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Abstract
We propose a coupled system of delay-algebraic equations to describe tick attaching
and host grooming behaviors in the tick-host interface, and use themodel to understand
how this tick-host interaction impacts the tick population dynamics. We consider two
critical state variables, the loads of feeding ticks on host and the engorged ticks on
the ground for ticks in a particular development stage (nymphal stage) and show
that the model as a coupled system of delay differential equation and an algebraic
(integral) equation may have rich structures of equilibrium states, leading to multi-
stability. We perform asymptotic analyses and use the implicit function theorem to
characterize the stability of these equilibrium states, and show that bi-stability and
quadri-stability occur naturally in several combinations of tick attaching and host
grooming behaviours. In particular, we show that in the case when host grooming
is triggered by the tick biting, the system will have three stable equilibrium states
including the extinction state, and two unstable equilibrium states. In addition, the
two nontrivial stable equilibrium states correspond to a low attachment rate and a
large number of feeding ticks, and a high attachment rate and a small number of
feeding ticks, respectively.
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1 Introduction

Tick-borne diseases (TBDs) have been imposing significant public health challenges
globally. The TBD transmission relies on the tick-host interaction where ticks may
acquire and/or transmit the pathogen from the host by taking a blood meal from the
host. There are systemic transmission and co-feeding routes, both depending on the co-
occurrence of ticks (specially ticks at two different stages for co-feeding transmission
to take place) on the same host, so understanding the tick load distribution dynamics
over the host and its implication for the tick population dynamics, the main focus of
this study, is important. The tick load distribution process over the host is a dynami-
cal process, governed by the tick attachment/fixation and host grooming behaviours.
Our study shows that these tick and host individual behaviors, the host response to
tick attaching and/or to tick feeding, and their combinations can yield a complicated
tick-host interaction leading to multi-stability where tick densities can converge to
a tick extinction, or a lower level tick persistence, or a higher level tick persistence
equilibrium state depending on the initial conditions.

Tick life cycle includes four stages: egg, larvae, nymph and adult. Larval and
nymphal ticks seek blood meals from small rodents, like mice and bird, to molt into
nymphal and adult stage, respectively. While it is hard to find larval and nymphal
ticks on the hosts since they are small [only around 1–2mm in size (Lindquist and
Vapalahti 2008)], ticks at these stages are very important for the tick-borne pathogen
transmission as vertical transmission (from egg-laying infected ticks to eggs) are lim-
ited. Adult ticks prefer questing large mammals, such as deer and domestic livestock,
both infected nymphal and adult ticks can bite on human, passing the pathogen to the
human. After the final blood meal, adult tick will lay egg to complete the life cycle
from eggs to egg-laying ticks.

Important to the survival of an egg through the life cycle is the attachment/fixation
success of the questing tick. Existing models have assumed a constant attachment
success rate, so the fixation rate of an engorged tick to a host for feeding to develop into
the next stage is the questing rate times the attachment/fixation success rate. However,
it was reported (Voordouw 2015; Wang et al. 1998, 2001; Rechav and Nuttall 2000)
that ticks may pool their saliva to enhance the immunomodulatory manipulation of
the host organism. The resulted cooperative feeding could increase the cost-benefit
ratio of resource extraction from the host relative to per capita investment in tick
saliva production. Reflecting this cooperative feeding requires a (feeding tick) density-
dependent attachment/fixation rate, as we will consider in our model formulation.

Equally important to the survival of an egg through the life cycle is the groom-
ing behavior of the host, leading to (feeding tick) density-dependent grooming rate
(or feeding tick survival rate) in some of the proposed mathematical models. Pio-
neering observation of the phenomenon called acquired tick resistance (ATR), by
Trager (1939), showed that upon repeated tick infestations, hosts develop an immune
response to derail subsequent tick challenges, and tick-immune hosts rapidly reject
ticks within the first 24h of tick attachment. See recent reviews (Narasimhan et al.
2021; Yoshikawa et al. 2020) for the current knowledge of ATR and key events in the
tick-host interaction to enable or disable tick feeding. Evidence provided by Hart and
his colleagues (Hart 2000) provided support to “the concept that the delivery of bouts
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of grooming reflects programmed grooming”, namely, “grooming occurs in response
to an endogenous generator that produces grooming bouts at periodic intervals, result-
ing in removing of ticks before they attach and begin to feed”. Correspondingly, in
our model formulation, we will consider (feeding tick) density-dependent grooming
and/or attachment/fixation-dependent grooming rate.

In summary, a mathematical description of the tick population dynamics must
take consideration of the tick attachment and fixation dynamics, and host grooming
dynamics.Here,wedevelop a coupled system involving two state variables, the number
of engorged nymphal ticks and the number of feeding nymphal ticks. We start with an
evolution equation for the feeding tick density (with respect to the time since feeding
nymphal ticks attach to the host) governed by the density-dependent grooming rate,
and subject to an initial condition involving density-dependent attachment and fixation
rate. Integration along a characteristic equation leads to an algebraic equation for the
total feeding (nymphal) ticks. We then couple this algebraic equation with a delay
differential equation for the engorged nymphal tick dynamics. Since questing nymphal
ticks come from the engorged nymphal ticks with a delay after further development
and production, the coupled system becomes a closed feedback system with delay.

The model will be formulated in Sect. 2; the model’s equilibrium structure is
described in Sect. 3; and the stability of equilibrium states is discussed in Sect. 4 using
a perturbation argument since the feeding duration is relatively short in comparison
with the life cycle. Additional discussions on how this tick population dynamics can be
extended to model tick-borne disease transmission dynamics involving the co-feeding
transmission route are provided in the final section.

2 The algebraic-delay coupled system

We focus on the developmental stage, nymphal stage, where questing and attaching
rate of the ticks and the grooming rate of the hosts may depend on the feeding nymphal
tick loads on the host.

2.1 Themodel derivation and simplification

Let Q(t), F(t) and E(t) be the numbers of questing nymphal ticks, feeding nymphal
ticks and engorged nymphal ticks, respectively, at time t . We make it explicit our
standing assumptions:

(i) The attachment rate of questing nymphal ticks is a function ρ(F(t)) of the number
of feeding nymphal ticks F(t). This is to reflect the fact that the attachment success
of questing ticks depends on the total amount of feeding nymphal ticks on the hosts.
As the total number of hosts for nymphal ticks is relatively static, the average
feeding ticks on the hosts is proportional to F(t). In what follows, we assume
ρ : [0,∞) → [0,∞) is a C1-smooth function. Moreover, ρ(F) > 0 if F > 0.

(ii) The drop off rate of feeding nymphal ticks is a function ν(F(t)) of the number
of feeding nymphal ticks F(t). This is to describe the host grooming behaviors,
and can also be used to describe the cooperative co-feeding behaviours of the
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nymphal ticks (that enhances the immune-induced feeding). We also assume that
ν : [0,∞) → [0,∞) is a C1-smooth function, and ν(F) > 0 if F > 0.

Let n(t, a) be the density of feeding nymphal ticks at time t with respect to feeding
duration a since they attach to the host. Then we have the structured feeding tick
population dynamics model

(
∂

∂t
+ ∂

∂a

)
n(t, a) = −ν(F(t))n(t, a), 0 ≤ a ≤ T ,

n(t, 0) = ρ(F(t))Q(t),

(1)

where T is the average feeding duration of nymphal ticks. In this formulation, the
evolution describes the grooming dynamics while the boundary condition describes
the attaching behaviours.

The structured population model can be easily solved using the method of integra-
tion along characteristics (Evans 1998). Namely, let

ζ(t) = n(t, t − s), t ≥ s, (2)

then we can rewrite (1) into the following form

dζ(t)

dt
= −ν(F(t))ζ(t), t ≥ s,

ζ(s) = n(s, 0) = ρ(F(s))Q(s).
(3)

Integration of (3) yields

ζ(t) = e− ∫ t
s ν(F(θ))dθ ζ(s) = e− ∫ t

s ν(F(θ))dθρ(F(s))Q(s),

which, from the definition of (2), is equivalent to

n(t, t − s) = e− ∫ t
s ν(F(θ))dθρ(F(s))Q(s).

Setting t − s = a, we obtain

n(t, a) = e− ∫ t
t−a ν(F(θ))dθρ(F(t − a))Q(t − a).

Clearly, the total amount of feeding nymphal ticks can be expressed as the integral
of n(t, a) over the feeding interval, i.e.,

F(t) = ∫ T
0 n(t, a)da = ∫ T

0 e− ∫ t
t−a ν(F(θ))dθρ(F(t − a))Q(t − a)da

= ∫ T
0 e− ∫ 0

−a ν(F(t+ξ))dξ ρ(F(t − a))Q(t − a)da,
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which is an implicit equation for F(t). Then the dynamics for engorged nymphal ticks
follows

dE(t)

dt
= −δE(t) + n(t, T )

= −δE(t) + e− ∫ t
t−T ν(F(θ))dθρ(F(t − T ))Q(t − T ),

where δ is the exit rate of engorged nymphal ticks.
We now link the questing nymphal ticks at the current time to engorged nymphal

ticks in the past through the life cycle. Let η1 be the survival probability from engorged
nymphal ticks to adult egg-production ticks, σ be the egg production rate, and η2 be the
survival probability from eggs to questing nymphal ticks. Assume that τ2 represents
the delay from eggs to questing nymphal ticks through the necessary developments
and τ1 is the delay from engorged nymphal ticks to adult egg-laying ticks. Hence,
questing nymphal ticks at time t take the following form

Q(t) = η2ση1E(t − τ1 − τ2).

For simplicity,we denote τ = τ1+τ2 andη = η2ση1. From the definition of feeding
duration T of nymphal ticks, it is easy to see that the life cycle of tick population is
T + τ . We obtain the following coupled system to describe the dynamics of feeding
and engorged nymphal ticks

⎧⎪⎪⎨
⎪⎪⎩

dE(t)

dt
= −δE(t) + e− ∫ t

t−T ν(F(θ))dθρ(F(t − T ))ηE(t − τ − T ),

F(t) =
∫ T

0
e− ∫ 0

−a ν(F(t+ξ))dξ ρ(F(t − a))ηE(t − τ − a)da.

(4)

2.2 Fundamental theory

Wenow show that the above coupled system of differential-algebraic system is equiva-
lent to a coupled system of delay differential equations subject to a matching condition
of the initial data.

Differentiating the right-hand side of the algebraic equation for F(t), we get

dF(t)

dt
= d

dt

∫ T

0
e− ∫ 0

−a ν(F(t+ξ))dξ ρ(F(t − a))ηE(t − τ − a)da

= d

dt

∫ t

t−T
e− ∫ t

θ ν(F(s))dsρ(F(θ))ηE(θ − τ)dθ

= ρ(F(t))ηE(t − τ) − e− ∫ t
t−T ν(F(s))dsρ(F(t − T ))ηE(t − T − τ)

−
∫ t

t−T
e− ∫ t

θ ν(F(s))dsν(F(t))ρ(F(θ))ηE(θ − τ)dθ. (5)
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This is equivalent to the algebraic equation if the following matching condition is met:

F(0) =
∫ T

0
e− ∫ 0

−a ν(F(ξ))dξ ρ(F(−a))ηE(−τ − a)da. (6)

Now, we can use the fundamental theory for functional differential equations (Hale
1977) to conclude that for any (φ,ψ) ∈ C([−τ − T , 0]; [0,+∞)) × C([−τ −
T , 0]; [0,+∞)), there is one and only one solution of the following coupled system
of delay differential equations

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dE(t)

dt
= − δE(t) + e− ∫ t

t−T ν(F(θ))dθρ(F(t − T ))ηE(t − τ − T ),

dF(t)

dt
=ρ(F(t))ηE(t − τ) − e− ∫ t

t−T ν(F(s))dsρ(F(t − T ))ηE(t − T − τ)

−
∫ t

t−T
e− ∫ t

θ ν(F(s))dsν(F(t))ρ(F(θ))ηE(θ − τ)dθ.

The solution (E(t), F(t)) ∈ R2 is defined for t ≥ 0. With the matching condition (6),
we conclude from (5) that

d

dt
[F(t) −

∫ T

0
e− ∫ 0

−a ν(F(t+ξ))dξ ρ(F(t − a))ηE(t − τ − a)da] = 0

and hence F satisfies the algebraic equation in system (4).
We now show that if φ(θ), ψ(θ) > 0 for θ ∈ [−τ − T , 0], and if the matching

condition (6) hold, then E(t), F(t) ≥ 0 for all t ≥ 0. To prove this, we use the
continuous dependence of solutions on parameter ε > 0 for the following system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dE(t)

dt
= − δE(t) + e− ∫ t

t−T ν(F(θ))dθρ(F(t − T ))ηE(t − τ − T ) + ε,

dF(t)

dt
=ρ(F(t))ηE(t − τ) − e− ∫ t

t−T ν(F(s))dsρ(F(t − T ))ηE(t − T − τ)

−
∫ t

t−T
e− ∫ t

θ ν(F(s))dsν(F(t))ρ(F(θ))ηE(θ − τ)dθ.

(7)

Denote the solution of (7) by (Eε(t), Fε(t)), t ≥ 0. If Eε(t) ≥ 0, Fε(t) ≥ 0 are
not true for all t ≥ 0, then there must be the first t∗ ≥ 0 such that Eε(t∗) = 0 and
Eε(t) > 0, Fε(t) > 0 for all t ∈ [0, t∗). Therefore, we have d

dt E
ε(t)|t=t∗ ≤ 0. But

using the first equation of (7), we yield

d

dt
Eε(t)|t=t∗ ≥ ε.

That is a contradiction. Thus, we have the following existence-uniqueness, and posi-
tiveness result.
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Theorem 1 If (φ,ψ) ∈ C([−τ −T , 0]; [0,+∞))×C([−τ −T , 0]; [0,+∞)), and if
the matching condition (6) is satisfied, then system (4) has one and only one solution
defined for all t ≥ 0. This solution is non-negative, namely, E(t) ≥ 0 and F(t) ≥ 0
for all t ≥ 0 if φ(θ), ψ(θ) > 0 for θ ∈ [−τ − T , 0].
Remark 1 There are two other approaches to establish the fundamental theory for the
well-posedness of the coupled systemwe formulated. First of all, we can solve the alge-
braic equation by using the implicit function theory to obtain F(t) = h(E[t−τ−T ,t])
and then substitute this to the first equation to obtain a single functional differential
equation for E(t) although the right hand side is given implicitly. Alternatively, we
can rewrite the algebraic equation as

d

dt
[F(t) −

∫ T

0
e− ∫ 0

−a ν(F(t+ξ))dξ ρ(F(t − a))ηE(t − τ − a)da] = 0.

Therefore, the coupled systemcanbe regarded as a special case of the neutral functional
differential equation

⎧⎪⎪⎨
⎪⎪⎩

dE(t)

dt
= −δE(t) + e− ∫ t

t−T ν(F(θ))dθρ(F(t − T ))ηE(t − τ − T ),

d

dt
[F(t) −

∫ T

0
e− ∫ 0

−a ν(F(t+ξ))dξ ρ(F(t − a))ηE(t − τ − a)da] = 0,

or d
dt D(xt ) = f (xt ), where the phase space X = C([−τ − T , 0]; R2), x(t) =

(E(t), F(t)), the neutral operator D : X → R2 and the functional f : X → R2 are
given by

D(φ,ψ) =
(
φ(0), ψ(0) − ∫ T

0 e− ∫ 0
−a ν(ψ(ξ))dξ ρ(ψ(−a))ηφ(−τ − a)da

)

and

f (φ,ψ) =
(
−δφ(0) + e− ∫ 0

−T ν(ψ(θ))dθρ(ψ(−T ))ηφ(−τ − T ), 0
)

with (φ,ψ) ∈ X . The fundamental theory of neutral functional differential equations
including the principle of linearization can be found in Hale (1977), Hale and Lunel
(1993). See also Barbarossa et al. (2014) and Gourley and Kuang (2009) for neutral
equations arising from structured population dynamics in other settings.

3 Equilibria and stability of trivial state

The equilibrium of model (4) satisfies the following nonlinear equations

⎧⎪⎨
⎪⎩

δE = e− ∫ t
t−T ν(F)dθρ(F)ηE,

F =
∫ T

0
e− ∫ 0

−a ν(F)dξ ρ(F)ηEda.
(8)
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3.1 Trivial equilibrium and its stability

Clearly, model (4) always has a trivial equilibrium P0(0, 0). We linearize model (4)
at the zero equilibrium P0 to obtain

dE(t)

dt
= −δE(t) + ρ(0)ηe−ν(0)T E(t − τ − T ). (9)

The stability of the trivial equilibrium P0 is determined by the following characteristic
equation

λ = −δ + ρ(0)ηe−ν(0)T e−λ(τ+T ).

Therefore, the trivial equilibrium P0 is locally asymptotically stable if δ >

ρ(0)ηe−ν(0)T , and unstable if δ < ρ(0)ηe−ν(0)T . This is because of the positive
feedback in model (9), and the semi-group generated by this linear delay differential
equation is order-preserving, and the stability of the zero solution is the same as that
of the following ordinary differential equation

dE(t)

dt
= −δE(t) + ρ(0)ηe−ν(0)T E(t)

by using themonotone dynamical system theory (Smith 1987, 1995). The linearization
of the coupled system for the algebraic equation is

F(t) =
∫ T

0
e−ν(0)aρ(0)ηE(t − τ − a)da,

Therefore, F(t) → 0 as t → ∞.

3.2 Non-trivial equilibria

The nontrivial equilibrium P+(E∗, F∗) of model (4) satisfies

⎧⎪⎪⎨
⎪⎪⎩

ν(F∗) = 1

T
ln

ηρ(F∗)
δ

,

E∗ = F∗ν(F∗)
ηρ(F∗) − δ

,

(10)

where δ = ηρ(F∗)e−ν(F∗)T < ηρ(F∗). Therefore, the existence and multiplicity of
nontrivial equilibrium depends on behaviors of tick attachment rate ρ(F) and the host
grooming rate ν(F). We consider several scenarios of the tick-host interface.

3.2.1 Constant attaching and grooming

We first consider the simplest case of constant attachment rate and grooming rate,
with ρ(F) = p and ν(F) = μ0, where p, μ0 > 0 are positive constants. Model (4)
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becomes a linear system as no nonlinearity involves:

⎧⎪⎪⎨
⎪⎪⎩

dE(t)

dt
= −δE(t) + e−μ0T pηE(t − τ − T ),

F(t) =
∫ T

0
e−μ0a pηE(t − τ − a)da.

(11)

The first equation is a scalar delayed differential equation with a positive delayed
feedback. Clearly, the basic reproduction number is R0 = pηe−μ0T δ−1, obtained
from the multiplication of reproduction and survival probability during the life cycle
except the nymphal tick engorgement with sojourn time δ−1. An application of the
Krein-Rutman theorem (see Smith 1987, 1995) shows that solution of E(t) with a
non-trivial non-negative initial value on [−τ −T , 0] is convergent to 0 or∞ as t → ∞
when R0 < 1 and R0 > 1 respectively. Correspondingly, using the second (integral)
equation, we obtain that F(t) → 0 or F(t) → ∞ as t → ∞.

Remark 2 Note also that (10) has infinitely many positive equilibria in the critical case
when R0 = 1. Namely, when

ηp = δeμ0T , (12)

there are infinitely many positive equilibria (
μ0F∗

δ(eμ0T −1)
, F∗), F∗ > 0, in model (11).

Then the first differential equation of (11) is reduced into

dE(t)

dt
= δ(E(t − τ − T ) − E(t)).

This type of delay differential equation was studied previously in Haddock-Terjeki
(1983) and it has the so-called asymptotic constancy property. That is, limt→∞ E(t) =
Ec exists and is a constant for each given solution. To determine the value Ec for each
given solution, we first observe that

d

dt
[E(t) + δ

∫ t

t−τ−T
E(s)ds] = 0,

from which it follows that

E(t) + δ

∫ t

t−τ−T
E(s)ds = E(0) + δ

∫ 0

−τ−T
E(s)ds.

Therefore

Ec = E(0) + δ
∫ 0
−τ−T E(s)ds

1 + δ(τ + T )
.
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3.2.2 Density-dependent monotone attaching and grooming rates

A more biologically realistic situation is when the attachment rate decreases and
grooming rate increases with tick loads on the host. We consider the prototypical case

ρ(F) = pe−F/c, ν(F) = μF + μ0

for F ≥ 0, where c > 0, μ > 0 and μ0 > 0 are constants. In this case, we can reduce
model (4) into

⎧⎪⎪⎨
⎪⎪⎩

dE(t)

dt
= −δE(t) + e− ∫ t

t−T (μF(θ)+μ0)dθ pe− F(t−T )
c ηE(t − τ − T ),

F(t) =
∫ T

0
e− ∫ 0

−a(μF(t+ξ)+μ0)dξ pe− F(t−a)
c ηE(t − τ − a)da.

(13)

Model (13) has a unique positive equilibrium if R0 > 1, and no positive equilibrium
if R0 < 1, with R0 := pηe−μ0T δ−1. When R0 < 1, we can use the following
differential inequality

dE(t)

dt
≤ −δE(t) + pηe−μ0T E(t − τ − T )

to conclude that E(t) → 0 as t → ∞, and then use the integral inequality

F(t) ≤
∫ T

0
e−μ0a pηE(t − τ − a)da

to conclude that F(t) → 0 as t → ∞.

3.2.3 Cooperative feeding and density-dependent grooming

Recall that ticksmay pool their saliva to enhance the immunomodulatorymanipulation
of the host organism. The resulted cooperative feeding could increase the cost-benefit
ratio of resource extraction from the host relative to per capita investment in tick
saliva production. Therefore, in cooperative feeding, the attachment/fixation rate is an
increasing function of the feeding tick density on the host. However, since ticks prefer
seeking for soft and thin areas of host skin that are well-supplied with blood, there is
a maximum capacity to accommodate tick attachments. To describe this cooperative
and self-limiting feeding attaching process, we consider the case where the attach-
ment/fixation rate ρ(x) is an initially increasing function that becomes decreasing
after the capacity (c) is reached: there exist two constants p > 0 and c > 0 satisfying
ρ′(0) = p > 0, ρ′(F) > 0 for F ∈ (0, c) and ρ′(F) < 0 for F ∈ (c,+∞). For
the sake of simplicity, we use the Ricker function (see Ricker 1975) as a prototypical
attachment rate function, i.e.,

ρ(F) = pFe− F
c . (14)
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We will couple this cooperative and self-limiting attachment with the density-
dependent grooming rate: responding to increasing feeding ticks, the host groommore
frequently, resulting in dropping off rate function ν(F) being an increasing function,
i.e.,

ν(F) = μF + μ0.

Then model (4) can be rewritten as

⎧⎪⎪⎨
⎪⎪⎩

dE(t)

dt
= −δE(t) + pηe− ∫ t

t−T (μF(θ)+μ0)dθ F(t − T )e− 1
c F(t−T )E(t − τ − T ),

F(t) = pη
∫ T

0
e− ∫ 0

−a(μF(t+ξ)+μ0)dξ F(t − a)e− 1
c F(t−a)E(t − τ − a)da.

(15)
To look at a positive equilibrium F of model (15), we consider positive solutions of
the first equation of (10), namely,

xe−( 1c +μT )x = δ(ηp)−1eμ0T . (16)

The function g1(x) := xe−( 1c +μT )x changes its monotonicity (from increasing to
decreasing once), and researches itsmaximum e−1( 1c +μT )−1 when x = ( 1c +μT )−1.
Hence, we conclude that

Theorem 2 The equilibrium structure is determined by δ(ηp)−1eμ0T and e−1( 1c +
μT )−1. That is,

(i) If δ(ηp)−1eμ0T > e−1( 1c + μT )−1, model (15) has no positive equilibrium;
(ii) If δ(ηp)−1eμ0T = e−1( 1c + μT )−1, model (15) has only one equilibrium

(E∗, F∗), where F∗ = ( 1c + μT )−1 and E∗ = F∗(μF∗+μ0)

ηpF∗e−F∗/c−δ
;

(iii) If δ(ηp)−1eμ0T < e−1( 1c + μT )−1, model (15) has two positive equilibria
(E∗−, F∗−) and (E∗+, F∗+), where F∗± are two positive solutions of (16) and the
corresponding E∗± are given by the second expression of (10) with F being
replaced by F∗± respectively.

3.2.4 Grooming reactive to tick biting

When hosts groom in response to tick biting, we have

ν(F) = f (ρ(F))

with f (ρ) being an increasing function of ρ ≥ 0. Here, we consider a linear function
f (ρ) = kρ. Then model (4) becomes

⎧⎪⎪⎨
⎪⎪⎩

dE(t)

dt
= −δE(t) + e− ∫ t

t−T ν(F(θ))dθρ(F(t − T ))ηE(t − τ − T ),

F(t) =
∫ T

0
e− ∫ 0

−a ν(F(t+ξ))dξ ρ(F(t − a))ηE(t − τ − a)da.

(17)
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The first equation of (10) for the equilibrium state becomes an equation for ρ:

ρe−kTρ = δη−1.

Let g2(ρ) := ρe−kTρ . Then g′
2(ρ) = e−kTρ(1 − kTρ), and we obtain the maximum

value (ekT )−1 of the function g2(ρ) at ρ = (kT )−1. For a corresponding attachment
rate function, we use the function

ρ(F) = r F

1 + j−2F2 , (18)

where r > 0 and j > 0.
The choice of this function is motivated by the Holling type III functional response

to describe the improvement of the tick’s searching for an appropriate soft and thin area
of the host skin. Note that we have separated the ticks on the hosts into two classes:
those questing ticks who have successfully attached to the host but not yet feeding
on the host, and those who are feeding, therefore the questing functional response
function is ρ(F)Q, which would be the saturation function r F2/(1+ j−2F2) should
Q = F . We use r for the "attack" rate of the type III functional response (normally
denoted by a, but this has been reserved for the age-variable in our current study). The
parameter j is related to the attach rate (r ) and the handling time (normally denoted by
h), that is, j−1 = rh. The function ρ(F) reaches its maximum value r j/2 at F = j .
A simple geometric argument yields

Theorem 3 For the combination of the attachment rate (18) and the linear grooming
behaviour f (ρ) = kρ, we have the following results about the equilibrium structure:

(i) When δη−1 > (ekT )−1, there is no positive equilibrium in model (17);
(ii) When δη−1 < (ekT )−1, the equation g2(ρ) = δη−1 has two positive solutions ρ∗−

and ρ∗+, which satisfy that ρ∗− < (kT )−1 < ρ∗+. We have the following subcases:

(ii1) If ρ∗− >
r j
2 , model (17) has no positive equilibrium;

(ii2) If ρ∗− <
r j
2 < ρ∗+, model (17) has two positive equilibria (E∗−−, F∗−−) and

(E∗−+, F∗−+), where F∗−− and F∗−+ (F∗−− < j < F∗−+) are two positive solu-
tions of the equation ρ(x) = ρ∗−; and the corresponding E∗−,± are given by
the second expression of (10) with F being replaced by F∗−± respectively;

(ii3) If ρ∗+ <
r j
2 , model (17) has four positive equilibria (E∗−−, F∗−−), (E∗−+, F∗−+),

(E∗+−, F∗+−) and (E∗++, F∗++), where F∗−± and F∗+± with F∗−− < F∗+− < j <

F∗++ < F∗−+ (see Fig.1) are positive solutions of the equations ρ(x) = ρ∗−
and ρ(x) = ρ∗+, respectively, and the corresponding E∗±,± are given by the
second expression of (10) with F being replaced by F∗±± respectively.

We illustrate the case (ii3) in Fig. 1, where we see the model has four positive
equilibria.
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Fig. 1 An illustration for the scenario where four positive equilibria may exist when δη−1 < (ekT )−1 and
ρ∗+ < r j/2

4 Multi-stability

4.1 Stability and characteristic equation

We translate the positive equilibrium P+ into the origin by the translation

{
x(t) = E(t) − E∗,
y(t) = F(t) − F∗,

model (4) becomes

⎧⎪⎪⎨
⎪⎪⎩

dx(t)

dt
= −δ(x(t) + E∗) + e− ∫ t

t−T ν(y(θ)+F∗)dθ ρ
(
y(t − T ) + F∗) η(x(t − τ − T ) + E∗),

0 =
∫ T

0
e− ∫ 0

−a ν(y(t+ξ)+F∗)dξ ρ
(
y(t − a) + F∗) η(x(t − τ − T ) + E∗)da − y(t) − F∗.

(19)
Model (19) is a delayed differential-algebraic system, also called a degenerate differ-
ential system with delay. Linearization of system (19) takes the following form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t)

dt
= −δx(t) + ηe−ν(F∗)T [ρ(F∗)x(t − τ − T ) + ρ′(F∗)E∗y(t − T )

− ρ(F∗)E∗ν′(F∗)
∫ t

t−T
y(θ)dθ ],

0 =
∫ T

0
ηe−ν(F∗)a[ρ(F∗)x(t − τ − a) + ρ′(F∗)E∗y(t − a)

− ρ(F∗)E∗ν′(F∗)
∫ 0

−a
y(t + ξ)dξ ]da − y(t).

(20)
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Looking for a non-trivial exponential vector function as a solution

{
x(t) = eλt x0,

y(t) = eλt y0,
(21)

where (x0, y0)T 	= 0, we obtain

[ (
λ 0
0 0

)
−

(
a11(λ) a12(λ)

a21(λ) a22(λ)

) ] (
x0
y0

)
= 0, (22)

where

a11(λ) = − δ + ηe−ν(F∗)T ρ(F∗)e−λ(τ+T ),

a12(λ) =ηe−ν(F∗)T E∗[ρ′(F∗)e−λT − ρ(F∗)ν′(F∗)
λ

(1 − e−λT )],

a21(λ) =ηρ(F∗)e−λτ

ν(F∗) + λ
(1 − e−(ν(F∗)+λ)T ),

a22(λ) = ηE∗

ν(F∗) + λ

(
ρ′(F∗) + ρ(F∗)ν′(F∗)

λ

)
(1 − e−(ν(F∗)+λ)T )

− ηρ(F∗)E∗ν′(F∗)
λν(F∗)

(1 − e−ν(F∗)T ) − 1.

In order for (x0, y0)T to be a nonzero vector, the determinant of the coefficient
matrix of the system (22) should be zero, i.e., the characteristic equation of (20) takes
the following form

f (λ) =
∣∣∣∣λ − a11(λ) −a12(λ)

−a21(λ) −a22(λ)

∣∣∣∣ = 0. (23)

It is highly nontrivial to describe the distribution of zeros of this characteristic equation
in the general case. In what follows, we take advantage of the fact that the feeding
duration T is relatively small (a few days) comparing with the tick life cycle in the
natural world that can be as long as 3 years.

4.2 Bi-stability: cooperative feeding and density-dependent grooming

In this section, we use feeding duration T = ε > 0 as a parameter and focus on
the stability of model (15) at positive equilibria (E∗−(ε), F∗−(ε)) and (E∗+(ε), F∗+(ε))

obtained in Theorem 2.
We start with the simplest case where ε = 0. If c/e > δ/(ηp), this special case

reduces the positive equilibria of model (15) into (E0−, F0−) and (E0+, F0+), where F0−,
F0+ (F0− < c < F0+) are the solutions of the following equation

Fe− F
c = δ(ηp)−1,
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from which we obtain the corresponding E-coordinate:

E0− = F0−ν(F0−)

ηρ(F0−) − δ
; E0+ = F0+ν(F0+)

ηρ(F0+) − δ
.

Using the implicit function theorem, when T = ε > 0, it can be seen that model
(15) has two positive equilibria (E∗−(ε), F∗−(ε)) and (E∗+(ε), F∗+(ε)), where F∗−(ε),
F∗+(ε) satisfying F∗−(ε) < c < F∗+(ε) are the two positive solutions of the following
equation

Fe−( 1c +με)F = δ(ηp)−1eμ0ε,

and

E∗−(ε) = F∗−(ε)ν(F∗−(ε))

ηρ(F∗−(ε)) − δ
, E∗+(ε) = F∗+(ε)ν(F∗+(ε))

ηρ(F∗+(ε)) − δ
.

Now, considering T = ε as a variable parameter, we focus on searching for the
characteristic eigenvalue of linearized system (20)with respect to ε. As the equilibrium
E(ε) has a singularity as ε → 0, the characteristic equation has a singularity at ε = 0
so we need to single out this singularity. Define

G(λ, ε) = ε[(λ(ε) − a11(λ, ε))a22(λ, ε) + a12(λ, ε)a21(λ, ε)]

with G(λ, 0) = lim
ε→0+ G(λ, ε) which is given by

(
λ − a11(λ, 0)

) · lim
ε→0

(
εa22(λ, ε)

) + a21(λ, 0) · lim
ε→0

(
εa12(λ, ε)

) = 0. (24)

Therefore, we consider G(λ, ε) = 0 as the characteristic equation of system (19). In
what follows, we will calculate the series expansion of G(λ, ε) = 0 with respect to ε.

It is clear to see that

εE∗±(ε) = F∗±(ε)ν(F∗±(ε))ε

ηρ(F∗±(ε)) − δ
= F∗±(ε)ν(F∗±(ε))ε

δeν(F∗±(ε))ε − δ
= F∗±(ε)ν(F∗±(ε))ε

δν(F∗±(ε))ε + o(ε)

→ F0±
δ

, as ε → 0.

Thus,
εa12(λ, ε) → ηδ−1ρ′(F0±)F0± and εa22(λ, ε) → 0, as ε → 0. (25)

Substituting (25) into (24), we can getG(λ(0), 0) = 0. Then it can be seen thatG(λ, ε)

is a C1-smooth function defined for ε in a neighbourhood of zero and G(λ, ε) = 0
becomes the characteristic equation of (15) when ε > 0.

We now consider the real part of a zero of the modified but equivalent characteristic
equation G(λ, ε) = 0, at positive equilibria (F∗−(ε), E∗−(ε)) and (F∗+(ε), E∗+(ε)),
respectively.
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Suppose that the series expansions of F(ε) and εE(ε) with the following forms

F(ε) = F0 + F1ε + o(ε),

εE(ε) = F0
δ

+ E1ε + o(ε),
(26)

where o(ε) represents higher order terms. From the expressions of ρ(F) and ν(F),
we obtain the following series expansions

ρ(F) = p(F0 + F1ε + o(ε))e− 1
c (F0+F1ε+o(ε))

= ρ0 + ρ1ε + 0(ε),

ν(F) = μ(F0 + F1ε + o(ε)) + μ0

= ν0 + ν1ε + o(ε),

ρ′(F) = p(1 − F

c
)e− F

c = p(1 − F

c
)(1 − F

c
+ F2

2!c2 + o(F2))

= ρ̃0 + ρ̃1ε + o(ε),

ν′(F) = μ, (27)

where ρ0 = pF0e− F0
c , ρ1 = pF1(1 − F0

c )e− F0
c , ν0 = μ0 + μF0, ν1 = μF1, ρ̃0 =

pe− F0
c (1 − F0

c ), ρ̃1 = − p
c F1e

− F0
c (2 − F0

c ). Combining the above series expansions,
the fist equation of (10) can be rewritten as

δ = ηρ(F)e−ν(F)ε

= η(ρ0 + ρ1ε + o(ε)) · [1 − (ν0 + ν1ε)ε + 1

2!ν
2
0ε

2 + o(ε2)],

which leads to
δ = ηρ0 and ρ1 = ν0ρ0. (28)

Based on the relationship in (28), we have

F1 = (μ0 + μF0)F0

1 − F0
c

.

Using the second equation of (8), we have

F = η
ρ(F)

ν(F)
E(1− e−ν(F)ε) = ηρ(F)εE[1− 1

2!ν(F)ε + 1

3!ν
2(F)ε2 +o(ε2)]. (29)

Substituting the series expansions of F(ε), εE(ε), ρ(F), ν(F) into (29), we yield

δ = ηpF0e
− F0

c ,

F1 = η(ρ0E1 + 1

δ
ρ1F0 − 1

2δ
ρ0ν0F0).
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From all coefficients in (27) and the relationship in (28), we have

E1 = 1

δ
(μF0 + μ0)F0(

c

c − F0
− 1

2
).

Thus, the series expansions in (26) can be expressed into

F(ε) = F0 + (μ0 + μF0)F0

1 − F0
c

ε + o(ε),

εE(ε) = F0
δ

+ 1

δ
(μF0 + μ0)F0(

c

c − F0
− 1

2
)ε + o(ε).

Assume that the series expansion of eigenvalue satisfying G(λ, ε) = 0 is given by

λ(ε) = λ0 + λ1ε + o(ε).

Based on the expressions of ai j in (22), we can calculate their series expansions as
follows

a11(ε) = −δ + ηe−(ν0+ν1ε+o(ε))ε(ρ0 + ρ1ε + o(ε))e−(τ+ε)(λ0+λ1ε+o(ε))

= δ(−1 + e−λ0τ ) − δe−λ0τ (λ0 + λ1τ)ε + o(ε),

a21(ε) = η(ρ0 + ρ1ε + o(ε))e−(λ0+λ1ε+o(ε))τ

(ν0 + λ0) + (ν1 + λ1)ε + o(ε)
(1 − e−(ν0+λ0+(ν1+λ1)ε+o(ε))ε)

= ηρ0e
−λ0τ ε + o(ε),

εa12(ε) = ηe−(ν0+ν1ε+o(ε))ε(E0 + E1ε + o(ε))[(ρ̃0 + ρ̃1ε + o(ε))e−(λ0+λ1ε+o(ε))ε

− (ρ0 + ρ1ε + o(ε))μ

λ0 + λ1ε + o(ε)
(1 − e−(λ0+λ1ε+o(ε))ε)]

= ηE0ρ̃0 + η[−ν0E0ρ̃0 + E1ρ̃0 + E0(ρ̃1 − ρ̃0λ0 − ρ0μ)]ε + o(ε),

εa22(ε) = η(E0 + E1ε + o(ε))

ν0 + λ0 + (ν1 + λ1)ε + o(ε)
(ρ̃0 + ρ̃1ε + o(ε)

+ (ρ0 + ρ1ε + o(ε))μ

λ0 + λ1ε + o(ε)
)(1 − e−(ν0+λ0+(ν1+λ1)ε+o(ε))ε)

− ημ(ρ0 + ρ1ε + o(ε))(E0 + E1ε + o(ε))

(ν0 + ν1ε + o(ε))(λ0 + λ1ε + o(ε))
(1 − e−(ν0+ν1ε+o(ε))ε) − ε

= (−1 + ηE0ρ̃0)ε + o(ε).

The characteristic polynomial G(λ, ε) becomes

G(λ, ε) = [(−1 + ηE0ρ̃0)(λ0 − δ(−1 + e−λ0τ )) + ηE0ρ̃0ηρ0e
−λ0τ ]ε + o(ε).

From the characteristic equation G(λ, ε) = 0, it follows that

(−1 + ηE0ρ̃0)(λ0 − δ(−1 + e−λ0τ )) + ηE0ρ̃0ηρ0e
−λ0τ = 0. (30)

123



42 Page 18 of 29 X. Zhang, J. Wu

Using the expressions in (27) and (28), we can simplify (30) into the following form

− F0
c

λ0 + δe−λ0τ = F0
c

δ.

The stability of the two positive equilibria (F∗−(ε), E∗−(ε)) and (F∗+(ε), E∗+(ε))

depends on the sign of the first non-zero term λ0. In the series expansion of F(ε) in
(26), we know that the first term F0 is equal to the equilibrium F∗−(ε) or F∗+(ε). Since
F∗−(ε) < c < F∗+(ε), it follows that

{
Sign(λ0) > 0, at the positive equilibrium (F∗−(ε), E∗−(ε)),

Sign(λ0) < 0, at the positive equilibrium (F∗+(ε), E∗+(ε)).

Then we have the following result:

Theorem 4 Assume ηp > δec−1. When the average feeding duration of nymphal ticks
T = ε > 0 is small, bi-stability occurs in model (15) in the cooperative feeding and
density-dependent grooming case considered in Theorem 1: the trivial equilibrium P0
and the positive equilibrium (F∗+(ε), E∗+(ε)) are both locally asymptotically stable,
and the positive equilibrium (F∗−(ε), E∗−(ε)) is unstable.

We note that in the case considered in Theorem 3, the trivial equilibrium is asymp-
totically stable since ρ(0) = 0.

4.3 Quadri-stability with grooming reactive to tick biting

We consider the case that k = O(ε−1). Consider the expansion kε as follows

kε = k0 + k1ε + o(ε).

Then the first equation of (10) becomes

δη−1 = e−(k0+k1ε+o(ε))ρρ. (31)

For ε = 0, Equation (31) has two solutions ρ−0 and ρ+0 with 0 < ρ−0 < k−1
0 <

ρ+0 if (ek0)−1 > δη−1. When ρ+0 < r j/2, by solving the quadratic equation (18),
we obtain four positive solutions F0−− < F0+− < j < F0++ < F0−+ as follows:

F0−− =
r

ρ−0
−

√
( r
ρ−0

)2 − 4 j−2

2 j−2 ,

F0−+ =
r

ρ−0
+

√
( r
ρ−0

)2 − 4 j−2

2 j−2 ,

F0+− =
r

ρ+0
−

√
( r
ρ+0

)2 − 4 j−2

2 j−2 ,
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F0++ =
r

ρ+0
+

√
( r
ρ+0

)2 − 4 j−2

2 j−2 .

We now look for F−−(ε) < F+−(ε) < j < F++(ε) < F−+(ε) such that

δη−1 = e(k0+k1ε+o(ε))ρ(F)ρ(F),

and

F−−(0) = F0−−, F+−(0) = F0+−, F++(0) = F0++, F−+(0) = F0−+.

For the four positive equilibria (F−−(ε), E−−(ε)), (F+−(ε), E+−(ε)), (F++(ε), E++(ε))

and (F−+(ε), E−+(ε)) when ε > 0, we suppose that the series expansions are
expressed as

F = F0 + F1ε + o(ε),

ρ(F) = ρ0 + ρ1ε + o(ε),

ρ′(F) = ρ̃0 + ρ̃1ε + o(ε),

εE = E0 + E1ε + o(ε),

λ = λ0 + λ1ε + o(ε),

(32)

where F0 denotes the positive solutions F0−−, F0+−, F0++, F0−+, ρ0 represents ρ−0 and
ρ+0.

Using the attachment rate function (18), we get

ρ0 = r F0
1 + j−2F2

0

, ρ1 = r F1(1 − j−2F2
0 )

(1 + j−2F2
0 )2

, (33)

and

ρ̃0 = r(1 − j−2F2
0 )

(1 + j−2F2
0 )2

, ρ̃1 = −2r j−2F0F1(3 − j−2F2
0 )

(1 + j−2F2
0 )3

.

As we did in last subsection, we now use the method of series expansions to look
for the signs of the real parts of the corresponding characteristic equation. In what
follows, we drop all the subscripts (“−” and “+”) for simplicity.

Let

H(λ, ε) = ε[(λ(ε) − a11(λ, ε))a22(λ, ε) + a12(λ, ε)a21(λ, ε)].

We can calculate that

εE(ε) = ε
Fν(F)

ηρ(F) − δ
= ε

Fν(F)

ηρ(F) − ηe−ν(F)ερ(F)
= F(kε)

η(1 − e−kερ)

→ F0k0
η(1 − e−k0ρ0)

, as ε → 0,
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Thus, we have

E0 = F0k0
η(1 − e−k0ρ0)

.

When ε → 0, we have

εa12(λ, ε) = ηe−kερεE[e−λε − ρ(F)kε(1 − 1

2!λε + o(ε))]ρ′(F)

→ e−k0ρ0F0k0
1 − e−k0ρ0

ρ̃0(1 − ρ0k0),

a21(λ, ε) = ηρ(F)e−λτ ε

(kρ(F) + λ)ε
[1 − e−(kρ+λ)ε] → 0,

εa22(λ, ε) = ηEερ′(F)

λ
(1 − e−(kρ+λ)ε) − ηεEρ′(F)

λ
(1 − e−kρε) − ε → 0,

εa11(λ, ε) = −δ + ηe−kρερ(F)e−λ(τ+ε) → −δ + ηe−(k0ρ0+λ0τ)ρ0.

Substituting these limit values above into H(λ, ε), we have H(λ(0), 0) = 0. Since
H(λ, ε) is aC1-smooth function defined for ε in a neighbourhood of zero, H(λ, ε) = 0
is equivalent to the characteristic equation of (17) when ε > 0.

In what follows, we will explore the solutions of H(λ, ε) = 0 at each equilibrium
(F−−(ε), E−−(ε)), (F+−(ε), E+−(ε)), (F++(ε), E++(ε)) and (F−+(ε), E−+(ε)).

The second equation of (10) gives

F = 1

ν(F)
ρ(F)ηE(1 − e−ν(F)ε) = ρ(F)ηεE[1 − 1

2!ν(F)ε + 1

3!ν
2(F)ε2 + o(ε2)].

(34)
Combining with (32), we have

F0 =ηE0

k0
(1 − e−k0ρ0), (35)

F1 =η(ρ1E0 + ρ0E1)

k0ρ0
(1 − e−k0ρ0) + ηρ0E0(ρ0k1 + ρ1k0)

k20ρ
2
0

(36)

· (k0ρ0e
−k0ρ0 + e−k0ρ0 − 1). (37)

According to the first equation of (10), we can obtain

δ = ηe−ν(F)ερ(F) = ηe−(k0+k1ε+o(ε))(ρ0+ρ1ε+o(ε))(ρ0 + ρ1ε + o(ε)),

which leads to

δ = ηe−k0ρ0ρ0, (38)

ρ1 = ρ0(k0ρ1 + k1ρ0). (39)
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Substituting (33) into (39), we have

F1 = rk1F2
0

(1 − j−2F2
0 )(1 − r F0k0

1 + j−2F2
0

)

. (40)

Then ρ1 in (33) can be rewritten as

ρ1 = r(1 − j−2F2
0 )

(1 + j−2F2
0 )2

· rk1F2
0

(1 − j−2F2
0 )(1 − r F0k0

1 + j−2F2
0

)

= ρ0r F0k1
1 + j−2F2

0 − r F0k0
.

From (36), it is easy to get

E1 = k0
η(1 − e−k0ρ0)

[F1 − ρ1ηE0

k0ρ0
(1 − e−k0ρ0) − ηE0

k20ρ0
(k1ρ0 + k0ρ1)

· (k0ρ0e
−k0ρ0 + e−k0ρ0 − 1)].

Based on the obtained expressions of ai j in (22), we get

a11(λ, ε) = −δ + ηe−(k0+k1ε+o(ε))(ρ0+ρ1ε+o(ε))(ρ0 + ρ1ε + o(ε))e−(λ0+λ1ε+o(ε))(τ+ε)

= −δ + δe−λ0τ + ηe−(k0ρ0+λ0τ)[ρ1 − ρ0(k0ρ1 + k1ρ0 + λ0 + λ1τ)]ε + o(ε),

a21(λ, ε) = ηρ(F)e−λτ

ν(F) + λ

(
1 − [1 − (ν(F) + λ)ε + 1

2! (ν(F) + λ)2ε2 + o(ε2)]
)

= η

k0
e−λ0τ (1 − e−k0ρ0 )ε + o(ε),

εa12(λ, ε) = ηe−ν(F)εεEρ′(F)[e−λε − kρ

λ
(1 − e−λε)]

= ηe−k0ρ0 E0ρ̃0(1 − k0ρ0) + ηe−k0ρ0 [E1ρ̃0(1 − k0ρ0) + E0ρ̃1(1 − k0ρ0)

− (k0ρ1 + k1ρ0)E0ρ̃0(2 − k0ρ0) − λ0E0ρ̃0(1 − 1

2
k0ρ0)]ε + o(ε),

εa22(λ, ε) = ηεE

ν(F) + λ
ρ′(F)(1 + kρ

λ
)(1 − e−(ν(F)+λ)ε) − ηεEρ′(F)

λ
(1 − e−kρε) − ε

= (−1 + ηE0ρ̃0e
−k0ρ0 )ε + o(ε).

Substituting a11(λ, ε), a21(λ, ε), εa12(λ, ε) and εa22(λ, ε) into the characteristic
equation H(λ, ε) = 0, we have

[(−1 + ηE0ρ̃0e
−k0ρ0)(λ0 + δ − δe−λ0τ )

+η2E0ρ̃0

k0
e−k0ρ0−λ0τ (1 − k0ρ0)(1 − e−k0ρ0)]ε + o(ε) = 0.
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Therefore,
λ0 + δ − δe−λ0τ + Ae−λ0τ = 0, (41)

where we have

A = η2E0ρ̃0e−k0ρ0(1 − k0ρ0)(1 − e−k0ρ0)

k0(ηE0ρ̃0e−k0ρ0 − 1)
.

It is clear that (41) is the characteristic equation for the following system

ẋ = −δx(t) + (δ − A)x(t − τ), (42)

which is a delay differential equation with positive feedback if δ > A. The stability
of (42) is equivalent to the stability of the zero solution for the following ordinary
differential equation (see Smith 1987)

ẋ = −δx(t) + (δ − A)x(t) = −Ax(t).

Then we have the following result:

Theorem 5 Assume that δ > A. The stability of equilibria

(F−−(ε), E−−(ε)), (F+−(ε), E+−(ε)), (F++(ε), E++(ε)), (F−+(ε), E−+(ε))

are determined by the signs of A, respectively, i.e., the equilibrium for model (17) is
stable (unstable) if and only if A > 0 (A < 0).

Now we assume that
ηE0ρ̃0e

−k0ρ0 < 1. (43)

Since δ = ηρ0e−k0ρ0 , we can reduce the condition δ > A into

−ρ0k0 < ηE0ρ̃0(1 − k0ρ0 − e−k0ρ0).

Let q(x) = 1− x − e−x . Its derivative q ′(x) = e−x − 1 < 0 for all x > 0. Therefore,
q(x) is a decreasing function for x > 0. Note that q(0) = 0, so q(x) < 0 for all x > 0,
i.e., 1 − k0ρ0 − e−k0ρ0 < 0. Then we have

ηE0ρ̃0 <
ρ0k0

k0ρ0 + e−k0ρ0 − 1
. (44)

Consequently, combiningwith the two conditions (43) and (44), we have the following
result:

Theorem 6 Assume that the following condition holds

ηE0ρ̃0 < min{ek0ρ0 , ρ0k0
k0ρ0 + e−k0ρ0 − 1

}. (45)
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Then the two equilibria (F−−(ε), E−−(ε)) and (F++(ε), E++(ε)) of model (17) are
unstable, while the other two equilibria (F−+(ε), E−+(ε)) and (F+−(ε), E+−(ε))

are asymptotically stable.

Proof Using the assumption (45), we can see that the inequality (43) and δ > A are
always true. Note that the sign of A is determined by the signs of the following three
terms:

sign(ρ̃0), sign(1 − k0ρ0) and sign(ηE0ρ̃0e
−k0ρ0).

From Fig. 1, we can see that the ρ(F)-curve is increasing in the interval (0, j) and
decreasing for ( j,+∞). When ε > 0, we have

ρ̃0 > 0, at F−−(ε) and F+−(ε),

ρ̃0 < 0, at F++(ε) and F−+(ε).

Moreover, Fig. 1 also shows that

1 − j−1F0 > 0, at F−−(ε) and F+−(ε),

1 − j−1F0 < 0, at F++(ε) and F−+(ε).

Since 0 < ρ−0 < k−1
0 < ρ+0, using a continuity argument, we have

1 − k0ρ0 > 0, at F−−(ε) and F−+(ε),

1 − k0ρ0 < 0, at F++(ε) and F+−(ε).

Then the sign of A is

sign(A) < 0, at F−−(ε),

sign(A) > 0, at F+−(ε),

sign(A) < 0, at F++(ε),

sign(A) > 0, at F−+(ε).

Therefore, (F−−(ε), E−−(ε)) and (F++(ε), E++(ε)) of model (17) are both unsta-
ble. The other two equilibria (F−+(ε), E−+(ε)) and (F+−(ε), E+−(ε)) are locally
asymptotically stable.


�

We remark that in the case considered in the above theorem, ρ(0) = 0 so the trivial
equilibrium is always asymptotically stable.
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Table 1 Parameters and their values

Parameters Baseline values Baseline values References
for bi-stability for quadri-stability

η1 0.15 (day−1) 0.05 (day−1) Hancock et al. (2011)

η2 0.3 (day−1) 0.1 (day−1) Dunn et al. (2013), Olegario et al. (2011)

σ 1000 (day−1) 300 (day−1) Gaff (2011), Hartemink et al. (2008)

τ 700 (day) 700 (day) Lindquist and Vapalahti (2008)

T 7(day) 7 (day) Hancock et al. (2011)

5 Simulations and discussions

As shown in previous studies (Brauer 1995; Webb 1985; Metz and Diekmann 2014;
Magal and Ruan 2018; Wu 1996; Kosovalić et al. 2017, 2014, 2013), algebraic-
delay differential systems arise naturally from the population dynamics, when the
individuals are physiologically structured and when the total population in a particular
physiological stage is subject to certain dynamics leading to an integral equation with
the input flow into the stage acting as a continuous forcing.

Here, we formulated a novel coupled system of a differential equation and an
algebraic/integral equation to characterize the tick population dynamics, with a par-
ticular focus on the tick attachment/fixation behaviors and host grooming response
and the implication of this tick-host interaction on the tick population dynamics at
the population level. The model formulation is particularly useful to provide insights
of multi-stability in different combinations of tick-host pairs. We did consider two
special cases: the case of cooperative feeding and density-dependent grooming when
bi-stability occurs, and the case of cooperative feeding and grooming in response to
tick biting when quadri-stability becomes a feasible scenario.

We now provide a few numerical examples to show bi-stability and quadri-stability
are both possible with parameters suggested from experimental settings or field obser-
vations (see Table 1).

Bi-stability We start with the case of cooperative feeding and density-dependent
grooming, with some parameter values given in the second column of Table 1 and the
other parameter values assumed below:

p = 0.002, δ = 0.033, μ0 = 0.4, μ = 0.0014, c = 100.

A simulation is presented in Fig. 2, from which we observe the existence of three
equilibria of model (15): one is the tick-free equilibrium P0(0, 0) and the others are
positive, the larger positive equilibrium (E∗+, F∗+) = (37.1687, 164.9135) is stable
and the smaller one (E∗−, F∗−) = (5.1798, 7.0223) is unstable. Illustrated also in
Fig. 3 are solutions of feeding nymphal ticks with different initial data that approach
two stable equilibria P0 and (E∗+, F∗+). Varying the feeding duration T ∈ [0, 9.3718],
the two equilibria (in blue) remain to be stable and the middle equilibrium (in red)
is unstable, so we have the expected bi-stability and the tick population long-term
behaviors depend on the initial condition. If T ∗ = 9.3718, model (15) has only one

123



A coupled algebraic-delay differential... Page 25 of 29 42

Fig. 2 Equilibrium of feeding nymphal ticks with respect to average feeding duration T ∈ (6, 9.3718). For
each T , model (15) has a stable tick-free equilibrium (bottom blue curve) and two positive equilibria, one
stable (top blue curve) and one unstable (middle red curve)

unique positive equilibrium (E∗, F∗) = (25.9754, 135.9141), and increasing T , the
coupled system has the only tick-free equilibrium.

Quadri-stability We provide another set of simulations for the case of cooperative
feeding and grooming in response to tick biting. Some parameters are listed in the
third column of Table 1 and the remained parameters are fixed as follows:

δ = 0.2, k0 = 2/7, r = 0.02, j = 120.

For this set of parameters, we can verify the condition δη−1 < (ekT )−1

(0.13 < 0.18). Then equation (31) has two positive solutions ρ−0 = 0.1981
and ρ+0 = 1.0147. Since ρ+0 < r j/2 = 1.2, model (17) has four positive
equilibria (E−−, F−−) = (5.8070, 9.9730), (E+−, F+−) = (14.5072, 66.1540),
(E++, F++) = (47.7346, 217.6735), (E−+, F−+) = (840.7008, 1443.8375). Sys-
tem (17) has two stable positive equilibria, (E+−, F+−) and (E−+, F−+), as shown
in Fig. 4. The corresponding phase-portraits are given in Fig. 5.

Due to the incorporation of two time lags (T and τ ) and the integral term in the
algebraic equation for F(t), local stability analysis of the multiple equilibria coexisted
in the coupled system is very difficult andwe are only able to conduct the local stability
analysis using the perturbation analysis when the feeding duration T is relatively small
comparing with the long life cycle (T + τ ). In the case of cooperative feeding and
host grooming in response to tick biting, increasing the feeding duration may lead to
nonlinear oscillations around these co-existing equilibria through Hopf bifurcations.
In this scenario, obtaining an analytic expression of the critical value of the feeding
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Fig. 3 Solutions of engorged and feeding nymphal tick population of model (15) with different initial data:
(1) when the initial data are fixed at (80, 180), (60, 90), (30, 20) respectively, the numbers of engorged and
feeding nymphal ticks approach to (E∗+, F∗+) = (37.1687, 164.9135); (2) when the initial data is (5, 8),
nymphal ticks will go extinct eventually. Model (15) has two locally asymptotically stable equilibria:
(E∗+, F∗+) and tick-free equilibrium (0, 0)

duration when Hopf bifurcations take place, and describing the global continuation of
periodic solutions bifurcated near the corresponding equilibria, remain a challenging
task. The global dynamics of such a model has yet to be obtained.

Tick population dynamics and tick-borne disease transmission dynamics have been
modeled intensively (see, for example, Gaff and Gross 2007; Lou and Wu 2014; Rosà
et al. 2003; Rosà and Pugliese 2007; Wu and Zhang 2020 and references therein).
Density-dependent development rates have been empirically estimated using labora-
tory or field observation, see for example, Ogden et al. (2005). These estimations were
used for examining the tick range expansion (Wu et al. 2013). Our contribution here is
to use the coupled system to separate the tick attachment/fixation behaviours from the
host grooming behaviors in estimating the density-dependent development rates and
explore the implication of different combinations of tick attaching and host groom-
ing behaviors. This complements the study of Lou and Wu (2014) on tick seeking
assumptions and their implications for disease transmission dynamics.

An important step forward is to expand our coupled system for the tick population
dynamics to a coupled system for tick-borne disease transmission dynamics when tick
population is further stratified by physiological stages and epidemic status. Separating
the tick-attaching andhost groomingbehaviors for ticks at different stages in describing
the tick-borne disease transmission dynamics is also important to understand the co-
occurrence of ticks at different stages in the same host, which is critically important
to understand the role of co-feeding transmission dynamics (Alekseev and Chunikhin
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Fig. 4 Solutions of feeding nymphal tick population of model (17) with different initial data: (1) when the
initial feeding nymphal ticks are set at 1600, 700, 300, the number of feeding nymphal ticks approaches
F−+ = 1443.8375; (2) when the initial feeding nymphal ticks are set at 200, 150, 10, the number of
feeding nymphal ticks approaches F+− = 65.1540; (3) when the initial feeding nymphal ticks is 3.3,
feeding nymphal ticks will go extinct eventually. Thus, model (17) has three locally asymptotically stable
equilibria: (E−+, F−+), (E+−, F+−) and tick-free equilibrium (0, 0)

Fig. 5 Phase portraits of model (17), with respective curves (E(t), F(t)) converging to the two stable
positive equilibria: (E−+, F−+) and (E+−, F+−)

1990; Hua et al. 2003; Labuda et al. 1993; Mogl et al. 2011; Ogden et al. 1997;
Randolph et al. 2002, 1996; Randolph 2011; Wu and Zhang 2021; Zhang et al. 2017).
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