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Abstract
We propose and analyze a family of epidemiological models that extend the clas-
sic Susceptible-Infectious-Recovered/Removed (SIR)-like framework to account for
dynamic heterogeneity in infection risk. The family of models takes the form of a sys-
tem of reaction–diffusion equations given populations structured by heterogeneous
susceptibility to infection. These models describe the evolution of population-level
macroscopic quantities S, I , R as in the classical case coupled with a microscopic
variable f , giving the distribution of individual behavior in terms of exposure to
contagion in the population of susceptibles. The reaction terms represent the impact
of sculpting the distribution of susceptibles by the infection process. The diffusion
and drift terms that appear in a Fokker–Planck type equation represent the impact of
behavior change both during and in the absence of an epidemic. We first study the
mathematical foundations of this system of reaction–diffusion equations and prove a
number of its properties. In particular, we show that the system will converge back
to the unique equilibrium distribution after an epidemic outbreak. We then derive a
simpler system by seeking self-similar solutions to the reaction–diffusion equations
in the case of Gaussian profiles. Notably, these self-similar solutions lead to a sys-
tem of ordinary differential equations including classic SIR-like compartments and
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a new feature: the average risk level in the remaining susceptible population. We
show that the simplified system exhibits a rich dynamical structure during epidemics,
including plateaus, shoulders, rebounds and oscillations. Finally, we offer perspectives
and caveats on ways that this family of models can help interpret the non-canonical
dynamics of emerging infectious diseases, including COVID-19.

Keywords Epidemiology · COVID-19 · SIR model · Fokker–Planck equation ·
Reaction–diffusion system · Non-linear differential system · Heterogeneity · Social
diffusion

Mathematics Subject Classification 92D30 · 35K57 · 35Q92 · 35Q84 · 60J60 · 92C60

1 Introduction

1.1 Objectives of this paper

In this paper we propose, derive, and study a family of epidemiological models that
extend the classic Kermack-McKendrick models of epidemics by structuring popu-
lations according to individual-level infection risk. The infection process modulates
both the number of individuals in different compartments (e.g., susceptibles, infected,
or recovered) as well as the infection risk amongst individuals who remain susceptible.
The family of epidemiological models also includes a social diffusion mechanism by
which infection risk changes both during and in the absence of epidemics. In doing
so, the present work extends a previous model framework (Berestycki et al. 2021),
proposed by a subset of the present author group. This prior article introduced a
reaction–diffusion system to model epidemics in populations structured by heteroge-
neous infection risk, yielding non-canonical dynamics including plateaus, shoulders,
and rebounds. However, this prior article only considered a particular framework with
constant diffusion and no drift and did not provide a derivation of the model. Further-
more, the prior article did not include restorative mechanisms by which infection risk
could stabilize during and after epidemics—as we will show, this feature provides the
basis for both generalizations and useful simplifications in real-world contexts.

The scope of the study is as follows. First, in Sect. 2, we derive a general family of
epidemiological models including heterogeneity in dynamic infection risk, extending
the model proposed in Berestycki et al. (2021). Our initial analysis focuses on the
evolution of the distribution of the risk parameter in the susceptible population. For
this purpose, we represent the effect of the epidemic as a transport phenomenon that
drives down themean risk parameter through a processwe term “sculpting”, consistent
with similar proposals in Rose et al. (2021). The distribution is also sculpted by a
mechanism of social diffusion that we represent as random variation with a reversion
drift that are associated to a drift-diffusion stochastic process.

This SfIR–model describes the evolution of macroscopic (or bulk) quantities: S(t),
I (t) and R(t), as in the classical framework, coupled with a microscopic description
of the probability distribution function of risk behavior in the susceptible population
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that we denote f (t, a), where a is a risk factor variable. We are thus led to a system
coupling SIR dynamics with a Fokker–Planck equation for the distribution f .

The SfIR–model admits a unique equilibriumdistribution of risk in the absence of an
epidemic. Our analysis begins by showing in Sect. 3 that the risk distribution will con-
verge from an arbitrary initial distribution to this unique equilibrium distribution after
the passage of an epidemic (Sect. 3). This section focuses on mathematical features
of convergence, both in a general case and in the case of Gaussian profiles. The key
take-away from an epidemiological perspective is that there is a unique equilibrium
for the distribution f associated with fixed points in which the disease is not circu-
lating, i.e., I ∗ = 0. This unique equilibrium distribution is structured by parameters
of social diffusion—balancing dynamic variations in infection risk with a tendency
for individuals to reduce their infection risk subject to a minimum constraint. Pre-
cisely because the PDE model involves several parameters it is desirable to identify a
reduced number of governing parameters to aid analysis and to apply model insights
to real-world outbreaks. Hence, we look for parsimonious versions of the family of
models that still retain key dynamical features of the full PDE model.

In Sect. 4, we derive such a parsimonious ODE system by assuming a Gaussian ini-
tial distribution of infection risk in the population. The number of free parameters in the
ODE system is then considerably reduced with respect to the PDE model. This model
reduction is achieved by looking for self-similar solutions of the system. The resulting
ODE system includes the fraction of individuals in different disease compartments
as in classical models (e.g., susceptibles, infectious, and recovered/removed), while
augmenting these models with a state variable that represents the mean infection risk
of individuals who remain susceptible (similar to an approach in the absence of social
diffusion shown in Rose et al. 2021). In this way, the ODE system includes a statistical
property of the complete distributionmodeled in the PDE system.We show in Sect. 4.4
that this ODE system gives rise to a rich variety of dynamical behaviors. Remarkably,
while much simpler, the ODE system exhibits hallmark qualitative features of dynam-
ical complexity as found in the full PDE model—including plateaus, shoulders, and
oscillations. We also prove some key mathematical properties of this reduced system.

In Sect. 6 we further derive higher order models to account for more general initial
distributions beyond the Gaussian lol. This is achieved by using a spectral method
with the eigenfunctions of the harmonic oscillator for a better approximation of the
PDE system.

As we show, the SfIRmodel generates non-canonical features of epidemic dynam-
ics as a direct result of incorporating changes in susceptibility that take place on the
time scale of disease spread. In future work we plan to study extensions of the model
developed here to include the dynamics of multiple variants, spatial propagation, feed-
back between awareness and behavior change, and to improve model-data integration
through connections with surveillance data includingwastewater-based epidemiology.

1.2 Background

SIR and related epidemic models categorize individuals in a population according to
their disease status, e.g., susceptible, infectious, and recovered/removed. There is a
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long history of expanding such models to incorporate population-level heterogeneity
in the risk of infection, transmission, and/or outcome, e.g., by further differentiat-
ing individuals based on age, job type, race, gender, and/or socioeconomic status,
etc. (Auchincloss and Diez Roux 2008; Stroud et al. 2007; Ibuka 2016; Leung 2017;
Zhang 2020; Brauer 2005; Prem et al. 2017). Extensions to SIR models that include
such heterogeneity assume that relevant epidemic parameters and interactions vary
across categories (e.g., between ages as in Prem et al. 2021). The SARS-CoV-2 pan-
demic has accelerated a diversification of modeling approaches to examine the basis
for and consequences of heterogeneity for the emergence of an outbreak, the speed
of population-level spread and the size and severity of the outbreak at the population-
scale. A key motivating factor was the early observation of plateaus and shoulders
in SARS-CoV-2 case data—shapes that are seemingly incompatible with classic pre-
dictions of SIR-like models in which qualitative changes in dynamics are driven by
susceptible depletion (Weitz et al. 2020a). As a result, multiple categories of models
have been proposed to reconcile apparent slowdowns in spread, plateaus, shoulders,
and oscillations in epidemic dynamics. In doing so, we distinguish three main classes
of approaches: (i) bottom-up structured epidemic models; (ii) top-down behavioral
models; (iii) mesoscopic models.

Structured epidemicmodels differentiate individual characteristics, including inter-
actions and behavior, allowing for the inclusion of impacts on transmission from
different types of interventions (e.g., school closing, case isolation, physical distanc-
ing) (Ferguson et al. 2020; Di Domenico et al. 2020). In the absence of interventions,
structured epidemic models are expected to exhibit a single epidemic peak followed
by a susceptible decline and elimination, whereas interventions can lead to delays,
oscillations, rebounds, and/or asymmetric peaks. Even in the absence of interven-
tions, classic outcomes predicted from SIR models can change when populations are
structured. A key early example along these lines extended SIR-like models to account
for the impacts of age- and activity-structure on the size of the ongoing SARS-CoV-2
outbreak (Britton et al. 2020). Numerical simulations revealed that herd immunity
thresholds and final sizes of simulated outbreaks were smaller than that expected from
classical theory when accounting for age-dependent mixing and activity differences.
Other papers used more detailed features of social contacts such as social distance,
indoor/outdoor environment, and the cumulative duration of contacts (Béraud et al.
2015). Likewise, a series of previous works described population heterogeneity in
terms a finite number of transmission rate coefficients in the contact matrix in a SIR or
SEIRmodeling framework. (See for instance Arino et al. 2005; Dolbeault and Turinici
2021, 2020; Magal et al. 2018.) In all of these cases, non-homogeneous interactions
in a structured population leads, in effect, to changes in transmission rates relative to
those in homogeneous populations.

In contrast, top-down behavioral models neglect individual differences; instead rel-
evant epidemic parameters change over time as a result of time-dependent rates or
explicit feedback between spread, awareness, and behavior change. The merits and
limits of these contrasting approaches to epidemic modeling are listed in Sukumar
and Nutaro (2012). For example, in epidemic models with awareness-based feedback
increasing fatalities leads to a decrease in interactions that correspondingly decreases
transmission (Weitz et al. 2020a). In effect, the transmission rate β is directly mod-
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ulated by the number of cumulative (or daily) deaths. Depending on the degree of
awareness, thismodel class can yield plateaus, “shoulder” like patterns and oscillations
for the dynamics of infectious individuals—initial peaks are unrelated to susceptible
depletion. Whether or not a population experiences, oscillations, a single peak, or
sustained plateau in new infections may depend on the extent to which individuals
become fatigued or substitute actions (e.g., mask-wearing or increasing ventilation)
even as mobility increases. Similarly, other models have assumed that individuals
face a behavioral trade-off described as a mathematical utility function (Arthur et al.
2021). In the absence of an epidemic, people try to improve their utility though social
interactions—working, attending school, or socializing—so as to reach an ideal level
of social contact. In the presence of an epidemic, interactions becomes risky. People
then cut back their contacts to a level that balances the benefit of interactions with costs
associated with catching the disease. The model is expressed as a SIS system where
the transmission rate depends on the optimal contact rate. In this framework, there is
a theoretical endemic equilibrium, which means that multiple fluctuation waves are
possible for a long time around equilibrium values.

Finally, mesoscopicmodels represent an effort to bridge the gap between bottom-up
agent-basedmodeling and top-down imposition of behavioral feedback in an otherwise
homogeneous population. Mesoscopic models structure populations via an explicit
representation of a distribution of traits that play a role in the infection process. Thus,
these mesoscopic models are of an intermediate type in terms of complexity and
dimensionality relative to the bottom-up and top-down modeling frameworks.

For example, in Rose et al. (2021), the authors incorporate population-level het-
erogeneity in infection susceptibility. They show that behavioral variation strongly
influences the rate of infection, while the infection process simultaneously sculpts the
susceptibility distribution. In doing so, they show how the sculpting process can drive
distributions towards a characteristic stable shape (e.g., gamma-type susceptibility
distributions). Precisely because individuals with greater susceptibility are infected
earlier, the remaining population tends to be less susceptible than initially. As a result,
the epidemic slows down, leading naturally to power-law behavior in the strength of
infection, where the power-law like behavior is generic while the power-law expo-
nent depends on the shape of the heterogeneous distribution. This work suggests that
first-order epidemic models that are parameterized in the exponential-like phase may
systematically over-estimate the final size and severity of the epidemic, similar to
findings by Brauer (2011, 2019) and by Eksin et al. (2019). However, because indi-
viduals do not change their behavior, the model in Rose et al. (2021) does not generate
oscillations or long-term plateaus. (See Tkachenko et al. 2021 for an effort to link
dynamical heterogeneity to the finding of plateaus and multiple waves.)

There are multiple other examples—including Almeida et al. (2021) who intro-
duced social diffusion together with behavior heterogeneity as a multidimensional
risk variable x in a SIR-type framework. In this model, social diffusion appears as a
linear diffusion of susceptible and infected populations (or only infected populations)
in terms of x . Such models follow the kinetic modeling approach where the SIR (or
SEIR) dynamics are coupled with Boltzmann or Fokker–Planck type equations and
local equilibria being expressed as gamma-type distributions.
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One may view the present work in the spirit of mesoscopic models. As such, we
provide here a comprehensive and consistent derivation of a family of epidemiological
models of reduced complexity encompassing both individual level risk heterogeneity
and variability of individual behaviors (rather than variability in aggregate behaviors of
the population as awhole).We term this a SfIR family ofmodels. Suchmodels describe
the evolution of the distribution of population level quantities (S, I , and R) and the
dynamics of a microscopic distribution f that captures variability in susceptibility to
infection at the individual scale.

2 The epidemiological model with heterogeneous and variable
behaviors

2.1 Stochastic framework

The model we introduced in Berestycki et al. (2021) involves a risk trait variable
a ∈ (0, 1). More generally, here we will assume that a varies either in A = R

+ or
in A = (0, 1). This parameter structures the population of susceptibles S so that
S = S(t, a). We can think of a as a lumped variable characterizing the relative
vulnerability of individuals to infection. Low levels of a are associated with cautious
behaviors while high values correspond to increasing risk of infection. Here, cautious
behavior involves both the number of contacts and the probability of infection in a given
contact. However, in our approach, we do not explicitly include the effect of cautious
individuals reducing contacts with others, perceived as more at risk. This effect of
preferential mixing, described in the work of Feng (2014), which also appears in the
work of Weitz et al. (2020b), would lead to a different term for the force of infection.

The lumped variable a influences both the transmission rate factor profile a �→ β(a)

and the initial distribution of susceptible individuals: a �→ S0(a) = S(0, a). The effect
of a is to yield high levels of transmission rates β(a) for high values of a and small
ones when a is small. Thus we always assume that β(a) is increasing with a. Because
behaviors fluctuate in time, it is natural to consider a as a random variable.

Our purpose in this section is to provide a detailed derivation of the generalized SIR
system in the framework of a population structured by the variable a. The dynamics
of the distribution of the variable a in the susceptible population results from two joint
effects. First, by the very nature of the risk factor, individuals with high a become
infected at a higher rate than those with a low level of a. Thus, the epidemics has
a dynamic effect on the probability distribution of a. Second, owing to the stochas-
tic nature of the parameter a, it is subject to its own stochastic evolution which we
describe below by the stochastic differential equation (9). Thus, our generalizedmodel
describes the coupled evolution of behavior and epidemic dynamics.
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2.2 Dynamics of risk parameter a induced by heterogeneity: transport equation
and Lagrangian viewpoint

Wefirst derive the purely epidemic evolution of a. It can be considered as deterministic,
in the framework of heterogeneous populationwith respect to disease transmission rate
a �→ β(a). In particular we aim at determining the corresponding transport equation
for the sculpting of the distribution of susceptibles.

In an heterogeneous population, stratified by the risk parameter a ∈ A, (where A
denotes either (0, 1) or R+), the purely epidemic depletion of S(t, a) is given by the
first equation of the SIR model:

∂S(t, a)

∂t
= − I (t)

N
β(a)S(t, a). (1)

Here, we only consider the stratification of the population of susceptibles. As was
already mentioned in Berestycki et al. (2021), one can also envision a situation in
which the population of infected is structured by a parameter b and write I = I (t, b).
We leave this for further studies.

We introduce the probability density or distribution f (t, a) of the population of
susceptibles as a function of the level a at time t . That is, we write:

f (t, a) := S(t, a)

S(t)
, where S(t) :=

∫
A
S(t, a) da.

Thus, S(t) denotes the total susceptible population at time t .
From the heterogeneous SIR equation (1) above, we get

dS(t)

dt
= − I (t)S(t)

N

∫
A

β(a) f (t, a) da, (2)

and

∂ f (t, a)

∂t
= − I (t)

N
f (t, a)

(
β(a) −

∫
A

β(b) f (t, b) db

)
. (3)

The meaning of (3) is clear. The effect of the epidemic is to deplete the fraction of
population with high a and to increase the fraction of population a whose β = β(a)

is below the average β in the population. Let F denote the cumulative distribution
function, that is

F(t, a) =
∫ a

0
f (t, b) db.

Integrating the right hand side of Eq. (3) with respect to a yields:

∂ f

∂t
= − ∂

∂a

(
μep f
)
, (4)
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where

μep(t, a) = I (t)

N

∫ a

0
β(b) f (t, b) db − F(t, a)

∫
A

β(b) f (t, b) db

f (t, a)
, (5)

so that denoting β(t) the average transmission rate at time t , one has

μep(t, a) = I (t)

N

∫ a

0

(
β(b) − β(t)

)
f (t, b) db

f (t, a)
. (6)

Equation (4) is a transport equation. It describes how the distribution of population
S(t, a) reorganizes itself under the effect of the epidemics. Note that in the neighbor-
hood of a = 0, one has μep(t, a) ∼ a(β(0) − β(t))I (t)/N .

Then, to represent the solutions of the transport Eq. (4), we use the method of
characteristics. To this end, we introduce the associated Lagrangian flow (t, α) �→
a(t, α) that follows the dynamics

∂a(t, α)

∂t
= μep (t, a(t, α)) , with a(0, α) = α. (7)

As a matter of fact, one has

d

dt
[ f (t, a(t, α))∂αa(t, α)] = ∂αa(t, α)

(
∂ f

∂t
+ μep

∂ f

∂a
+ f

∂μep

∂a

)
(t, a(t, α)) = 0.

Hence, introducing the initial probability distribution f0 and denoting a−1(t, ·) the
inverse of a(t, ·) for all given t > 0, one gets

f (t, α) = ∂αa
−1(t, α) f0(a

−1(t, α)).

This means that the probability measure of susceptibles P(t) (associated with the
density f (t, ·)) at time t is the pushforward of the initial probability measure P0 by
the flow a(t, ·):

P(t) = a(t, ·)�P0,

That is, for all G ⊂ A, the measure of G at time t is deduced from the measure of the
image of G by the inverse of the flow a−1(t, ·):

P (t) (G) = P0

(
a−1 (t,G)

)
.
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Remarks

Let us first observe that the right hand side μep of (7) is always non-positive as soon
as β is a non-decreasing function of a. In fact, one has

∫ a

0
β(b) f (t, b) db − F(t, a)

∫
A

β(b) f (t, b) db

=
∫
A\(0,a)

dc
∫ a

0
db f (t, b) f (t, c) (β(b) − β(c)) ≤ 0,

where A\(0, a) denotes (a, 1) (resp. (a,+∞))when A = (0, 1) (resp. A = (0,+∞)).
This means that the risk a decreases along the Lagrangian characteristic curves gov-
erned by (7).

Another useful observation is that the right hand side μep(t, a) of (7) vanishes for
a ∈ ∂A, i.e. for a = 0 and for a = 1 (resp. a → +∞) in the case A = (0, 1) (resp.
A = (0,+∞)).

As in the SIR model, using the dynamics of R compartment (dR/dt = γ I ), we
deduce that the Lagrangian paths associated with (5) can be naturally expressed in
terms of R instead of t :

da

dR
=

∫ a

0
β(b) f (R, b) db − F(R, a)

∫
A

β(b) f (R, b) db

γ N f (R, a)
. (8)

In the case of homogeneous transmission rateβ(a) ≡ β, the epidemic drift vanishes
μep(t, a) ≡ 0: epidemics do not create heterogeneity if there is none initially.

Let us finally give a computable example of non-zero epidemic drift. Starting from
the exponential distribution f0(a) = exp(−a) over A = (0,+∞), β(a) = β1a for
some positive constant β1, one gets:

f (R, a) =
f0(a) exp

(
−β1aR

γ

)

∫ +∞
0 f0(b) exp

(
−β1bR

γ N

)
db

,

f (R, a) =
(
1 + β1R

γ N

)
exp

(
−a

(
1 + β1R

γ N

))
,

so that the dynamical system (8) becomes

da

dR
= − β1a

γ N

(
1 + β1R

γ N

) ,
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i.e.

a(R) = a(0)

1 + β1R

γ N

.

This example illustrates the aforementioned monotonicity of t �→ a(t): in this case,
traits decrease with the same rate regardless of their initial value. Then, since

μep(t, a) = − β1γ I (t)

γ N + β1R(t)
a,

the transport equation satisfied by the distribution f (t, a) rewrites as

∂ f (t, a)

∂t
= ∂

∂a

(
β1γ I (t)a f (t, a)

γ N + β1R(t)

)
.

2.3 Derivation of themodel

In order to account for random fluctuations of the distribution of the variable a, we
consider that it is governed by a stochastic process that we write as at . We will assume
that, in the absence of epidemics, its distribution results from the following stochastic
differential equation or Itô drift diffusion process:

dat = μb(t, at )dt + σ(t, at )dWt , (9)

where Wt is a standard Wiener process, σ(t, a) > 0, and μb(t, a) represents back-
ground volatility and drift coefficients. This equation corresponds to a Lagrangian
point of view and is the stochastic analogue of the deterministic part (7). We impose
reflecting boundary conditions at the endpoints of the interval A, i.e. at a ∈ {0, 1}
when A = (0, 1) or at a = 0 when A = (0,∞).

Let us now consider a population stratified by the variable a subject to the combined
effect of two effects: the stochastic differential equation (SDE) (9) on one hand and
depletion caused by the epidemics driven by transport equation (4) (or equivalently)
by the ordinary differential equation (ODE) (7) on the other hand. We assume that the
superposition principle applies to these two effects. Then, under this joint effect, the
evolution of a includes a drift or transport term with coefficientμep +μb, whereas the
stochastic part remains the same. Thus, the random process is given by the following
SDE:

dat = (μep + μb
)
dt + σdWt .

where:
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• μb is an additional drift and the diffusion σ ≥ 0 both possibly depending on t and
a. The two variables μb and σ need to comply with boundary conditions:

μb − 1

2

∂σ 2

∂a
= 0 on R

+ × ∂A.

• Wt is a Wiener process with reflecting boundary conditions.

Then, the dynamics of the associated probability density f (t, a) is given by the fol-
lowing Fokker–Planck equation (or forward Kolmogorov equation):

∂ f

∂t
= − ∂

∂a

(
(μep + μb) f

)+ ∂2

∂a

(
σ 2

2
f

)
in R

+ × A.

For the sake of completeness, we sketch the proof. This will allow us to derive the
boundary condition. Let a �→ φ(a) be a smooth function over A. Then Itô’s formula
leads to:

dφ(at ) =
((

μep + μb
) ∂φ

∂a
+ σ 2

2

∂2φ

∂a2

)
dt + ∂φ

∂a
σ dWt . (10)

Then, taking the time derivative of the expectation of φ(t, a) yields on the one hand

d

dt
E[φ(at )] = d

dt

∫
A

φ(a) f (t, a) da =
∫
A

φ
∂ f

∂t
da,

and on the other hand from (10)

d

dt
E[φ(at )] = E[dφ(at )]

dt
= E

[(
μep + μb

) ∂φ

∂a
+ σ 2

2

∂2φ

∂a2

]
,

=
∫
A
f

((
μep + μb

) ∂φ

∂a
+ σ 2

2

∂2φ

∂a2

)
da.

Hence, one has for all smooth enough φ

∫
A

φ
∂ f

∂t
da =
∫
A
f

((
μep + μb

) ∂φ

∂a
+ σ 2

2

∂2φ

∂a2

)
da,

so that integrating by parts the right hand side of the above equation leads to

∫
A

φ
∂ f

∂t
da = −

∫
A

φ
∂

∂a

((
μep + μb

)
f
)
da −
∫
A

∂φ

∂a

∂

∂a

(
σ 2

2
f

)
da

+
[(

μb + μep
)
φ f + σ 2

2
f
∂φ

∂a

]1 or +∞

0
,

=
∫
A

(
−φ

∂

∂a

((
μep + μb

)
f
)+ φ

∂2

∂a

(
σ 2

2
f

))
da
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+
[(

μb + μep
)
φ f + σ 2

2
f
∂φ

∂a
− φ f

∂

∂a

(
σ 2

2

)
− φ

σ 2

2

∂ f

∂a

]1 or +∞

0
.

Taking test functions φ compactly supported in A, one therefore gets the dynamics of
the probability density (t, a) �→ f (t, a) of risk parameter a

∂ f

∂t
= − ∂

∂a

(
(μep + μb) f

)+ ∂2

∂a

(
σ 2

2
f

)
in R

+ × A.

Given the above assumptions onμ and σ on the boundary ∂A, the following boundary
conditions lead to a consistent weak formulation

∂ f (t, a)

∂a
= 0 on R

+ × ∂A.

In other words, one has

∂ f (t, a)

∂t

= − I (t)

N

(
β(a) f (t, a)− f (t, a)

∫
A
β(b) f (t, b)db

)
− ∂

∂a
(μb f ) + ∂2

∂a

(
σ 2

2
f

)
.

Using (2), which is unchanged (the effect of random variations reshuffle a in a con-
servative way), we deduce that S(t, a) = S(t) f (t, a) satisfies

∂S(t, a)

∂t
= S(t)

∂ f (t, a)

∂t
− f (t, a)

I (t)S(t)

N

∫
A

β(a) f (t, a) da,

= − I (t)β(a)S(t, a)

N
− ∂

∂a
(μb(t, a)S(t, a)) + ∂2

∂a

(
σ 2(t, a)

2
S(t, a)

)
.

On the other hand, the dynamics of the total infected is not modified by random
fluctuations of a:

d I (t)

dt
= I (t)

(
1

N

∫
A

β(a)S(t, a) da − γ

)
.

We conclude by the expression of the full PDE system of epidemiology with hetero-
geneous and variable behaviors:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂S

∂t
= −β I S

N
− ∂(μbS)

∂a
+ 1

2

∂2(σ 2S)

∂a2

d I

dt
= I

(
1

N

∫
A

βS da − γ

)

dR

dt
= γ I

(11)
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supplemented with boundary conditions

∂S

∂a
= 0 on R

+ × ∂A,

where μ and σ are given functions satisfying the boundary conditions

μb − 1

2

∂σ 2

∂a
= 0 on R

+ × ∂A.

We recover in particular the model we studied in our earlier work (Berestycki et al.
2021) from the case μb ≡ 0 and σ constant. Note that we mentioned there the more
general form of the equation when σ = σ(a) depends on the risk trait a but we did
not explain precisely how to derive it.

2.4 General SfIR epidemiologic model

To summarize, we rewrite the general system describing the dynamics of S, I and f
variables

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −β SI

N
,

d I

dt
= I

(
β S

N
− γ

)
, β(t) =

∫
A

β(a) f (t, a) da,

∂ f (t, a)

∂t
= − (β(a) − β(t)

)
f (t, a)

I (t)

N

− ∂ (μb(t, a) f (t, a))

∂a
+ ∂2

∂a2

(
σ 2(t, a) f (t, a)

2

)
,

∂ f (t, a)

∂a
= 0 for (t, a) ∈ R

+ × ∂A,

∫
A
f (t, a) da = 1 for t ∈ R

+.

(12)

The model parameters are assumed to satisfy

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ > 0,

S(0) > 0, I (0) > 0 such that S(0) + I (0) ≤ N ,

β(a) ≥ 0, σ (t, a) ≥ 0 in R
+ × A.

μb(t, a) − 1

2

∂σ 2(t, a)

∂a
= 0 over R

+ × ∂A.

(13)

In spite of its simple appearance, the evolution equation for f in (12) is rather involved.
In fact, this equation is non-linear, not only because of the term f I (as in the quadratic
term in the SIRmodel), but also owing to the term β f since β is linear in f . Note also
that because of this term, the equation is non-local.
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3 Convergence to equilibrium

There is a vast literature related to the convergence to equilibrium of solutions to the
Fokker–Planck equations in the whole space R

d , d ≥ 1 starting with the seminal
results of Bakry and Émery (1985). We refer the reader to Markowich and Villani
(1999) for a survey as well as to the book of Bakry et al. (2014). These works about
convergence to equilibrium chiefly rely on a so-called “hyper-contractivity” condition
of D. Bakry and M. Emery. We describe below this condition on the coefficients. In
vague terms, it guarantees the existence of a “spectral gap” for the Fokker–Planck
operator, which is shown to yield exponential convergence to equilibrium distribution
in L1. A key quantity is the “relative entropy” E involving the probability distribution
f and the equilibrium distribution that we also describe here. Then, one shows that E
is bounded by its dissipation rate by using the logarithmic Sobolev inequality that we
state below.

In Sect. 3.1, we establish the convergence to equilibrium of the distribution f (t, ·)
solution of the coupled SfIR system (12) under general assumptions on the coefficients
and initial data. Among these, we assume a hyper-contractivity condition which is
sufficient for a logarithmic Sobolev inequality to hold. Actually, we might have con-
sidered alternative hyper-contractivity conditions involving the Ricci curvature of the
Riemannian structure underlying the Fokker–Planck operator as inArnold et al. (2001)
without epidemic coupling. We leave this for future work.

Then, in Sect. 3.2, we consider a more specific framework for the coefficients β,
μb and D in which the equilibrium distribution is of Gaussian type. It allows for
much simpler proofs, making the argument more transparent. Furthermore, it allows
one to derive stronger results such as the convergence of the average transmission rate
β(t). Besides these advantages, this Gaussian framework has interestingmathematical
properties such as the existence of exact self-similar solutions. Searching for such self-
similar solutions leads to low complexity system of ordinary differential equations
(ODEs) instead of the PDE system (12). We develop this point of view in Sect. 4 at
first order and then extend it to higher order approximations in Sect. 6.1 using spectral
decomposition of the distribution f .

3.1 The general case with time-independent coefficients

From now on, we assume that A = R
+ and we consider the SfIR system (12) in the

case when the drift and diffusion coefficients, μb and D = σ 2/2, do not depend on
time.

We consider here solutions S, f , I and R of (12) with the following assumptions
on the model coefficients

⎧⎪⎨
⎪⎩

γ > 0,

β(a) ≥ 0, D(a) ≥ 0 for a ∈ R
+,

μb(0) − D′(0) = 0.
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After the epidemic has peaked, one expects that the number of infected individuals
I (t) will go to zero and that the probability density f (t, ·) will converge to the equi-
librium distribution. This distribution denoted f∞ is the unique stationary solution of
System (12) in the absence of epidemic. It satisfies:

⎧⎪⎪⎨
⎪⎪⎩

d

da

(
μb(a) f∞(a) − d

da
(D(a) f∞(a))

)
= 0 in R

+,

f ′∞(0) = 0 and
∫
R+

f∞(a)da = 1.
(14)

Let us introduce a �→ α(a) defined up to an additive constant by

α′(a) = D′(a) − μb(a)

D(a)
.

We assume that a �→ exp(−α(a)) is integrable over R+ and we set the constant in
such a way that

∫ +∞

0
exp(−α(a)) da = 1.

Then, we deduce from (14) that

f∞(a) = exp (−α(a)) .

Associated to this equilibriumprobability density, we define themeasure ν by dν(a) =
f∞(a) da and related L p functional spaces

L p (
R

+; ν
) =
{
g ;
∫
R+

|g(a)|pdν(a) < +∞
}

, p ∈ [1,+∞).

We now state some assumptions on the coefficients β, μb and D that we shall use
later on to study the convergence to equilibrium. The first one requires that the average
initial and asymptotic transmission rates are finite:

(H1) β(0)=
∫
R+

β(a) f (0, a) da < +∞ and β∞ =
∫
R+

β(a) f∞(a) da < +∞.

Next, we assume that the diffusion coefficient is non-degenerate, that is:

(H2) There exists D∗ > 0 such that D(a) ≥ D∗ for all a ∈ R
+.

In order to keep the average transmission rate bounded over time, we also require the
following technical assumption: there exist positive constants C1 and C2 such that

(H3) β ′(0) ≥ 0, D(a)β ′′(a) + μb(a)β ′(a) ≤ C1 − C2β(a) for all a ∈ R
+.
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We will see that it is verified in the case we discuss in the next subsection.
Finally, the following Assumption (H4) is the Bakry–Emery hyper-contractivity

condition (Bakry and Émery 1985; Bakry et al. 2014; Bakry 1994; Arnold et al.
2001; Courtade and Fathi 2020) which allows one to control the convergence rate to
equilibrium of solutions of the Fokker–Planck equations in the absence of epidemic.
It simply writes in terms of a �→ α(a) as:

(H4) α′′(a) ≥ λ1, for all a ∈ R
+ for some λ1 > 0.

Equivalently, we formulate (H4) in terms of the D and μb parameters as follows for
all a ∈ R

+:

(H4)
D′′(a)

D(a)
− D′(a)2

D(a)2
+ μb(a)D′(a)

D(a)2
− μ′

b(a)

D(a)
≥ λ1 > 0.

A classical result stated in Bakry et al. (2014), Courtade and Fathi (2020) is the
following Sobolev type estimate:

Theorem 1 (Bakry–Emery) Let a �→ α(a) be a twice differentiable function over R
such that for some λ1 > 0, α′′(a) ≥ λ1 > 0 for all a ∈ R, and f∞ = exp(−α) is a
probability measure over R. Then, defining the measure ν by dν(a) = f∞(a) da, for
all g ∈ L2(R; ν) such that g′ = dg/da ∈ L2(R; ν), there holds:

∫
R

g2 log g2dν −
(∫

R

g2dν

)
log

(∫
R

g2dν

)
≤ 2

λ1

∫
R

|g′|2dν, (15)

As a consequence, for the probability density distributions f over R+, we obtain the
following Logarithmic Sobolev inequality:

∫
R+

f (a)ψ(a) da ≤ 1

2λ1

∫
R+

f (a)

∣∣∣∣dψ(a)

da

∣∣∣∣
2

da, where ψ = log
f

f∞
. (16)

This inequality is easily derived from (15) by extending f /2 and f∞/2 as even func-
tions on the whole real line, and considering g = √

f / f∞. It holds true as long as
g′ ∈ L2(R+; ν).

The left hand side of (16) is called the relative entropy1. This inequality allows
one to estimate this entropy by what turns out to be its dissipation rate through the
dynamics of Fokker–Planck equations in the right hand side.

On the one hand, in the classical Fokker–Planck equation case, that is, in the absence
of coupling with epidemic model, this Logarithmic Sobolev inequality leads to a
convergence of f (t, ·) to f∞ in L1(R+) norm at speed exp(−λ1t) (see Bakry and
Émery 1985; Bakry 1994; Bakry et al. 2014). On the other hand, in the classical
SIR model, in the absence of social diffusion, the quantities S(t), I (t) also converge
exponentially to their limits as t → ∞.

1 It is often denoted E( f | f∞).
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Here, the novelty lies in the coupling of the Fokker–Planck equation with the epi-
demiological system which is not covered by previous results. Still, we are able to
prove the following result.

Theorem 2 Under Assumptions (H1)(H2)(H3)(H4), I (t) converges to 0, S(t) con-
verges to S∞ and f (t, ·) converges to f∞ in L1(R+) as time t goes to+∞ for some S∞
such that 0 ≤ S∞ < S(0). More precisely, assuming that f0 log( f0/ f∞) ∈ L1(R+),
there exists C∗ > 0 such that for all t > 0

(∫
R+

| f (t, a) − f∞(a)| da
)2

≤ C∗
∫ t

0

I (s)

N
exp(η(s − t)) ds

+2 exp(−ηt)
∫
R+

f0(a) log
f0(a)

f∞(a)
da, (17)

where η = 2D∗λ1.
Let us explainwhy (17) leads to the convergence in L1(R+)of f (t, ·) to f∞ as t goes

to +∞. As we shall see in the first step of the proof of Theorem 2, the convergence of
S(t) (resp. I (t)) to S∞ ∈ [0, S(0)) (resp. 0) follows fromstraightforwardmonotonicity
arguments. Then, given T > 0 and splitting the integral over (0, t) in the right hand
side of (17) into (0, T ) and (T , t) yields for t > T :

∫ t

0

I (s)

N
exp(η(s − t)) ds ≤ 1

η

(
sup
s≥T

|I (s)| + exp(−η(t − T ))

)
,

which leads to the convergence in L1(R+) of f (t, ·).
We also observe that Estimate (17) means that the rate of convergence of the prob-

ability density f to equilibrium is determined by the smallest decay between that of
I (t) and the exponential decay associated with the convergence rate to equilibrium
solutions of the Fokker–Planck equations. As a matter of fact, using Fatou’s lemma,
the convergence of f (t, ·) to f∞ in L1(R+) leads to:

β∞ =
∫
R+

lim inf
t→∞ β(a) f (t, a) da ≤ lim inf

t→+∞ β(t).

Therefore, we deduce from the convergence of S(t) to S∞ that

β∞S∞ − γ ≤ lim inf
t→+∞
(
β(t)S(t) − γ

)
.

Recalling that d I/dt = I (β S − γ ), we deduce that if

δ̄ = − lim inf
t→+∞
(
β(t)S(t) − γ

)
> 0,

which requires β∞S∞ < γ , then for all δ ∈ (0, δ̄), there is some Cδ > 0 such that

I (t) ≤ Cδ exp(−δt).
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Then, L1(R+) convergence to equilibrium occurs at exponential speed

∫
R+

| f (t, a) − f∞(a)| da ≤ C ′∗ exp(−κt),

for some positive constant C ′∗, where

κ = D∗λ1 if 2D∗λ1 < δ̄, κ ∈ (0, δ̄/2) otherwise.

The case when β∞S∞ = γ , however, is more intricate regarding the convergence
speed of I (t) to 0. Still, Theorem 2 holds even if I (t) were to converge more slowly
to zero than exponential decreasing functions.

We now turn to the proof of Theorem 2.

Proof In order to prove the large time convergence of solutions (S, I , f ) of (12) to
some equilibrium (S∞, 0, f∞), we need to adapt the Lyapunov function introduced
in the classical works in the absence of epidemic (Frank 2001). The so-called relative
entropy

E(t) =
∫
R+

f (t, a) log
f (t, a)

f∞(a)
da

plays the role of such a Lyapunov function. The first step consists in proving that
(S(t), I (t)) converge. The second one is to prove that the average transmission rate
t �→ β(t) is bounded. The third step is to derive relative entropy estimates in terms of its
dissipation rate and the rate of infected individuals I (t)/N . Then logarithmic Sobolev
inequality (16) and Csiszár-Kullback-Pinsker inequality will allow us to conclude.

Step 1: Convergence of (S(t), I(t))

From the evolution equations of S and I , we deduce that S(t) ≥ 0 and I (t) ≥ 0 for all
t ≥ 0. If follows that S(t) is non-increasing with time t so that it converges to some
S∞ ∈ [0, S(0)). Introducing the recovered population

R(t) = N − S(t) − I (t) = γ

∫ t

0
I (s)ds,

which is bounded from above by N and non-decreasing, we see that R(t) converges
to some R∞. We conclude that I (t) = N − S(t) − R(t) converges to some value
Ī∞ = N − S∞ − R∞, which is zero (it would otherwise contradict the convergence
of R(t)).

Step 2: Bounds on t �→ ˇ(t)

Recalling the epidemiological model, it is natural to expect that the average transmis-
sion rate β(t) should remain bounded as time goes to +∞. Integrating the evolution
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equation of f multiplied by β(a), we deduce that t �→ β(t) is governed by

dβ(t)

dt
= − I (t)

N
Var β(t) +

∫
R+

β ′(a)

(
μb(a) f (t, a) − ∂

∂a
(D(a) f (t, a))

)
da,

where we have used μb(0) = D′(0) and where

Var β(t) =
∫
R+

(
β(a) − β(t)

)2
f (t, a) da.

Then, one has

dβ(t)

dt
+ I (t)

N
Var β(t) + β ′(0)D(0) f (t, 0)

=
∫
R+

(
β ′(a)μb(a) + β ′′(a)D(a)

)
f (t, a) da.

The above computations are formal. Their rigorous justification requires sufficient
regularity and decay at infinity of solutions f . These aspects are proved inAppendixC.

Recalling that f ≥ 0, Varβ(t) ≥ 0 and using the non-degeneracy assumption (H2)
and Condition (H3), we deduce that

dβ(t)

dt
≤ C1 − C2β(t). (18)

Since β(0) < +∞ by (H1), we infer that t �→ β(t) is bounded by some positive
constant B for all time t ≥ 0.

Step 3: Relative entropy estimate

Next, we observe that the partial differential equation satisfied for f can be expressed
in the following way involving f∞:

∂ f (t, a)

∂t
= ∂

∂a

(
f (t, a)D(a)

∂ψ(t, a)

∂a

)
− (β(a) − β(t)

)
f (t, a)

I (t)

N
,

where

ψ(t, a) = log
f (t, a)

f∞(a)
.

Using the fact that ∂aψ(t, 0) = 0 and defining the non-negative function x �→ ξ(x)
for positive x as ξ(x) = x log x − x + 1, integration by parts yields

d

dt

∫
R+

f (t, a)ψ(t, a) da +
∫
R+

f (t, a)D(a)

(
∂ψ(t, a)

∂a

)2
da (3.1)
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+ I (t)

N

∫
R+

β(a)ξ

(
f (t, a)

f∞(a)

)
f∞(a) da

= I (t)

N

(
β∞ − β(t)

)+ β(t)
I (t)

N

∫
R+

f (t, a)ψ(t, a) da.

Here we have used Assumption (H1). Again, wemade formal computations requiring
sufficient regularity and decay of f that are proved in Appendix C. We then infer
from (3.1) that

d

dt

∫
R+

f (t, a)ψ(t, a) da +
∫
R+

f (t, a)D(a)

(
∂ψ(t, a)

∂a

)2
da

≤ I (t)

N

(
β∞ + β(t)

∫
R+

f (t, a)ψ(t, a) da

)
.

Therefore, we infer that

∫
R+

f (t, a)ψ(t, a) da ≤ exp

(∫ t

0
β(s)I (s)/Nds

)∫
R+

f (0, a)ψ(0, a) da

+
∫ t

0
β∞

I (s)

N
exp

(∫ t

s
β(τ)I (τ )/Ndτ

)
ds.

Hence, for some positive constant C3, using the fact that R∞ = γ
∫ +∞
0 I (t)dt ≤ N ,

there exists some constant B > 0 such that for all time t ≥ 0

∫
R+

f (t, a)ψ(t, a) da ≤ exp(B)

∫
R+

f (0, a)ψ(0, a) da + C3 exp(B).

Going back to (3.1), we deduce that there exists a positive constant C∗ such that

d

dt

∫
R+

f (t, a)ψ(t, a) da +
∫
R+

f (t, a)D(a)

(
∂ψ(t, a)

∂a

)2
da ≤ C∗

I (t)

N
. (19)

Step 4: Logarithmic Sobolev inequality

In the absence of epidemic, the following quantity is usually viewed as the relative
entropy dissipation rate

∫
R+

f (t, a)D(a)

(
∂ψ(t, a)

∂a

)2
da.

In order to estimate it, we make use of the Logarithmic Sobolev inequality stated
in (16) and the lower bound on D(a) from Assumption (H2). Thus, we get

∫
R+

f (t, a)ψ(t, a) da ≤ 1

2D∗λ1

∫
R+

f (t, a)D(a)

(
∂ψ(t, a)

∂a

)2
da.
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From (19), we infer

d

dt

∫
R+

f (t, a)ψ(t, a) da + 2D∗λ1
∫
R+

f (t, a)ψ(t, a) da ≤ C∗
I (t)

N
,

so that
∫
R+

f (t, a)ψ(t, a) da ≤ exp(−ηt)
∫
R+

f (0, a)ψ(0, a) da

+ C∗
∫ t

0
exp(η(s − t))

I (s)

N
ds, (20)

where η = 2D∗λ1.

Step 5: Conclusion

In order to conclude, we rely on the Csiszár-Kullback-Pinsker inequality. It allows
us to estimate the squared L1 distance of the probability distribution f (t, ·) to the
equilibrium f∞ in terms of the relative entropy (Csiszár 1967; Kullback 1967; Pinsker
1964). R.

Theorem 3 (Csiszár–Kullback–Pinsker) Let f and g be two non-negative real func-
tions in L1(R+) with ‖ f ‖1 = ‖g‖1 = 1. Then, the following inequality holds:

‖ f − g‖21 ≤ 2
∫
R+

f log
f

g
. (21)

For the reader’s convenience and because most of the related references are stated in
R and not in the half space R+, we recall a simple proof due to J.A. Canizo (https://
canizo.org/page/28) in Appendix B. Using the above estimate (21), we conclude that

(∫
R+

| f (t, a) − f∞(a)| da
)2

≤ 2
∫
R+

f (t, a)ψ(t, a) da,

so that (20) allows us to complete the proof of Theorem 2 up to a change of C∗ by a
factor 2. ��

Additional results and comments

Given the convergence in L1(R+) of the distribution f (t, ·) to f∞, it is natural to
expect that the average transmission rate β(t) will converge to β∞. From the L1

convergence property, Fatou’s Lemma yields :

β∞ ≤ lim inf
t→+∞ β(t).

123

https://canizo.org/page/28
https://canizo.org/page/28


60 Page 22 of 59 H. Berestycki et al.

However, additional assumptions seem necessary to infer the convergence of β(t)
to β∞. For instance, assuming C1 ≤ C2β∞ yields this convergence where C1,C2 are
the constants in condition (H3). Indeed, in that case, we infer from (18) that

β(t) − β∞ ≤ exp(−C2t)(β(0) − β∞),

so that

lim sup
t→+∞

β(t) ≤ β∞,

and therefore limt→+∞ β(t) = β∞. Such an apparently ad hoc assumption neverthe-
less applies to some interesting situations described in Sect. 3.2.

Open problems

The analysis of long term behavior for the system SfIR we have provided here opens
the way to many mathematical questions.

1) It is of interest to relax the (H2) condition and address the case of degenerate
diffusion functions a �→ D(a).

2) Condition (H4) to estimate the relative entropy in terms of its dissipation rate
is not optimal. Following Arnold et al. (2001) in the absence of epidemiological
coupling, one may replace (H4) by the following assumption (H5) leading to a
more accurate convergence to equilibrium associated with the spectral gap of the
uncoupled Fokker–Planck dynamical system: there exists λ2 > 0 such that

(H5) − 1

4

D′2(a)

D(a)
+ D′′(a)

2
+ μb(a)D′(a)

2D(a)
− μ′

b(a) ≥ λ2 > 0.

Note that in this assumption we do not require that D be non-degenerate. We
expect to be able to derive the convergence Theorem 2 under this condition.

3) The approach extends naturally to the case when the trait a covers a d dimensional
space, provided (H1)…(H4) assumptions incorporate suitable dependence on d.

4) The degenerate case where β∞S∞ = γ raises interesting open questions since
large time exponential convergence of infected population I (t) to 0 does not seem
to hold any longer. Describing the convergence of I (t) to zero is one of the open
questions. Likewise, in this case, it would be of interest to identify the rate of
convergence of f to f∞ in L1.

3.2 The Gaussian case

The previous subsection is rather technical and involves some intricate assumptions
in order to prove the large time convergence of the probability distribution f (t, ·)
to equilibrium. In order to make the arguments of Theorem 2 more transparent, we
provide a separate comprehensive proof in the Gaussian case. That is, we consider
henceforth the following framework.
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(i) The background drift term μb has linear dependence in a:

μb(t, a) = −μ0a,

for some positive constantμ0. The coefficient σ and hence the diffusion coefficient
D are constant.

(ii) The transmission rate takes the form

β(a) = β0 + β1a
2.

where β0 ≥ 0 and β1 > 0 are two constants.
(iii) The initial probability distribution f0 has a finite second moment, that is:

∫
R+

a2 f0(a) da < +∞.

In the absence of epidemic, Assumption (i) means that the trait a satisfies the
Ornstein-Uhlenbeck Stochastic Differential Equation (SDE)

dat = −μ0atdt + σdWt , (22)

with reflecting boundary condition at a = 0. Denoting again D = σ 2/2, the corre-
sponding Fokker–Planck equation then writes:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂ f (t, a)

∂t
= μ0

∂ (a f (t, a))

∂a
+ D

∂2 f (t, a)

∂a2
for (t, a) ∈ R

+ × R
+,

∂a f (t, 0) = 0 for t ∈ R
+,∫

R+
f (t, a) da = 1 for t ∈ R

+,

with initial condition f0 ≥ 0 such that

∫
R+

f0(a) da = 1.

In the presence of epidemic propagation, (22) is replaced by

dat = (μep(t, at ) − μ0at
)
dt + σdWt .

Then, using (6), the coupled model (12) in terms of the variables S(t), I (t), f (t, a)

has now μb(t, a) = −μ0a, D(a) = D and β(a) = β0 + β1a2. In this framework,
the stationary (i.e. time independent) distribution f∞ of (12) is given by the Gaussian
probability distribution truncated over R+

f∞(a) = exp(−α(a)), where α(a) = μ0a2

2D
+ 1

2
log

πD

2μ0
,
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that is,

f∞(a) =
√
2μ0

πD
exp

(
−μ0a2

2D

)

Since α′′(a) = μ0/D the logarithmic Sobolev inequality (16) writes in this case:

∫
R+

f (a)ψ(a) da ≤ D

2μ0

∫
R+

f (a)

∣∣∣∣dψ(a)

da

∣∣∣∣
2

da, where ψ = log
f

f∞
. (23)

The statement of Theorem 2 in this case writes with a further result about conver-
gence of the average transmission rate.

Theorem 4 UnderAssumptions (i), (ii)and (iii), t �→ I (t) converges to0and t �→ S(t)
converges to S∞ as time t goes to +∞ for some S∞ such that 0 ≤ S∞ < S(0).
Moreover, as soon as f0 log( f0/ f∞) ∈ L1(R+), there exists C∗ > 0 such that for all
t > 0

(∫
R+

| f (t, a) − f∞(a)| da
)2

≤ C∗
∫ t

0

I (s)

N
exp(2μ0(s − t)) ds

+2 exp(−2μ0t)
∫
R+

f0(a) log
f0(a)

f∞(a)
da,

Moreover, the average transmission rate β(t) converges to

β∞ =
∫
R+

β(a) f∞(a) da = β0 + Dβ1/μ0,

as t goes to +∞.

Under Assumptions (i), (ii) and (iii), the requirements (H1) (H2) (H3) and (H4)
are satisfied. Therefore, Theorem 4 is contained in Theorem 2 above. Nonetheless, we
provide here a detailed proof of Theorem 4 since it is simpler. It follows the lines of
the proof of Theorem 2 with some algebraic and technical simplifications that make
the whole argument more transparent. It also yields a stronger results regarding the
convergence of the average transmission rate.

Proof Step 1: Convergence of (S(t), I (t))
This is unchanged with respect to the previous proof.

Step 2: Dynamics of t �→ β(t)
The evolution equation of f multiplied by β(a) yields after integration over a

variable:

dβ(t)

dt
= − I (t)

N
Var β(t) −

∫
R+

2β1a

(
μ0a f (t, a) + D

∂ f (t, a)

∂a

)
da,
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where

Var β(t) =
∫
R+

(
β(a) − β(t)

)2
f (t, a) da ≥ 0.

Then, introducingβ∞ = β0+Dβ1/μ0, using the results ofAppendixCand integration
by parts lead to

dβ(t)

dt
+ I (t)

N
Var β(t) =

∫
R+

(2μ0(β0 − β(a)) + 2β1D) f (t, a) da.

= 2μ0
(
β∞ − β(t)

)
.

It follows that

β(t) − β∞ ≤ (β(0) − β∞
)
exp(−2μ0t),

so that β(t) is bounded and lim supt→+∞ β(t) ≤ β∞.

Step 3: Entropy estimate
As before, we write the evolution equation of f in terms of f∞ and ψ =

log( f / f∞):

∂ f (t, a)

∂t
= D

∂

∂a

(
f (t, a)

∂ψ(t, a)

∂a

)
− (β(a) − β(t)

)
f (t, a)

I (t)

N
,

so that multiplying the above equation by ψ leads to

∂

∂t
( f (t, a)ψ(t, a) − f (t, a)) = D

∂

∂a

(
f (t, a)ψ(t, a)

∂ψ(t, a)

∂a

)

−Df (t, a)

∣∣∣∣∂ψ(t, a)

∂a

∣∣∣∣
2

− (β(a) − β(t)
)
f (t, a)ψ(t, a)

I (t)

N
.

Integrating overR+, using the homogeneousNeumann boundary conditions onψ , and
introducing the non-negative function ξ defined for positive x by ξ(x) = x log x−x+1,
we obtain

d

dt

∫
R+

f (t, a)ψ(t, a) da =
[
Df (t, a)ψ(t, a)

∂ψ(t, a)

∂a

]+∞

0

− D
∫
R+

f (t, a)

∣∣∣∣∂ψ(t, a)

∂a

∣∣∣∣
2

da

− I (t)

N

∫
R+

β(a) f∞(a)
f (t, a)

f∞(a)
log

f (t, a)

f∞(a)
da
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+ I (t)

N

∫
R+

β(a) f∞(a)

(
f (t, a)

f∞(a)
− 1

)
da

+ I (t)

N

(
β∞ − β(t)

)+ I (t)

N
β(t)
∫
R+

f (t, a)ψ(t, a) da.

The first term of the right hand side vanishes: for a = 0 because of the homogeneous
Neumann boundary condition on ψ(t, ·) = f (t, ·)/ f∞, and for a = +∞ because
f (t, ·) decays like f∞ as proved in Appendix C. We therefore end up with

d

dt

∫
R+

f (t, a)ψ(t, a) da + D
∫
R+

f (t, a)

∣∣∣∣∂ψ(t, a)

∂a

∣∣∣∣
2

da

+ I (t)

N

∫
R+
β(a)ξ

(
f (t, a)

f∞(a)

)
f∞(a) da

= I (t)

N

(
β∞ − β(t)

)+ I (t)

N
β(t)
∫
R+

f (t, a)ψ(t, a) da. (24)

Then, denoting the relative entropy

E(t) =
∫
R+

f (t, a)ψ(t, a) da, (25)

we deduce that

dE(t)

dt
+ D
∫
R+

f (t, a)

∣∣∣∣∂ψ(t, a)

∂a

∣∣∣∣
2

da ≤ I (t)

N

(
β∞ + β(t)E(t)

)
.

Finally, using the logarithmic Sobolev inequality (23), we obtain

dE(t)

dt
+ 2μ0E(t) ≤ I (t)

N

(
β∞ + β(t)E(t)

)
.

Gronwall type lemma then leads to

E(t) ≤ C∗
∫ t

0

I (s)

N
exp(−2μ0(s − t)) ds + E(0) exp(−2μ0t),

for some positive constant C∗. Estimate (4) then follows from Csiszár-Kullback-
Pinsker’s inequality (6) up to a change of C∗ by a factor 2.

Step 4: Convergence of β(t) to β∞
Wehave obtained the L1 convergence of f (t, ·) to f∞, so that application of Fatou’s

lemma leads to

∫
R+

lim inf
t→+∞ β(a) f (t, a) da ≤ lim inf

t→+∞

∫
R+

β(a) f (t, a) da,
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which means that lim inf t→+∞ β(t) ≥ β∞. Since lim supt→+∞ β(t) ≤ β∞ as estab-
lished above, we conclude that β(t) converges to β∞. ��

The simpler assumptions above also turn out to exhibit interesting properties regard-
ing self-similar solutions. Such a viewpoint is developed in Sects. 4 and 6.

4 The parsimoniousmodel in the case of a Gaussian distribution

In order to obtain a parsimonious model, i.e. with as few parameters as possible,
we look for self-similar solutions of (11). Dimarco et al. (2021) introduced a similar
approach combining behavioral heterogeneity with social diffusion in the framework
of kinetic theory and using gamma-type distributions of the susceptible population.
Heterogeneity of susceptibles is described by a trait b ∈ R

+ with transmission rate
expressed as power laws of b.

In this section, we focus on Gaussian distribution profiles truncated on A = R
+,

which as explained later is connected to the Dimarco et al. (2021) modeling approach.

4.1 Assumptions

In order to compute the reduced complexity model arising from self-similar solutions,
we make the following assumptions:

• Truncated Gaussian distribution The initial distribution f0(a) = S0(a)/S0 of the
susceptible population is described in terms of the continuous risk variable a ∈ R

+

f0(a) = 1

λ0
φ

(
a

λ0

)
where λ0 > 0 and φ(a) =

√
2

π
exp

(
−a2

2

)
.

The approach in Dimarco et al. (2021) consists in considering Maxwellians in
the kinetic theory framework expressed as gamma type distributions. The two
approaches are connected through a change of variables in the probability mea-
sures: introducing trait b as b = a2/2, one has

φ(a)da = (πb)−1/2 exp(−b)db,

which is nothing but a gamma distribution with parameter 1/2.
Let us also observe that the expression as truncatedGaussian distributions allows to
derive more general models representing solutions of the original PDEmodel (11)
in amore accurateway.Thebasic idea is to expand solutions (t, a) �→ S(t, a) along
even eigenfunctions of the underlying linear operator which turns out to coincide
with the Schrödinger operator associated with harmonic oscillator potential. We
provide a detailed derivation of the corresponding high order model in Appendix
B, Sect. 6, together with numerical simulations illustrating the convergence of high
order model to solutions of the full partial differential equation system.
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• Constant diffusion coefficient with respect to a, possibly time dependent

σ 2

2
= D(t) for some positive function t �→ D(t).

• The transmission rate function β is a quadratic function of a

β(a) = β0 + β1a
2.

Note that this expression differs fromDimarco et al. (2021), which does not include
the constant coefficient β0.

• Background drift effect

μb(t, a) = −μ0(t)a.

Note that one may replace μ0(t) by any function of time only, related or not to
epidemic variables (it may be used for instance to account for the influence of
public health policy).

• The susceptible population S(t, a) is assumed to be expressed as a self-similar
profile

S(t, a) = S(t)

λ(t)
φ

(
a

λ(t)

)
, (26)

for some functions of time t �→ S(t) and t �→ λ(t) such that S(0) = S0 and
λ(0) = λ0.

Let us observe at this stage that φ′(A) = −Aφ(A) and φ′′(A) = (A2−1)φ(A), which
will be used in computations below.

4.2 Derivation

We deduce from the first equation of (11) that

(
Ṡ

λ
− λ̇S

λ2

)
φ(A) − Aφ′(A)

λ̇S

λ2
= − I
(
β0 + β1λ

2A2
)
S

Nλ
φ(A)

+
(

−μ0S

λ
+ DS

λ3

)(
A2 − 1
)

φ(A),

hence

φ(A)

[(
Ṡ

λ
− λ̇S

λ2

)
+ Iβ0S

Nλ
− μ0S

λ
+ DS

λ3

]
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= A2φ(A)

[
− λ̇S

λ2
− Iβ1λ

2S

Nλ
− μ0S

λ2
+ DS

λ3

]

We therefore require that the two time dependent functions on the left and right hand
side of (27) are equal to zero:

λ̇

λ
= − Iβ1λ

2

N
− μ0 + D

λ2(
Ṡ

λ
− λ̇S

λ2

)
+ Iβ0S

Nλ
− μ0S

λ
+ DS

λ3
= 0

hence substituting (27) into (27), one gets on the one hand

Ṡ

S
= − I
(
β0 + β1λ

2
)

N
.

On the other hand, the second equation of (11) leads to

d I

dt
= I

(
S(β0 + β1λ

2)

N
− γ

)

As a consequence, the derived model writes as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= − SI

(
β0 + β1λ

2
)

N
dλ

dt
= − Iβ1λ

3

N
− μ0λ + D

λ

d I

dt
= SI (β0 + β1λ

2)

N
− γ I

d R

dt
= γ I ,

(27)

with initial conditions S(0) = S0, λ(0) = λ0, I (0) = I0 and R(0) = 0. Let us observe
that the average of the risk parameter a is linked to the λ parameter:

ā(t) =
√

2

π
λ(t) Var(a)(t) = λ(t)2

(
1 − 2

π

)
.
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4.3 Dynamics of the average transmission rateˇ

Let us recall the equation governing the probability density function f (t, a) =
S(t, a)/S(t) of susceptible individuals

∂t f (t, a) = − I (t)

N
f (t, a)
(
β(a) − β(t)

)+ μ0
∂

∂a
(a f (t, a)) + ∂2

∂a2
(Df (t, a)).

Then, we introduce the notation

ϕ(t) =
∫
R+

ϕ(a) f (t, a) da,

so that one has

dβ(t)

dt
= − I (t)

N
(β2(t) − β(t)2) − μ0

∫
R+

β ′(a)a f (t, a) da − D
∫
R+

β ′(a)
∂ f (t, a)

∂a
da

β(t) =
∫
R+

β(a) f (t, a) da

Var(β)(t) = β2(t) − β(t)2.

Then, inserting the self similar profiles into (27), f (t, a) = λ(t)−1φ(a/λ(t)), one
gets

β(t) = β0 + β1λ
2.

β2(t) =
∫
R+

(β2
0 + 2β0β1λ

2A2 + λ4β2
1 A

4)φ(A)d A = β2
0 + 2β0β1λ

2 + 3β2
1λ

4,

where we used the fact that A2φ = φ′′ + φ and A4φ = (A2φ′ + 3φ′)′ + 3φ. The
variance Var(β)(t) can then be expressed as

Var(β)(t) = 2β2
1λ

4(t) = 2(β − β0)
2

It means that the dynamics of t �→ λ(t) is directly linked to the average value of the
β parameter. Therefore, the equation on λ can be replaced by the dynamics of the
average transmission rate β in System (27)

dβ

dt
= −2

I

N
(β − β0)

2 − 2μ0(β − β0) + 2Dβ1.
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Therefore, (27) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −β S I

N
dβ

dt
= −2

I

N
(β − β0)

2 − 2μ0(β − β0) + 2Dβ1

d I

dt
= β S I

N
− γ I

d R

dt
= γ I ,

(27)

with initial conditions I (0) = I0 ∈ (0, N ), S(0) ∈ (0, N−I0], R(0) = N−I (0)−S(0)
and β(0) = β0 ≥ β0.

We have thus reduced the PDE system (11) to an ODE system with four unknowns.
It is worth emphasizing that this ODE system, albeit simple, retains the memory of
the PDE system, through the diffusion D and the drift μ0.

This system is a simple extension of the SIRmodel involving a parameter for social
diffusion D and an additional equation for the dynamics of the average transmission
rate β(t). This last effect is indeed a major characteristic of the evolution of the
epidemics. Indeed, from the second equation in System (27), we see that, on the one
hand, β(t) has a tendency to decrease under the effect of the epidemics sculpting the
distribution of a by removing relatively more high a values, while, on the other hand,
the social diffusion parameter tends to offset this tendency.

4.4 A rich variety of dynamical behaviors

We now show that this reduced form still yields a wealth of various dynamical behav-
iors. In fact, we recover nearly all the dynamical features we reported in our earlier
work (Berestycki et al. 2021) for the full PDE model (11). All the figures we show
here are obtained from numerical simulations of System (27) over a period of 18
months with realistic values of epidemic parameters, initialized with a very small
sub-population of infected individuals in an otherwise susceptible population.

In Fig. 1, we consider the case in whichR = 4 given an average infectious period
of 10 days (full parameters included in the caption). The initial value of f is set
to the equilibrium value expected in the absence of an epidemic. We then evaluate
dynamics given an initial infected population fraction of 10−6. We observe an expo-
nential growth, followed by a decay and then a smaller shoulder pattern. This is a
representative sequence observed in epidemic data. Note that during the exponential
growth phase, the average susceptibility remains close to the equilibrium level. How-
ever, when a sufficiently large number of individuals are infected, then the average
susceptibility drops, leading to a decrease in susceptibility which then relaxes over
time, enabling the re-emergence of a longer term shoulder. Over time, the infections
decay and the susceptibility relaxes slowly towards β

∗
(over a multi-year period given
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Fig. 1 Epidemic dynamics leading to a single peak followed by a shoulder. Dynamics shown are that of
infected fraction, I (t) (black, solid) in logarithmic scale, and Average susceptibility, β(t) (red, dashed).
Parameters are β(0) = 0.4 days−1, β0 = 0 days−1, μ0 = 5 × 10−3 day−1, γ = 0.1 days−1, 2Dβ1 =
0.004 days−2, R0 = 4, I (0) = 10−6

Fig. 2 Epidemic dynamics leading to multiple peaks. Dynamics shown are that of infected fraction, I (t)
(black, solid) in logarithmic scale, and Average susceptibility, β(t) (red, dashed). Parameters are: β(0) =
0.8 day−1, β0 = 0.0 day−1, I (0) = 1E − 6, 2Dβ1 = 0.008 day−2, μ0 = 5E − 3 day−1, γ = 0.2 day−1

this parameter set). We emphasize that, though much simplified with respect to the
full PDE model, this system of ODEs can generate complex features.

As we already pointed out in our previous article (Berestycki et al. 2021) rebounds
appear as part of the intrinsic dynamics of the epidemics even without variants. This
is illustrated in Fig. 2 with larger amplitudes of oscillations. In this case however,
as should be expected, further rebounds reach lower maximal levels than the first
peak because of the dissipative nature of the underlying PDE model. As before, the
β(t) decreases as infections increase and then revert back towards the equilibrium,
enabling the second oscillation. The initial decrease in susceptibility reflects how the
ODE retains the sculpting feature of the PDE while the rebound is a result of the drift
back to the mean of the unique equilibrium distribution in f .
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Note that for suitable parameters System (27) also exhibits the typical SIR behavior
of an exponential growth followed by a (nearly) exponential decay. We perform more
systematic comparison of PDE and ODE based dynamics in Sect. 6.1.

5 Mathematical analysis of the ODE system

5.1 Properties of the ODE system

This section is devoted to deriving several mathematical properties of the ODE system
(27). Our purpose here is to show that this reduced system displays natural features
of the heterogeneous system. We mainly discuss here the large time behavior of
(S(t), β(t), I (t), R(t)) in terms of the parametersμ0, D andβ(0). The results and their
dependence on the parameters are summarized in Table 1 at the end of the subsection.

Throughout this section, without loss of generality, we normalize the population in
such a way that N = 1.

Consistency with SIRmodel

We first observe that (27) reduces to the standard SIR model in the absence of hetero-
geneity i.e. β1 = 0, when β(0) = β0. Clearly, in this case there holds β(t) = β0 for
all t ≥ 0 and we get the solution of the corresponding SIR system.

Bounds on the average transmission rateˇ

We claim that the following proposition holds

Proposition 1 Assume that β(0) ≥ β0, μ0 ≥ 0 and D ≥ 0. Then, for all t ≥ 0, one
has β(t) ≥ β0.

Proof We argue by contradiction. In the case D > 0, suppose there is a first time t∗
where β(t∗) = β0. Then, from the equation we get β

′
(t∗) > 0 which is a contradiction.

In the case D = 0, the equation for x = β − β0 is of the form ẋ(t) = g(t, x)x(t), so
that x(t) > 0 when x(0) > 0. ��

Asymptotic limit of (S, I, R)

As in the conventional SIR model, the solution converges to a constant state in the
large time limit.

Proposition 2 The solution of (27) (S(t), I (t), R(t)) converges to (S∞, 0, R∞) as t
goes to +∞, with S∞ ∈ [0, 1), R∞ ∈ (0, 1] such that S∞ + R∞ = 1.

Proof t �→ R(t) is non-decreasing and bounded by 1, so that R(t) → R∞ ∈ (0, 1] as
t → +∞. Moreover, t �→ S(t) is non-increasing and positive, so that S(t) → S∞ for
some S∞ ∈ [0, 1). It follows that I (t) = 1− S(t) − R(t) converges to some I∞ ≥ 0.
Since R(t) converges to some finite limit R∞, one has I∞ = 0. ��
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The case�0 > 0

Proposition 3 In the case when μ0 > 0, the average transmission coefficient β(t)
remains bounded and converges to β∞ = β0 + Dβ1/μ0 as t goes to +∞. Moreover,
the limits satisfy

β∞S∞ ≤ γ. (28)

Proof First one has

dβ

dt
≤ −2μ0(β − β0) + 2Dβ1,

so that t �→ β(t) satisfies

β(t) ≤ β0 + (β(0) − β0) exp(−2μ0t) + Dβ1

μ0
(1 − exp(−2μ0t))

and thus remains bounded: there exists M > 0 such that β(t) ≤ M for all t ∈ R
+.

Then, taking β∞ as defined in the above proposition, one also has

β(t) − β∞ = (β(0) − β∞) exp(−2μ0t)

−
∫ t

0
2(β(s) − β0)

2 I (s) exp(−2μ0(t − s)) ds. (29)

Given ε > 0, for T large enough, and t > T one has

∫ t

T
2(β(s) − β0)

2 I (s) exp(−2μ0(t − s)) ds ≤ 2M2
∫ +∞

T
I (s) ds ≤ ε/2.

Hence, taking T large enough and, say, t > 2T , we see that the right hand side of (29)
is less than ε.

This proves the convergence of β(t) to β∞ as t → +∞. Finally, in view of the
equation satisfied by I , it is straightforward to see that inequality (28) holds. ��

Notice that β(t) converges to the same limit β∞ as in the case of solutions of the
full PDE system (12) in the Gaussian case (compare the above Theorem 4).

It is interesting to observe that if initially I (0) = I0 > 0, and β(0) = β∞, then
t �→ β(t) is decreasing in the early stages of the epidemic. Indeed, one has

dβ

dt
(0) = −2I0(β(0) − β0)

2 = −2I0D2β2
1

μ2
0

< 0.

Thus, if initially the epidemic depletes more the fraction of the population with large a,
eventually, for large time, this trend will be reversed and β(t)will increase to converge
to its equilibrium value β∞. We also established this property in the full PDE model
(compare Theorem 4).
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The case�0 = 0 and D > 0

In the case when μ0 = 0 and D > 0, the following properties hold

Proposition 4 In the case when μ0 = 0 and D > 0, the limit susceptibles satisfy
S∞ = 0, R∞ = 1, and β(t) → +∞ as t goes to +∞.

Let us observe that the case μ0 = 0 is singular, since in that case all susceptibles
become infected at the end of the epidemic. This property is related to the fact that
Model (27) derives from the underlying partial differential equation model (11) where
the risk trait a covers the unbounded domain R

+.

Proof First, we observe that τ = 1/(β − β0) satisfies

dτ

dt
= 2I − 2Dβ1τ

2,

so that

2Dβ1

∫ t

0
τ(s)2ds = 2

∫ t

0
I (s)ds − τ(t) + τ(0).

Using the fact that τ ≥ 0, the integral on the left hand side converges since I itself is
integrable over R+. As a consequence, τ(t) converges to some finite value τ∞ ≥ 0
as t goes to +∞. The convergence of the integral of τ 2 requires that τ∞ = 0, i.e.
β(t) tends to +∞ as t goes to +∞. Finally, assuming that S∞ > 0 the dynamics of I
would be exponentially growing since β(t)S(t) − γ would tend to +∞, which does
not make sense. We conclude that S∞ = 0, so that R∞ = 1. ��

The case D = 0

We derive here comparisons with the classical SIR model. To this end, we introduce
the notation SSI R,α(t) for the solution of the SIRmodel with transmission rate β = α

(constant) and a fixed parameter γ . Wewrite SSI R,α∞ for the final size of the susceptible
population.

In the case when μ0 > 0 and D = 0, the following properties hold

Proposition 5 When D = 0, the average transmission rate t �→ β(t) is non-increasing
and converges to β0 as t goes to +∞. Moreover, if β(0)S0 > γ and I0 > 0, then
t �→ I (t) has a unique maximum as in the homogeneous SIR model. Finally, the limit
susceptible populations satisfies

SSI R,β(0)∞ ≤ S∞ ≤ SSI R,β0∞ .
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Proof As in the case of the homogeneous SIR model, the dynamics of susceptibles S
in terms of R instead of time leads to the expression

S(R) = S0 exp

⎛
⎜⎜⎜⎝−

∫ R

R0

β(ρ)dρ

γ

⎞
⎟⎟⎟⎠ for R ∈ [R0, R∞].

Here R∞ is the final size of the R-population. It is given by the relation:

R∞ + S0 exp

⎛
⎜⎜⎜⎝−

∫ R∞

R0

β(ρ)dρ

γ

⎞
⎟⎟⎟⎠ = 1.

We introduce the notations:

Fα(x) = x + S0 exp

(
−α(x − R0)

γ

)
for all x ∈ [R0,+∞),

F(x) = x + S0 exp

⎛
⎜⎜⎝−

∫ x

R0

β(ρ)dρ

γ

⎞
⎟⎟⎠ for all x ∈ [R0, R∞].

From the equation for β in System (27), we see that β(t) is decreasing (aside from
the obvious case β(t) ≡ β0). Thus, in view of Proposition 1, we know that for all
t ≥ 0, one has β(0) ≥ β(t) ≥ β0. Therefore, we infer that:

Fβ(0)(x) ≤ F(x) ≤ Fβ0(x) for all x ∈ [R0, R∞].

From the classical final size relation in the SIR model, we deduce that

SSI R,β(0)∞ ≤ S∞ ≤ SSI R,β0∞ .

��
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Expression in terms of R in the general case D ≥ 0

As in the case of SIR model, we observe that we can express all the variables S, β, I
in terms of R:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dR
= −β S

γ

dβ

dR
= − 2

γ
(β − β0)

2 − 2μ0(β − β0)

γ I
+ 2Dβ1

γ I

d I

dR
= β S

γ
− 1.

(30)

From the first equation of (30), we infer

S(R) = S0 exp

(
− B(R)

γ

)
, where B(R) =

∫ R

R0

β(ρ)dρ,

so that the infected write as

I (R) = 1 − R − S0 exp

(
− B(R)

γ

)
.

The second equation then leads to

B ′′(R) = −2(B ′(R) − β0)
2

γ
+ 2Dβ1 − 2μ0(B ′(R) − β0)

γ

(
1 − R − S0 exp

(
− B(R)

γ

)) .

Without social diffusion D = 0 and without drift�0 = 0

In the absence of social diffusion D = 0 and drift μ0 = 0, the system describes a
heterogeneous population without random fluctuations of the risk factor. It turns out
that in this case, we can solve explicitly System (27) in terms of R to get:

B(R) = β0(R − R0) + γ

2
log

(
1 + 2(R − R0)(β(0) − β0)

γ

)
, (31)

i.e.

β(R) = β0 + β(0) − β0

1 + 2(R − R0)

γ
(β(0) − β0)

.
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The infected then write in terms of R as

I (R) = 1 − R −
S0 exp

(
−β0(R − R0)

γ

)

(
1 + 2(R − R0)(β(0) − β0)

γ

)1/2 .

When β(0) = β0, one recovers the classical formulas of the conventional SIR model.
Furthermore, at the initial stage, when R is close to R0, we get

I (R) ≈ I0 + (R − R0)

(
β(0)S0

γ
− 1

)
.

This formula generalizes the classical criterionR0 > 1 for epidemic expansion. Here,
it is expressed in terms of the parameter R0 = β(0)S0/γ .

Entropy estimates when�0 > 0 and D > 0

Let us translate Estimate (24) of the relative entropy (25) in the framework of self-
similar solutions as developed in Sect. 4. Denoting

θ(t) = λ(t)2

λ2∞
where λ∞ =

√
D

μ0
,

we infer from self similar expression (26) of f (t, ·) that

E(t) =
∫
R+

f (t, a) log
f (t, a)

f∞(a)
da = 1

2
(θ(t) − 1 − log θ(t)) ,

whereas its dissipation rate rewrites as the simple equation

D(t) = D
∫
R+

f (t, a)

∣∣∣∣∂ψ(t, a)

∂a

∣∣∣∣
2

da = μ0
(1 − θ(t))2

θ(t)
.

Then, Estimate (24) rewrites in terms of θ as

dE
dt

+ D(t) = 0

We observe that the Logarithmic Sobolev inequality is then associated to the property
that for all x ∈ R

+

0 ≤ x − 1 − log x ≤ (x − 1)2

x
.
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Hence, we obtain the exponential convergence of the relative entropy

E(t) ≤ E(0) exp(−2μ0t),

which provides another proof of convergence of λ(t) to λ∞ (hence proving the con-
vergence of β(t) to β∞).

We summarize the previous results in the following synthetic Table 1.
The new systemswe have introduced here beg for further study. These concern both

the PDE system (12) and the ODE system (27). They lead to several open problems
among which we mention the following three.

• What is the dependence of S∞ in the PDE system (12) with respect to model
parameters μ0, D, β1 etc.?

• Derive the asymptotics for the PDE model (12) when μ0 → +∞. We conjecture
that the probability distribution f (t, a) converges to a Dirac distribution δa=0, and
β(t, a) → β0 for any t > 0. Therefore, in the limit, we should get the SIR model
with β0 as the transmission rate. The same question is also relevant for the ODE
model.

• Derive the asymptotics when D → ∞ in theODE and PDEmodeling frameworks.
Here we conjecture that this situation should be analogous to the case μ0 = 0 and
that β(t) → ∞, I (t) → 0, S(t) → 0 for any fixed t > 0.

5.2 Oscillations: heuristic arguments

In the unfolding of epidemics, when there is a plateau, one often observes oscillatory
behavior of the level of infected. Therefore, it is useful to check the ability of a model
to reproduce this stylized fact. We provide here heuristic evidence that oscillations
may indeed occur in the simplified model (27).

We only consider the case μ0 = 0, and β0 = 0. As for other epidemic features, we
find it more convenient to work in logarithmic scale, that is, with the variable log I
rather than I . We seek some constant value Ip that we will choose adequately later
on, such that there is a plateau at the level I � Ip. We set X = log(I/Ip). Again, we
assume that N = 1 for simplicity. Introducing η = 2Dβ1, the system (27) takes the
form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dR
= −β S

γ

dβ

dR
= −2β

2

γ
+ η

γ I

dX

dR
=
(

β S

γ
− 1

)
1

I
.
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→
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∞
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=
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→
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S
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S ∞
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Hence, computing the second derivative of X with respect to R we get

d2X

dR2 = −
(

β S

γ
− 1

)2
1

I 2
+ S

γ 2

(η
I

− 3β
2
) 1
I
.

Denoting ρ = β S/γ − 1, we reformulate the above ODE as follows

d2X

dR2 = 1

I 2

(
−ρ2 + ηS

γ 2

)
− 3(1 + ρ)2

I S
. (32)

In a plateau, one expects the right hand side of this equation to be very small. It is then
natural to introduce the value of I that makes the right hand side vanish. We denote it
by Ĩ p:

Ĩ p = ηS
2 − ρ2γ 2S

3γ 2(1 + ρ)2
.

Note that Ĩ p varies in time like S. Thus, Eq. (32) rewrites as

d2X

dR2 = 3(1 + ρ)2

S

(
Ĩ p
I 2

− 1

I

)
. (33)

The idea now is to seek a constant plateau value Ip close to Ĩ p for which we can find
oscillations around it. To this end, since I = Ip exp(X), it is convenient to reformulate
Eq. (33) in the following manner:

d2X

dR2 = 3(1 + ρ)2

S

(
Ĩ p
I 2p

exp(−2X) − 1

Ip
exp(−X)

)
.

This ODE is of the form

d

dR

(
X
dX

dR

)
= M ·
(

X
dX

dR

)
+
⎛
⎜⎝

0

3(1 + ρ)2

SIp

(
Ĩ p
Ip

− 1

)
exp(−2X)

⎞
⎟⎠

where

M =
(

0 1
−ω2 0

)
, ω2 = 3(1 + ρ)2

SIp

(
exp(−X) − exp(−2X)

X

)

We then consider ranges of R such that Ĩ p ∈ (0, 1) which requires that

0 < ηS
2 − ρ2γ 2S < 3γ 2(1 + ρ)2.
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We interpret this relation as a necessary condition for a plateau to exist. Assume
moreover that

|ρ| � 1

and Ip is such that

∣∣∣∣∣
Ĩ p
Ip

− 1

∣∣∣∣∣� 1.

Then, the complex eigenvalues of M are purely imaginary numbers which means that
I oscillates around Ip in logarithmic scale. Thus we find oscillations in this plateau
regime.

For the above heuristic arguments to make sense, we surmise that in a plateau
regime, S varies more slowly than the oscillations of X . Further mathematical devel-
opments need to be achieved to rigorously justify this reasoning.

6 Higher order Gaussian basedmodel

6.1 Model derivation

An intermediate complexity model, which covers the case of the aforementioned
Gaussian basedmodel, can be derived usingmathematical properties of the eigenvalues
and eigenfunctions of the linear operator associated with Model (12). Incidentally,
such operator coincides with the Schrödinger operator associated with the harmonic
oscillator potential:

−ψ ′′
n (A) + A2ψn(A) = (2n + 1)ψn(A), A ∈ R.

The eigenfunctions write in terms of the so called Hermite polynomials:

ψn(A) = Hn(A) exp
(
−A2/2

)
/αn,

where

Hn(A) = (−1)n exp(A2)
dn

d An
exp(−A2), αn = (2n−1n!√π)1/2

αn being taken in such a way that for all n ∈ N

∫ +∞

0
ψn(A)2d A = 1.
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Such eigenfunctions satisfy the properties

√
2nψn−1(A) = Aψn(A) + ψ ′

n(A),

ψ ′
n(A) =

√
n

2
ψn−1(A) −

√
n + 1

2
ψn+1(A),

Aψn(A) =
√
n

2
ψn−1(A) +

√
n + 1

2
ψn+1(A),

so that

Aψ ′
n = nψn − A2ψn +√n(n − 1)ψn−2,

and

(Aψn(A))′ = (n + 1)ψn − A2ψn +√n(n − 1)ψn−2.

Because we restrict to A ∈ (0,+∞), we only consider the case of even integers
n = 2k, k ∈ N. As a matter of fact, ψ2k (resp. ψ2k+1) are even functions (resp. odd
functions): in order to comply with homogeneous Neumann boundary conditions on
A = 0, n needs to be even. Let us also observe that

∫ +∞

0
ψ2k(A)d A = α̃k, where α̃k =

(
(2k)!√π

22k(k!)2
)1/2

for all k ≥ 1.

Then, in order to represent solutions of (11) we decompose S(t, a) as a finite sum of
(ψ2k)k∈N) eigenfunctions:

S(t, a) =
K∑

k=0

Sk(t)ψ2k

(
a

λ(t)

)
1

λ(t)
.

We provide detailed computations below (where A = a/λ)

∂t S(t, a) =
K∑

k=0

(
Ṡk
λ

− Sk λ̇

λ2

)
ψ2k(A) − Sk λ̇

λ2
Aψ ′

2k(A),

−
(
β0 + a2β1

)
I S = −

K∑
k=0

(
β0 + λ2A2β1

) I Sk
λ

ψ2k(A),

−∂a(μbS) = μ0

λ

K∑
k=0

∂A (Aψ2k(A)) Sk,

D∂2a S = D

λ3

K∑
k=0

Snψ
′′
2k(A).
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Therefore, one has

K∑
k=0

(
Ṡk
λ

− Sk λ̇

λ2
− 2k

Sk λ̇

λ2

)
ψ2k(A) +

K∑
k=0

Sk λ̇

λ2
A2ψ2k(A)

−
K∑

k=0

√
2k(2k − 1)

Sk λ̇

λ2
ψ2k−2(A)

=
K∑

k=0

(
−β0

I Sk
λ

+ (2k + 1)
μ0Sk

λ
− (4k + 1)

DSk
λ3

)
ψ2k(A)

+
K∑

k=0

(
−β1λ

2 I Sk
λ

+ DSk
λ3

− μ0Sk
λ

)
A2ψ2k(A)

+
K∑

k=0

√
2k(2k − 1)

μ0Sk
λ

ψ2k−2(A).

Identifying for each k ∈ {1 . . . K } the coefficients in front of A2ψ2k(A) then gives

λ̇

λ
= −β1 Iλ

2 − μ0 + D

λ2
.

On the other hand, the dynamics of the K coefficients is given by

Ṡk
λ

− (2k + 1)
Sk λ̇

λ2
−√2(k + 1)(2k + 1)

Sk+1λ̇

λ2

= −β0
I Sk
λ

+ (2k + 1)
μ0Sk

λ
− (4k + 1)

DSk
λ3

+√2(k + 1)(2k + 1)
μ0Sk+1

λ
,

for k = 0, . . . , K − 1 and for k = K

ṠK
λ

− (2K + 1)
SK λ̇

λ2

= −β0
I SK
λ

+ (2K + 1)
μ0SK

λ
− (4K + 1)

DSk
λ3

.

Hence for k = 0, . . . , K − 1

Ṡk = −β0 I Sk − (2k + 1)β1λ
2 I Sk − 2k

DSk
λ2

+√2(k + 1)(2k + 1) Sk+1

(
D

λ2
− β1 Iλ

2
)

,
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and for k = K

ṠK = −β0 I SK − (2K + 1)β1λ
2 I SK − 2K

DSK
λ2

. (34)

In other words, one has

dS
dt

= −
(
β0 + β1λ

2
)
I S +
(
D

λ2
− β1 Iλ

2
)
G1 · S −

(
2β1 Iλ

2 + 2D

λ2

)
G0 · S (35)

where

S =
⎡
⎢⎣
S0
...

SK

⎤
⎥⎦ , G0 = Diag (0, 1, . . . , K − 1, K ) ,

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 ν0
. . .

. . .

. . . νK−2
. . . νK−1

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where νk = √2(k + 1)(2k + 1).

The dynamics of infected follows from the computation

∫ +∞

0

(
β0 + β1λ

2A2
)

ψ2k(A) d A = α̃k

(
β0 + λ2(4k + 1)β1

)
,

so that

d I

dt
= β I

K∑
k=0

α̃k Sk − γ I .

where

β = β0 + β1λ
2

(
1 + 4

∑K
k=0 kα̃k Sk∑K
k=0 α̃k Sk

)
. (36)

Note that contrary to the case K = 0, it is more convenient to keep λ as a variable
rather than β. To summarize, denoting

S =
K∑

k=0

α̃k Sk,

123



60 Page 46 of 59 H. Berestycki et al.

the generalized model expresses as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt

= −β IS,

d I

dt
= I
(
βS − γ

)
,

dR

dt
= γ I ,

dλ

dt
= −β1 Iλ

3 − μ0λ + D

λ
,

(37)

where β is defined by (36) and the dynamics of (Sk)k=0...K is given by (35). The initial
conditions read as:

⎧⎪⎨
⎪⎩

λ(0) = 1,

Sk(0) = Sk,0, k = 0 . . . K

I (0) = I0 ≥ 0,

(38)

In such a way that

I0 +
∑

k=0,...,K

α̃k Sk,0 = 1.

We claim that

Theorem 5 Let (Sk)k=0...K , I and R be solution of (37), (36), (35) with initial condi-
tions (38). Assume that μ0 > 0 and D > 0. Then, as time t goes to +∞,

λ(t) → λ∞ =
√

D

μ0
> 0, S0(t) → S

∞
0 > 0, Sk(t) → 0, k ≥ 1,

I (t) → 0, S(t) → S∞ = α̃0S
∞
0 ∈ (0, N ), R(t) → R∞ ∈ (0, N ),

where S∞ + R∞ = N.

Proof Since most of the arguments are similar to the case K = 1, we only sketch
the proof. First the convergence of S, I and R to limit values S∞, 0 and R∞ follows
from the same arguments. Next, the convergence of λ(t) to λ∞ is also identical to
the case K = 1. Then, the convergence of SK (t) to 0 follows from (34). The case
k = 0 . . . K − 1 follows from the following lemma:

Lemma 1 Let t �→ x(t) be defined over R+ satisfy

ẋ(t) = −c(t)x(t) + b(t),

for some c(t) > 0 and b(t) such that (c(t), b(t)) → (c∞, b∞) with c∞ > 0. Then
x(t) → 0 as t goes to +∞.
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Sketch of proof: replacing x by x − b∞/c∞, one may assume that b∞ = 0. Then,

x(t) = exp

(
−
∫ t

0
c(s)ds

)
x0 +
∫ t

0
exp

(
−
∫ t

s
c(τ )dτ

)
b(s)ds.

The first term in the above right hand side converges to zero because of asymptotic
properties of c(t), and the second one can be estimated for instance by splitting the
integral over (0, T ) and (T , t) for t ≥ T > 0. ��

Let us finally observe that the limit transmission rate satisfies

β∞ = β0 + β1
D

μ0
,

which is the same as the average limit transmission rate β∞ associated with solutions
of the partial differential equation model.

6.2 Numerical simulations

Wemake comparisons between solutions of the full partial differential equationsmodel
and solutions obtained from Ordinary Differential Equations of order K as derived in
the previous Sect. 6.1. The initial profile of susceptible individuals in terms of trait
variable a ∈ R

+ is taken as follows:

S0(a) = S0a exp(−a), with S0 = 1 − I0

and initial rate of infected individuals I0 = 3 × 10−5 (considering N = 1). The
transmission rate model parameters are

β0 = 0.01 days−1, β1 = 0.18 days−1

Drift and diffusion coefficients are equal to

μ0 = 5 × 10−3 days−1, D = 0.08 days−1,

and γ = 0.25 days−1, i.e. R = 2.89. The simulation is performed over time interval
[0, 200] (in days) for both PDE or ODE approaches. Space discretization indicates that
200 points in space are enough to achieve reasonable convergence of solutions of the
full PDE system. Simulations of the ODE system associated with K = 0, 1, 2, 3, 4, 7
are illustrated in Fig. 3 above.2

We observe a somehow monotonous convergence behavior when K becomes large
enough, in particular for themaximum level of I (t) and time for suchmaximumand the
period of oscillations. Further investigations will be needed to assess the epidemiolog-
ical relevance of such higher order approximation models, which allows us to consider
general initial probability densities f0 beyond truncated Gaussian distributions.

2 The corresponding python code and parameters are available at https://github.com/bdsbds/
20220819_JMB/.
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Fig. 3 Rate of infected individuals I (t)/N solution of ODE for several orders of approximations K =
0, 1, 2, 3, 4 and 7, and PDE solution (black curve)

7 Discussion

7.1 Main results

We have derived here a system describing the evolution of epidemics taking into
account the behavioral heterogeneity and variability of the population of susceptibles.
Individual behaviors are characterized by a compound risk variable a ∈ R

+ associated
with the susceptibility with respect to the epidemic. Larger values of a correspond
to increasing exposure to contagion, whereas low values are associated with little
exposed behaviors. Thus, the population of susceptibles is structured by this variable
a: S = S(t, a), and the classical transmission coefficient β = β(a) is an increasing
function of a. Rather than working with S(t, a), we found it more revealing to write
the equations in terms of the total population S(t) = ∫∞0 S(t, a)da and the probability
distribution of the trait a in the population: f (t, a) = S(t, a)/S(t).

We first expressed the effect of the epidemics on the distribution f (t, a) as a trans-
port equation. We also assumed that this distribution is subject to random fluctuations
according to a drift-diffusion stochastic process. Combining these two effects, we
derived a Fokker–Planck equation governing the evolution of the distribution f . This
equation is coupled with the evolution equations for S(t) and I (t), the total numbers
of infected. We then derived a system, that we call the SfIR system, standing for the
variables S(t), f (t, a), I (t) and the population of recovered R(t). This new system
is non-linear and non-local and combines a partial differential equation of Fokker–
Planck type and ordinary differential equations for S and I . The SfIRmodel is a natural
extension of the classical SIR compartmental model to populations when considering
heterogeneity and variability of individual behaviors.
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Numerical simulations of this system showed that it exhibits some of the trademark
dynamics of the unfolding of epidemics such as the current COVID-19 epidemic.
Namely, we observed plateaus, shoulders, oscillations and rebounds. These aspects
do not emerge in the classical SIR model and can be viewed as a consequence of
including individual behaviors, heterogeneity, and variability.

We then studied the question of large time behavior for this system. There is a
long-standing literature devoted to this question in the case of the scalar Fokker–
Planck equation by itself which turns out to be rather delicate. This new context of a
coupled non-linear and non-local system further complicates matters and requires new
developments on this question. Under some assumptions on the model coefficients,
i.e. transmission rate, drift and diffusion, we were able to prove the convergence of
the probability distribution f (t, ·) to a unique equilibrium distribution f∞. This result
extends the classical convergence to equilibrium results for solutions to Fokker–Planck
equations in the absence of epidemic coupling, under classical Bakry–Emery (Bakry
and Émery 1985) hyper-contractivity assumptions on drift and diffusion coefficients.

Wepaid particular attention to the case of constant diffusion D, linear dependence of
the drift with respect to a and affine dependence of the transmission rate with respect to
a2. We showed that this framework is associated with an Ornstein-Uhlenbeck process
for the fluctuations of a. In this case, we further derived amodel of reduced complexity.
This ODE system was obtained by looking for self-similar solutions of the equation
governing the distribution f involving Gaussian probability distributions truncated
over R+. We showed that this ODE system even though quite simple still captures
epidemic patterns such as rebounds, shoulders, and plateaus.

We also obtained higher order ODEmodels approximating the solutions of the PDE
system through spectral typemethods involving the eigenfunctions of some associated
operator akin to the quantum harmonic oscillator. Furthermore, we illustrated the
convergence to the PDE solution in the presence of oscillations as the model order
increases.

Finally, we stated and proved some mathematical properties of the reduced com-
plexity ODE system such as large time behavior depending on various assumptions
on the model coefficients.

7.2 Perspectives

The derivation of the SfIR model, and our first analytical results naturally open many
perspectives, both in the epidemiological modeling and in the mathematical analysis
of these systems. The present paper is a first stage of a research program on epidemi-
ological modeling in this vein.

The new system we introduced here raises a number of open mathematical ques-
tions. To start with, the existence and uniqueness of the solution to the Cauchy problem
associated with this system is still open. As already noted, this system combines the
difficulties of being non-linear and non-local. The extension of the convergence to
equilibrium result by relaxing the assumptions and allowing as general a framework
as possible is a natural question. In particular, deriving regularity and integrability
of solutions for a wide class of initial data is open. It would be interesting to fur-
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ther describe the total number of infected individuals after the epidemic has subsided
and how this number depends on the various parameters. More generally, it would be
desirable to better understand the qualitative properties of dependence of solutions and
their final states with respect to the parameters. Further mathematical developments
are needed to rigorously justify this reasoning and to explore the qualitative basis for
and quantitative levels of oscillations.

From an epidemiological point of view, one is naturally led to investigate exten-
sions of the approach developed here. First, ourmodel here rested on the assumption of
homogeneous mixing. It would be interesting to expand our approach to the more com-
plex and more realistic framework of preferential mixing (Feng 2014). Other natural
extensions of the SIRmodel take into account additional epidemiological phenomena,
e.g., loss of immunity and subsequent reinfection (Lavine et al. 2021) and the inclusion
of an explicit exposed period before contagion as in SEIR models or via the use of
realistic generation interval distributions (Park et al. 2022).

Second, as observed in the current COVID-19 pandemic, the succession of vari-
ants plays a major role in the unfolding of epidemics. It is therefore natural to use
the SfIR methodology in the presence of variants. Such an approach could be used to
model competition phenomenon between variants characterized by different param-
eters regarding transmission rate β and average infection duration γ −1. In all these
frameworks, it is natural to seek models of reduced complexity.

Third, the recent COVID-19 pandemic also showed the importance of “awareness”
and “fatigue” phenomena, which were modeled in Weitz et al. (2020a) via a top-down
approach. In the spirit of that work, embedding state- and/or time-dependence in the
PDE framework or in the ODE model parameters is likely to enrich the capacity of
SfIR modeling approach to capture more complex global phenomena. Specifically,
we note that in the SfIR PDE framework, awareness-driven changes in behavior can
dynamically shift susceptibility distributions in a way that is different than contagion-
driven sculpting—evaluating the combination of both sculpting and shifting could lead
to productive avenues for both theory and model-data integration.

Finally, combining the SfIR modeling approach with spatial diffusion of infection
is undoubtedly a challenging but very relevant issue to address in the future. One may
contemplate combining the models we have introduced here for a single location to
include spatial diffusion (Roques et al. 2020) or coupling between locations that may
differ in their response policies (Kortessis et al. 2020). In doing so, recentmeasurement
campaigns of SARS-CoV-2 in wastewater in the framework of surveillance networks
throughout the world is a motivation to extend our modeling approach to Wastewa-
ter Based Epidemiology—as a means to link ongoing changes in local incidence to
forecasting and mitigation.
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A Appendix: Parsimoniousmodel withmore general probability
distribution profiles

Section 4 focused on Gaussian distribution profiles. We consider here more general
profiles of susceptible individuals for which self similar solutions exist.

A.1 Assumptions

We make the following assumptions:

• The initial distribution f0 of susceptible population is described in terms of the
continuous risk variable a ∈ R

+

S0(a) = S0 f0(a) with f0(a) = 1

λ0
φ(

a

λ0
),

where for some given real k > 0

φ(a) = k−1/k exp

(
−ak

k

)
/�

(
1

k
+ 1

)
, (39)

where � denotes the classical Gamma function

�(z) =
∫ +∞

0
xz−1 exp(−x)dx .

• Diffusion coefficient depending on a and t

σ 2

2
= D(t)a2−k for some positive function t �→ D(t).

• The transmission rate function β is a power function of a

β(a) = β0 + β1a
k . (40)

• Background drift effect

μb(t, a) = −μ0(t)a
k−1 + D(t)(k − 2)a2−k .
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Note again that μ0(t) may be any non-negative function of time only, and that
(unless k = 2) an extra diffusion dependent drift is also needed.

• The susceptible population S(t, a) is assumed to be expressed as a self-similar
profile

S(t, a) = S(t)

λ(t)
φ

(
a

λ(t)

)
, (41)

for some functions of time t �→ S(t) and t �→ λ(t) such that S(0) = S0 and
λ(0) = λ0.

Let us observe at this stage that

φ′(A) = −Ak−1φ(A).

A.2 Derivation

We deduce from the first equation of (11) that

(
Ṡ

λ
− λ̇S

λ2

)
φ(A) − Aφ′(A)

λ̇S

λ2
= − I
(
β0 + β1λ

k Ak
)
S

Nλ
φ(A)

+ μ0S

λ

d [Aφ(A)]

d A
+ DS(k − 2)

λk+1

d
[
A1−kφ(A)

]
d A

+ DS

λk+1

d2
[
A2−kφ(A)

]
d A2 .

Observing that

d [Aφ(A)]

d A
= φ(A) − Akφ(A),

d
[
A1−kφ(A)

]
d A

= (1 − k)A−kφ(A) − φ(A),

and

d2
[
A2−kφ(A)

]
d A2 = (2 − k)(1 − k)A−kφ(A) + (k − 3)φ(A) + Akφ(A),

one concludes that

φ(A)

[(
Ṡ

λ
− λ̇S

λ2

)
+ Iβ0S

Nλ
− μ0S

λ
+ DS

λk+1

]

= Akφ(A)

[
− λ̇S

λ2
− Iβ1λ

k S

Nλ
− μ0S

λ
+ DS

λk+1

]
(42)
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We therefore require that the two time dependent functions on the left and right hand
side of (27) are equal to zero:

λ̇

λ
= − Iβ1λ

k

N
− μ0 + D

λk
(43)

(
Ṡ

λ
− λ̇S

λ2

)
+ Iβ0S

Nλ
− μ0S

λ
+ DS

λk+1 = 0 (44)

hence substituting (27) into (27), one gets on the one hand

Ṡ

S
= − I
(
β0 + β1λ

k
)

N
. (45)

On the other hand, the second equation of (11) leads to

d I

dt
= I

(
S(β0 + β1λ

k)

N
− γ

)
(46)

As a consequence, the derived model writes as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= − SI

(
β0 + β1λ

k
)

N
dλ

dt
= − Iβ1λ

k+1

N
− μ0λ + D

λ

d I

dt
= SI (β0 + β1λ

k)

N
− γ I

d R

dt
= γ I ,

(47)

with initial conditions S(0) = S0, λ(0) = λ0, I (0) = I0 and R(0) = 0.

A.3 Dynamics of the average transmission rateˇ

Le us recall the equation governing the probability density function f (t, a)

= S(t, a)/S(t) of susceptible individuals

∂t f (t, a) = − I (t)

N
f (t, a)
(
β(a) − β(t)

)− ∂a(μb(t, a) f (t, a)) + ∂2aa

(
Da2−k f (t, a)

)
.

Then, we introduce the notation

ψ(t) =
∫
R+

ψ(a) f (t, a) da,
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so that one has

β(t) =
∫
R+

β(a) f (t, a) da

Var(β)(t) = β2(t) − β(t)2.

Then, inserting the self similar profiles into (4.3), f (t, a) = λ(t)−1φ(a/λ(t)), so that
one gets

β(t) = β0 + β1λ
k .

β2(t) =
∫
R+ (β2

0 + 2β0β1λ
k Ak + λ2kβ2

1 A
2k )φ(A)d A = β2

0 + 2β0β1λ
k + (k + 1)β2

1λ2k .

The variance Var(β)(t) can then be expressed as

Var(β)(t) = kβ2
1λ

2k(t) = k(β − β0)
2

It means that the dynamics of t �→ λ(t) is directly linked to the average value of the β

parameter. Therefore, the equation λ can be replaced by the dynamics of the average
transmission rate β in System (27)

dβ

dt
= −k

I

N
(β − β0)

2 − kμ0(β − β0) + kDβ1λ
k−2.

Therefore, (27) becomes

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= −β S I

N
dβ

dt
= −k

I

N
(β − β0)

2 − kμ0(β − β0) + kDβ3−k
1 (β − β0)

k−2

d I

dt
= β S I

N
− γ I

d R

dt
= γ I ,

(48)

with initial conditions I (0) = I0 ∈ (0, N ), S(0) = N − I0, R(0) = 0 and β(0) =
β0 ≥ β0.

B Appendix: Csiszár–Kullback–Pinsker inequality

One of the key estimate in the proof of convergence to equilibrium of the distribution
f in Theorems 2 and 4 is the estimate of the L1(R+) distance of two probability
distributions in terms of the associated relative entropy. This is known as Csiszár–
Kullback–Pinsker’s inequality:

123



Epidemic modeling with heterogeneity and social diffusion Page 55 of 59 60

Theorem 6 (Csiszár–Kullback–Pinsker) Let f , g be two non-negative real functions
in L1(R+) with ‖ f ‖1 = ‖g‖1 = 1. It holds that

‖ f − g‖21 ≤ 2
∫
R+

f log
f

g
. (49)

For the readers convenience, we provide here a simple and elegant proof due to J.A.
Canizo (https://canizo.org/page/28).

Proof A preliminary step is to observe that for all r ≥ 0, one has:

�(r) := r log r − r + 1 ≥ 3

2

(r − 1)2

r + 2
.

Then, such estimate combined by Cauchy-Schwarz inequality leads

‖ f − g‖21 =
(∫

R+

∣∣∣∣ fg − 1

∣∣∣∣ g
)2

≤
∫
R+

(
f

g
− 1

)2

f

g
+ 2

g
∫
R+

(
f

g
+ 2

)
g,

= 3
∫
R+

(
f

g
− 1

)2

f

g
+ 2

g ≤ 2
∫
R+

�

(
f

g

)
g = 2
∫
R+

f log
f

g
.

��

C Appendix: Decay at infinity of solutions of the SfIR system

We consider the System (12) and focus here on the case whenμb and D do not depend
on time t . The aim of this appendix is to provide some decay properties of solutions
f of System (12) which allows us to justify multiple integration by parts and other
formal computations we carried in Sect. 3, at least in the Gaussian like case. We leave
the general case open.

Assuming that conditions (H2) and (H4) hold, that is that diffusion is non-
degenerate and the probability density f∞ decreases at infinity at least as a Gaussian
distribution. In this appendix, in addition to the assumptions of Sect. 3, we suppose
that the following conditions hold. First, the diffusion D is bounded:

D(a) ≤ D∗ < +∞ for all a ∈ R
+.

The transmission rate β is growing at most linearly in a2:

β(a) ≤ C(1 + a2) for all a ∈ R
+
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(where here and in the following C denotes a generic positive constant). Lastly, the
equilibrium f∞ satisfies:

∣∣∣∣ f
′∞(a)

f∞(a)

∣∣∣∣ =
∣∣α′(a)
∣∣ ≤ C(1 + a) for all a ∈ R

+.

In this framework, we have the following a priori estimate.

Theorem 7 Assume that (H2), (H4) and the previous assumptions on D, β, f∞ hold.
Furthermore, suppose that the initial profile of susceptibles S0 satisfies

S0 ∈ L1(R+),

∫
R+

S0(a) da ≤ 1,

and

0 ≤ S0(a) ≤ M f∞(a) < +∞ for a.e. a ∈ R
+

for some positive constant M > 0. Then, the solution S of (12) is bounded. More
precisely, it satisfies:

0 ≤ S(t, a) ≤ M f∞(a) < +∞ for all (t, a) ∈ R
+ × R

+.

Proof This result is a consequence of the maximum principle applied to v where
v(t, a) = S(t, a)/ f∞(a). The evolution equation on v writes as

f∞(a)
∂v(t, a)

∂t
+ β(a)

I (t)

N
f∞(a)v(t, a)

= ∂

∂a

(
D(a) f∞(a)

∂v(t, a)

∂a

)
for (t, a) ∈ R

+ × R
+,

∂v(t, 0)

∂a
= 0 for t ∈ R

+.

(50)

Hence,

∂v(t, a)

∂t
+ β(a)

I (t)

N
v(t, a) − ∂

∂a

(
D(a)

∂v(t, a)

∂a

)

= D(a)
f ′∞(a)

f∞(a)

∂v(t, a)

∂a
for (t, a) ∈ R

+ × R
+,

∂v(t, 0)

∂a
= 0 for t ∈ R

+.

(51)

Then, by the parabolic maximum principle in R
+, since v(0, a) ≤ M it follows that

v(t, a) ≤ M on R
+ for all t > 0. Indeed, we use the fact that for some positive
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constant C
∣∣∣∣ f

′∞(a)

f∞(a)

∣∣∣∣ ≤ C(1 + a) and β(a) ≤ C(1 + a2).

��
Let us observe that it means that the probability distribution f (t, a) is bounded

from above by a distribution proportional to f∞, i.e.

0 ≤ f (t, a) ≤ M

S(t)
f∞(a) for (t, a) ∈ (0, T ) × R

+,

which leads to the justification of formal computations performed in Sect. 3 since S(t)
decreases with t and remains positive.

Note also that we are able to obtain H1 type regularity properties on f or more
precisely on v = S/ f∞

Theorem 8 Assuming (H2) and (H4), and that the initial profile of susceptibles S0 is
such that v0 = S0/ f∞ satisfies

v0 ∈ L2(R+; ν) where dν(a) = f∞(a) da.

Then, the solutions v of Eq. (50) satisfy v ∈ L∞(R+; L2(R+; ν)), ∂av ∈
L2(R+; L2(R+; ν)) and

1

2
sup
t≥0

‖v(t, ·)‖2L2(R+;ν)
+ D∗
∫ +∞

0
ds

∥∥∥∥∂v(s, ·)
∂a

∥∥∥∥
2

L2(R+;ν)

≤ 1

2
‖v0‖2L2(R+;ν)

.

Proof This result is the consequence of multiplication of Eq. (50) by v and integration
by parts, using the fact that v, β and I are non-negative. ��

We leave open the derivation of such estimates on the behavior at infinity in the
more general case of System (12).
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