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Abstract
A continuous time multivariate stochastic model is proposed for assessing the damage
of a multi-type epidemic cause to a population as it unfolds. The instants when cases
occur and the magnitude of their injure are random. Thus, we define a cumulative
damage based on counting processes and a multivariate mark process. For a large
population we approximate the behavior of this damage process by its asymptotic
distribution. Also, we analyze the distribution of the stopping times when the numbers
of cases caused by the epidemic attain levels beyond certain thresholds. We focus
on introducing some tools for statistical inference on the parameters related with the
epidemic. In this regard, we present a general hypothesis test for homogeneity in
epidemics and apply it to data of Covid-19 in Chile.

Keywords Asymptotic distribution · Covid-19 · Homogeneity in epidemics ·
Hypothesis testing · Multivariate analysis

Mathematics Subject Classification 62P10 · 92B10 · 92B05

1 Introduction

The damage caused by an epidemic or pandemic could be enormous. It is the case of
the recent coronavirus disease, which has profoundly impacted the health, economy,
and life of all humanity. On the economic impact of COVID-19, we cite the recent
articles (Liu et al. 2022; Tsiotas and Tselios 2022; Yildirim et al. 2022). Several ways
exist for measuring the mentioned damage. The insufficient number of highly com-
plex hospital beds available for the attention of seriously ill patients is an example. In

B Raúl Fierro
raul.fierro@pucv.cl ; rafipra@gmail.com

1 Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Casilla 4059 Valparaíso,
Chile

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-023-01880-1&domain=pdf
http://orcid.org/0000-0003-0611-6285


47 Page 2 of 30 R. Fierro

Mancini and Paganoni (2019) (see also (Gasperoni et al. 2017)), the authors study the
heart failure prevalence by means of a marked point process, where the length of stay
in the hospital acts as the marks of the process. The total time of occupation of each is
a matter, but it is important to know too when a patient starts using this bed. Moreover,
these times are multivariate, one for each bed. The cumulative damage process stud-
ied in this work accounts for this concern. Several problems produced by epidemics
motivated us to introduce a model for a multi-type epidemic process contributing to
approaching these pathologies. Usually, cumulative shock models for a system are
stochastic. One of their main characteristics is the deterioration due to successive
shocks suffered over time. The damage that an epidemic produces to a (human or not)
population is an example of this situation. Other models, known as extreme models,
assume the cause of the mentioned deterioration to be a shock exceeding a certain
critical level. Since epidemic models used to be from the former type, in this work, we
are concerned with the first type of model and assume the damage to the population
is additive. Epidemics develop into different compartments where individuals interact
among themselves. Some mathematical models for infectious epidemics are of the
type SIR (Kermack 1927) or some of its variants. The acronyms correspond to sus-
ceptible, infected, and removed cases. There are a number the articles dealing with this
subject, which, for deterministic models, are based on differential equations and, for
stochastic ones, on stochastic differential equations of continuous and discontinuous
time. As a recent reference we cite (Ball and Neal 2022) and references therein. Also,
discrete-time versions of thesemodels abound in the literature. Our process, defined as
cumulative damage for epidemics, would estimate the number of infections (epidemic
size), and the multivariate limit time estimates the times for the disease to go extinct
(epidemic duration) (Bolzoni et al. 2019). These models describe the dynamic of the
epidemic and are Markovian, almost always. Since we are mainly interested in the
damage of the epidemic, we relax this last condition. Indeed, we introduce a model
based on a multivariate temporal point process (the ground process) and a multivariate
mark process. The first process gives an account of when an event occurs, while the
second represents the damage caused for this event.We assume independence between
the ground and mark processes, but their components should be correlated. Moreover,
future states could depend on the history of the epidemic, as in the Hawkes process,
which is a remarkable non-Markovian temporal point process used in epidemic mod-
eling (see (Chiang et al. 2022; Holbrook et al. 2022; Hollinghurst et al. 2022; Mancini
and Paganoni 2019), for instance).

Hence, we model the cumulative damage of the epidemic as a multi-time multi-
variate degradation process, where the tolerable damage of the components of the
epidemics occurs when the corresponding cumulative epidemic events reach some
deterministic predetermined levels.Moreover, the timeswhen the cumulative epidemic
events attain these levels are assumed to be random and correlated.

It is worth noting that there are natural phenomena that are not an epidemic them-
selves. However, they have been modeled as if they were. It is the case of some
earthquake mathematical models, known as ETAS models (Kassay and Rădulescu
2019; Molkenthin et al. 2022; Ogata 1988; Ogata and Zhuang 2006). Also, mathemat-
ical epidemic models apply to describe how computational viruses act. With respect
to this issue, we cite (Cohen 1987; Shang 2013; Weera et al. 2023).
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The complexity produced by the correlation among the model components govern-
ing the epidemics and the lack of independence of the epidemic events inter-arrival
times stress us to state asymptotic results for the cumulative damage distribution.
Moreover, a random vector represents the times when the respective components of
this cumulative damage exceed some critical threshold.We also study the joint asymp-
totic distribution of these random times. Moreover, one of the objectives of this paper
is to provide tools allowing us to carry out asymptotic inference on the parameters
of the model. An article aiming at this objective, based on discrete-time models, was
published in Fierro et al. (2018).

Since the homogeneity concept has a distinguished place, we devote a complete
section to introducing a model for a multi-type infectious disease. In this section,
we present a general hypothesis test of homogeneity, and we apply this test to the
COVID-19 epidemic in Chile.

The paper is structured as follows. Section 2 divides into two subsections. The first
one is devoted to motivating the development of this work, while the second one aims
to describe the main finding of this study. In Sect. 3, we introduce an application to
infective diseases. We have subdivided this work into three subsections containing a
hypothesis test of homogeneity, a simulation of a simple hypothesis test, and a numer-
ical data analysis for the COVID-19 epidemic in Chile. We present the asymptotic
results in Sect. 4, which includes CLTs for the multi-time processes and their main
consequences. The multivariate time of failure associated with the epidemic process
and its asymptotic distribution are present in Sect. 5. The proof of results of this work
are in Sect. 6. Finally, in Sect. 7, we make some conclusions about this paper and
project future work.

2 Preliminaries

2.1 Motivation

Although the mathematical support of this paper allows us to approach other facets
of the epidemics theory, we focus on the study of the homogeneity of the population
in the setting where an epidemic develops, and we are interested mainly in infectious
diseases. The homogeneities can occur among different regions where the epidemic
has a place, or else, among age characteristics of the infected individuals. Moreover,
other classifications are also possible.

Some comments about epidemiological studies related to homogeneity motivate
the current work.

Studies in Mancini and Paganoni (2019); Mazzali et al. (2016) considered four
groups as a division of patients presenting heart failure, according to data from their
first hospitalizations. This division into groups performs according to medical criteria.
However, no statistical analysis is present on the homogeneity of data in each group.
We think our methodology would apply to this concern.

In Hacohen et al. (2022), the authors prove that an efficient strategy for dissemi-
nating drugs and vaccines considers the homogeneity of regions for providing such
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dissemination. This strategy may sometimes slow down the supply rate in some loca-
tions. However, thanks to its egalitarian nature, which mimics the flow of pathogens,
it provides a jump in overall mitigation efficiency, potentially saving more lives with
orders of magnitude fewer resources.

According to Zachreson et al. (2022), computational models of infectious dis-
ease can categorize into two types. Individual-based (agent-based) or compartmental
models. While the first ones, in principle, account for all known heterogeneity in
population structure and behavior, in practice, only a few factors can include in any
given framework. The latter is not without criticism either. Although these are advan-
tageous due to their simple formulation and small parameter space, they deserve two
primary critiques. First, they are based on differential equations and consequently
ignore the past. A second common critique is that compartmental models are limited
in their capacity to account for heterogeneities in population properties and struc-
ture. In the compartmental approach, individuals in each compartment have identical
disease susceptibility, infectiousness, and contact frequency with others. As we see,
it is convenient to know how much homogeneity there is in each subpopulation. A
deterministic model accounting for this issue appears in Hethcote and Van Ark (1987).

Regarding COVID-19, the study, carried out in Hananel et al. (2022), examines
the relationship between urban diversity and epidemiological resilience by assessing
the neighborhood homogeneity versus the probability of being infected. This study
shows the more homogeneous the population is, the more probable of contracting the
disease. Although in a different context, the authors in He et al. (2022) attain similar
conclusions. According to this model, individualism and egalitarianism act a favor of
disease prevalence, while cultural heterogeneity was associated with a more robust
public health response. Consistent with this model, the culture and state action act as
substitutes in motivating compliance with COVID-19 policy.

As we see, the knowledge of different homogeneities in epidemics contributes to
the strategies to face the disease prevalence.

2.2 Main findings

In what follows, {ξ k}k∈N stands for a sequence of independent and identically dis-
tributed p-variate random vectors with mean μ = (μ1, . . . , μp)

� and covariance
matrix � = (σi j ; 1 ≤ i, j ≤ p). Moreover, N 1, . . . , N p denote p nonexplo-
sive counting processes. We define the cumulative damage epidemic model, at the
multi-time t = (t1, . . . , tp)� ∈ R

p
+, as Wt = (W 1

t1 , . . . ,W
p
tp ), where

W j
t =

N j
t∑

k=1

ξ
j
k , j = 1, . . . , p, t ∈ R+.

Different interpretations this randomcomponent could have.Afirst example:W j
t is the

number of ill individuals at time t in the place j , or having age j . A second example:
W j

t is the total time, before t , that the bed j in a hospital has remained occupied.

123



Cumulative damage for multi-type epidemics... Page 5 of 30 47

Let {an}n∈N be a sequence of strictly positive real numbers converging to ∞ and,
for each n ∈ N, Wn

t = (1/an)Wn t . The main mathematical achievement of this
work is to obtain the limit (or asymptotic) distribution of Wn

t . Because observing the
development of the epidemic, this fact allows knowing the limit distributions for the
estimators of μ and �.

Let us denote the random multi-time Tn = (T n
1 , . . . , T n

p ) describing the times
when the components of the epidemic model attain critical values. That is

T n
j = inf

{
t > 0 : 1

an
W j

nt > ω∗
j

}
, j = 1, . . . , p,

whereω∗
j is the critical admissible value for the j-th component of the epidemicmodel.

From the asymptotic distribution of Wn
t , we obtain the limit distribution of Tn .

Also, the asymptotic distribution of Wn
t allows us to derive tests of homogeneity

for diverse subsets of {μ1, . . . , μp}. We apply this result to, in general, the COVID-19
epidemic and, in particular, the development of this epidemic in Chile.

3 Amodel for multi-type infectious diseases

Suppose an infectious epidemic is affecting a population of size k, which is subdivided
into p subpopulations labeled by a set J = {1, . . . , p}. For each j ∈ J , the j th
subpopulation consists of ki individuals and we denote π j = k j/k. Infections are
occurring, in the whole population, in some times of jumps of a counting process
N , with cumulative intensity � = {�t }t≥0. The random vectors, included before in
our general formulation, are used for determining in what subpopulation the infection
takes place. Indeed, we assume {ξ k}k∈N is a sequence of independent and identically
distributed random vectors taking values in {0, 1}p, where for each k ∈ N \ {0}, one
and only one of the components of ξ k = (ξ1k , . . . , ξ

p
k )� takes the value 1. Also, it is

assumed {ξ k}k∈N independent of N . By defining μ j = P(ξ
j
k = 1), we have ξ k has

mean μ = (μ1, . . . , μp)
� and covariance matrix � = (σi j ; 1 ≤ i, j ≤ p), where

σi j =
{

μi (1 − μi ) if i = j;
−μiμ j if i �= j .

It is easy to see that, for each j = 1, . . . , p, N j , defined as N j
t = ∑Nt

k=1 ξ
j
k , is a

counting process with cumulative intensity � j = μ j�. Notice that N j
t denotes the

number of infections taking place in the j th compartment into the time interval [0, t].
Moreover, μ1, . . . , μp are parameters giving account of the virulence of the infection
for the corresponding subpopulation. Notice that N = N 1 + · · · + N p and, for each
j ∈ J , N j has cumulative intensity � j = μ j�. The counting process N j describes
the adequate contacts among infected and susceptible individuals in subpopulation j .
An adequate contact of an infective is an interaction that results in infection of the
other individual if he or she were susceptible (see (Hethcote and Van Ark 1987)). We
want to know how the infectious disease affects the subpopulations. In particular, we
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are interested in finding out if individuals belonging to some groups of subpopulations
have the same rate of infectiousness. To this purpose, the set J is partitioned into r
nonempty subsets J1, . . . , Jr , with r < p. That is, J = J1∪· · ·∪ Jr with Ju ∩ Jv = ∅,
for u �= v.

3.1 A hypothesis test of homogeneity

For each j ∈ {1, . . . , p} and u = 1, . . . , r , let β j = μ j/k j and p(u) be the cardinality
of Ju . That is, β j is the infection rate per capita within subpopulation j and p(1) +
· · · + p(r) = p. In order to find out whether the events affect homogeneously some
groups of subpopulations, a hypothesis test is proposed. For this purpose, the null
hypothesis is stated as: for each u = 1, . . . , r , βi = β j , for all i, j ∈ Ju . By denoting
β(u) = 1

p(u)

∑
j∈Ju β j , for each u = 1, . . . , r , the null hypothesis is summarized as

H0 : ∀u ∈ {1, . . . , r},∀ j ∈ Ju, β j = β(u).

Notice that, for each u = 1, . . . , r , β(u) represents the infection rate per capita within
the subpopulation u. For each j = 1, . . . , p and n ∈ N, the cumulative intensity of
{N j

nt }t≥0 at t ≥ 0, is given by �
n, j
t = k jβ j�nt . These processes are observed during

a time interval [0, θ ], where θ > 0 is a time threshold. The likelihood function, L, for
β = (β1, . . . , βp)

� (see (Brémaud 1981; Karr 1991), for instance), satisfies

L(β1, . . . , βp) = Cn

p∏

j=1

exp
(
log(β j )N

j
nθ − k jβ j�nθ

)
,

where Cn = ∏p
j=1 exp

(∫ nθ

0 log(k jλs) dN
j
s + nθ

)
and λ = {λt }t≥0 denotes the

intensity of N , i.e. �t = ∫ t
0 λs ds, for all t ≥ 0. Under H0, this likelihood satisfies

L0(β(1), . . . , β(r)) = Cn

r∏

u=1

exp

⎧
⎨

⎩log(β(u))
∑

j∈Ju

N j
nθ − k(u)β(u)�nθ

⎫
⎬

⎭ .

Consequently, maximum likelihood estimators for β j , j = 1, . . . , p, and β(u), u =
1, . . . , r , are given by

β̂n
j = N j

nθ

k j�nθ

and β̂n(u) =
∑

j∈Ju N
j
nθ

k(u)�nθ

, (1)

respectively. Hence,

β̂n(u) =
∑

j∈Ju

π j (u)β̂n
j , (2)

where π j (u) = k j/k(u) and k(u) = ∑
m∈Ju km , for all j ∈ Ju and u = 1, . . . , r .
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The likelihood ratio, for testing H0 against H0 fails to be true, is given by

Rn = L0(β̂
n(1), . . . , β̂n(r))

L(β̂n
1 , . . . , β̂n

p)
.

Hence,

−2 logRn = −2
r∑

u=1

∑

j∈Ju

{
log

(
β̂n(u)

β̂n
j

)
N j
nθ − k j

(
β̂n(u) − β̂n

j

)
�nθ

}

and taking into account that log x = (x − 1) − 1
2 (x − 1)2 + O((x − 1)3), we have

− 2 logRn 
 �nθ

r∑

u=1

∑

j∈Ju

k j
β̂n
j

(
β̂n(u) − β̂n

j

)2
. (3)

Accordingly, we reject the null hypothesis if the test statistic −2 logRn is too large.
To testH0 against local alternatives, the following theorem is stated.

Theorem 1 Let {an}n∈N be an increasing sequence of positive real numbers and sup-
pose that {�t }t≥0 is uniformly integrable and there exists h : R+ → R+ such that,
h(θ) > 0 and

1

an
�nθ

P−→
n→∞ h(θ).

Let {Hn}n∈N be the sequence of local alternatives to the null hypothesis defined as

Hn : ∀u ∈ {1, . . . , r},∀ j ∈ Ju, β j = β(u) + 
 j (u)√
an

,

where (
 j (u); j ∈ Ju) ∈ R
p(u) and

∑
j∈Ju 
 j (u) = 0, for all u = 1, . . . , r . Then,

under {Hn}n∈N, −2 logRn has non central χ2-asymptotic distribution with p − r
degrees of freedom and non-centrality parameter

�2 = h(θ)

r∑

u=1

k(u)

β(u)

⎧
⎪⎨

⎪⎩

∑

m∈Ju

πm(u)
m(u)2 −
⎛

⎝
∑

m∈Ju

πm(u)
m(u)

⎞

⎠
2
⎫
⎪⎬

⎪⎭
.

3.2 Simple hypothesis testing

A natural application of Theorem 1 is to calculate the approximate power of the test
relative to

H0 : ∀u ∈ {1, . . . , r},∀ j ∈ Ju, β j = β(u),
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against the alternative

H1(δ) : ∀u ∈ {1, . . . , r},∀i, j ∈ Ju, β j = β(u) + δ j (u),

where β(1), . . . , β(r) ∈ R+ and, for each u = 1, . . . , r , δu = {δ j (u)} j∈Ju is given
and satisfies

∑
j∈Ju δ j (u) = 0.

Suppose that the critical region is {−2 logRn > r0}, where r0 has been calculated
for a level of significance α based upon the null hypothesis asymptotic chi-square
distribution of −2 logRn . For each u = 1, . . . , r , we interpret 
1(u), . . . ,
pu (u)

in Hn (defined as in Theorem 1) as
√
anδ1(u), . . . ,

√
anδpu (u) and approximate the

power of the test by means of the probability of {χ2 ≤ r0}, where χ2 is a random
variable having chi square distributionwith p−r degrees of freedomandnon-centrality
parameter

�2 = anh(θ)

r∑

u=1

k(u)

β(u)

⎧
⎪⎨

⎪⎩

∑

m∈Ju

πm(u)δm(u)2 −
⎛

⎝
∑

m∈Ju

πm(u)δm(u)

⎞

⎠
2
⎫
⎪⎬

⎪⎭
,

Let λn : R
p → [0, 1] be the power function defined as λn(δ) = P(−2 logRn >

r0|H1(δ)). It follows fromSun et al. in Sun et al. (2010) that the cumulative distribution
function corresponding to a non-central χ2-distribution is decreasing with respect to
its non-centrality parameter. Accordingly, the power of the test is increasing with
respect to this parameter, which at the same time, depends on the direction of δ.

To compare the power of a test, for different values of δ, we restrict the power
function to the set of all δ = {δ j (u)}u=1,...,r , j∈Ju satisfying

r∑

u=1

∑

j∈J (u)

δ j (u)2 = 1.

To analyze the power of the test proposed, at the beginning of this subsection, a simula-
tion is conducted. Indeed,we suppose a populationof 120 individuals is subdivided into
12 subpopulations. These subpopulations belong to one of three compartments with 3,
4, and 5 subpopulations each, respectively. The respective parameters areβ(1) = 0.05,
β(2) = 0.03, and β(3) = 0.01. We consider k1 = · · · = k12 = 10 and suppose N is a
Poisson process with cumulative intensity �t = t + t1/2 and an = n. Hence h(θ) = θ

and we consider θ = 30. Let γ = (0.408283, 0.408283,−0.8164966)� and consider
the following four vectors δ1, δ2, δ3 and δ4 defined as

δ1 =
(

γ

09

)
, δ2 =

⎛

⎝
03
γ

06

⎞

⎠ , δ3 =
⎛

⎝
06
γ

03

⎞

⎠ , and δ4 =
(
09
γ

)
,

where, for i = 3, 6, 9, 0i denotes the zero vector in R
i . The non-centrality parameters

of the test, for these vectors, are respectively given, by
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Fig. 1 Profiles of the power function for n = 5, 10 and four different directions

�2(δ1) = 400n, �2(δ2) = 1, 111, �2(δ3) = 8, 690, and �2(δ4) = 10, 000.

Based on these directions, four profiles λi : (−4/100, 4/100) → R (i = 1, 2, 3, 4)
of the power function are defined as λi (t) = λn(tδi ). That is λi (t) = P(−2 logRn >

r0|H1(tδi )), where r0 is determined by means of P(−2 logRn > r0|H0) = 0.05.
Since underH0, −2 logRn has an approximate chi square distribution with 9 degrees
of freedom, we have r0 = 16, 9190. In Fig. 1 , we show the graphics of these four
profiles, for n = 5 and n = 10. Since the non-centrality parameter of the test increases
with i = 1, 2, 3, 4, we have λ1 ≤ λ2 ≤ λ3 ≤ λ4.

3.3 An application with real data

Important applicability of our results is found in the infectious diseases field. In partic-
ular, we apply the asymptotic results of this work to the pandemic Covid 19 in Chile.
This country is divided into sixteen regions and, according to the last census carried
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out in 2017, the population distribution and its density, for each region, is given in
Table 1.

Like all countries in the world, Chile has been affected by the aforementioned
pandemic and we assume the number of contacts, in this country, occurs according
to a counting process, N = {Nt }t≥0 with cumulative intensity � = {�t }t≥0. Since
� is unknown, we estimate such a cumulative intensity, at time t , as �t = Nt . We
divide the population into three zones, namely, North, South, and Central zones, and
investigate if the infection has a homogeneous behavior within each zone. To this
purpose, hypothesis test, with a significance level of α = 0.05 is carried out and the
pandemic is followed up from March 29 to April 30, 2021. Data was obtained from
the database of Ministry of Health of the Chilean Government, which can be found
on the website https://www.gob.cl/coronavirus/cifrasoficiales/#datos.

The null hypothesis is defined as follows

H0 : the infection affects homogeneously each of the three zones.

According to (2), the infection rate per capita, for the zones North, Central and
South are estimated by

β̂n(North) = 5, 008 · 10−11, β̂n(Central) = 5, 579 · 10−11,

and β̂n(South) = 6, 297 · 10−11,

respectively. From Theorem 1, −2 logRn has chi square distribution with 13-degree
freedom. The calculated value of −2 logRn gave us 6, 618, which is too large com-
pared with 22.362. Consequently, the null hypothesis is rejected. But, observing Fig. 2
, it seems possible that four pairs of subpopulations have a homogeneous behavior. Let
Gi , i = 1, . . . , 4 be defined according Table 2. The statistics −2 logRn has, in this
case, chi square distribution with 4-degree freedom. It is obtained 6.692 as the calcu-
lated value of −2 logRn . Since this value is smaller than 10.712, it is not possible to
reject the homogeneity behavior of the pandemic in the population, with a significance
level of α = 0, 05. The p-value turns out to be p = 0.155.

4 Asymptotic results

In the sequel, (�,F , P) stands for a probability space and every random vari-
able or stochastic process is defined on this space. For a matrix or vector A, A�
denotes the transpose of A. Let F be a filtration on (�,F , P) and M be a p-
variate square integrable martingale with respect to (F, P). In this case, we denote
the matrix 〈M〉 = (〈e�

i Me j 〉; 1 ≤ i, j ≤ p), where {e1, . . . , ep} is the canonical
basis in R

p and 〈e�
i Me j 〉 is the predictable increasing process associated to the one-

dimensional (F, P)-martingale e�
i Me j . Given (a1, . . . , ap)� ∈ R

p, we denote by
Diag(a1, . . . , ap) the diagonal matrix whose respective elements in its diagonal are
a1, . . . , ap.
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Fig. 2 Bar plot for the infection rate per capita, ordered in increasing way for the different regions

Natural componentwise definitions for ≺, � and �, � on R
p could be given as

follows. Let a = (a1, . . . , ap)� and b = (b1, . . . , bp)� in R
p. We put a � b

(respectively, a ≺ b), if and only if, for each i = 1, . . . , p, ai ≤ bi (respectively,
ai < bi ). Moreover, a � b and a � b mean b ≺ a and b � a, respectively.
As usual, for a, b ∈ R, the maximum and minimum of the set {a, b} are denoted
by a ∨ b and a ∧ b, respectively. Also, a ∨ b = (a1 ∨ b1, . . . , ap ∨ bp)� and
a∧b = (a1∧b1, . . . , ap∧bp)�.Moreover,wedenote [a, b] = [a1, b1]×· · ·×[ap, bp],
(a, b] = (a1, b1] × · · · × (ap, bp], [a, b) = [a1, b1) × · · · × [ap, bp) and (a, b) =
(a1, b1) × · · · × (ap, bp).

In what follows, {ξ k}k∈N stands for a sequence of independent and identically
distributed p-variate random vectors with mean μ = (μ1, . . . , μp)

� and covariance

matrix � = (σi j ; 1 ≤ i, j ≤ p). For each k ∈ N and j = 1, . . . , p, ξ j
k denotes the j-

th component of ξ k . Let N
1, . . . , N p be p nonexplosive counting processes, adapted

to a filtration G = {Gt }t≥0 and such that, for each j = 1, . . . , p, N j has predictable
compensator � j , which we assume continuous, i.e., there exists a G-progressive and
nonnegative process λ j such that, �

j
t = ∫ t

0 λ
j
s ds, for all t ≥ 0. As a consequence,

we have N j − � j is a (G, P)-martingale, for for each j = 1, . . . , p. These counting
processes could be dependent, butwe assume that they are independent of the sequence
{ξ k}k∈N of random vectors. To be more precise, in the sequel, we assume the sequence
{ξ k}k∈N is independent of G∞, the σ -algebra generated by

⋃
t≥0 Gt .

One of the most important aims of this work consists of studying the asymptotic
distribution of the cumulative damage of the epidemic, which is represented, at the
multi-time t = (t1, . . . , tp)� ∈ R

p
+, by the p-random multi-indexed vector Wt =
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(W 1
t1, . . . ,W

p
tp )

� defined by

W j
t =

N j
t∑

k=1

ξ
j
k , j = 1, . . . , p, t ∈ R+.

Accordingly, W j
t represents the cumulative damage of the epidemic, at time t ≥ 0, of

the j-th component of the epidemic.
For any pair i, j = 1, . . . , p, let

N (i, j)
t =

∞∑

m=1

I{T (i, j)
m ≤t},

where {T (i, j)
m }m∈N is the sequence of stopping times defined by recurrence as T (i, j)

0 =
0 and

T (i, j)
m = inf{t > T (i, j)

m−1 : I{Ni
t =N j

t }
Ni
t 
N j

t > 0}, for m ≥ 1.

The compensator of N (i, j), with respect toG, is denoted by�(i, j) andwe assume�(i, j)

has continuous trajectories. Consequently N (i, j) is a left quasi continuous process.
Let {hi j ; 1 ≤ i, j ≤ p} be a family of nonnegative functions from R+ to R and

{an}n∈N be a sequence of strictly positive real numbers converging to ∞ and such
that, for each pair i, j = 1, . . . , p and t ≥ 0, {�(i, j)

nt /an}n∈N is uniformly integrable
and {�(i, j)

n· /an}n∈N converges uniformly in probability to hi j , on compact subsets
of R+. For each j = 1, . . . , p, we denote h j = h j j . Since the cumulative damage

of the epidemic is represented by the random sums W j
t ( j = 1, . . . , p, t ∈ R+),

we are interested in investigating the convergence in law of the sequences {Un}n∈N
and {V n}n∈N of p-variate random processes Un = (Un,1, . . . ,Un,p)� and V n =
(V n,1, . . . , V n,p)� defined as

Un, j
t = 1√

an

(
W j

nt − μ j N
j
nt

)
and V n, j

t = 1√
an

(
W j

nt − μ j�
j
nt

)
.

Theorem 2 Let A(t) = (σi j hi j (t); 1 ≤ i, j ≤ p) and B(t) = (μiμ j hi j (t); 1 ≤
i, j ≤ p), for each t ≥ 0. Then, the following two conditions hold:

(i) {Un}n∈N converges in law to a continuous Gaussian p-variate square integrable
martingale, U starting at 0 with 〈U〉t = A(t), for each t ≥ 0, and

(ii) {V n}n∈N converges in law to a continuous Gaussian p-variate square integrable
martingale, V starting at 0 with 〈V 〉t = A(t) + B(t), for each t ≥ 0.

Proposition 3 Let t = (t1, . . . , tp)� ∈ R
p
+ and for each n ∈ N, ˜U

n
t =

(Un,1
t1 , . . . ,Un,p

tp )� and ˜V
n
t = (V n,1

t1 , . . . , V n,p
tp )�. Then, the sequences { ˜U

n
t }n∈N and

{ ˜V
n
t }n∈N converge in distribution to two p-variate normal random vectors ˜Ut and
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˜Vt with mean zero and covariance matrices ˜�U (t) =
(
σ̃U
i j (t); 1 ≤ i, j ≤ p

)
and

˜�V (t) =
(
σ̃ V
i j (t); 1 ≤ i, j ≤ p

)
, respectively, defined by

σ̃U
i j (t) = σi j hi j (ti ∧ t j ) and σ̃ V

i j (t) = (σi j + μiμ j )hi j (ti ∧ t j ). (4)

Let t = (t1, . . . , tp) ∈ R
p
+. Since for each j = 1, . . . , p, W j

nt − μ j N
j
nt and

W j
nt − μ j�

j
nt are martingales, the p-variate parameter μ = (μ1, . . . , μp)

� can be
estimate by μ̂

n
t = (μ̂n

1(t1), . . . , μ̂
n
p(tp))

� and ν̂
n
t = (̂νn1 (t1), . . . , ν̂np(tp))

�, where for
each j = 1, . . . , p,

μ̂n
j (t j ) = W j

nt j

N j
nt j

and ν̂nj (t j ) = W j
nt j

�
j
nt j

.

For each t = (t1, . . . , tp)� and n ∈ N \ {0}, let Nn
t = (N 1

nt1, . . . , N
p
ntp )

� and �n
t =

(�1
nt1, . . . , �

p
ntp )

�.

Corollary 4 With notations of Proposition 3, for each t = (t1, . . . , tp)� ∈ R
p
+,

{μ̂n
t }n∈N and {̂νnt }n∈N converge in probability to μ. Furthermore, the sequences

of random vectors {√an(μ̂
n
t − μ)}n∈N and {√an (̂ν

n
t − μ)}n∈N converge in dis-

tribution to a p-variate normal random vector with mean zero and covari-
ance matrices D−1

˜�U (t)D−1 and D−1
˜�V (t)D−1, respectively, where D =

Diag(h1(t1), . . . , h p(tp)).

Let t = (t1, . . . , tp)� ∈ R
p
+ and Wt = (W 1

t1, . . . ,W
p
tp )

�, where for each

j = 1, . . . , p and t ≥ 0, W j
t is defined as before. Accordingly, W j

t represents the
cumulative damage, at time t ≥ 0, of the j-th component of the epidemic. The study of
the asymptotic behavior of this cumulative damage is based on the sequence {Wn}n∈N
of random vectors defined asWn

t = (W 1
nt1, . . . ,W

p
ntp )

�, for all t = (t1, . . . , tp) ∈ R
p
+.

In the sequel, for each t = (t1, . . . , tp)� ∈ R
p
+, we denote w t = (w1

t1, . . . , w
p
tp )

�,
where for each j = 1, . . . , p and t ≥ 0, w j

t = μ j h j (t).

Proposition 5 For each t = (t1, . . . , tp) ∈ R
p
+, {(1/an)Wn

t }n∈N converges in
probability to w t .

Proposition 5 motivates the existence of a large deviation principle (LDP) for the
sequence {(1/an)Wn

t }n∈N.
Let (E, d) be a metric space. A good rate function is any lower semicontinuous

function L∗ from E to [0,∞] such that for each c > 0, {L∗ ≤ c} is compact. Given
a sequence {Zn}n∈N of random elements taking values in E and a good rate function
L∗ defined on E , in this work, we say that {Zn}n∈N obeys an LDP with the good
rate function L∗, whenever there exists a sequence {an}n∈N of strictly positive real
numbers converging to ∞ such that the following two conditions hold:

i) for each closed subset F in E , lim sup 1
an

logP(Zn ∈ F) ≤ − inf x∈F L∗(x), and
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47 Page 16 of 30 R. Fierro

ii) for each open subset G in R
p, lim inf 1

an
logP(Zn ∈ G) ≥ − inf x∈G L∗(x).

The following LDP holds.

Theorem 6 Suppose E(eθ�ξ0) < ∞, for each θ ∈ R
p. Let t = (t1, . . . , tp)� ∈ R

p
+

and L t : R
p → [0,∞] be defined as

L t(θ1, . . . , θp) =
p∑

j=1

h j (t j )
(
E(eθ j ξ

j
1 ) − 1

)
.

Then, {(1/an)Wn
t }n∈N obeys an LDP with the good rate function L∗

t : R
p → [0,∞],

the Fenchel-Legendre transform of L t , i.e.

L∗
t (x) = sup

θ∈Rp
[θ�x − L t(θ)], for all θ ∈ R

p. (5)

5 Amultivariate stopping time

As before, in this section, it is assumed that {ξ k}k∈N and G∞ are independent. Addi-
tionally, we suppose ξ0 � 0, P-almost surely, and, in order to avoid trivial special
cases, it is assumed μ j > 0, for each j = 1, . . . , p. In order to know the useful life
of the system, we define a multivariate stopping time Tn = (T n

1 , . . . , T n
p )� as

T n
j = inf

{
t > 0 : 1

an
W j

nt > ω∗
j

}
,

where ω∗
j is the critical admissible value for the j-th component of the epidemic.

It seems reasonable to pay attention to this component when the time T n
j has been

attained. In the sequel, we denote ω∗ = (ω∗
1, . . . , ω

∗
p)

�.

Corollary 7 Suppose E(eθ�ξ0) < ∞, for each θ ∈ R
p. Let t ∈ R

p
+ and L∗

t be defined
as in (4). Then,

lim
n→∞

1

an
logP(Tn � t) = −L∗

t (ω
∗ ∨ w t). (6)

A function h : R+ → R+ is said to be homogeneous with degree of homogeneity
k > 0, whenever for all α, t ∈ R+, h(αt) = αkh(t). We say that a nonexplosive
counting process, N is asymptotically homogeneous with degree of homogeneity
k > 0, whenever {(1/an)Nnt }n∈N converges in probability to h(t), for all t ∈ R+,
where h : R+ → R+ is homogeneous with degree of homogeneity k.

It is clear that the standard Poisson process is a Markovian process and asymptot-
ically homogeneous with degree of homogeneity 1. The standard Hawkes process is
also a counting process asymptotically homogeneous with degree of homogeneity 1,
however, this process is not Markovian (c.f. (Bacry et al. 2013; Fierro 2015)).
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Example Suppose N 1, . . . , N p are asymptotically homogeneous processes with
degree of homogeneity 1, rate 1, and for each k ∈ N, P(ξ k = e j ) = π j , where
e1, . . . , ep are the vectors of the canonical basis on R

p and π1, . . . , πp are strictly
positive numbers such that π1 + · · · + πp < 1. In this case, we have an = n and

h(t) = t , where h1 = · · · = h p = h and since E(eθ j ξ
j
1 ) = (1 − π j ) + π j eθ j , we

have, for each x = (x1, . . . , xp)� ∈ R
p and t = (t1, . . . , tp)� ∈ R

p,

L t(x) =
p∑

j=1

π j t j (e
θ j −1)

and hence

L∗
t (x1, . . . , xp) =

p∑

i=1

[
xi

{
log

(
xi

πi ti

)
− 1

}
+ πi ti

]
.

Moreover, by assuming for each j = 1, . . . , p, μ j t j ≤ ω j , Corollary 7 implies that

lim
n→∞

1

n
logP(Tn � t) = −

p∑

i=1

[
ω∗
i

{
log

(
ω∗
i

πi ti

)
− 1

}
+ πi ti

]
I[0,ω∗

i /πi ](ti ).

In the sequel, we denote θ∗ = (θ1, . . . , θp)
�, where θ j = h−1

j (ω∗
j/μ j ), for each

j = 1, . . . , p. From Proposition 5,wt is a parameter whose components represent the
asymptotic charge of the epidemic at the multi-time t . Hence, it is expected that wt to
be close to ω∗ when t is close to θ∗. Theorem 8 below states the asymptotic behavior
of {Tn}n∈N\{0} around θ∗.

Theorem 8 Suppose, for each j = 1, . . . , p, the following two conditions hold:

(i) for each t > 0,
{√

an sup0≤s≤t

∣∣∣ 1
an

�
j
ns − h j (s)

∣∣∣
}

n∈N converges in probability to

zero, and
(ii) h j is differentiable at θ∗

j with derivative h
′
j (θ

∗
j ) > 0.

Then, {Tn}n∈N\{0} converges in probability to θ∗ and
{√

an(Tn − θ∗)
}
n∈N\{0} con-

verges in distribution to a normal random vector with mean zero and covariance
matrix �(θ∗) = (ψi j (θ

∗); 1 ≤ i, j ≤ p), where

ψi j (θ
∗) = (σi j + μiμ j )hi j (θ∗

i ∧ θ∗
j )

μi h′
i (θ

∗
i )

, 1 ≤ i, j ≤ p.

Corollary 9 Suppose, for each j = 1, . . . , p, h j is homogeneous with degree of
homogeneity k > 0 and the following two conditions hold:

(i) for each t > 0, {n−k/2 sup0≤s≤t |� j
ns − h j (ns)|}n∈N converges in probability to

zero, and
(ii) h j is differentiable at θ∗

j , with derivative h
′
j (θ

∗
j ) > 0.
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47 Page 18 of 30 R. Fierro

Then, {Tn}n∈N\{0} converges in probability to θ∗ and
{
nk/2(Tn − θ∗)

}
n∈N\{0} con-

verges in distribution to a normal random vector with mean zero and covariance
matrix

�(θ∗) =
(

(σi j + μiμ j )hi j (θ∗
i ∧ θ∗

j )

μi h′
i (θ

∗
i )

; 1 ≤ i, j ≤ p

)
.

Example Suppose N 1, . . . , N p are asymptotically homogeneous processes with
degree of homogeneity k > 0 and continuous and strictly positive intensities
λ1, . . . , λp, which are homogeneous with degree of homogeneity k > 0. In this
case, �1, . . . , �p are homogeneous with degree of homogeneity k + 1 and for each
j = 1, . . . , p and t ≥ 0, � j (t) = h j (t), where h j (t) = ∫ t

0 λ j (s) ds. Accordingly,
conditions (i) and (ii) in Corollary 9 hold and consequently,

{
n(k+1)/2(Tn − θ∗)

}
n∈N

converges in distribution to a normal random vector with mean zero and covariance
matrix

�(θ∗) =
(

(σij + μiμ j )hij(θ∗
i ∧ θ∗

j )

μiλi (θ
∗
i )

; 1 ≤ i, j ≤ p

)
.

We are assuming that, for each pair i, j = 1, . . . , p and t ≥ 0, {�(i, j)
nt /an}n∈N is

uniformly integrable and {�(i, j)
n· /an}n∈N converges uniformly in probability to hi j ,

on compact subsets of R+. Even though, the distribution of each Ni , i = 1, . . . , p,
depends only on its intensity λi , the functions hi j , 1 ≤ i < j ≤ p depend on the joint
distribution of N 1, . . . , N p. For instance, for N 1, . . . , N p without common jumps,
we have

�(θ∗) = Diag

(
(σ11 + μ2

1)h1(θ
∗
1 )

μ1λ1(θ
∗
1 )

, . . . ,
(σpp + μ2

p)h p(θ
∗
p)

μpλp(θ∗
p)

)

and, for N 1 = · · · = N p, the covariance matrix is given by

�(θ∗) =
(

(σi j + μiμ j )h(θ∗
i ∧ θ∗

j )

μiλ(θ∗
i )

; 1 ≤ i, j ≤ p

)
,

where for each j = 1, . . . , p and t ≥ 0, � j (t) = h(t) = ∫ t
0 λ(s) ds.

If, additionally, the random vectors ξ k , k ∈ N, are distributed as in Example 5, then
�(θ∗) is a diagonal matrix, irrespective of whether N 1, . . . , N p are equal or they have
no common jumps. Indeed, in any case we have

�(θ∗) = Diag

(
ω∗
1

π1λ1(θ
∗
1 )

, . . . ,
ω∗
p

πpλp(θ∗
p)

)
.
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Both in Theorem 8 and Corollary 9, the asymptotic covariance matrix �(θ∗)
depends on the parameter θ∗. This fact produces some difficulties when applying
these results to statistical inference about the parameter θ∗. To avoid these complica-
tions, we denote by L(θ∗) the matrix in the Cholesky descomposition of �(θ∗), i.e.
L(θ∗) is the unique lower triangular matrix satisfying �(θ∗) = L(θ∗)L(θ∗)�. After
that, studentized versions of the above results are stated as follows.

Corollary 10 Suppose, for each j = 1, . . . , p, h j is continuously differentiable at
θ∗
j with derivative h j (θ

∗
j ) > 0. Then, the sequence {√anL(θ∗)−1(Tn − θ∗)}n∈N\{0}

converges in distribution to a normal random vector with mean zero and covariance
matrix Ip, the p × p-identity matrix.

Corollary 11 Suppose, for each j = 1, . . . , p, h j is continuously differentiable at
θ∗
j with derivative h j (θ

∗
j ) > 0. Then, the sequence {√anL(Tn)−1(Tn − θ∗)}n∈N\{0}

converges in distribution to a normal random vector with mean zero and covariance
matrix Ip, the p × p-identity matrix.

Corollary 12 Suppose, for each j = 1, . . . , p, h j is continuously differentiable at
θ∗
j with derivative h j (θ

∗
j ) > 0. Then, {an(Tn − θ∗)��(Tn)−1(Tn − θ∗)}n∈N\{0}

converges in distribution to a chi-square random variable with p degrees of freedom.

6 Proofs of results

As usual, for a stochastic process, X : R+ × � → R and t ≥ 0, Xt and 
Xt denote
the random variables X(t, ·) and Xt − Xt−, respectively, where Xt− = lims↑t , for
each t > 0 and X0− = 0.

Notice that, for each t > 0 and i, j = 1, . . . , p,

I{Ni
u=N j

u }
Ni
u
N j

u = I{Ni
u−=N j

u−}
Ni
u
N j

u

and hence

N (i, j)
t =

∫

(0,t]
I{Ni

u=N j
u }
Ni

u dN
j
u =

∫

(0,t]
I{Ni

u−=N j
u−}
N j

u dNi
u .

Given a family C of random variables, σ(C) denotes the σ -algebra generated by C.
For any j = 1, . . . , p andm, n ∈ N, let C j,m,n

t = {ξ j
0 , . . . , ξ

j
m}∪Gnt . A new filtration

F
n = {Fn

t }t≥0, on (�,F , P), is defined as

Fn
t = {A ∈ F : ∀ j = 1, . . . , p,∀m ∈ N, A ∩ {N j

nt = m} ∈ σ(C j,m,n
t )}.

It is easy to see that indeed F
n is a filtration on (�,F , P) and that for each t > 0,

Fn
t− = {A ∈ F : ∀ j = 1, . . . , p,∀m ∈ N, A ∩ {N j

nt− = m} ∈ σ(C j,m,n
t− )},

where C j,m,n
t− = {ξ j

0 , . . . , ξ
j
m} ∪ Gnt−.
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As usual, D(R+, R
p) stands for the Skorohod space of all right-continuous

functions from R+ to R
p having left-hand limits.

The above technical resources are used for proving the convergence in law of certain
(Fn, P)-martingales associated to the cumulative damage of the epidemic.

Proof of Theorem 2 We start proving that Un and V n are two p-variate square inte-
grable (Fn, P)-martingales. Since Gnt ⊆ Fn

t , it is clear that, for each n ∈ N, Un and

V n are F
n-adapted. For each m ∈ N, let M j,n

m = 1√
an

∑m
k=1(ξ

j
k − μ j ), t ≥ 0, and

notice that

E(|Un, j
t |2) =

∞∑
m=1

E

(
|Un, j

t |2I{N j
nt=m}

)

=
∞∑

m=1
E

(
|M j,n

m |2I{N j
nt=m}

)

=
∞∑

m=1
mσ j jP(N j

nt = m)/an

= σ j jE(N j
nt/an)

< ∞.

Analogously, since {� j
nt/an}n∈N is uniformly integrable and converges in probability,

we have

E(|V n, j
t |2) ≤ 2

[
E(|Un, j

t |2) + μ2
jE((N j

nt − �
j
nt )

2/an)
]

≤ 2
[
E(|Un, j

t |2) + μ2
jE((N j

nt − �
j
nt )

2/an)
]

= 2
[
E(|Un, j

t |) + μ2
jE(�

j
nt/an)

]

< ∞.

On the other hand, for each s, t ∈ R+ such that s ≤ t and A ∈ Fn
s , it is obtained

∫

A
(Un, j

s −Un, j
t ) dP =

∞∑

r=1

r∑

m=1

∫

A∩{N j
ns=m}∩{N j

nt=r}
(M j,n

r − M j,n
m ) dP = 0,

due to, for each m, r ∈ N such that m ≤ r , A∩ {N j
ns = m} ∩ {N j

nt = r} ∈ C j,m,n
t and

E(M j,n
r |C j,m,n

t ) = E(M j,n
r |σ({ξ j

0 , . . . , ξ
j
m}) = M j,n

m .

This proves that Un is a p-variate (Fn, P)-square integrable martingale.
Let s, t ∈ R+ such that s ≤ t , j = 1, . . . , p, and A ∈ Fn

s . By the independence of
{ξ k}k∈N and {N 1, . . . , N p}, for each m ∈ N, we have

E(N j
nt − �

j
nt |C j,m,n

s ) = E(N j
nt − �

j
nt |Gns) = N j

ns − �
j
ns
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and hence, by the dominated convergence theorem, we obtain

∫
A(N j

nt − �
j
nt ) dP =

∞∑
m=0

∫
A∩{N j

ns=m}(N
j
nt − �

j
nt ) dP

=
∞∑

m=0

∫
A∩{N j

ns=m} E(N j
nt − �

j
nt |Gns) dP

=
∞∑

m=0

∫
A∩{N j

ns=m}(N
j
ns − �

j
ns) dP

= ∫
A(N j

ns − �
j
ns) dP,

i.e. {N j
nt − �

j
nt }t≥0 is an (Fn, P)-martingale, and since for each t ≥ 0

V n, j
t = Un. j

t + μ j√
an

(N j
nt − �

j
nt ) (7)

and E((N j
nt − �

j
nt )

2/an) = E(�
j
nt/an) < ∞, we have V n is a p-variate square

integrable (Fn, P)-martingale.
For each pair i, j = 1, . . . , p and s ∈ R+, we have


Un,i
s 
Un, j

s = 1

an

Ni

ns
N j
ns

(
ξ iN i

ns
− μi

)(
ξ
j

N j
ns

− μ j

)
. (8)

Let us prove that

E

(

Un,i

s 
Un, j
s I{Ni

ns �=N j
ns }
∣∣∣Fn

s−
)

= 0. (9)

Indeed, let A ∈ Fn
s−, u, v ∈ N \ {0} such that u < v and

B = A ∩ {Ni
ns− = u − 1, N j

ns− = v − 1}.

Notice that B ∈ σ(Ci,u−1,n
s− ) ∩ σ(C j,v−1,n

s− ) ⊂ σ(Ci,u,n
s ) and


Ni
ns
N j

nsI{Ni
ns=u,N j

ns=v} = 
Ni
ns
N j

nsI{Ni
ns−=u−1,N j

ns−=v−1}.

From this fact and (8), we have

∫

A

Un,i

s 
Un, j
s I{Ni

ns=u,N j
ns=v} dP

= 1

an

∫

B

(
ξ iu − μi

) (
ξ j
v − μ j

)

Ni

ns
N j
ns dP

= 1

an

∫

B
(ξ iu − μi )
Ni

ns
N j
nsE(ξ j

v − μ j |σ(Ci,u,n
s )) dP

= 0,
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due to ξ
j
v − μ j is independent of σ(Ci,u,n

s ). Thus, (9) holds. This fact along with (8)
imply that

E

(

Un,i

s 
Un, j
s |Fn

s−
)

= σi j
an

E

(

Ni

ns
N j
nsI{Ni

ns=N j
ns }
∣∣∣Fn

s−
)

= σi j
an

E

(

N (i, j)

ns

∣∣∣Fn
s−
)

and consequently, for each t ≥ 0,

〈Un,i ,Un, j 〉t =
∑

s≤t

E(
Un,i
s 
Un, j

s |Fn
s−) = σi j

an
�

(i, j)
nt . (10)

Hence, from assumption, {〈Un,i ,Un, j 〉}n∈N converges uniformly in probability to
σi j hi j , on compact subsets of R+. On the other hand,

E

(
sup

0≤s≤t
|
Un,i

s |2
)

= E

(
1

an
max

0≤u≤Ni
nt

(ξ iu − μi )
2

)
≤ σi i sup

n∈N
E(�i

nt )

an
< ∞,

which implies that {sup0≤s≤t |
Un,i
s |}n∈N is uniformly integrable. Moreover, by the

Kolmogorv inequality, for any ε > 0 and t ≥ 0, we have

P

(
sup

0≤s≤t
|
Un,i

s | > ε|Ni
nt

)
= P

(
max

0≤u≤Ni
nt

|ξ iu − μi | > anε|Ni
nt

)

≤ σ 2
i i N

i
nt

a2nε
2

and thus P

(
sup0≤s≤t |
Un,i

s | > ε
)

≤ σ 2
i iE(�i

nt )/a
2
nε

2. Hence, {sup0≤s≤t

|
Un,i
s |}n∈N converges in probability to zero. These facts together with Corollary

12 in Chapter II by Rebolledo in Rebolledo (1979) imply that {Un}n∈N converges in
law to a continuous Gaussian p-variate martingale U starting at 0 with 〈U〉 = A.

From (7), due to {ξ k}k∈N and G∞ are independent, for each t ≥ 0, we have

〈V n,i , V n, j 〉t =
∑

s≤t

E(
V n,i
s 
V n, j

s |Fn
ns−) = 〈Un,i ,Un, j 〉t + μiμ j

an
�

(i, j)
nt

and consequently {〈V n〉}n∈N converges uniformly in probability to A+ B. As before,
for the jumps of Un,i , it is obtained that the sequence {sup0≤s≤t |
V n,i

s |}n∈N is uni-
formly integrable and converges in probability to zero. By applying again Corollary 12
in Chapter II by Rebolledo in Rebolledo (1979), we obtain that {V n}n∈N converges in
law to a continuous Gaussian p-variate martingale V starting at 0 with 〈V 〉 = A+ B.
Therefore the proof is complete. ��
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Remark Let Z = (Z1, . . . , Z p)�, where Z j
t = ∑N j

t
k=0 ξk − μ j N

j
t , and suppose Z

is a stationary Markovian process. Hence, for all measurable and bounded function,
f : R

p → R, we have

f (Zt ) =
∫ t

0
L f (Zs) ds + M f

t , t ≥ 0,

where M f is a martingale with

〈M f , Mg〉t =
∫ t

0
[L( f g)(Zs) − f (Zs)Lg(Zs) − g(Zs)L f (Zs)] ds, t ≥ 0,

Ł is the infinitesimal generator of Z, and g : R
p → R is another measurable

and bounded function. Let π j : R
p → R be defined as π j (z) = z j , where z =

(z1, . . . , z p)�.We have Łπ j (z) = 0 and Ł (πiπ j )(z) = λi, j (z)E((ξ i1−μi )(ξ
j
1 −μ j )),

where �
(i, j)
t = ∫ t

0 λi j (Zs) ds. Consequently, 〈Mπi , Mπ j 〉t = σi j�
(i, j)
t . Since Z j =

Mπ j , from this, we directly obtain (10) and, due to {ξ k}k∈N and G∞ are independent,
from (7), for each t ≥ 0, we have

〈V n,i , V n, j 〉t = +σi j + μiμ j

an
�

(i, j)
nt .

Proof of Proposition 3 The function πt : D(R+, R
p) → R

p defined as

πt(ω) = (ω(t1), . . . , ω(tp))
�

is continuous in ω, whenever ω is continuous at t1, . . . , tp ∈ R+. In particular, πt is
continuous on C(R+, R

p). This fact along with Theorem 2 imply that {πt(Un)}n∈N
and {πt(V n)}n∈N converge in distribution to πt(U) and πt(V ), respectively, where U
and V are defined in Theorem 2. By defining ˜Ut = πt(U) and ˜Vt = πt(V ), these
p-variate random vectors have normal distribution with mean zero and covariance
matrices ˜�U (t) and ˜�V (t) defined by (4). Thus, the proof is complete. ��

Proof of Corollary 4 In this proof, we use notations of Proposition 3. Let t =
(t1, . . . , tp)� ∈ R

p
+ andϕ : R

p → R
p bedefined asϕ(u, η) = (u1/η1, . . . , u p/ηp)

�,
where η = (η1, . . . , ηp)

� and u = (u1, . . . , u p)
�. We have

√
an(μ̂

n
t − μ) =

ϕ(an ˜U
n
t , N

n
t ) and

√
an (̂ν

n
t − ν) = ϕ(an ˜V

n
t ,�

n
t ). Moreover, by Proposition 3

and the continuity of ϕ, {ϕ(an ˜U
n
t , N

n
t )}n∈N\{0} and {ϕ(an ˜V

n
t ,�

n
t )}n∈N\{0} con-

verge in distribution to ϕ( ˜Ut , h(t)) and ϕ( ˜V t , h(t)), respectively, where h(t) =
(h1(t1), . . . , h p(tp))�. Since ϕ( ˜Ut , h(t)) and ϕ( ˜V t , h(t)) are random vectors hav-
ing normal distribution with mean 0 and covariance matrices D−1

˜�U (t)D−1 and
D−1

˜�V (t)D−1, respectively, the proof is complete. ��
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Proof of Proposition 5 Let t = (t1, . . . , tp)� ∈ R
p
+. With notations stated in

Proposition 3, we have

1

an
Wn

t − w t = 1√
an

Ṽ
n
t −

(
μ1

(
h1(t1) − �1

nt1/an
)
, . . . , μp

(
h p(tp) − �

p
ntp/an

))�
.

Hence, this proposition follows from Proposition 3 and the convergence in probability
of {� j

nt j /an}n∈N to h j (t j ), for each j = 1, . . . , p. ��
Proof Theorem 6 Let Ln

t : R
p → [0,∞] be defined as Ln

t (θ) = logE(e(1/an)θ�Wn
t )

and for each t ∈ R
p
+, let σ = σt : {0, 1, . . . , p} → {0, 1, . . . , p} be the permutation

satisfying σ(0) = 0 and 0 = tσ(0) ≤ tσ(1) ≤ · · · ≤ tσ(p). Consequently, for each

j = 1, . . . , p, the random variables Nσ( j)
ntσ(1)

, Nσ( j)
ntσ(2)

− Nσ( j)
ntσ(1)

, . . . , Nσ( j)
ntσ( j)

− Nσ( j)
ntσ( j−1)

are independent.
Since

p∑

j=1

θσ( j)

Nσ( j)
ntσ( j)∑

k=1

ξ
σ( j)
k =

p∑

j=1

θσ( j)

j∑

i=1

Nσ( j)
ntσ(i)∑

k=Nσ( j)
ntσ(i−1)

+1

ξ
σ( j)
k ,

we have

exp

⎛

⎜⎜⎝
1

an

p∑

j=1

θσ( j)

Nσ( j)
ntσ( j)∑

k=1

ξ
σ( j)
k

⎞

⎟⎟⎠ =
p∏

j=1

j∏

i=1

Nσ( j)
ntσ(i)∏

k=Nσ( j)
ntσ(i−1)

+1

exp

(
1

an
θσ( j)ξ

σ( j)
k

)
. (11)

By applying in (11), first, E(·|N 1, . . . , N p), second, E, and then log, we obtain

Ln
t (θ) =

p∑
j=1

j∑
i=1

logE

(
E

{
exp

(
1
an

θσ( j)ξ
σ( j)
k

)}Nσ( j)
ntσ(i)

−Nσ( j)
ntσ(i−1)

)

=
p∑

j=1

j∑
i=1

(
�

σ( j)
ntσ(i)

− �
σ( j)
ntσ(i−1)

) (
E

{
exp

(
1
an

θσ( j)ξ
σ( j)
k

)}
− 1

)

=
p∑

j=1
�

σ( j)
ntσ( j)

(
E

{
exp

(
1
an

θσ( j)ξ
σ( j)
k

)}
− 1

)

and accordingly

Ln
t (θ) =

p∑

j=1

�
j
nt j

(
E

{
exp

(
θ jξ

j
k /an

)}
− 1

)
.

Consequently,

lim
n→∞

1

an
Ln
t (anθ) = L t(θ).
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Since D = {θ ∈ R
p : L t(θ) < ∞} = R

p and, by dominated convergence, L t is
differentiable in D, the Gärtner-Ellis theorem (see (Dembo and Zeitouni 1998), for
instance) implies that L∗

t , given by (5), is a good rate function and {(1/an)Wn
t }n∈N

obeys an LDP with the rate function L∗
t . This concludes the proof. ��

Proof Corollary 7 From Theorem 6, we have

lim inf 1
an

logP(Tn � t) = lim inf 1
an

logP((1/an)Wn
t � ω∗)

≥ − inf x�ω∗ L∗
t (x)

= −L∗
t (ω

∗ ∨ w t),

due to the nonnegative function L∗
t has a minimum at x = w t (L∗

t (w t) = 0) and it is
increasing on the set {x ∈ R

p : x � w t}. On the other hand,

lim sup 1
an

logP(Tn � t) ≤ lim sup 1
an

logP((1/an)Wn
t � ω∗)

≤ − inf x�ω∗ L∗
t (x)

= −L∗
t (ω

∗ ∨ w t).

Therefore, condition (6) holds and the proof is complete. ��
Proof of Theorem 8 Let t=(t1, . . . , tp)�∈R

p
+. FromProposition 5, {(1/an)Wn

t }n∈N\{0}
converges in probability to wt and hence

lim
n→∞ P(Tn � t) = lim

n→∞ P((1/an)Wn
t � ω∗) =

{
1 if wt � ω∗;
0 if wt � ω∗.

Butwt � ω∗, if and only if, t � θ∗. Consequently, {Tn}n∈N converges in distribution,
and hence in probability, to θ∗.

Moreover,

{√
an(Tn − θ∗) � t

}

=
p⋂

j=1

{
V n, j

θ∗
j +t j /

√
an

>
√
anμ j

(
h j (θ j ) − �

j
n(θ∗

j +t j /
√
an)

/an

)}
. (12)

and since, for each j = 1, . . . , p,

E

{(
V n, j

θ∗
j +t/

√
an

− V n, j
θ∗
j

)2
}

= 1

an
E

(
�

j
n(θ∗

j +t/
√
an)

− �
j
nθ∗

j

)
,

for each δ > 0, we have

lim sup
n→∞

E

{(
V n, j

θ∗
j +t/

√
an

− V n, j
θ∗
j

)2
}

≤ h j (θ
∗
j + δ) − h j (θ

∗
j ).
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Hence, by using notations stated in Proposition 3, it is obtained that

lim sup
n→∞

E

(
‖ ˜V θ∗+(1/

√
an)t − ˜V θ∗‖2

)
= 0, (13)

where ‖·‖ stands for the Euclidean norm in R
p. On the other hand, for each j =

1, . . . , p, we have

√
anμ j

(
h j (θ j ) − �

j
n(θ∗

j +t/
√
an)

/an

)

= √
anμ j

(
h j (θ

∗
j ) − h j (θ

∗
j + t/

√
an)

)

+√
anμ j

(
h j (θ

∗
j + t/

√
an) − �

j
n(θ∗

j +t/
√
an)

/an

)

and hence limn→∞
√
anμ j

(
h j (θ

∗
j ) − h j (θ

∗
j + t/

√
an)

)
= −μ j th′

j (θ
∗
j ). This fact

along with (12) and (13) imply that

lim
n→∞ P

(√
an(Tn − θ∗) � t

) = lim
n→∞ P

⎡

⎣
p⋂

j=1

{
V n, j

θ∗
j

> −μ j t j h
′
j (θ

∗
j )

}⎤

⎦ .

Accordingly, by Proposition 3, we have

lim
n→∞ P

(√
an(Tn − θ∗) � t

) = lim
n→∞ P

(
Ṽ

n
θ∗ � −Dt

)
= P

(
D−1Ṽ θ∗ � t

)
.

where D = Diag(μ1h′
1(θ

∗
1 ), . . . , μph′

p(θ
∗
p)). Since D−1

˜V θ∗ has multivariate normal
distribution with mean zero and covariance matrix �(θ∗), the proof is complete. ��
Proof Corollary 11 Let Yn = √

anL(Tn)−1(Tn − θ∗) and Zn = √
anL(θ∗)−1(Tn −

θ∗). From Corollary 10, {Zn}n∈N converges in distribution to a normal random vector
Z, with mean zero and covariance matrix Ip. Since {Tn}n∈N\{0} converges in probabil-
ity to θ∗ and, by assumption, L(·)−1 is continuous, it follows from the Slutsky theorem
that {Yn}n∈N\{0} and {Zn}n∈N\{0} have the same asymptotic distribution. Therefore,
{Yn}n∈N\{0} converges in distribution to Z and the proof is complete. ��
Proof Theorem 1 For each u = 1, . . . , r and m ∈ Ju , let

Xn
m =

(
km�nθ

anβ̂n
m

)1/2

{a1/2n (β̂n
m − βm) + 
m(u)},

Xn(u) = (Xn
m(u);m ∈ Ju), and

Xn =
⎛

⎜⎝
Xn(1)

...

Xn(r)

⎞

⎟⎠ .
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Hence, under Hn , for each u = 1, . . . , r , and j ∈ Ju , we have

(
k j�nθ

β̂n
j

)1/2

(β̂n
j − β̂n(u)) =

(
k j�nθ

an β̂n
j

)1/2 √
an

{
β̂n
j − β j + 
 j (u)√

an
− (β̂n(u) − β(u)

}

= Xn
j −

(
k j
β̂n
j

)1/2∑
m∈Ju πm(u)

(
β̂n
m

km

)1/2
Xn
m

and consequently,

�nθ

r∑

u=1

∑

j∈Ju

k j
β̂n
j

(
β̂n(u) − β̂n

j

)2 = ‖(Ip − Cn)Xn‖2, (14)

where Ip stands for the p × p-identity matrix, ‖·‖ denotes the Euclidean norm in R
p

and

Cn =
⎛

⎜⎝
Cn(1) · · · 0

...
. . .

...

0 · · · Cn(r)

⎞

⎟⎠

is the randommatrix defined, for u = 1, . . . , r , as Cn(u) = (cnjm(u); j,m ∈ Ju)with

c jm = 1

k(u)

√
k j km β̂n

m/β̂n
j .

Thus, from (3) and (14),we have−2 logRn 
 ‖(Ip − Cn)Xn‖2.On the other hand,
Corollary 4 and Slutsky’s theorem imply that, under {Hn}n∈N, {Xn}n∈N converges
in distribution to a normal random vector X with mean μX and covariance matrix
�X = Ip, where

μX =
⎛

⎜⎝
μX (1)

...

μX (r)

⎞

⎟⎠ ,

with

μX (u) =
((

k j h(θ)

β(u)

)1/2


 j (u); j ∈ Ju

)
, for each u = 1, . . . , r .

Moreover, under {Hn}n∈N, {Cn}n∈N converges in probability to

C =
⎛

⎜⎝
C(1) · · · 0

...
. . .

...

0 · · · C(r)

⎞

⎟⎠ ,
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where, for u = 1, . . . , r , C(u) = (ci j (u); i, j ∈ Ju) is given by ci j (u) =√
πi (u)π j (u).
Accordingly, {−2 logRn}n∈N\{0} converges in distribution to ‖(Ip − C)X‖2 and,

since each C(u) (u = 1, . . . , r ) is an idempotent and symmetric matrix with rank 1,
we have Ip − C is idempotent with rank p − r . Moreover, we have

�X (Ip − C)�X (Ip − C)�X = �X (Ip − C)�X

and hence, by Theorem in Sect. 3.5 in Serfling (1980), ‖(Ip − C)X‖2 has a non-
central χ2-distribution with p − r degree of freedom and non-centrality parameter
μ�
X (Ip − C)μX . But μ

�
X (Ip − C)μX = ‖μX‖2 − ‖CμX‖2, and therefore,

�2 = h(θ)

r∑

u=1

k(u)

β(u)

⎧
⎪⎨

⎪⎩

∑

m∈Ju

πm(u)
m(u)2 −
⎛

⎝
∑

m∈Ju

πm(u)
m(u)

⎞

⎠
2
⎫
⎪⎬

⎪⎭
,

which concludes the proof. ��

7 Conclusions and possible future work

A continuous-time stochastic model has been proposed and studied for the damage
caused by amulti-type epidemic or pandemic, when the events are occurring at random
times andwhere themagnitude of each of this events, or infections in case the epidemic
is infectious, is also random. Central limit theorems are stated for two sequences
of martingales, which allow knowing the asymptotic distribution of the cumulative
damage of the epidemic at any multi-time. Thresholds for the components of the
epidemic model are stated and the asymptotic distribution of the multivariate stopping
time, when the damage of each component attains the corresponding threshold, is
studied.

The importance of this work is validated by means of an application to infectious
diseases. In particular, the asymptotic results of this work are applied in studying the
possible homogeneity of the infection in the population, for the pandemic Covid-19
in Chile. However, we think our results apply to other type of problems caused by
epidemics, such as the insufficient number of highly complex hospital beds available
for the attention of seriously ill patients. We hope to investigate this topic in future
work.
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