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Abstract
The transmission dynamics of HIV are closely tied to the duration and overlap of sex-
ual partnerships. We develop an autonomous population model that can account for
the possibilities of an infection from either a casual sexual partner or a long-term part-
ner who was either infected at the start of the partnership or has been newly infected
since the onset of the partnership. The impact of the long-term partnerships on the
rate of infection is captured by calculating the expected values of the rate of infec-
tion from these extended contacts. The model includes three stages of infectiousness:
acute, chronic, and virally suppressed. We calculate HIV incidence and the fraction of
new infections attributed to casual contacts and long-term partnerships allowing for
variability in condom usage, the effect of achieving andmaintaining viral suppression,
and early intervention by beginning HAART during the acute phase of infection. We
present our results using data on MSM HIV transmission from the CDC in the U.S.
While the acute stage is the most infectious, the majority of the new infections will
be transmitted by long-term partners in the chronic stage when condom use is infre-
quent as is common in long-term relationships. Time series analysis of the solution,
as well as parameter sensitivity analysis, are used to determine effective intervention
strategies.
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1 Introduction

In 2019, according to the Center for Disease Control (CDC), 36,801 people received
an HIV diagnosis in the United States (US) and dependent areas (Centers for Dis-
ease Control and Prevention 2021) and in 2020 over 37 million people globally were
living with HIV (UNAIDS 2021). Much scientific effort has been devoted to study-
ing all aspects of HIV infection, from the dynamics of the disease progression in the
body to the epidemiology of the spread of the virus. More recent advances in disease
progression have asserted three stages: the acute stage (sometimes subdivided into
acute and early infectious periods, but in this study these substages are combined), the
chronic stage, and finally the AIDS stage (Hernandez-Vargas and Middleton 2013).
The acute stage of HIV begins with infection and continues for approximately 8–12
weeks (Fiebig et al. 2003; Robb and Ananworanich 2016). During the acute stage,
those infected experience a high viral load and are very contagious. After the acute
stage, those infected move into a chronic stage in which their viral load goes down
and many individuals are asymptomatic. Although the viral load decreases, the dis-
ease can still be transmitted during this stage of the infection. Those who have started
highly active antiretroviral therapy (HAART) treatment may be virally suppressed,
which also decreases the chance of HIV transmission (Cohen et al. 2011a; Granich
et al. 2009). The chronic stage of infection may last decades, particularly for those
in HAART treatment. At the end of the chronic stage, the viral load begins to rise,
and the CD4 cell count begins to drop. When the CD4 cell count drops to below
200 cells/mm3, a person is diagnosed with AIDS, the final stage of the disease. At
this stage of the disease, the immune system is severely damaged, which leads to
opportunistic infections with increasing frequency. In this model, we are not using
AIDS as the new CDC category as first onset of AIDS (Poorolajal et al. 2016), from
which individuals may recover using HAART treatment. Instead, we are using the
AIDS category for those individuals whose health has declined significantly and are
likely to die within 2 years from opportunistic infections.

Unlike the flu, chickenpox, measles and SARS-Cov2 that are transmitted through
tangential casual contact (Centers for Disease Control and Prevention 2022b, c, d, e),
sexually transmitted diseases require pair formation for transmission. The length of
the pair formation partnership may be short, such as a casual partnership, or long, as
with long-term partnerships that last weeks, months or even decades. Much literature
has been devoted to partnership formation models for sexually transmitted diseases
in which the dynamics of pair formation and dissolution are explicitly accounted for
in the model (for example, Kretzschmar and Heijne (2017)). These model require
moment closure methods to incorporate overlapping partnerships. Recently, Gurski
(2019) developed a population model that accounts for overlapping casual and long-
term partnerships using a linearization of the expected value as the rate of infection
without moment closure methods. In Gurski et al. (2023), pair formation models of
Kretzschmar andHeijne (2017) andLeng andKeeling (2018)were compared to a long-
term SI population of model of HIV and HSV-2. For each model and each disease,
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the reproduction number was analytically determined and numerically computed over
a range of parameter values. Results demonstrated that reproduction numbers and
time series simulations of disease dynamics are almost identical in the case without
concurrent partnerships. (We made no effort to simulate pair formation models with
moment closure methods, so no comparison was available.) Thus, we focus on the
autonomous population model of Gurski (2019).

Wemodel three different stages of infections: acute, chronic, and virally suppressed.
Each stage of infection has a different level of infectivity with the acute stage being
the highest level of infectivity, the chronic stage being less transmissible than the
acute stage but more transmissible than the virally suppressed stage. Although the
acute stage of infection is the most transmissible, infected individuals only remain
in the acute stage for about three months before moving onto the chronic stage or
the virally suppressed stage of infection. Since there is no cure yet for HIV, infected
individuals remain in either chronic or virally suppressed stage for the rest of their
lives and never return to the acute stage. Given the increased transmissibility in the
acute stage, there has been much speculation regarding the role of acutely infected
individuals in the spread of HIV given the small time span individuals remain in the
acute stage. Percentages of new infections caused by transmission from individuals in
the acute stage of infection vary from 0% to 93% (Miller et al. 2010) depending on
the type of model (casual, long-term partnerships, and concurrent partnerships), the
population being modeled (MSM or heterosexual), delineations of subpopulations by
culture, type of sexual behavior, and degree of infectiousness (see for example, Miller
et al. 2010; Bellan et al. 2015; Omondi et al. 2018; Jacquez et al. 1994; Koopman
et al. 1997; Pinkerton and Abramson 1996; Kretzschmar and Dietz 1998; Xiridou
et al. 2003, 2004; Hollingsworth et al. 2008; Coutinho et al. 2001; Pinkerton 2007;
Hayes and White 2006). We focus on the MSM population using data from the CDC
in the USA with both casual and long-term partnerships. While others have focused
on explicit partnership models, we instead use a long-term partnership model that
incorporates the memory of the partnership into the force of infection term using an
expected value. Results from our model show that chronically infected individuals
in long-term partnerships contribute to the spread of HIV significantly more than
any other population. We find acutely infected individuals in long-term partnerships
contribute on average 20% of the new infections, which is consistent with the lower
end of Jacquez et al. (1994); Koopman et al. (1997); Pinkerton and Abramson (1996)
and the middle of the range suggested by Xiridou et al. (2003, 2004).

Concurrent partnerships account for the possibilities of overlapping partnerships
and infection from either a new sexual partner or a non-monogamous longtime partner
who was uninfected at the start of the partnership. Concurrency has also been shown
to be important in modeling the disproportionate growth of HIV infections in subpop-
ulations (Adimora et al. 2002). The impact of long-term partnerships and concurrent
partnerships has been the focus of many data-driven models ranging from Monte
Carlo simulations (Kretzschmar and Morris 1996), stochastic simulations (Morris
and Kretzschmar 1997; Doherty et al. 2006; Aralis et al. 2016), agent based mod-
els (Gopalappa et al. 2017), stochastic and discrete simulations (Chick et al. 2000),
network simulations (Admiraal and Handcock 2016; Eames and Keeling 2004; Keel-
ing and Eames 2005; Lashari and Trapman 2018; Morris et al. 2009, 2010; Onaga
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et al. 2017; Volz and Meyers 2007; Vajdi et al. 2020) and analytic network mod-
els (Miller and Slim 2017). Other combinations of statistical and population models
have been developed to capture concurrency effects using a partnership-based con-
currency index (Leung et al. 2012, 2017), pair-formation models with stochastic pair
approximation techniques (Hansson et al. 2019; Kim 2015) and nested pair forma-
tion models (Kretzschmar and Heijne 2017; Leng and Keeling 2018). These models,
which can include long-term partnerships, have difficulty representing infection from
overlapping partnerships, and for each population class, the model must contain sub-
populations of each single or pair combination. As a result, the computational and
analytical complexity of the model quickly increases, and hence decreases the length
of time a longitudinal simulation can be run. In contrast, non-pair population based
models do not require the same computational resources and allow for analytic studies.

A deterministic model of concurrency was derived previously in Gurski and Hoff-
man (2016), following the work of Watts and May (1992) and more recently, Gurski
(2019) developed a population model that accounts for the possibilities of an infection
from either a casual sexual partner or a long-term partner who was either infected at
the start of the partnership or newly infected. The model allows for multiple long-term
partnerships, which include serially monogamous and concurrent partnerships. The
impact of the long-term partnerships on the rate of infection is captured by calculating
the expected values of these extended contacts. The model benefits from the tradi-
tional strengths of computational speed and an analytic reproduction number, which
in turn allows for understanding of how each parameter affects the disease spread. In
addition, both long-term and casual partnerships can be included in the model without
moment closure methods, which have been used as a technique for including con-
currency. This model was compared to pair formation models in Gurski et al. (2023)
demonstrating that, in the absence of concurrency, the long-term partnership model
mimics the pair formation model with evaluations of the reproduction number and
numerical simulations.

We incorporate the new long-term and casual partnership model (Gurski 2019)
into a previous population model described in Gurski and Hoffman (2016) to include
both long-term partnerships and three classes of infectiousness: the acute class, Ia ,
chronic class, Ic, and virally suppressed class, Iv . The populations Ia , Ic, and Iv
can be seen as a three-class infectivity model, a simplified n−class infectiousness
model (Hyman et al. 1999). In Gurski and Hoffman (2016), the total population was
assumed to be constant, which is a reasonable assumption for short timescales. Here,
we derive a new deterministic model with concurrency that does not assume a constant
population, but alternatively assumes that the U.S. population grows proportional to
the population size, at a nearly constant rate (Mackun and Wilson 2011). We also
include behavioral disinhibition in the model by reducing the likelihood of condom
use by MSM individuals in a long-term partnership.

Incorporating long-term and casual partnerships in a model with differential infec-
tivity allows a novel approach to evaluate intervention strategies that reduce the
incidence and prevalence of HIV. The model formulation also allows us to deter-
mine which population is the largest contributor to the spread of HIV. In particular,
we are interested in determining for short term dynamics, on the order of 20 years,
which intervention strategies will have the most impact. We consider three types of
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intervention strategies.The first intervention is to target primary infection, or acute
class infections, for early treatment. While this is not a current emphasis of HIV inter-
vention strategies, partly due to the lack of an accurate easy-to-use test for the acute
stage infection, we will show that this intervention might significantly impact the
number of new infections. The second intervention strategy is to encourage the chron-
ically infected to achieve and remain in suppression. The impact of this intervention
is supported by analysis of the effective reproduction number, time series data, and
parameter sensitivity. The third strategy is to target condom effectiveness in long-term
relationships. We will demonstrate that the largest percentage of new infections come
from partnerships with a long-term chronically infected partner and that increased
condom use with long-term partners can impact the incidence of new infections.

The manuscript is organized as follows. Section2 contains a description of the
model with three stages of infection. The derivation of the rate of infection for the
model with long-term partnerships and concurrency can be found in Sect. 3. Section4
contains results including the effective reproduction number and a study of incidence
and prevalence where model predictions from 2005–2020 are compared to CDC data.
This section also includes numerical results that showwhich populations are the source
of the infection as well as parameter sensitivity studies and the impact of early testing
and treatment. Finally, we interpret these results in Sect. 5with our overall conclusions.

2 Model with differential infectiousness

In 1992, an SEIR model for HIV was proposed (Watts and May 1992), where the
population was divided into S, susceptible; E , exposed but not yet infectious; I ,
infected with HIV; and R, indicating that the disease has progressed to AIDS and
represents removal from the system. Previously, in Gurski and Hoffman (2016) a
susceptible-two stage infection model was developed, based on the model of Watts
and May (1992), but without the time lag from exposed to infectious, thus removing
the exposed class. They included a virally suppressed class and allowed for concurrent
partnerships in heterosexual partnerships. One limitation of the model was the lack
of an acute class and the absence of serodiscordant long-term partnerships. In Gurski
(2019) an autonomous constant sized population model was developed that includes
both casual and long-term partnerships, where the impact of the long-term partnerships
is included in the rate of infection, which is computed using a linearized expected
value. This long-term partnership model includes concurrency without using moment
closure methods, to introduce a third party. Serodiscordant long-term partnerships
were considered in this case, but included a constant population assumption. This
long-term partnership model with concurrency to a two-staged infection SI model
for HIV and HSV-2 was expanded in Gurski et al. (2023) with a comparison of their
results to a model with two pair formation models. The reproduction number for the
long-term partnership model without concurrency is comparable to the pair formation
model, demonstrating that, in the absence of concurrency, the long-term partnership
model mimics the pair formation model.

Here, we modify the previous population model described in Gurski and Hoffman
(2016) to include both long-term partnerships and three classes of infectiousness: the
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Fig. 1 SIa Ic Iv model where S is the susceptible population, Ia is the acutely infected population, Ic is
the chronically infected and not virally suppressed population, Iv is the infected and virally suppressed
population

acute class, Ia , chronic class, Ic, and virally suppressed class, Iv . This is an SIa Ic Iv
model, as illustrated in Fig. 1. The time from onset of infection to the transition to
the chronic stage of infection has a length measured to be approximately 10 weeks
(Pilcher et al. 2007) to 3 months (Cohen et al. 2011b; Hollingsworth et al. 2008).
We refer to this primary infection as the acute class and use a mean infectivity level
adjusted to this entire period of increased infectiousness. The primary HIV infection
peaks within a month after infection and then slowly declines to a lower viral load
associated with a chronic infection.

In this system, S represents the susceptible population, Ia represents the population
with an acute infection and high infectivity that results at the onset of infection, Ic
represents the population with chronic infection that is not virally suppressed, and
Iv represents the infected and virally suppressed individuals that are in treatment.
We make a distinction between chronically infected and virally suppressed classes
because virally suppressed individuals are significantly less likely to transmit HIV to
an uninfected partner (Cohen et al. 2011a; Cambiano et al. 2013; Castilla et al. 2005;
Porco et al. 2004).

We assume that people become susceptible at rate π and leave the susceptible
population due to natural death at rate μ. Note that in this model we consider a non-
constant population. The susceptible population goes to the acutely infected population
at rate λ. The acutely infected population Ia transition to either the chronically infected
population Ic or the virally suppressed population Iv at rate ρ. We assume that σ is
the fraction of the population that goes to virally suppressed, therefore (1 − σ) is
the fraction of the population that will go to the chronically infected population.
We note that HIV detection in the acute stage of infection is difficult, hence many
undiagnosed acute infections remain untreated. Early treatment has been suggested
as an intervention (Granich et al. 2009; Xiridou et al. 2003; Lindback et al. 2000;
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Ananworanich et al. 2015; Ford et al. 2018), hence we include the parameter in our
model.

The chronically infected can move to the virally suppressed population with transi-
tion rate ω and the virally suppressed population can move to the chronically infected
population at rate η. The transition rate to AIDS (AIDS without effective HAART
treatment (Poorolajal et al. 2016)) is included as removal from both the chronically
infected population Ic and virally suppressed population Iv , with rates μc and μv ,
respectively. The total population is N = S+ Ia + Ic + Iv . The parameter descriptions
and range of values are given in Table 1. The set of differential equations that describe
the dynamics of these populations are:

dS

dt
= π − λS − μS,

d Ia
dt

= λS − ρ Ia − μIa,

d Ic
dt

= (1 − σ)ρ Ia + ηIv − ωIc − (μ + μc)Ic,

d Iv
dt

= σρ Ia − ηIv + ωIc − (μ + μv)Iv,

dN

dt
= π − μc Ic − μv Iv − μN .

(1)

3 Rates of infection

The rates of infection λ depends on the type of partnership. Previous literature focused
on explicitly modeling the formation of each pair. Pair formation models explicitly
account for the formation and dissolution of pairs and the disease-status of each indi-
vidual within the pair, however, this detailed modeling requires a large number of
differential equations. Our model, on the other hand, includes long-term partnerships
using a linearization of the expected value to compute infection rates. The susceptible
population can be infected either from a casual partner or a long-term partner. We
assume that the transmission rate from an infected individual in population I j is zβ j

with j = a, c, v where β j is the transmission probability per sexual encounter with
an infected individual in I j , and z is the rate of casual sexual encounters. We denote
the rate of infection from casual partners λz with the standard form:

λz = z (βa Ia + βc Ic + βv Iv)

N
. (2)

The rate of infection from long-term partners is denoted λp. Infection from long-
term partners can come from two sources: a long-term partner who was chosen while
infectious, λpI , and a long-term partner who was chosen while susceptible, λpS , but
has been newly infected outside the long-term partnership. Thus, the rate of infection
λ is combination of these rates
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λ = λz + λp,

where

λp = λpI + λpS .

We next address the analytical forms of λpI and λpS .

3.1 Rate of infection due to long-term partner chosen while infectious

Consider the case where a susceptible individual is infected by an infectious long-term
partner. We assume that the partnership began at time κ and the long-term partner was
infected at time t . Thus, the rate of transmission is defined to be

λI
p = E

[
χa Ia + χc Ic + χv Iv

N

]
, (3)

where E [(χa Ia + χc Ic + χv Iv)/N ] represents the expected value of the rate of infec-
tion due to partners initially chosen while infectious, and χa, χc, χv denote the rates
of transmission from the three classes of infected individuals Ia, Ic, Iv , respectively.
We begin the first stage of calculating this expected value by deriving the probability
that an infected partner who is acquired at time κ transmits the infection at a later time
t is given by the product of the following probabilities:

A: The probability that a partner acquired at time κ was infected at time κ: P(X(κ) ∈
Ia ∪ Ic ∪ Iv) = (Ia(κ) + Ic(κ) + Iv(κ)) /N (κ).

B: The probability that a partnership survives until time t given that the partner was
partner acquired at time κ is e−(t−κ)/τ .

Then the expected value becomes

λpI = E

[
χa Ia + χc Ic + χv Iv

N

]
,

=
∫ t

−∞

(
χa Ia(κ) + χc Ic(κ) + χv Iv(κ)

τ N (κ)

)
e(−(t−κ)/τ) dκ, (4)

where the parameter τ represents the mean duration of a partnership. This integral
requires us to keep track of the number of infected individuals and total population
for all time prior to the instant t . To make the calculation algebraically tractable, we
will use a linear approximation of N (κ). Consider the approximation of the derivative

N (t) − N (κ)

t − κ
≈ dN (t)

dt
,

and substitute dN (t)
dt = π(t) − μc Ic(t) − μv Iv(t) − μN (t) from (1). We define

π(t) ≡ 	N (t). Solving for N (κ), we get
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N (κ) ≈ N (t) [1 + (t − κ)μ] + [μc Ic(t) + μv Iv(t) − 	N (t)] (t − κ).

Rearranging this equation to solve for 1
N (κ)

, we get

1

N (κ)
= 1

[1 + (μ − 	)(t − κ)]N (t) + (t − κ)[μc Ic + μν Iv] ,

= 1

N (t)

[
1

1 + (t − κ)KN (t)

]
, (5)

where

KN (t) = (μ − 	) + μc Ic(t) + μv Iv(t)

N (t)
= − 1

N (t)

dN (t)

dt
. (6)

Since KN (t)(t − κ) � 1, we approximate 1
1+(t−κ)KN (t) ≈ 1− (t − κ)KN (t)), so the

expected value (4) becomes

E

[
χa Ia + χc Ic + χv Iv

N

]
≈ 1

τN (t)

∫ t

−∞
(χa Ia(κ) + χc Ic(κ) + χv Iv(κ)) ·

(1 − (t − κ)KN (t)) e(−(t−κ)/τ) dκ. (7)

Next we approximate χa Ia(κ) + χc Ic(κ) + χv Iv(κ) using the differential equations
in (1). Using the same techniques as described above for N (t), we approximate each

derivative d Ia(t)
dt ,

d Ic(t)
dt ,

d Iv(t)
dt . As an example, consider d Ia(t)

dt :

d Ia(t)

dt
≈ (Ia(t) − Ia(κ))

t − κ
. (8)

Substituting from (1) for the derivative of Ia(t) and solving for Ia(κ), we get

Ia(κ) ≈ Ia(t) (1 + (ρ + μ) [t − κ]) − λS(t) [t − κ] . (9)

Using a similar technique for Ic and Iv yields the sum

χa Ia(κ) + χc Ic(κ) + χv Iv(κ) ≈ Ia(t) (χa + {χa(ρ + μ) − χc(1 − σ)ρ

−χvσρ} [t − κ]) + Ic(t) (χc + {χc(μ + μc + ω) − χvω} [t − κ])

+ Iv(t) [χv + {χv(μ + μv + η) − χcη} (t − κ)] − χaλS(t) [t − κ] . (10)

So defining

KA ≡ χa(ρ + μ) − χc(1 − σ)ρ − χvσρ,

KC ≡ χc(μ + μc + ω) − χvω,

KV ≡ χv(μ + μv + η) − χcη, (11)
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we have

χa Ia(κ) + χc Ic(κ) + χv Iv(κ) ≈ (χa + KA [t − κ]) Ia(t)+
(χc + KC [t − κ]) Ic(t) + (χv + KV [t − κ])) Iv(t)

− χaλS(t) [t − κ] . (12)

Plugging this into the expected value equation (4),

E

[
χa Ia + χc Ic + χv Iv

N

]
≈ 1

τN (t)

∫ t

−∞
[(χa + KA [t − κ]) Ia(t)

+ (χc + KC [t − κ]) Ic(t) + (χv + KV [t − κ]) Iv(t)

−χaλS(t) [t − κ]] · [1 − KN (t) [t − κ]] e(−(t−κ)/τ) dκ,

≡ U I − λχaU
S ≡ λpI (13)

where

U I ≡ (χa Ia(t) + χc Ic(t) + χv Iv(t)) (1 − KN (t)τ )

N (t)
+

(KA Ia(t) + KC Ic(t) + KV Iv(t)) τ (1 − 2KN (t)τ )

N (t)
, (14)

US ≡ τ S(1 − 2KN (t)τ )

N (t)
. (15)

Intuitively, we are approximating the fraction of infectious individuals at time κ as
the fraction of infected at time t , denoted by U I , adding the fraction of infected who
died ( τχa S(2KN (t)τ )

N (t) ), and subtracting the fraction of individuals who became infected

between times κ and t , namely τχa S
N (t) .

3.2 Derivation of expected value of rate of infection due to long-term partner
chosen while susceptible

Next we derive the rate of infection from long-term partners who were susceptible at
the start of the partnership, λpS . We assume the infection will be transmitted while the
infected partner is in infection class Ia since the new infection ismost likely unknown to
both partners. In addition,we do not assume that the previously susceptible-susceptible
long-term pair use condoms to prevent infection. The rate of infection is

λpS = E

[
ψ I new

N

]
, (16)

where E
[
ψ I new/N

]
represents the expected value of the fraction of newly infected

(previously susceptible) partners per total population still in a partnership at time t .
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Again, to keep the model memory free and algebraically tractable we will define λpS

to be a linear approximation to the expected value.
To calculate I new, we consider four probabilities:

C: The probability that a partner acquired at time κ was susceptible at time κ:
P(X(κ) ∈ S) = S(κ)/N (κ).

D: The probability that a partnership survives until time t given that the partner was
acquired at time κ is e−(t−κ)/τ .

E: The probability that a partner is still susceptible at time t given they were suscepti-
ble at time κ: P((X(t) ∈ S)|(X(κ) ∈ S)) = e−(t−κ)ξλ, where ξ is the probability
that the partner is in engaged in an external (i.e. outside this long-term partnership)
sexual partnership.

F: The probability that the partner becomes infected at time t , λ(t − κ)ξ where λ is
the rate of infection and (t − κ) is the partnership length.

Thus, the rate of transmission is

λpS = E

[
ψ I newA

N

]
,

=
∫ t

−∞

(
ψλ(t − κ)ξ S(κ)

N (κ)

)(
1 + ξλτ

τ

)
e− (1+ξλτ)(t−κ)

τ dκ, (17)

where
(
1+ξλτ

τ

)
e− (1+ξλτ )(t−κ)

τ is the probability distribution corresponding to the sur-

vival functions that the partnership survives and the partner is still susceptible at time
t , given they were susceptible at time κ (probabilities D and E above).We approximate
S(κ) using (1),

dS

dt
≈ S(t) − S(κ)

t − κ
, (18)

S(κ) ≈ −	N (t) [t − κ] + S(t) (1 + (λ + μ) [t − κ]) . (19)

Then the expected value (17) becomes

λpS = ψλξ

N (t)

∫ t

−∞
[t − κ] {−	N (t) [t − κ] + S(t) (1 + (λ + μ) [t − κ]) ·

(1 − KN (t) [t − κ])} ·
(
1 + ξλτ

τ

)
e− (1+ξλτ)(t−κ)

τ dκ,

= ψ

N (t)
[F(ξλτ, t)] . (20)

Linearizing F(ξλτ, t) about ξλτ , we have

F(ξλτ, t) ≈ [−2	N (t)τ (1 − 3KN (t)τ ) + S(t) {(1 − 2KN (t)τ )+
2μτ (1 − 3KN (t)τ )}] ξλτ. (21)
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So the linear approximation for the expected value is

λpS = λψξUS + λWS, (22)

where US is defined by (14) and WS ≡ 2ψξτ 2

N (t) (μS(t) − 	N (t)) (1 − 3KN (t)τ ).
If N (t) = N0, then 	 = μ. Consequently KN (t) = 0 by substitution into (6), and

λpS reduces to

λpS ≈ ψξλτ (S(t) (1 + 2μτ) − 2μN0τ)

N0
,

= ψξλτ

(
S(t)

N0
− 2μτ

[
N0 − S(t)

N0

])
. (23)

3.3 Combining rates of infection

In this section, we combine the rates of transmission from casual partnerships with
the rates of transmission from a long-term partner who was chosen while infectious
λpI , and a long-term partner who was chosen while susceptible, λpS , but has been
newly infected outside the long-term partnership. Combining (2), with (13) and (22),
we have the following implicit relationship for the rate of infection, λ,

λ = λz +U I + λ
[
WS + (ψξ − χa)U

S
]
. (24)

Solving for λ yields

λ = z (βa Ia + βc Ic + βv Iv) +U I N

N + (ψξ − χa) τ S(2KN τ − 1) + 2ψξτ 2T
,

U I N = (χa Ia + χc Ic + χv Iv) (1 − KN τ) +
(KA Ia + KC Ic + KV Iv) τ (1 − 2KN τ),

T = (μS − 	N ) (3KN τ − 1) . (25)

The definition of λ completely specifies the problem defined by (1).
One of the items of interest is to measure howmany infections are caused by casual

or long-term partners in the acute class, the chronic class, and the virally suppressed
class. To capture this information, we separate λ according to casual or long-term
partnerships

λ
j
z = zβ j I j

N + (
2ψξτ 2

)
(μS − 	N ) (3KN τ − 1) + (ψξ − χa) τ S(2KN τ − 1)

,

λ
j
LT =

[
χ j (1 − KN τ) + K jτ(1 − 2KN τ)

]
I j

N + (
2ψξτ 2

)
(μS − 	N ) (3KN τ − 1) + (ψξ − χa) τ S(2KN τ − 1)

,
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where j = a, c, v corresponding to acute, chronic or virally suppressed.The separation
of λ allows us to tract both casual and long-term susceptible populations

dS j
z

dt
= λ

j
z S,

dS j
LT

dt
= λ

j
LT S,

dS

dt
= π − μS −

∑
j=a,v,c

(
dS j

z

dt
+ dS j

LT

dt

)
, (26)

where the three equations dS j
z /dt represents the number of susceptibles infected by

a casual partner in stage I j and the three equations dS j
LT /dt represents the number

of susceptibles infected by a long-term partner in stage I j . Adding these equations to
(1), we have

dSaz
dt

= λaz S,
dSv

z

dt
= λv

z S,
dScz
dt

= λcz S,

dSaLT
dt

= λaLT S,
dSv

LT

dt
= λv

LT S,
dScLT
dt

= λcLT S,

dS

dt
= π − μS −

∑
j=a,v,c

(
dS j

z

dt
+ dS j

LT

dt

)
,

d Ia
dt

= λS − ρ Ia − μIa,

d Ic
dt

= (1 − σ)ρ Ia + ηIv − ωIc − (μ + μc)Ic,

d Iv
dt

= σρ Ia − η j Iv + ωIc − (μ + μv)Iv,

dN

dt
= π − μc Ic − μv Iv − μN ,

(27)

for a total of eleven differential equations.

3.4 Parameter values

To determine a value forω, the rate of acquiring viral suppression, we used the estimate
that in 2011 median time from HIV infection to diagnosis was 3 years and 7 months,
Centers for Disease Control and Prevention (2017). In 2015, median time was 3 years.
Then a 2012–2017 study (Crepaz et al. 2020) measured that the median diagnosis to
viral suppression interval shortened overall for persons with HIV diagnosed in 2012
vs. 2017 from 9 to 5 months. Therefore, we use 1/ω = 36 months + 5 months - 3
months (time in acute phase). Tomost accurately capture the changes viral suppression
has made over the years in the US, we would need to vary ω over time, but using a
value in the middle of the 2005–2025 time line gives us a reasonable approximation.

Virological failure can have many reasons from suboptimal adherence and drug
intolerance/toxicity to the high cost of HAART (Panel on Antiretroviral Guidelines
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for Adults and Adolescents 2021). Therefore, the value for η is highly variable.We use
a base value from Ledergerber et al. (1999); Kim et al. (2014), with the understanding
a sensitivity analysis will be needed to determine how a range of η values will affect
our outcomes.

We define our number of long-term partners per year, p/τ , from pair formation
models. Using the definitions reviewed in Kretzschmar and Heijne (2017), M is the
number of lifetime long-term partners, and M = f /(μ( f τ + 1)), where f is the pair
formation rate, τ is the partnership duration, and 1/μ is the lifetime. So the number
of long-term partners per year is Mμ = f /(1 + f τ), which is our definition for p/τ
(Gurski et al. 2023). In Gurski et al. (2023) it was shown that with these definitions,
the long-term partnership model matches the behavior of the pair formation model
with both reproduction numbers and numerical simulations in time.

We follow the work of Hyman et al. (2001) to describe the transmission rates χa ,
χc, χv , and ψ . The term χ j is the transmission rate by a partner in the infected class
I j with j = {a, c, v}. Just as with the casual sexual partnership infection term, the
infected partner in I j can possibly infect the susceptible partner in a single sexual act at
a probability of β j mitigated with condoms.We introduce the transmission factor term
due to condom use, θαz for a casual partnership and θαp for a long-term partnership.
The term (1−θαx )βi is the transmission per sexual act (x = {z, p}), that represents the
reduction from condom effectiveness and usage. The probability of not being infected
in a single act is then (1−(1−θαx )β j ). So the probability of not being infected after n j

sexual acts with the I j partner is (1− (1− θαx )β j )
n j . We assume 85% condom usage

in the casual pairs but only 20% use in the long-term partnerships. The probability that
the susceptible long-term partner will be infected after n j ( j = {a, c, v}) sexual acts
with the long-term partner in I j is χ j = (p/τ)

(
1 − (1 − (1 − θαp)β j )

n j
)
, where the

term p/τ is the number of long-term partners per year, i.e. the rate of acquiring long-
term partners. The exponent n j reflects the number of exposures over the duration of
the partnership while the partner is in the infection class j . That is, during the acute
phase, na = c/ρ, and during the chronic or virally suppressed stage, nc = nv =
cτ . We assume that the transmission rate by a newly infected long-term partner is
ψ = (p/τ)βa . Since both partners were formerly both susceptible, we assume that
the long-term partners are not using condoms with each other. With an estimate of 1
sex act per week, there will be 9 contacts to transmit HIV during this highly infectious
acute stage, before either partner has been tested and started taking active precautions
to safeguard their partner.

4 Results

The results of this model were all simulated beginning with the initial conditions given
by the CDC data in 2005 (Centers for Disease Control and Prevention 2012b) and the
parameters given in Table 1. We begin with the reproduction number of the long-term
and casual model in Sect. 4.1 and demonstrate how the behavior of the reproduction
number depends on the various parameters in the model. Next, in Sect. 4.2, we com-
pare incidence and prevalence model data to CDC data to illustrate validation of the
proposed model. For varying values of η and ω, time series simulations with both the
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model that includes both long-term and casual partnerships and the model with only
long-term partnerships show the effect of achieving and remaining in viral suppres-
sion. There has been much speculation on the role of the acutely infected population in
the spread of HIV.We address this concern in Sect. 4.3 both as a function of infectivity
and whether the encounter was from a casual partnership or a long-term partnership.
Finally, we address the sensitivity of the parameters on prevalence of HIV in Sect. 4.5

4.1 Reproduction number

The effective reproduction number can be analytically determined using the standard
Next Generation methods (Diekmann et al. 1990; van den Driessche and Watmough
2002):

Re = A(F + βaz) + Cρ(χc + βcz) + Bρ(χv + βvz)

A(μ + ρ)(1 − Dτ)E
, (28)

with parameters

A = (μ + μc)(μ + μv + η) + (μ + μv)ω,

B = ω + (μ + μc)σ,

C = η + (μ + μv)(1 − σ),

D = χa(1 + 2(	 − μ)τ) − (1 − 6(	 − μ)2τ 2)ψξ,

E = 1 − χa(1 + 2(	 − μ)τ)τ),

F = χa(1 + (	 − μ)τ − D(μ + ρ)τ 2(1 + 2(	 − μ)τ).

(29)

The reproduction number depends on several parameters, many nonlinearly. We
investigate the effects of each parameter on the reproduction number so we may iden-
tify interventions that mitigate the effects of parameters that increase the reproduction
number and interventions that support the effects of the parameters that lower the
reproduction number.

While the expression for Re is algebraically complex, z appears linearly in the
numerator, therefore Re is a linearly increasing function of z, the rate of the number
of casual partners per year. The parameter σ appears in B and C linearly. Since
χv < χc and βv < βc, Re decreases linearly as a function of σ , the percentage of
acutely infected individuals that go directly to the virally suppressed category. The
effective reproduction number, Re, is linearly increasing as a function of the number
of sex acts per year, c, since χi ≈ p (1 − θαp) βi c and

Cρ(χc + βcz) + Bρ(χv + βvz) ≈ ρ(Cβc + Bβv)(pc(1 − θαp) + z(1 − θαz)).

The relationship ofRe with parameters τ, p, θαz, θαp, η, ω, ξ is showngraphically
in Fig. 2. Figure2a shows thatRe increases as a function of τ until around τ = 3 years,
then Re decreases, which implies that longer relationships reduced the value of Re.
As the fraction of MSM in long-term partnerships grows, p, Re grows, but the rate
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Fig. 2 The effective reproduction number is plotted as a function of the variables τ, p, θαz , θαp, η, ω, ξ ,
with parameters at fixed values found in Table 1, except for the parameter that is varied in each graph (color
figure online)

of growth depends on the condom use in long-term partnerships. In Fig. 2b the curve
marked “low θαp” refers to the 20% condom usage with 70% condom effectiveness,
the curve marked “high θαp” refers to the 85% condom usage with 70% condom
effectiveness. The “high θαp” value was chosen to match condom effectiveness in
casual sex partnerships, θαz . We see that if effective condom usage is increased in
the long-term partnerships, then Re grows much slower as the fraction of long-term
partnerships increases.
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Fig. 3 The HIV incidence and prevalence are plotted as a function of the year between 2005 and 2020 for
the model that includes both casual and long-term partnerships. The blue dots are data from the CDC. The
black dashed line corresponds to model output and the solid red line corresponds to the linear (Incidence)
and quadratic (Prevalence) regression fits to the CDC data over this time interval. The green dashed curves
correspond to the 95% confidence interval (color figure online)

Figure 2c shows the inverse relationship of Re as a function of effective condom
usage for both casual partnerships, solid blue line and the long-term partnerships,
dashed red line. As more individuals transition from chronically infected to virally
suppressed, the values of the effective reproduction number decreases shown by the
red dashed line in Fig. 2d and as individuals leave the virally suppressed group and
transition back to chronically infected,Re increases, as shown by the solid blue line in
Fig. 2d. Figure2e illustrates the growth ofRe as the measure of concurrency in long-
term partnerships, ξ , increases. Based on these results, effective migitation strategies
should include more long-term relationships with longer than average relationship
length,more effective condomusage and less concurrency in the long-termpartnership.
Additionally, the more individuals we can recruit and keep in the virally suppressed
stage, the more the reproduction number will decrease.

4.2 Incidence and prevalence

Figure 3 shows the incidence of new infections and prevalence of HIV infections
each year from 2005 to 2020 for MSM in the U.S. with both long-term and casual
partnerships included in the model along with CDC incidence and prevalence data.
As we have illustrated in Fig. 3, our model closely approximates the incidence and
prevalence of HIV infections in the US in from the 2005–2019 data. HIV incidence
and prevalence data from the CDC HIV Surveillance reports, HIV Surveillance Sup-
plemental Reports, and prior to 2008 the HIV/AIDS Surveillance reports (Centers for
Disease Control and Prevention 2022a) are shown using the blue circles. Data for each
year represents the multiple years that the CDC updates its data estimates, hence the
multiple data points for some years. The solid red curve is a curve fit to CDC data
and the green dashed lines represent a 95% confidence interval for the data. The black
dashed line in the prevalence graph Fig. 3a represents the model output for prevalence.
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Fig. 4 HIV Prevalence is plotted as a function of year between 2005 and 2025 for varying values of η, the
rate at which virally suppressed individuals lose suppression and transition to chronically infected, with two
different models: one with long-term monogamous partnerships (LT Only) and one with both long-term
and casual partnerships (LT&C). All other parameters are held at base values found in Table 1 (color figure
online)
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Themodel output for incidence was determined by fitting the model prevalence output
to a quadratic curve (not shown). The derivative of the quadratic curve at each year
represents the HIV incidence for that year and is illustrated as the dashed black line
in the incidence graph. Our prevalence and incidence are within the 95% confidence
interval of the CDC data.

Figures 4 and 5 show the prevalence of HIV infected individuals and the behavior of
the different infected populations over time for both the monogamous long-term part-
nership model (LT Only) and the model with both long-term and casual partnerships
(LT & C). In both figures, the population of each infected class is shown as a function
of the years between 2005 and 2025. The green solid line corresponds to the sum of
all the infected individuals. The red dotted line corresponds to the virally suppressed
population and the black dash-dotted line corresponds to the chronic class of infected.
The acute class of infected is shown by the blue dashed line. The initial conditions
for the simulations correspond to the data reported by the CDC (Centers for Disease
Control and Prevention 2012b) in 2005. Although the acute class of infected appears
very small in these plots, there are roughly 1,000–2,000 cases at any given time which
is about 1/10th of the total number of HIV infections.

Figure 4 plots the population of each class of the infected population from 2005
to 2025 for four different values of η = 1/8, 1/4, 1/2, the rate at which the virally
suppressed population loses suppression and transitions to the chronic population, for
both the long-term monogamous model and the model with both long-term and casual
partnerships. For all graphs the number of acutely infected individuals is small com-
pared to the other populations because acutely infected individuals transition quickly,
relative to the timescale, to the chronic or virally suppressed populations. The relation-
ship between the chronically infected population and the virally suppressed population
changes as a function of η. As η increases, the virally suppressed population decreases,
as illustrated by the red dotted line, and the chronically infected population (black
dash-dot line) increases as a function of η. For the long-term monogamous partner-
ship model, as seen in Fig. 4a, η = 1/8, the virally suppressed population is above
the chronically infected population after about 2008. This trend is approximately the
same for Fig. 4c. However, for η = 1/2, the chronic population (black dashed-dotted
line) is higher than the virally suppressed population for the entire time interval shown.
Similar patterns are evident for both the long-term monogamous model and long-term
and casual partnership model, although the effects seem to be amplified slightly for
the long-term model with casual partnerships.

Figure 5 shows the same graphs as Fig. 4, except ω is changing instead of η. The
parameter ω represents the rate of transition from the chronically infected class to
the virally suppressed class. In Fig. 5, the virally suppressed class is above the chron-
ically infected class for most of the time interval shown. The relationship between
the virally suppressed class the chronically infected class changes as ω increases and
more individuals achieved suppression and are moved from the chronic infected class
to the virally suppressed infected class. Since treatment reduces the rate of infectivity
compared to the chronic class of infected, if enough of the infected population is in
treatment, the prevalence of infection will eventually decrease, as we see for ω suffi-
ciently large in both models of long-term and casual partnerships and monogamous
long-term partnerships.
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Fig. 5 HIV Prevalence is plotted as a function of year between 2005 and 2025 for varying values of ω, the
rate at which chronically infected individuals gain suppression and transition to virally suppressed, and two
different models: one with long-term monogamous partnerships (LT Only) and one with both long-term
and casual partnerships (LT&C). All other parameters are held at base values found in Table 1 (color figure
online)
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Fig. 6 Percentages of new
infections due to partner in
particular infected class for each
year are illustrated for baseline
parameter values found in Table
1. The different linestyles and
colors indicate the three stages
of infection and two types of
partnership models, as shown in
the legend (color figure online)

Fig. 7 New infections in 2015 as a function of the duration of the long-term-relationship. The solid line in
a represents long-term monogamous partnerships only, the dashed line represents the long-term and casual
partnerships (color figure online)

4.3 Infections transmitted from partner in class Ia, Ic, or Iv

Susceptible individuals can become infected from either a long-term partnership or
a casual partnership, and the infected partner can be in one of the three stages of
infection: acute, chronic, and virally suppressed. While the acute class is the most
transmissive stage of infection, the length of time an individual is in the class is much
smaller compared to the time that individuals spend in either chronically infected or
virally suppressed. There as been much scientific debate on which class of infection
contributes more to the spread of HIV.

To address this question, we separately track the number of susceptible individuals
that are infected by acute, chronic, or virally suppressed individuals by splitting the
force of infection term into acute, chronic, and virally suppressed for both casual and
long-term partnerships, as described by system (27). Figure 6 illustrates the percentage
of incident infections from the six possible infected types: casual or long-term partner,
in one of three stages of infection, for baseline parameter values found in Table 1.
The percentage of susceptible individuals that are infected by a long-term partner is
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Fig. 8 The percentage change in new infections due to increased effective condom usage (θαp) in long-term
partnerships and casual partnerships (θαz ) are shown for both the long-term monogamous model and the
model that includes both long-term and casual partnerships in a. The percentage change in prevalence is
shown in b. The baseline value for θαp=14% and θαz = 59.5% (color figure online)

represented by the solid blue line for those in the acute stage of infection, the dot-
dashed black line for those in the chronic state of infection, and the dotted red line
for those in the virally suppressed stage of infection. Similarly, the percentage of
susceptible individuals infected by a casual partner is represented by the solid cyan
line for those in the acute stage of infection, the dot-dashed green line for those in the
chronic state of infection, and the dotted pink line for those in the virally suppressed
stage of infection.Most of the newHIV infections are from chronic long-term partners
with casual partnerships, with long-term acute and casual virally suppressed partners
contributing the least to new infections.

Additionally, by tracking new infections transmitted by the type of partner in a
particular stage we are able to address the number of infections transmitted by a
partner in the acute stage.We illustrate the number of new infections as a function of the
duration of the long-term partnership, similar to Kim (2015). As we have illustrated in
Fig. 3, our model closely approximates the incidence and prevalence of HIV infections
in the US in 2015, hence we present our results with respect to 2015. Figure7 a
illustrates the percentage of infections transmitted by a partner in the acute class in
2015, the chronic class in 2015, and the virally suppressed class in 2015, as a function
of the duration of the long-term relationship. The solid lines indicates results from
the long-term monogamous relationship model and the dashed lines show the results
for the model that includes both long-term and casual partnerships. After 5 years,
the model with both long-term and casual partnerships has a higher percentage of
infections than the long-term monogamous model transmission for both the acute and
chronically infected individuals. However, in transmission from the virally suppressed
individual, the percentage of infections from the long-term monogamous model is
larger than the model that includes both long-term and casual partnerships since the
long-termmonogamous partners are only exposed byway of a long-term partner in the
virally suppressed class. This may seem unexpected, but the number of new infections
in the long-term monogamous model is significantly fewer than the number of new
infections in the long-term plus casual partnership model. The blue curve in Fig. 7b
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shows a decreasing ratio of incident infections after five years from the long-term
monogamous partnership model as compared to the long-term and casual partnership
model over the increasing length of the long-term partnership. This figures shows the
“protective” effect of a monogamous long-term relationship against HIV. The drop
in the number of new infections is not due to a much larger number of sexual acts
in the long-term and casual group. Instead, this effect is due to potential overlap or
concurrency of sexual partnerships driving up the number of transmissions.

Overall, transmission from the chronically infected individual contributes signifi-
cantly more to the spread of new infections than either an acutely infected or virally
suppressed individual, similar to the results shown in Fig. 6. We note that while the
prevalence of people with acute HIV infections appears insignificant in Figs. 4 and 5,
the impact of these individuals in the acutely infected class is significant as shown in
Fig. 6 and 7. The impact of the infections transmitted by the individuals in the acute
HIV infection class is also increased when relationships are non-monogamous and
allow an overlap of partnerships, i.e. concurrent sexual relationships.

4.4 Effective condom usage

Figure 8 examines the impact of the parameters θαp and θαz on the percentage change
in incidence and percentage change in prevalence, for both long-term monogamous
model and the model that includes both long-term and casual partnerships. The per-
centage change in incidence is computed by dividing the difference of the incidence
with the baseline parameters given in Table 1 and the incidence computed with the
percentage on the x-axis by incidence at the baseline parameters. Figure8a illustrates
the percentage change in incidence of new infection as a function of the parameters
relative to effective condom use in long-term partnerships (θαp) and effective con-
dom use in casual partnerships (θαz) in the year 2015 (10 years after the start date
of our simulation). The black solid curves represent the change in θαp for long-term
monogamous partnerships, and the red dashed curves represent the change in θαp for
long-term and casual partnerships. The blue dash-dot curves represent the change in
θαz for long-term monogamous partnerships, and the green dotted curves represent
the change in θαz for long-term and casual partnerships.

As expected, the curves in Figs. 8a and 8b, decrease as effective condom use
increases. The magnitude of the percentage decrease is different in each case. Figure 8
shows little difference in the effect of increased effective condom use in long-term
partners betweenmodels (red dashed line and solid black line), however themagnitude
of the decrease is significant indicating that this intervention has potentially a large
impact on HIV infection incidence. Note that the base effective condom use for long-
term partnerships is assumed to be quite low, θαp = (0.70)(0.2) = 14%. Increased
effective condomusagewith casual partnerships has no effect on the long-termmonog-
amous model, as indicated by the horizontal lines in Figs. 8a, b, however, significantly
impacts the model that includes both long-term and casual partnerships. While the
range of percent change in incidence is large, Fig. 8 does not show a decrease in percent
change in incidence for varying θαz until approximately θαz = (0.70)(0.85) ≈ 60%,
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Fig. 9 The partial rank correlation coefficient is shown for each of the parameters τ, z, p, ω, c for total
number of acute, chronic and virally suppressed individuals. Results shown are significant with p-value <

0.05 (color figure online)

effective condom usage in casual relationships since this is the base parameter value.
This pattern appears in both the incidence, Fig. 8a and prevalence, Fig. 8b.

4.5 Parameter sensitivity

We consider the parameter sensitivity of transmission by infected type (acute, chronic,
virally suppressed) in Fig. 9and by partnership model (long-term monogamous and
long-term and casual) in Fig. 10 to all the model parameter values in the specified
range given in Table 2 , using Latin Hypercube Sampling (LHS) and Partial Rank
Correlation Coefficients (PRCC). The magnitude of the PRCC indicates the strength
of the correlation between the parameter and the output, whereas the sign of the PRCC
indicates whether there is a positive or negative correlation between the parameter and
the output. Sensitivity analysis is important for determining which parameters have
the largest impact on the dynamics of the spread of the infection. Figures 9 and 10
show the values of the PRCC for the parameters τ, z, p, ω, c at the time intervals of 5
(red, upward hash), 10 (blue, solid), and 20 (black, downward hash) years after 2005
for prevalence and incidence, respectively. Only significant results with p-value <

0.05 are shown.
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Fig. 10 The partial rank correlation coefficient is shown for each of the parameters τ, z, p, ω, c for infections
caused by a casual or long-term partner. Results shown are significant with p-value < 0.05 (color figure
online)

Fig. 11 SIa Ic Ie Iv model where S is the susceptible population, Ia is the acutely infected population, Ic is
the chronically infected and not virally suppressed population, Ie is the infected and early virally suppressed
population, Iv is the infected and virally suppressed population

Figure 9 shows the PRCC values for the total number of infections in Fig. 9a, the
number of acute infections in Fig. 9b, the number of chronic infections in Fig. 9c, and
the number of virally suppressed infections in Fig. 9d. In all figures, the parameter p
is strongly positively correlated with the number of infections, which means as the
parameter value increases, the number of infections increases. The average number of
sex acts per year c and the average number of casual partner z are also positively cor-
related with the number of infections. The average length of a long-term relationship,
τ , is negatively correlated with the number of infections, which means that longer
relationships decrease the number of infections. These correlations are (mostly) inde-
pendent of time, since the magnitude does not change significantly over 5, 10, or 15
years. The PRCC values for the parameters associated with transitioning to the virally
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Table 2 Parameter values and
ranges for LHS-PRCC

Parameter Value range Baseline

μ (1/70,1/50) 1/61

μc (0.01,0.03) 0.291

μv (0.002,0.007) 0.003

σ (0,.2) 0.10

ξ (0.1,0.6) 0.264

τ (0.05,10) 3.57

z (2,40) 12.05

p (0.1,1) 0.749

η (0,0.4) 0.235

ω (0.2,0.8) 0.316

θαz (0,0.7) 0.595

θαp (0,0.3) 0.14

c (26,104) 52

suppressed ω vary over time and even change sign of correlation. The rate at which
the chronically infected transition to virally suppressed (ω) is negatively correlated
with total, acute, and chronic infections, with the largest impact on the prevalence of
chronically infected. The parameter ω is strongly positively correlated with virally
suppressed at 5 years, weakly positively correlated at 10 years and strongly negatively
correlated at 20 years. This effect is seen in Fig. 5 where the steepest growth of the
virally suppressed class in in the five years.

Figure10 shows the sensitivity to new infections caused by long-term or casual by
partnership type, where Fig. 10a corresponds to new infections caused by casual part-
nerships and Fig. 10b corresponds to new infections caused by long-term partnerships.
Aswith the previous figure, τ , average relationship length is negatively correlated with
number of infections and z, c, p are positively correlated with number of infections,
with p more positively correlated with new infections from long-term partnerships
and z more positively correlated with casual partnerships. The parameter ω is neg-
atively correlated but the correlation grows over time for both long-term and casual
partnerships.

The effect of early intervention, the percentage σ , effective condom usage in casual
encounters, θαz , and effective condom usage in long-term partnerships, θαp, are not
significant in the sensitivity analysis. It appears from Fig. 8 that θαp should be signifi-
cant, but not when keeping realistic effective condom usage in long-term partnerships.
In keepingwith the disinclination to use condoms in the long-termpartnerships, we test
only for sensitivity with effective condom usage in the range of 0% to 30% as shown
in Table 2. Also θαz should be significant as well, but we have already assumed a base
of 85% use with a 70% per use effectiveness for receptive anal sex, so this reduces the
sensitivity of the parameter θαz to the number of infections.
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Fig. 12 a and b Illustrate the change in incidence and prevalence as a function of increasing early treatment
to the change in σ , the percentage of successful early interventions. The parameter ε refers to the loss of
viral suppression at a rate of εη, from this early intervention viral suppressed stage

4.6 Early intervention

It has been shown that in addition to prolonging life and the quality of life, there are
significant societal economic benefits to the early diagnosis of HIV (Department of
Health and Human Services 2022). While HIV screening is a key step to this, the
standard test for HIV cannot detect infection during acute stage. However, there are
small clinical studies being done to test for HIV in the acute stage (Granich et al. 2009;
Xiridou et al. 2003; Lindback et al. 2000; Ananworanich et al. 2015; Ford et al. 2018).
We use our mathematical model to investigate the benefits of early intervention if a
readily available and easy-to-use test were to exist and were used extensively.

The parameter σ corresponds to the percentage of acutely infected individuals that
also have early intervention and viral suppression. By introducing the acute class,
Ia into our model, we can investigate the effect of early intervention by diagnosing
HIV in the acute stage rather than the chronic stage. If this test were available, not
only would it help move HIV positive individuals to viral suppression faster, the
individuals could be treated before their healthy CD4 cell counts drop significantly.
The magnitude of the CD4 cell recovery has been shown to be directly correlated with
the CD4 count at the initiation of highly active anti-retroviral therapy (Department of
Health and Human Services (2022)). So we suggest a modification to our model that
might capture the higher CD4 count from early intervention. The flow chart for this
model is shown in Fig. 11. In this model we add a separate category Ie where those
individuals with acute HIV were discovered at a percentage σ and were given early
intervention therapy leading to viral suppression. If those individuals have a higher
CD4 cell count, they may lose viral suppression at a rate lower than η. We denote
this rate of the loss of viral suppression in this early intervention category as εη,
where ε varies between 0 and 1. The only entry to the state Ie is through early testing
and suppression. Once viral suppression is lost, the individuals move to the chronic
state, Ic. If virally suppressed again, they move to the state Iv . With all the ODEs
and definitions for λ suitably updated, we present our theoretical results in Fig. 12. In
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keeping with our earlier simulations, we present results in the year 2015 (10 years
after the start date of our simulation).

If viral suppression is not lost at a lower rate, i.e. εη = η for ε = 1, in Fig. 12a there
is no noticeable lowering in the change of incidence after 10 years for with the long-
term monogamous partnership model (solid black curve) or the long-term and casual
partnershipmodel (black curvewith upright hatches).Wedo see a change in prevalence
at a maximum of −4% and −8% with full successful early intervention, see Fig. 12b,
but there is no reduced rate of suppression lost for these models. However, for viral
suppression lost at a 60% reduction in Ie as compared to Iv , this effect is represented
by the red dashed curve for the long-term monogamous partnership model and the red
circles for the long-term and casual partnership model. In the case where ε = .6, both
the percent change of incidence and prevalence show considerable reductions. This
result is magnified for viral suppression for those individuals in Ie is lost at 20% the
rate of viral suppression loss for those in Iv . The results for ε = .2 is illustrated by
the blue dotted curve for the long-term monogamous partnership model and the blue
pluses for the long-term and casual partnership model. The graphs illustrate a large
reduction in incidence and prevalence for ε = .2, even for low σ . Thus the potential
for this intervention is significant.

5 Discussion

Modeling an MSM population, we considered a staged HIV infection model that
includes susceptible, acutely infected, chronically infected, and virally suppressed
individuals with both casual and long-term partnerships including concurrent partner-
ships. Long-term partnerships play a significant role in the spread of HIV. In contrast to
previous literature, the effect of long-term partnerships on the rate of infection is cap-
tured by a linearized expected value calculation. In Gurski et al. (2023), we compared
the pair formation model with the long-term partnership model. Without concurrency,
the long-term partnership model and the pair formation models are almost identical, as
is the reproduction number of bothmodels. The long-term partnershipmodel has fewer
equations than the pair formation models, provides comparable model dynamics, and
can more easily incorporate concurrency within the model.

We carefully analyzed the impact of each parameter on the reproduction number,
the incidence (new infections), and the prevalence (total infections). The reproduc-
tion number increases as concurrency, number of casual partnerships per year, and
the rate of loss of viral suppression increases. Increasing effective condom usage and
transition rates to treatment decreases the reproduction number. Thus, we suggest
intervention strategies that promote increasing the number and retention of viral sup-
pression. Infections from long-term chronically infected partners are associated with
the highest incidence (58%) of new infections whereas infections from casual part-
nerships with virally suppressed individuals contributed only 1% of the new cases.
The average length of the long-term partnership is inversely related to new infec-
tions and the ratio of new infections from long-term partnerships to long-term and
casual partnerships decreases as a function of relationship length, which illustrates
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the diminishing risk of HIV infection in long-term monogamous relationships (see
Fig. 7).

Figure 3 shows a comparison of our model predictions and CDC data as a means of
validating our model. Our model approximates well the CDC incidence data (Fig. 3b)
within the 95% confidence interval of the CDC data. The difference between the
model predictions and CDC data can be attributed to several confounding factors.
We assumed constant parameter values between 2005 and 2025. The rate of gaining
viral suppression, the rate of losing viral suppression, early treatment intervention
changed during that time period as HAART treatment became more accessible. Addi-
tionally, in 2012, the FDA approved a preventative HIVmedication regimen, the daily
oral antiretroviral pre-exposure prophylaxis (PrEP) (Centers for Disease Control and
Prevention 2012a) that impacted infection rates.

Acutely infected individuals are the most transmissible, but the time in the acute
stage of infection is much shorter than the time in the chronic or virally suppressed
stage of infection. As a result, there has been much speculation on the role of the
acutely infected population plays in the spread of HIV. Figure6 illustrates that while
the long-term chronic partnerships are related to the highest incidence, acutely infected
long-term partnerships contribute 10% of new infections and casual partnerships with
acutely infected individuals contribute 9% of new infections. Our results are consistent
with (Xiridou et al. 2004) who predicted 6% of new infections come from acutely
infected steady partners using a pair formation model with moment closure. Thus,
while almost 20% is a much small contribution of incidence from the acutely infected
population compared with the 70% (58% long-term + 12% casual) from chronically
infected individuals, we note that the numbers of individuals in the acutely infected
population is much smaller than the chronically infected due to the transitionary nature
of the stage of infection. This is reflected in Figs. 4 and 5, where the acutely infected
are 1/10th of the chronically and virally suppressed populations.

Effective condom use has been an intervention strategy to mitigate the spread of
HIV for decades. Our model considered effective condom use in long-term partner-
ships and casual partnerships separately by assuming 85% condom usage for casual
partnerships and 20% condom usage in long-term partnerships. Figure2c shows the
reproduction number decreases with effective condom usage for both long-term and
casual partnerships. Figure8 shows decreased total incidence and prevalence as a
function of effective condom use for both casual and long-term partnerships. The risk
of infection from long-term partners can be mitigated by effective condom use. Our
model predicts that new infections from long-term partnerships from all classes of
infectivity to be approximately 78%, which is consistent with results from Xiridou
et al. (2003) who predicted range of 74–90%. Thus targeting effective condom use in
long-term partnerships can have a potentially large impact. We note that in a stochas-
tic pair formation model of MSM in Sweden (Hansson et al. 2019), effective condom
usage of above 50% in steady partnerships and 60% in casual partnerships was found
to be necessary to driveRe < 1. We note that Sweden was the first country to achieve
and surpass the UNAIDS/WHO 90-90-90 goal (Gisslén et al. 2017) with 90% of
people living with HIV being aware of their HIV status, 95% of HIV diagnosed indi-
viduals are on HAART treatment, and 95% of those on HAART treatment are under
viral suppression. Still even though Sweden is in a significantly different position in
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controlling HIV than the U.S., effective condom usage is equally important. Hence,
our third intervention strategy promotes effective condom usage in long-term part-
nerships. Parameter sensitivity also shows a negative correlation between prevalence
of infection for all classes (acute, chronic, virally suppressed and total) and partner-
ship models (LT and LT & casual) for effective condom use in casual encounters. We
hypothesize that condom effectiveness with long-term partners was not a parameter
with a significant impact because we assume only 20% condom usage with long-term
partnerships, whereas we assumed 85% usage for casual partnerships, consistent with
other works (see Xiridou et al. 2003, for example).

While early detection of HIV in the acute stage of infection is unusual, we include
early treatment in our model since it has been suggested as an intervention (Granich
et al. 2009; Xiridou et al. 2003; Lindback et al. 2000; Ananworanich et al. 2015; Ford
et al. 2018). We represent early treatment with the parameter σ , the fraction of the
acutely infected population that transition directly to the virally suppressed population
rather than transitioning to the chronic stage of infection. Figure12 shows the reduction
in total new infections and total infections, respectively, as more acutely infected
individuals transition to the virally suppressed class. Xiridou et al. (2003) considered
the reduction in infectivity during the chronic phase as a result of HAART initiated
during acute stage and reported that 70–85% increase in HAART administration is
beneficial even considering the increase in infectivity due to risky behavior from
insufficient effective condom usage. We note that the model of Xiridou et al. (2003)
does not contain a virally suppressed class, as we present here. Additionally, our
result for the reduced prevalence of HIV in MSM given increased testing and early
HAART treatment mirrors that of Brogan et al. (2019), although their definition of
early intervention differs from ours. While accurate acute stage HIV tests are not
widely available, small clinical trials are in progress. We investigated the effect of
early intervention in Fig. 12. Our results indicate that more information is needed on
whether viral suppression is lost at a lower rate when the HIV infection is captured and
treated at the acute stage. If the rate of viral suppression lost is significantly reduced,
then early intervention in the acute stage of HIV might be significant in controlling
the spread of HIV.

Incorporating long-term partnerships with casual partnerships into a staged-disease
model that includes acute, chronic, and virally suppressed provided a framework for
three intervention strategies. First, early intervention of acutely infected individu-
als has a significant impact on the incidence of new infections from those acutely
infected. Second, our model demonstrated achieving and maintaining viral suppres-
sion impacts total prevalence of infection in the population for both the model with
long-term monogamous partnerships and long-term partnerships with casual partner-
ships. Finally, focusing on effective condom use in long-term partnerships, where
traditionally behavioral disinhibition has kept effective condom use lower than casual
partnerships, has the potential to significantly change the disease progression. Thus,
the model suggests that these strategies are most impactful to reduce incidence and
prevalence ofHIVwithin theMSMpopulation, to achieve theUNAIDgoal of 95-95-95
by 2030.
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