of the average time
from exposure to viral load peak, whilst λγ ν2 as the inverse of the average time from
viral load peak to recovery.

All the parameters of the model as well as their baseline values are reported in
Table 1.
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4.2 Impact of viral load on the reproduction number

In this subsection, we investigate the impact of different modelling assumptions about
the disease transmission rate on the expression and value of the reproduction number
of model (9).

To this aim, let us denote by

Rv
0 = βv b

μ

λγ ν1(λγ ν1(1 − ν2)
2 + λγ ν2(2 − ν2) + μ) + v0(λγ ν1 + μ)(λγ ν1(1 − ν1) + λγ ν2(2 − ν2) + μ)

(λγ ν1 + μ)(λγ ν1(2 − ν1) + μ)(λγ ν2(2 − ν2) + μ)

(22)

the basic reproduction number of model (9) in the case of viral load-dependent trans-
mission rate, Sv , that is (14) with βv in place of β. It is straightforward to verify that
in the case of constant disease transmission rate, Sc, the basic reproduction number of
model (9) reads

Rc
0 = βc b

μ

λγ ν1 + λγ ν2 + μ

(λγ ν1 + μ)(λγ ν2 + μ)
, (23)

(see also the paper (Della Marca et al. 2022)).

Remark 4.1 It is difficult to determine a priori the relationship between Rv
0 and Rc

0
for a given set of parameters. Nonetheless, some considerations can be made in the
limit cases:

(i) λγ � 1, namely the viral load of an infected individual evolves very slowly. Then,
by considering the numerator and the denominator ofRv

0 andRc
0 as polynomials

in λγ and disregarding the lower order terms, one can approximate

Rv
0 ≈ βv b

μ

ν1(1 − ν2)
2 + ν2(2 − ν2) + v0(ν1(1 − ν1) + ν2(2 − ν2))

λγ ν1ν2(2 − ν1)(2 − ν2)
, Rc

0 ≈ βc b

μ

ν1 + ν2

λγ ν1ν2
.

Interestingly, the ratioRv
0/Rc

0 turns to be independent of λγ .
(ii) ν1 → 0, namely all the infectious individuals have constant viral load v0 and do

not recover from the disease. Then, Rv
0 and Rc

0 coincide. Indeed,

Rv
0 = βv bv0

μ2 = βc b

μ2 = Rc
0,

being M = v0 in (21).
(iii) ν1, ν2 → 1, namely in the two subsequent evolution steps after the infection,

the viral load of the infected individuals reaches the maximum value 1 and then
vanishes, respectively. Then, the reproduction numbers Rv

0 and Rc
0 read

Rv
0 = βv b

μ

λγ + v0(λγ + μ)

(λγ + μ)2
, Rc

0 = βc b

μ

2λγ + μ

(λγ + μ)2
,
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Fig. 1 Relative difference of the reproduction number of the model (9) in the scenario Sv , Rv
0, w.r.t. the

reproduction number in the scenario Sc , Rc
0, for nine values of the factor of transmission normalization,

M ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} (as indicated in the legend). a Rv
0/Rc

0 − 1 as a function
of the factor of viral load increase, ν1. b Rv

0/Rc
0 − 1 as a function of the factor of viral load decay, ν2.

c Rv
0/Rc

0 − 1 as a function of the frequency of viral load evolution, λγ . Black dotted lines indicate the
corresponding baseline value. Other parameters values are given in Table 1

implying that

sgn
(Rv

0 − Rc
0

) = sgn
(
(1 − M)λγ − (M − v0)(λγ + μ)

)
.

In such a case, if we further assume that λγ � 1 (see point (i)), then the ratio
Rv

0/Rc
0 reduces to

Rv
0

Rc
0

= 1 + v0

2M
.

An overall view of the relationship betweenRv
0 andRc

0 is provided by numerically
exploring theirmutual positionwhen the relevantmodel parameters vary in appropriate
ranges. In Fig. 1, we display the relative difference of Rv

0 w.r.t.Rc
0, that is the ratio

Rv
0 − Rc

0

Rc
0

= Rv
0

Rc
0

− 1,

as a function of the factor of viral load increase, ν1 (Fig. 1a), the factor of viral
load decay, ν2 (Fig. 1b), and the frequency of viral load evolution, λγ (Fig. 1c). The
parameters ν1, ν2 and λγ continuously vary in the possible ranges of values

ν1, ν2 ∈ [0.05, 0.95], λγ ∈ [0.2, 2] days−1. (24)

We disregard the extreme cases that ν1, ν2 ≈ 0 and ν1, ν2 ≈ 1, which we consider
to be rather unrealistic. Also, we consider nine values of the factor of transmission
normalization M that span the range [0.1, 0.9], as indicated in the legend of Fig. 1.
The baseline values of the other parameters are those given in Table 1. Note that the
ratioRv

0/Rc
0 is independent of β

c, which does not need to be assigned for the moment.
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Fig. 2 Counterplots of the relative difference of the reproduction number of the model (9) in the scenario
Sv , Rv

0, w.r.t. the reproduction number in the scenario Sc , Rc
0. a Rv

0/Rc
0 − 1 versus the factor of viral

load increase, ν1, and the factor of viral load decay, ν2. b Rv
0/Rc

0 − 1 versus the factor of viral load
increase, ν1, and the frequency of viral load evolution, λγ . cRv

0/Rc
0 − 1 versus the frequency of viral load

evolution, λγ , and the factor of viral load decay, ν2. The intersection between white dotted lines indicates
the corresponding baseline value. Other parameters values are given in Table 1

From Fig. 1, we observe that the ratio Rv
0/Rc

0 is a non-monotone convex function
of ν1 (Fig. 1a), an increasing function of ν2 (Fig. 1b) and an almost constant function
of λγ (Fig. 1c), independently of M . In particular, as a function of the factor of viral
load increase, ν1, the ratio Rv

0/Rc
0 is minimum for intermediate values of ν1 and

assumes almost the same value at ν1 = 0.05 and ν1 = 0.95. As regards the irrelevance
of the frequency of viral load evolution λγ on the ratio Rv

0/Rc
0, it can be explained

by the fact that in the current parameter setting the rate of natural death, μ, is much
lower than the other parameters contributing to the reproduction numbers. From the
expressions (22)–(23), it follows that Rv

0/Rc
0 is almost independent of λγ being the

terms multiplied by μ negligible (see also the point (i) of Remark 4.1).
From Fig. 1 we also observe that the relative difference Rv

0/Rc
0 − 1 decreases by

increasing the factor of transmission normalization M (see (21)), eventually passing
from positive to negative values (namely, from Rv

0 > Rc
0 to Rv

0 < Rc
0). Globally,

Rv
0 spans from being about 60% lower than Rc

0 (M = 0.9) to 350% higher than
Rc

0 (M = 0.1). Also, the sensitivity of Rv
0/Rc

0 to M greatly diminishes when M
overcomes the value 0.5. From Fig. 1a [resp. Fig. 1b] we can note that, for a given
value of M , the relative difference Rv

0/Rc
0 − 1 can pass through zero by varying ν1

[resp. ν2], meaning that themutual position betweenRv
0 andRc

0 changes. In particular,
this happens for M = 0.4 and it is the reason why we choose it as baseline value for
the next numerical investigations in this subsection.

In Fig. 2 , we display the counterplots of the relative difference Rv
0/Rc

0 − 1 as a
function of the pairs of parameters (ν1, ν2), (ν1, λγ ) and (λγ , ν2) in the ranges given
in (24), by setting M = 0.4. From Fig. 2 we can evaluate the combined impact on
Rv

0/Rc
0 − 1 of two model parameters among {ν1, ν2, λγ } when the third one is set at

the baseline value. We can note that, independently of λγ , it is Rv
0/Rc

0 − 1 > 0 (that
is, Rv

0 > Rc
0) if ν1 > 0.8 or ν2 > 0.6. Otherwise, if ν1 < 0.8 and ν2 < 0.6, then

Rv
0/Rc

0 − 1 can be negative (namely, Rv
0 < Rc

0). In other words, the reproduction
number of the model (9) in the scenario Sv is greater than the reproduction number
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Fig. 3 Reproduction number of the model (9) in the scenario Sv , Rv
0 (black solid lines), and reproduction

number in the scenario Sc ,Rc
0 (blue dash–dotted lines). aRv

0 andRc
0 as functions of the factor of viral load

increase, ν1. bRv
0 andRc

0 as functions of the factor of viral load decay, ν2. cRv
0 andRc

0 as functions of the
frequency of viral load evolution, λγ . dRv

0 andRc
0 as functions of the factor of transmission normalization,

M . Black dotted lines indicate the corresponding baseline values. Red x-marks indicate the intersection
points between Rv

0 andRc
0. Other parameters values are given in Table 1

in the scenario Sc when at least one between the factor of viral load increase and the
factor of viral load decay is high, whilstRv

0 can be less thanRc
0 when both ν1 and ν2

are medium–low. However, in any case the relative difference ofRv
0 w.r.t.Rc

0 is rather
small:Rv

0 is at most 20% greater or smaller than Rc
0.

The relative difference Rv
0/Rc

0 − 1 does not provide information about the exact
values assumed by Rv

0 and Rc
0. In order to complete the investigations, in Fig. 3 we

provide the values ofRv
0 andRc

0 as a function of one among the parameters {ν1, ν2, λγ }
in the ranges (24) when the other ones are set at the baseline value (Fig. 3a–c), and
as a function of the normalization factor M ∈ [0.1, 0.9] when the other parameters
are set at the baseline value (Fig. 3d). Here, we assume that in the case of constant
transmission rate the baseline value of the reproduction number is at the threshold 1,
namely

Rc
0 = 1,

which yields βc = 0.10 days−1.
From Fig. 3 we note that, for values of ν1, ν2 and λγ slightly smaller than the

baseline value (see Figs. 3a–c, black dotted lines), it isRc
0 above the threshold 1 (blue

dash–dotted lines) andRv
0 below the threshold 1 (black solid lines). This suggests that,

for given epidemiological conditions, the disease dynamics predicted bymodel (9) can
be radically different depending on the modelling assumption about the transmission
function νβ(·), namely if p = 0 or p = 1 in (9). Also, from Fig. 3d, we note that the
reproduction number Rv

0 varies from about 3.6 to 0.4 by varying M , by crossing the
threshold 1 (that is also the value of Rc

0) for M ≈ 0.36.
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4.3 Impact of viral load on the disease dynamics

In this subsection, we numerically explore the impact of different modelling assump-
tions about the transmission rate on the disease dynamics predicted by model (9). To
this aim, we consider the following illustrative epidemiological setting.

Initial data are set to the beginning of an epidemic, namely there is a single infectious
individual in a totally susceptible population:

ρS,0 = (N̄ − 1)/Ntot , ρI1,0 = 1/Ntot , nI1,0 = v0ρI1,0, ρI2,0 = nI2,0 = 0. (25)

Here, like in the paper (Della Marca et al. 2022), we assume that

Rc
0 = 4,

which yields βc = 0.4 days−1.
We denote by t f the terminal time of our numerical simulations (i.e. time horizon).

Wewant that the t f is a finite timewith a reasonable epidemiological interpretation. To
this end, inspired by the approach adopted in the papers (Bolzoni et al. 2021; Hansen
and Day 2011), we assume that t f coincides with the end of the first epidemic wave,
namely t f is the first time there is less than one infectious individual in the population:

t f = inf

{
t ∈ R+

∣∣
∣∣ρ1(t) + ρ2(t) <

1

Ntot

}
. (26)

In other words, t f is the first time at which ρ1 + ρ2 drops to 1/Ntot . Of course, the
presence of subsequent epidemic waves is not excluded, but for the sake of simplicity
we focus here on just the first one.

In order to estimate the factor of transmission normalization M , we consider the
model (9) in the case Sc and denote by ρc

I1
(t), ρc

I2
(t), ncI1(t), n

c
I2
(t) the corresponding

solutions for ρI1(t), ρI2(t), nI1(t), nI2(t), respectively. Then, M is set to

M = 1

t f

∫ t f

0

ncI1(t) + ncI2(t)

ρc
I1
(t) + ρc

I2
(t)

dt,

that is the average value of themean viral load of the infectious population over [0, t f ].
In such a way, we obtain

M = 0.17,

yielding

Rv
0 = 8.47.

It turns out that Rv
0 is more than 110% higher than Rc

0, suggesting that the epidemic
wave predicted in the scenario Sv could be much more devastating than in the scenario
Sc. The other parameter values are given in Table 1.
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Fig. 4 Numerical solutions as predicted by the model (9) in scenarios Sv (black solid lines) and Sc (blue
dash–dotted lines). a compartment size of infectious individuals with increasing viral load, I1. b compart-
ment size of infectious individuals with decreasing viral load, I2. cmean viral load of infectious individuals
with increasing viral load, I1. dmean viral load of infectious individuals with decreasing viral load, I2. Dot-
ted lines indicate the corresponding terminal time, as defined in (26). Initial conditions and other parameters
values are given in (25) and Table 1, respectively

In Fig. 4 , we display the numerical solutions of model (9) in the case of viral
load-dependent transmission rate, Sv (black solid lines), and in the case of constant
transmission rate, Sc (blue dash–dotted lines). Specifically, Figs. 4a,c [resp. 4b,d]
report the temporal dynamics of the compartment size of the infectious individuals
in I1 [resp. in I2] and the corresponding mean viral load. Dotted lines indicate the
terminal time (26).

In accordance with the values of the reproduction numbers, from Figs. 4a,b we
observe that in the caseSv the peakof infectious prevalence (i.e.,max(ρI1+ρI2)) occurs
earlier than in the case Sc (at day 36 vs at day 51) and it is also higher (about 770,000
vs 600,000 total infectious individuals). However, the epidemic wave ends earlier in
the case Sv (t f = 176 days) than in the case Sc (t f = 198 days). Cumulatively, the
total number of infections during the epidemic wave are:

CI = Ntot

∫ t f

0
β

(
nI1(t) + nI2(t)

ρI1(t) + ρI2(t)

)p

ρS(t)(ρI1(t) + ρI2(t))dt,

where CI stands for cumulative incidence. We obtain that in the case Sv (β = βv ,
p = 1) about all the initial population becomes infected, whilst in the case Sc (β = βc,
p = 0) only 6,000 infections are avoided. From a mathematical point of view, this
means that the area under the curve ρI1 + ρI2 changes little by varying the modelling
assumption about the disease transmission rate. In Table 2, we collect some relevant
epidemiological quantities in the scenarios Sv and Sc.

In Figs. 4c,dwe report the temporal dynamics of themean viral load of the infectious
compartments.As anticipated inSect. 2,wehighlight that themeanviral load is reliable
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Table 2 Relevant quantities as predicted by the model (9) in the case of viral load-dependent transmission
rate (scenario Sv , first line) and in the case of constant transmission rate (scenario Sc , second line)

Scenario max(ρI1 + ρI2 )Ntot argmax(ρI1 + ρI2 ) t f CI

Sv 7.70 × 105 35.6 days 176.4 days 1.00 × 106

Sc 5.96 × 105 50.6 days 198.5 days 9.94 × 105

First column: infectious prevalence peak,max(ρI1+ρI2 )Ntot . Second column: timeof infectious prevalence
peak, argmax(ρI1 + ρI2 ). Third column: terminal time, t f . Fourth column: cumulative incidence at t f , CI.
Initial conditions and other parameters values are given in (25) and Table 1, respectively

when the number of particles is sufficiently high due to the law of large numbers (see
Della Marca et al. (2022) for a more detailed discussion). From Fig. 4c we note that
the mean viral load of the compartment I1 in the case Sv (black solid line) is—for most
of the time horizon—higher than in the case Sc (blue dash–dotted line). At variance,
the mean viral load of the compartment I2 is smaller in the case Sv w.r.t. the case Sc

(Fig. 4d). This suggests that the model (9) under the assumption of constant disease
transmission tends to underestimate themean viral load of infectious individuals in the
increasing phase and to overestimate the mean viral load of infectious individuals in
the decreasing phase. From Figs. 4c,d we also note that, at the end of the time horizon
when the compartments I1 and I2 are almost empty, the mean viral load remains
approximately constant at a positive value, suggesting that the viral load momentum
nI1 [resp. nI2 ] and the density ρI1 [resp. ρI2 ] go to zero with the same speed.

5 Conclusion

In thiswork,we propose and analyse an SIR epidemicmodelwith viral load-dependent
transmission. The compartmental model is formally derived—-by themeans of kinetic
equations—froma stochastic particle description of the individual course of the disease
and the viral load progression. This approach allows the macroscopic model to inherit
the features of the microscopic dynamics related to the heterogeneity of the viral load
in the population (Della Marca et al. 2022).

The main results are as follows:

• The particle stochastic model provides that, in the binary interaction between
a susceptible and an infectious individual, the probability for the former to get
infected depends on the viral load of the latter. In particular, the transmission
function is a non-decreasing function of the viral load of the infectious individual.
In themacroscopicmodel, the rate of disease transmission turns out to be a function
of the mean viral load of the infectious population;

• We analytically and numerically investigate the impact of different modelling
assumptions about the disease transmission rate on the epidemic dynamics. In
particular, we consider the case that the transmission rate linearly depends on
the viral load (scenario Sv), which is compared to the classical case of constant
transmission rate (scenario Sc);
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• We determine explicitly the equilibria of the macroscopic model in the scenario
Sv and study their stability in terms of the basic reproduction number (R0) of
the model. We prove that a transcritical forward bifurcation occurs at the disease-
free equilibrium andR0 = 1. The expression of theR0 appears to be much more
complex than that in the scenario Sc, by depending—inter alia—on the initial viral
load of the infectious individuals;

• The numerical simulations unravel the relationship between the reproduction num-
bersR0 in the scenarios Sv and Sc when the model parameters vary in appropriate
ranges. We observe that the mutual position between the twoR0’s is almost inde-
pendent of the frequency of the viral load evolution, but it may be noticeably
affected by the factors of viral load increase and decay. Interestingly, for given
parameter values, it may be R0 < 1 in scenario Sv and R0 > 1 in scenario Sc,
suggesting that the disease dynamics can be radically different depending on the
modelling assumption about the transmission rate;

• We simulate an epidemic wave by assuming R0 = 4 in the scenario Sc and
estimating the R0 in the scenario Sv accordingly. We obtain that in the case of
viral load-dependent transmission, the epidemicwave ismore severe, with a higher
and earlier prevalence peak, than in the case of constant transmission. Also, the
model in the scenario Sc tends to underestimate the mean viral load of infectious
individuals whose viral load is increasing and to overestimate the mean viral load
of infectious individuals whose viral load is decreasing.

The role of viral load in the dynamics of infectious diseases has recently attracted
the interest of mathematical epidemiologists. Our work makes a further step in this
line of research, by serving as a proof-of-principle verification of the impact of the
individuals’ viral load on the disease transmission rate and the consequent epidemic
dynamics.

In the proposed framework, the description of the microscopic mechanisms and
the heterogeneity of the viral load at the microscopic level allows one to derive a
macroscopic model, which provides for a richer description of the disease spreading
in the host population w.r.t. classical epidemic models. Here we only consider the
explicit influence of the viral load on the transmission mechanism, but, in principle,
other switches of individuals between compartments may depend on the viral load at
the microscopic level, and on the mean viral load at the macroscopic level. Also, more
complex situations could be addressed, for example by assuming different initial viral
loads of the infectious individuals that may give rise to a different epidemic scenario.

We underline that our model does not address a specific infectious disease. Of
course, in presence of exhaustive data concerning the progression of the individu-
als’ viral load, the modelling assumptions can be reformulated or adjusted according
on the particular case. However, even if our model is too simple to provide reliable
solutions to real-world epidemics from the quantitative point of view, our theoretical
findings can be used to inform more complex simulation models developed for spe-
cific epidemiological scenarios where more realistic descriptions of the biological and
epidemiological processes are included.
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