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Abstract
Mycobacterium tuberculosis infection features various disease outcomes: clearance,
latency, active disease, and latent tuberculosis infection (LTBI) reactivation. Identify-
ing the decisive factors for disease outcomes and progression is crucial to elucidate
the macrophages-tuberculosis interaction and provide insights into therapeutic strate-
gies. To achieve this goal, we first model the disease progression as a dynamical shift
among different disease outcomes, which are characterized by various steady states of
bacterial concentration. The causal mechanisms of steady-state transitions can be the
occurrence of transcritical and saddle-node bifurcations, which are induced by slowly
changing parameters. Transcritical bifurcation, occurring when the basic reproduction
number equals to one, determines whether the infection clears or spreads. Saddle-node
bifurcation is the keymechanism to create anddestroy steady states.Based on these two
steady-state transition mechanisms, we carry out two sample-based sensitivity analy-
ses on transcritical bifurcation conditions and saddle-node bifurcation conditions. The
sensitivity analysis results suggest that the macrophage apoptosis rate is the most sig-
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nificant factor affecting the transition in disease outcomes. This result agrees with the
discovery that the programmed cell death (apoptosis) plays a unique role in the com-
plex microorganism-host interplay. Sensitivity analysis narrows down the parameters
of interest, but cannot answer how these parameters influence the model outcomes. To
do this, we employ bifurcation analysis and numerical simulation to unfold various
disease outcomes induced by the variation of macrophage apoptosis rate. Our find-
ings support the hypothesis that the regulation mechanism of macrophage apoptosis
affects the host immunity against tuberculosis infection and tuberculosis virulence.
Moreover, our mathematical results suggest that new treatments and/or vaccines that
regulate macrophage apoptosis in combination with weakening bacillary viability
and/or promoting adaptive immunity could have therapeutic value.

Keywords In-host tuberculosis infection model · Disease progression · Sensitivity
analysis and bifurcation analysis · Tuberculosis treatments.

Mathematics Subject Classification 34C23 · 34C20 · 34C15 · 37N25

1 Introduction

Tuberculosis (TB), a disease caused by Mycobacterium tuberculosis (Mtb), remains
the deadliest infectious disease in the world (Sud et al. 2006; Lin and Flynn 2010).
According to aCDC (Centers forDiseaseControl and Prevention) report (WHO2019),
in the United States, the reactivation of latent Tuberculosis infection was amajor cause
for TB incidence in 2019. A detailed understanding of the most significant driving
factors for TB disease progression is crucial for the improvement of the treatment
strategies to help host fight against the invader pathogen.

To serve this motivation, we adopt an established in-host tuberculosis infection
model that generates various disease outcomes. Since transcritical bifurcations deter-
mine the fate of infection and saddle-node bifurcations create multiple infected
equilibrium solutions, we carry out a parameter sensitivity analysis on the condi-
tions for transcritical and saddle-node bifurcations. We then further investigate model
behavior through bifurcation analysis to examine how the macrophage apoptosis rate
and other statistically significant parameters impact disease progression and exam-
ine how the mathematical results relate to the complexities of the disease dynamics.
Finally, we utilize a 2-dimensional bifurcation analysis to explore how combination
therapies can enhance macrophage apoptosis modulation therapy to inhibit bacillary
viability and promote adaptive immunity.

Before we present our methodology and results, we provide a brief introduction
of tuberculosis, including the various disease outcomes, in-host Mtb life cycles, and
therapeutic strategies, in Sect. 1.1 and discuss the previous in-host Mtb mathematical
modeling literature in Sect. 1.2.
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1.1 TB epidemiology and immunology background

Tuberculosis (TB), a disease caused by pathogenic bacterium species Mycobac-
terium tuberculosis (Mtb), has been spreading among humans for thousands of years
(Donoghue et al. 2004). Despite the availability of effective TB treatments, TB con-
tinues claiming 1.5 million lives per year by infecting one quarter of the global
population (Sud et al. 2006; Lin and Flynn 2010). A characteristic feature for Tuber-
culosis infection is that infected individuals experience various disease outcomes,
including clearance, latent infection (LTBI), and active disease. Approximately 10%
of infected individuals clear the infection and another 10% progress to primary dis-
ease, while the majority of infected individuals become latently infected with no
symptoms. Individuals with LTBI carry the risk of developing TB later in life. Slow
TB progression through LTBI reactivation contributes approximately 80% of cases
globally and threatens a TB re-emergence (Cooper 2009; Rich et al. 1951). A better
understanding on TB progression, especially LTBI reactivation, can help to improve
the efficacy of therapeutic strategies, and enhance both the innate and adaptive immune
responses.

The life cycle of tuberculosis begins when aerosol droplets containing Mtb are
inhaled by an uninfected individual. After inhalation, Mtb usually reach the alve-
oli of the lung, and are preferentially ingested by alveolar macrophages (Warner
and Mizrahi 2007), then launch proliferation (Canetti 1955). This makes alveolar
macrophages the main target cells for Mtb invasion (Gammack et al. 2005; Gideon
and Flynn 2011). Even though activated macrophages can initialize phagocytosis,
Mtb can also set up various strategies against macrophage killing and replicate within
the host macrophages. Moreover, cytokine environment is also modified to favor the
intracellular Mtb survival (BoseDasgupta and Pieters 2014; Orme et al. 2015). Innate
immune responses are the crucial factor for the TB outcome (Orme et al. 2015). While
the clearance of the phagocytized bacteria is also determined by the adaptive immu-
nity, which is activated by innate immune signals (Torrado and Cooper 2013). These
infected macrophages release chemotactic signals to recruit and activate migrating
lymphocytes to the site of infection (Gammack et al. 2005; Gideon and Flynn 2011).
The progressive immune responses lead to an aggregation of lymphocytes around
mycobacteria-harboring macrophages, which is called a granuloma. Granulomas are
able to isolate infected macrophages from the rest of the lung to limit the bacil-
lary growth and spread of Mtb from intracellular Mtb replication, and so serve as
an immune micro-environment to enhance the T cells and macrophages interactions
(Russell et al. 2010; Gideon and Flynn 2011). On the other hand, the granuloma con-
cealed Mtb switch to a non-replicating state, which is a typical feature to enable the
bacillus persistence during the long TB latency period (Barry et al. 2009). Mtb has
evolved new strategy to escape granulomas: leak into the lung and expectorate bacilli
(Ehlers and Schaible 2013). The granuloma then serves as a battle ground between
mycobacteria and host immune cells. The host-pathogen dynamics decide granuloma
to promote or inhibit the infection and then determine the disease outcomes (Ulrichs
and Kaufmann 2006; Ehlers and Schaible 2013). An imbalanced interplay between
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Mtb and immune cells result in the failure of controlling infection, then lead to the
LTBI reactivation (O’Garra et al. 2013).

Today, TB disease can be cured with antibiotics. For the newly diagnosed pul-
monary TB, four first-line anti-TB drugs isoniazid (INH), rifampin (RIF), ethambutol
(EMB), and pyrazinamide (PZA) form the essence of treatment regimens (Organiza-
tion 2017). The major problem of the current TB drug regimen is its duration, which
requires 6 to 9 months. Incorrect TB drug treatment (the wrong length of duration
or dose) could lead the remaining alive Mtb resistant to those drugs. These patients
are more likely to develop drug-resistant TB, which is more difficult to treat. The
goal of shortening the long treatment duration can advance treatment effectiveness
by improving patients’ compliance and reducing the chance of the drug resistance
and disease relapse. Mathematical models may be useful tools for, first, elucidating
in-host TB progression mechanisms, and then also for suggesting crucial factors for
advancing therapeutic strategies.

1.2 Mathematical modeling background

Numerous TB in-host modeling studies have been done to identify the driving fac-
tor for different TB infection outcomes. The TB host-immune modeling began with
models considering HIV-1 and Mtb coinfection by Kirschner (1999) and her collab-
orators Bauer et al. (2008). HIV infection weakens the immune system, and make
patients vulnerable to opportunistic infections, such as TB. Untreated latent TB and
HIV coinfection significantly increases the possibility of developing TB disease. The
study of TB infection is carried out through ODE models to capture the cellular
and cytokine network (Antia et al. 1996; Abdelrazec et al. 2016; Wigginton and
Kirschner 2001; Magombedze et al. 2006) and CD8+ T cells for host infection control
(Sud et al. 2006; Magombedze et al. 2006), PDE models have been developed for
cytokine and antibiotics molecules diffusion (Lauffenburger and Linderman 1993),
agent-based models for spatial and temporal features of granuloma (Segovia-Juarez
et al. 2004; Ray et al. 2009) and multiple scale models for investigating the gran-
ulomas dynamics in a smaller scale (such as a lung) and a larger scale (such as a
host body) (Gong et al. 2015; Marino and Kirschner 2016). However, little work has
been done to investigate the determining factors for LTBI reactivation. One of the
challenges is the computational cost due to the large number of considered compart-
ments and parameters, combined with complex nonlinear terms. In this paper, we only
consider the key factors involved in the in-hostMtb dynamics, which include the infec-
tion interaction and innate immune response between macrophages and bacteria, the
adaptive immune response initiated by T cells, and bacterial growth and elimination
processes.

A four-dimensional within-host TB model was developed in previous modeling
work by Du et al. (2017). This 4-dimensional model, presented in (1), incorporates the
uninfected macrophages (the Mtb target cells), infected macrophages, Mtb bacteria
and CD4 T cells. The model numerically captures various TB infection outcomes,
which are clearance, latency, and active disease. In an analytical study of the same
model (Zhang et al. 2020), we showed the existence of four coexisting equilibria that
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reflect the different disease outcomes. We also determined conditions for forward
and backward bifurcations (Zhang et al. 2020). However, neither (Du et al. 2017) or
(Zhang et al. 2020) has analyzed the driving factors behind the different outcomes of
disease.

1.3 Overview

We provide a brief immunology and mathematical modeling background of tubercu-
losis infection in Sect. 1. In Sect. 2, we introduce an established in-host tuberculosis
model, then identify parameters statistically significantly influencing the early stage
TB infection through a sample-based sensitivity analysis on the basic reproduction
number. Using identified parameters from the first sensitivity analysis, we employ a
second sensitivity analysis on the single-zero eigenvalue bifurcation condition and
identify that macrophage apoptosis rate is the statistically significantly parameter for
disease progression, especially LTBI reactivation. In Sect. 3, using bifurcation analy-
sis and numerical simulations, various disease outcomes are fully unfolded under the
variation of the macrophage apoptosis rate. In Sect. 4, we describe how the mathe-
matical results from the previous section reveal the complicated roles of macrophage
apoptosis in the complex Mtb-macrophage dynamics. In Sect. 5, we further investi-
gate the disease outcomes under the influence of macrophage apoptosis and one of
the other four parameters to give insight into the development of new therapeutic
strategies. Our findings suggest that macrophage apoptosis modulation therapy can be
enhanced with combination therapies, which inhibit bacillary viability and promote
adaptive immunity.

2 Investigation of the driving factors for disease progression through
sensitivity analysis

Tuberculosis progression is characterized by reactivation of LTBI, which occurs when
a weakened immune system is no longer capable of controlling the latent stage
Mtb. The awoken bacteria become active, defeat the immune defense, and lead to
the infected individual to active TB disease. In other words, the LTBI reactivation
can be described as the Mtb bacterial level shifted from a lower infection steady
state to a higher infection steady state. Our target in this section is to identify the
important factors determining the shifting of Mtb bacterial level by evaluating the
influence/sensitivity level of each involving mechanism applied on the shift.

2.1 Model

The TB model with various disease outcomes (Du et al. 2017) is written as follows:

dMu

dt
= sM − μMMu − βMuB

dMi

dt
= βMuB − bMi − γ Mi

T /Mi

T /Mi + c
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dB

dt
= δB

(
1 − B

K

)
+ Mi

(
N1b + N2γ

T /Mi

T /Mi + c

)
− MuB(η + N3β)

dT

dt
= sT + cMMiT

eMT + 1
+ cB BT

eBT + 1
− μT T . (1)

Here, uninfected macrophages Mu are generated and die naturally at constant rates sM
and μM . Moreover, they become infected through the engulfment of Mtb at a rate of
βMuB. The internalized Mtb reproduction can kill infected macrophages at a rate b
and produce N1 intracellular Mtb bacteria per cell, on average. Infected macrophages
can also be eliminated through T cell-mediated cytotoxicity. Both CD4 and CD8
T cells account for the cytotoxic process. The rate of the cytotoxic effect, which T
lymphocytes (E) act onMtb-stimulatedmonocytes (T), depends on theE:T ratio, T /Mi

(Lewinsohn et al. 1998; Wigginton and Kirschner 2001). This ratio has a maximum
rate γ and saturating factor c. During the cytotoxic process, infected macrophages die
and release on average N2 intracellular Mtb bacteria to the extracellular compartment
B. Extracellular bacteria can divide, modeled as a logistic term B(1 − B/K ). The
infection in macrophages can lead to a loss of extracellular Mtb. This is modeled
using the term N3βMuB. On the other hand, uninfectedmacrophages phogocytizeMtb
bacteria, then initiate phagosomematuration,which causesmicrobicidal anddegrading
effects on phogocytized pathogens. The Mtb killing rate by this process is denoted
as ηBMu (Kinchen and Ravichandran 2008; Upadhyay et al. 2018). Host adaptive
immune responses are signaled by CD4 T cells, which are assumed to have constant
production and death rates sT and μT . CD4 T cells can proliferate in the presence
of Mtb bacteria ( cB BT

eBT+1 ) or/and infected macrophages ( cMMi T
eMT+1 ). More detailed model

assumptions are explained in Du et al. (2017) and parameters values are stored in
Table 1.

2.2 Basic model properties

A detailed analytical investigation on the property of model (1) is carried out in Zhang
et al. (2020). For convenience, we change the notation as

y1 = Mu, y2 = Mi , y3 = B, y4 = T ;

f1 = dMu

dt
, f2 = dMi

dt
, f3 = dB

dt
, f4 = dT

dt
.

(2)

The solutions of model (1) are well-posed and bounded and include a disease free
equilibrium (E0) and infected equilibriums (E∗) as follows (Zhang et al. 2020)
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E0 = ( sM
μM

, 0, 0, sT
μT

), and E∗ = (ȳ1, ȳ2, ȳ3, ȳ4), where,

ȳ1(y3) = sM
β y3 + μM

,

ȳ2(y3) =
(
y3δ

K
− δ + sM (N2 − N3)β − sMη

β y3 + μM

)
y3

b(N1 − N2)
,

if
y3δ

K
>

δ + sM (N2 − N3)β − sMη

β y3 + μM
and N1 > N2,

ȳ4(y3) = [βsM y3 − (β y3 + μM )by2]cy2
βsM y3 − (b + γ )(β y3 + μM )y2

, and

F(y3) = −eBeMμT ȳ34 + [(cM ȳ2 + eMsT − μT )eB + eM (cB y3 − μT )]ȳ24
+[cB y3 + cM ȳ2(y3) + eBsT + eMsT − μT ]ȳ4(y3) + sT = 0.

(3)

Furthermore, equilibrium solutions E0 and E∗ intersect and exchange local stability
at a transcritical bifurcation as

β = (−δμM + ηsM )(b + γ )

sMγ (N2 − N3)γ + sMb(N1 − N3)
:= βT . (4)

Moreover, at the transcritical bifurcation the basic reproduction number equals to unit
(Du et al. 2017), i.e. R0 = 1, where

R0 = [γ (N2 − N3) + b(N1 − N3)]β
(−δμM/sM + η)(b + γ )

=
[
(N2 − N3)(1 − b

b + γ
) + (N1 − N3)

b

b + γ

]
β

η − μM

sM
δ
. (5)

2.3 Sensitivity analysis of R0 for the early stage of TB infection

After the exposure of TB disease, the critical value to determine the fate of the infec-
tion is the basic reproduction number R0. Starting from one infectious pathogen, the
infection will be able to spread to the whole body if R0 > 1, but will be eliminated
if R0 < 1. Because R0 is not a constant number for any given disease, in the case of
in-host TB dynamics, R0 is affected by in-host immunological factors andMtb behav-
iors. We first investigate R0 in (5) for all model parameters in the experimental and/or
estimated ranges from Table 1. We then choose R0 in (5) as the first sensitivity/output
function of the model parameters (or input factors) to identify which parameters sig-
nificantly affect the uncertainty on disease spread and elimination in the early stage
of the TB infection. The analytical formulation (5) indicates that R0 is linear on the
parameters β, N1, N2, and N3, along with the ratio b

b+γ
. R0 also depends on the term

μM
sM

δ.
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To show the uncertainty on R0 due to the uncertainties in model parameters, we
perform uncertainty analysis. Because a priori knowledge of theMtb-host relationship
between the model parameter and R0 is unavailable, we choose the most popular
sampling-based approach, i.e. Latin Hypercube sampling (LHS) (McKay et al. 1979).
LHS belongs to the Monte Carlo class of sampling procedures for the propagation
of uncertainty. LHS performs a full stratification over each sampled-parameter range
to allow every parameter get equally sampled, and returns unbiased estimates for the
sample mean and distribution function over each sampled-parameter range.Moreover,
when necessary, a log scale can be applied on the parameter range for LHS to prevent
under-sampling (McKay et al. 1979; Marino et al. 2008). Furthermore, LHS nearly
eliminates confounding in estimating parameter effects by ensuring that exactly one
parameter is sampled from each stratum in a given sample. That is, if there are 3
parameters, then each parameter range is partitioned into 3 strata and one parameter
is sampled from the lowest stratum, another from the middle stratum, and the last
from the highest stratum. This is repeated many times to ensure that all parameters
are sampled from each of their sampling strata. This results in the main effects of each
parameter being confounded only with high-order interactions of other parameters,
which are classically considered negligible in experimental design. This also makes
LHS a computationally inexpensive approach, especially compared to full factorial
sampling designs, and allows LHS to perform robustly for even a relatively small
sample size, i.e. sample sizeLHS = 50 to 200, which is used in Iman and Helton
(1988); Kleijnen and Helton (1999); Helton and Davis (2003). As such, this sampling
design facilitates a measurement of parameter’s corresponding impact on the value of
the sensitivity functions R0 in (5) and a4(E∗, pv) in (12).

Due to the multi-variable property of sensitivity functions, standard correlation
coefficients (CCs) are not sufficient for measuring the influence of parameter values
on sensitivity functions because CCs are restricted to quantify relationships between
just two variables and, as such, cannot account for the impact of the other parameters
on the variation in sensitivity functions. Instead, we can calculate partial correlation
coefficients (PCCs), which quantify the relationship between each parameter on the
portion of the variation in sensitivity functions that is unexplained by the variation
in the values of the other parameters and thusly, provide a more appropriate measure
of influence. However, PCCs only reflect the linear relationships between the output
of sensitivity functions and the input variables/parameters. To capture the nonlinear
relationships between sensitivity functions and the model parameters, we can instead
apply the rank transformation to all quantities (Conover and Iman 1981; Saltelli and
Sobol 1995). Calculating the correlations between these provided us with the Spear-
man correlation coefficients, which measure the strength and direction of monotonic
relationships. PCCs for the ranked quantities yields partial rank correlation coeffi-
cients (PRCC), which provide a robust sensitivity measure for quantifying potentially
nonlinear, but monotonic, relationships between the output and each of the model
parameters in the presence of the other parameters (Marino et al. 2008; Saltelli and
Annoni 2011).

Using the MATLAB LHS and PRCC code provided in Marino et al. (2008), we run
an LHS uncertainty analysis on a sample of 1000 parameter sets, and set the baseline
value/mean, lower bound, and upper bound for each parameter in its range from Table
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Fig. 1 PRCC values for R0 under the variations of all model parameters. n.s. denotes statistically not
significant, that is p value> 0.05

1. Scatter plots showing the relationships between residuals of the output R0 and input
parameters, along with their PRCCs and associated p-values, are shown in Figure 1 in
Appendix (see supplementary material). From these figures, it is readily apparent that
all of the pairs with near-zero PRCCs display no evidence of non-monotonic relation-
ships, so PRCCs appropriately describe the relationships. A summary of the PRCC
values is shown as a bar graph in Fig. 1. Following traditional use, p-values below 0.05
designate pairs of parameters whose partial rank correlations are statistically signifi-
cantly different than 0. The negative or positive sign of PRCC indicate the negative or
positive correlation between R0 and the specific parameter.

The PRCC between R0 and each parameters in Fig. 1a indicate that the expected
number of bacteria, R0, generated by one single bacterium after exposure to Mtb has

– a significantly positive relation with N1, N2, and N3;
– a significantly negative relation with β because the infection process involves the
loss of extracellular Mtb by macrophages phagocytosis;

– a significantly negative relation with η;
– a significant relation with the whole term b

b+γ
, indicating that more intracellular

Mtb are released from apoptosis than necrosis (Lee et al. 2009);
– a positive relation with the whole term μM

sM
δ.

There is an identifiablility issue with the parameters δ, sM and μM , because they
only appear in (5) together as the term μM

sM
δ. While each of these parameters should be

expected to have a non-zero rank correlation with R0,since partial correlation accounts
for the effects of the other parameters, only one of these three can have a high PRCC
value. In this case, the effect appeared present for δ rather than the other two. Since
the uninfected macrophages level in a healthy host is relatively constant, the Mtb
proliferation rate δ is chosen to represent the significantly positive influence on R0.
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Also note that the other non-influential parameters are sT , μT , c, K , cM , cB , eM , eB ,
which do not show in the analytical formula of R0 in (5).

2.4 Sensitivity analysis of saddle-node bifurcations for LTBI reactivation

LTBI reactivation is characterized by an in-host Mtb outbreak. The Mtb level shifts
from a low-level latent infection stage to a high-level active disease stage by the slowly
weakening immune system, which may be caused by AIDS, chemotherapy, aging, and
diabetes. In our mathematical model, the LTBI reactivation can be captured by the
bacteria level traveling from a low steady state to a high steady state due to slowly
changing parameter values. The prerequisite condition is the existence of co-existing
steady states. The fundamental mechanism for the generation and destruction of steady
states is the occurrence of saddle-node bifurcation. Therefore, the parameter influence
on the shifting of the infection steady states is replaced by the parameter influence
on the occurrence of saddle-node bifurcation. The sensitivity analysis of the LTBI
reactivation is taken over by the sensitivity analysis of the saddle-node bifurcation
conditions.

In general, we consider an n-dimensional nonlinear system

dx

dt
= f (x, p), x ∈ Rn, p ∈ Rm, f : Rn+m → Rn, (6)

with m parameter values and equilibrium solutions xe = xe(p) derived from the
equilibrium condition

f (xe(p), p) = 0, x ∈ Rn, p ∈ Rm . (7)

The local stability of the equilibrium points xe(p) is determined by the eigenvalues of
the Jacobian J (p) = [∂ fi (xe(p), p)/∂x j ], which are the roots of the corresponding
characteristic polynomial equation

Pn(λ) = det[λI−J (p)] = λ+a1(p)λ
n−1+a2(p)λ

n−2+· · ·+an−1(p)λ+an(p). (8)

The necessary and sufficient conditions for zero singularities are given in Yu (2005).

Theorem 1 Yu (2005) The necessary and sufficient conditions for system (6) to have
a k-zero singularity at a fixed point (equilibrium), x = xe(p), of the system are given
by

an(p) = an−1(p) = · · · = an+1−k(p) = 0, (9)

which ai (p)’s are the coefficients of the characteristic polynomial (8). Further, if the
remaining coefficients a1, a2, . . . an−k still obey the Hurwitz conditions for order
n − k, then all the remaining eigenvalues of the Jacobian have negative real parts.

For the current case, we only need to study single zero bifurcations, that is k = 1.
The corresponding necessary condition becomes a4(p) = 0, since the dimension
of model (1) is 4. Single zero bifurcations include saddle-node/turning bifurcation,

123



An investigation of tuberculosis progression revealing the… Page 13 of 32 31

Fig. 2 PRCC values for single
zero-eigenvalue bifurcations
a(y3, pv) in (12) on the
influential parameters for
disease outcomes pv

which creates or destroys steady states, transcritical bifurcation (at R0 = 1), which
serves as the intersection between infection-free and infected steady states (Zhang
et al. 2020), and pitchfork bifurcation, which is not common in within-host infectious
disease model, due to the symmetric property.

The sensitivity function on LTBI reaction for model (1) is represented by the sen-
sitivity function of the necessary condition of single zero bifurcation (denoted by
a4(p) = 0) in terms of the parameters (denoted by pv) significantly affecting the tran-
scritical bifurcation condition (R0 = 1). The sensitivity analysis in Sect. 2.3 identified
the significant parameters affecting R0 to be

pv = (b, γ, β, δ, η, N1, N2, N3). (10)

We fix the parameters, which are not significantly affecting R0 or the fate of disease
as the corresponding mean values in Table 1. There parameters are denoted as

p f = (sT , sMμM , μT , c, K , cM , cB, eM , eB). (11)

Due to the uncertainties of the input parameters pv , we run Latin Hypercube sampling
for 10, 000 sampled parameter set. The sensitivity function/output is set as

a4(E
∗, pv) = a4(y3, b, γ, β, δ, η, N1, N2, N3), (12)

where E∗ denotes the infected steady state and y3 satisfies F(y3) = 0 in (3).Moreover,
the non-influential parameters p f in terms of disease outcomes are fixed. Scatter plots
showing the relationships between the disease-outcome influential parameters pv and
the sensitivity function a4(E∗, pv) in (12) are shown in Fig. 2. As in the preceding
sensitivity analysis, these plots show no evidence of non-monotonicity, which again
suggests that PRCC scores are appropriate to use. The PRCC scores for these are
shown in bar graph form in Fig. 2. The sensitivity analysis identifies that

– b has the largest magnitude PRCC value with the sensitivity function a4(E∗, pv);
– N2 is non-influential to the LTBI reactivation;
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– the other parameters in pv are statistically significant but have a moderate absolute
PRCC value with the sensitivity function/output a4(E∗, pv).

To further investigate how the identified significant parameter affects disease progres-
sion and what disease outcome will show up, we set b as a bifurcation parameter
of interest for a one-parameter bifurcation analysis in the next section. More two-
dimensional bifurcation diagrams are provided in the later section on the identified
influential parameters to provide insight on TB treatment strategies.

3 Bifurcation analysis of themacrophages programmed cell death
rate

3.1 Investigation of the single-zero eigenvalue bifurcation

The single-zero eigenvalue bifurcations are derived according to Theorem 1. Leaving
themost influential parameter b as the bifurcation parameter, fixing the other influential
parameters in pv and non-influential parameters in p f as the correspondingmean value
in Table 1, we rewrite model (1) using the new notation in (2) as

ẏ = f (y) = [ f1(y, b), f2(y, b), f3(y, b), f4(y, b)]T , y = (y1, y2, y3, y4) ∈ R
4.

(13)
Suppose the steady state/equilibrium is given in the form

ȳ = ȳ(b) = (ȳ1(b), ȳ2(b), ȳ3(b), ȳ4(b)),

which could represent multiple co-existing equilibrium solutions. Then the Jacobian
matrix of (13) at the infected equilibrium E∗ in (3) is

J (b) = Dy f |y=ȳ(b) = ∂ fi (ȳ(b), b)

∂ y j
, (14)

where ȳ(b) satisfies the equilibrium conditions in (3). We denote the fourth-degree
characteristic polynomial in terms of L at the infected equilibrium E∗ in (3) as

P4(L; y3, b) = L4 + a1(y3, b)L
3 + a2(y3, b)L

2 + a3(y3, b)L + a4(y3, b), (15)

where y3 satisfies the equilibrium condition in (3) F(y3, b) = 0. Evaluating this with
the parameter values in Table 1, the formula of F(y3, b) and ai (y3, b) i = 1, ..., 4 are
shown in Appendix (see supplementary material) Equations (1),(3),(4),(5), and (6).
We assume

(SN1) the Jacobian matrix J (b) = Dy f |y=ȳ(b) = Dy f (E∗, b) has a simple
zero eigenvalue, at b = bT , if (1) �1 = a1(y3, b) > 0, (2) �2 =
a1(y3, b) a2(y3, b) − a3(y3, b) > 0, (3) �3 = [a1(y3, b) a2(y3, b) −
a3(y3, b)] a3(y3, b)−a21(y3, b) a4(y3, b) > 0, and (4)�4 = �3 a4(y3, b) =
0 or a4(y3, b) = 0. Then b = bT and E∗ = E∗(bT ) is called critical point (Yu
2005).
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We obtain four single-zero bifurcation critical points:

Single-zero 1. bT 1 = 0.0295 day−1, E∗
1 = (497833, 122, 8.7, 40) cells/ml.

Single-zero 2. bT 2 = 0.2993 day−1, E∗
2 = (21089, 2664, 45417, 6952168)

cells/ml.
Single-zero 3. bT 3 = 0.1363 day−1, E∗

3 = (20, 3055, 49998972, 7575684467)
cells/ml.

Single-zero 4. bT 4 = 0.3000036 day−1, E∗
4 = (500000, 0, 0, 20) cells/ml.

Single-zero bifurcation include saddle-node/turning bifurcation, transcritical bifur-
cation, and pitchfork bifurcation, through the pitchfork bifurcation is not common in
infectious disease models due to the symmetric pattern. To identify the type of the
single-zero bifurcation and the local behavior of the corresponding vector field, We
apply Theorem 3.4.1 in Guckenheimer and Holmes (1990). That is, for the system
(13), there are three hypotheses SN1,

(SN2) v
∂ f
∂b (E∗, bT ) �= 0,

(SN2’) v
(

∂ f 2

∂b∂ y (E
∗, bT )(w)

)
�= 0

(SN3) v [D2
y f (E

∗, bT )(w, w)] �= 0,

where w and v are the left and right eigenvectors corresponding to the 0 eigen-
value of the matrix Dy f (E∗, bT ) = Dy f |y=ȳ(bT ) := Dy fb(y)|y=ȳ(bT ). Moreover
the transversality and degeneracy conditions are defined respectively as

v

[
∂ f

∂b

]
= v

[
∂ f1
∂b

,
∂ f2
∂b

,
∂ f3
∂b

,
∂ f4
∂b

]T

v
[
D2

y fb(w, w)
]

= v

[
wT

(
∂2 f1

∂ y j∂ yk

)
w, . . . , wT

(
∂2 f4

∂ y j∂ yk

)
w

]T

.

If system (13) satisfies three hypotheses SN1, SN2, and SN3, there are no equilibriums
that exist near (E∗, bT )when b < bT (b > bT ) and two equilibria near (E∗, bT )when
b > bT (b < bT ). It implies a saddle-node bifurcation. If we replace SN2 by SN2’,
then a transcritical bifurcation occurs.

For the critical point (bT 1, E∗
1 ), the left and right eigenvectors corresponding to

the simple zero eigenvalue of Dy fb(y)|(bT 1,E∗
1 ) are chosen respectively as

vT 1 = [0.0045, 21.9549, 0.8369, −12.8169]
wT 1 = [−0.9982, 0.0564, 0.00403, 0.01845]T ,

where < vT 1, wT1 >= 1. The transversality and degeneracy conditions are satisfied
since

vT 1

[
∂ f

∂b

]
|(bT 1,E∗

1 ) = 2434.1057 �= 0 and

vT 1

[
wT
T 1(D

2
y fb)wT1

]
|(bT 1,E∗

1 ) = −0.3579 × 10−4 �= 0.
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The signs of the transversality and degeneracy conditions indicate that no equilib-
rium point near (bT 1, E∗

1 ) when b < bT 1, but two equilibria are near (bT 1, E∗
1 )

when b > bT 1. Choosing b = 0.0298, we test the stability of the two bifurcation
equilibria: E∗+

1 = (497620, 133, 9.6, 44) (associated with four negative real-part
eigenvalues −62.3025, −0.0864, −0.0096 + 0.0009i , and −0.0096 − 0.0009i) and
E∗−
1 = (498014, 111, 8, 37) (associated with one positive and three negative eigen-

values−62.3471,−0.1356,−0.0099, and 0.0059). Given these results, a saddle-node
bifurcation occurs at (bT 1, E∗

1 ) shown in Fig. 3a,b as LP1. The bifurcating upper
branch equilibrium is stable and the lower branch is unstable.

For the critical point (bT 2, E∗
2 ), the left and right eigenvectors corresponding to

the simple zero eigenvalue of Dy fb(y)|(bT 2,E∗
2 ) are chosen respectively as

vT 2 = [0.001291 − 3578.6696, −143.1454, 0.001432]
wT 2 = [0.0029, −0.000016,−0.0066, −0.99997]T ,

where < vT 2, wT 2 >= 1. The transversality and degeneracy conditions are satisfied
since

vT 2

[
∂ f

∂b

]
|(bT 2,E∗

2 ) = −9533936.0987 �= 0 and

vT 2

[
wT
T 2(D

2
y fb)wT 2

]
|(bT2,E∗

2 ) = −0.1244 × 10−9 �= 0.

The other three negative eigenvalues associated with Dy fb(y)|(bT 2,E∗
2 ) are −4.5701,

−0.3294, and −0.0987. Since both the transversality and degeneracy conditions
are positive, there is no equilibrium near (bT 2, E∗

2 ) when b > bT 2, but there
are two equilibria near (bT 2, E∗

2 ) when b < bT 2. To test the stability of the
bifurcating equilibria, we choose b = 0.29 and obtain an unstable upper equilib-
rium E∗+

2 = (705, 2789, 1415628, 214563623) (associated with four eigenvalues
−7.2051, −1.7611, −0.32998, and 0.00048) and a stable lower equilibrium E∗−

2 =
(468905, 179, 133, 15543) (associated with four eigenvalues −60.3205, −0.1793,
−0.0083 + 0.0026i , and −0.0083 − 0.0026i). There also exist an unstable posi-
tive equilibrium ET 2l = (499959, 0.2307, 0.1606, 20.0627) (associated with four
eigenvalues −64.1962, −0.3289, −0.01, and 0.0094) and a stable positive equilib-
rium ET 2h = (10, 2793, 98580761, 14936553571) (associatedwith four eigenvalues
−492.9151, −1.78999, −0.3299, and −0.00048). The dynamics are summarized in
Fig. 3a near the point LP2.

For the critical point (bT 3, E∗
3 ), The left and right eigenvectors corresponding to

the simple zero eigenvalue of Dy fb(y)|(bT 3,E∗
3 ) are chosen respectively as

vT 3 = [−0.1103, 0.9929, 0.04412, −0.2447 × 10−12]
wT 3 = [−0.9064 × 10−5, 0.5385 × 10−7, 22.6606, 3433.4342]T ,
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where < vT 3, wT3 >= 1. The transversality and degeneracy conditions are satisfied
since

vT 3

[
∂ f

∂b

]
|(bT 3,E∗

3 ) = 3707.9009 �= 0 and

vT 3

[
wT
T 3(D

2
y fb)wT3

]
|(bT 3,E∗

3 ) = −0.2266 × 10−9 �= 0.

The rest of the three negative eigenvalues associated with fb(y)|(bT 3,E∗
3 ) are −250,

−1.6363, and −0.3299). The signs of the transversality and degeneracy condi-
tions indicate no equilibrium near (bT 3, E∗

3 ) when b < bT 3, and two equilibria
near (bT 3, E∗

3 ) when b > bT 3. Choosing b = 0.163 we test the stability of the
bifurcating branches and observe that there are two equilibria near (bT 3, E∗

3 ), a
stable E∗+

3 = (14, 3006, 70982833, 10755055859) (associated with four eigen-
values −354.9259, −1.6629, −0.3299, and −0.0002) and an unstable E∗−

3 =
(34, 3006, 29015090, 4396306898) (associated with four eigenvalues −145.0898,
−1.6629, −0.3299, and 0.0002). The other two unstable positive equilibria located
further away from (bT 3, E∗

3 ) are ET 3h = (489397, 108, 43, 386) (associated with
four eigenvalues −61.9168, −0.0102, 0.0537+ 0.1342i , and 0.0537− 0.1342i) and
ET 3l = (499421, 6, 2, 21) (associated with four eigenvalues −63.1107, −0.0099,
−0.3064, and 0.0709). The dynamics are summarized in Fig. 3a near the point LP3.

At (bT 4, ET 4), the disease free equilibrium E0 and infected equilibrium E∗ intersect
and exchange stability. The qualitative behavior of the model (1) at (bT 4, ET 4) is
determined by its corresponding center manifold governed by ċ = A c2 +Bφc. The
formula of the coefficients A and B are derived in our previous work (Zhang et al.
2020). Using the parameter values in Table 1, we have A |(bT 4,ET 4) = 4.3403 and
B|(bT 4,ET 4) = 24.9999. Therefore, the model (1) undergoes a transcritical bifurcation
at (bT 4, ET 4). Furthermore it shows a backward bifurcation due to the positiveness
of the coefficientsA andB in the quadratic terms. The dynamics are summarized in
Fig. 3b near the point BP.

Note that the magnitudes of transversality and degeneracy conditions depend on the
normalization of the corresponding left and right eigenvalues vT 1 andwT 1 (or vT 2 and
wT 2 and vT 3 and wT 3). While the signs of transversality and degeneracy conditions
(which are related to the opening direction of the saddle node bifurcation) are invariant
under the scaling of the left and right eigenvectors. Therefore, we choose the left and
right eigenvectors such that their dot product equals to one. Furthermore, the signs of
transversality and degeneracy conditions for E∗

1 , E
∗
2 , and E∗

3 show that the opening
direction of the saddle node bifurcation LP2 is different with LP1 and LP3 (see Fig.
3).

3.2 Investigation of the Hopf bifurcations

The necessary and sufficient conditions (Wm 1994; Yu 2005; Yu and Wang 2019) for
Hopf bifurcation E∗ require

Condition Hopf 1. �3(y3, b) = 0,
Condition Hopf 2. �1,2(y3, b) > 0,
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Condition Hopf 3. det(J (y3, b)) > 0 (positive determinant of the corresponding
Jacobian matrix),

Condition Hopf 4. d�3(y3, b)
db = ∂�3(y3, b)

∂b + ∂�3(y3, b)
∂B

dy3
db = ∂�3(y3, b)

∂b − ∂�3(y3, b)
∂ y3

∂F/∂b
∂F/∂ y3

�= 0.

Here, �i (y3, b), i = 1, . . . , 4 are Hurwitz arguments and the function F(y3) = 0 is
the equilibrium condition. The above four criteria yield two Hopf bifurcation points:

Hopf 1. bH1 = 0.0419 day−1, EH1 = (495822.4505, 166.2001, 16.8509, 80.9264)
cells/ml, with �1|(EH1,bH1) = 62.1427, �2|(EH1,bH1) = 38.7987, and
d�3(B, b)

db |(EH1,bH1) = −5907.7516, and det(J (EH1, bH1)) = 0.003699. The
corresponding eigenvalues are (−62.1326, −0.0100, 0.07697i, −0.07697i)
with i2 = −1.

Hopf 2. bH2 = 0.2611day−1, EH2 = (485669.6896, 91.4745, 59.0125, 1841.8417)
cells/ml, with �1|(EH2,bH2) = 62.1708, and �2|(EH2,bH2) = 39.7038,
d�3(B, b)

db |(EH2,bH2) = 5475.2113, det(J (EH2, bH2)) = 0.005743. The cor-
responding eigenvalues are (−0.1605, −0.01027, 0.09483i, −0.09483i).

We further study the post-critical behavior of the Hopf bifurcations to determine the
stability of the bifurcating limit cycles. The corresponding Hopf bifurcation normal
forms up to third order terms are derived through center manifold and normal form
reductions. Due to the high non-linearity and stiffness of the model equations, we
employ an established Maple program (Yu 1998) for the model analysis.

3.2.1 The Hopf bifurcation at bH1

We first apply a parameter-dependent shift of coordinate on the equilibrium condition
in Eq. 3, that is

F(y3|EH1 + ε, b) = 0.

Solving the preceding equation obtains

b(ε) = bH1 + 0.0023 ε + O(ε2).

Taking only the linear approximation of b(ε), we assume that b(ε) = bH1 +μ, where
μ = 0.0023 varepsilon, μ and ε are small perturbation parameters. It follows that
E∗
H1(ε) = EH1 + [−245.8399ε, 0.7032ε, ε, 5.4797ε]T + O(ε2). We introduce the

transformation
⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦=E∗

H1(ε)+TH1

⎡
⎢⎢⎣
u11
u12
u13
u14

⎤
⎥⎥⎦ , TH1=

⎡
⎢⎢⎣

0.9581 0. −0.0398 −0.9999
0.1293 −0.1352 0.0399 −0.0002

−0.0039 −0.0297 −0.9984 0.00001
−0.0789 −0.2002 0.0064 −0.0001

⎤
⎥⎥⎦ ,

(16)

into (1) and obtain

du1i
dt

= g1i (u11, u12, u13, u14; ε), for i = 1, 2, 3, 4,
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where g1i for i = 1...4 are stored in Appendix (see supplementary material) (7)–(10).
The corresponding Jacobian matrix of equations evaluated at the equilibrium u1i = 0,
i = 1, 2, 3, 4 takes the Jordan canonical form as

JH1 =

⎡
⎢⎢⎣

0 ω10 0 0
−ω10 0 0 0
0 0 −62.1326 0
0 0 0 −0.01005

⎤
⎥⎥⎦ ,

where ω10 = 0.07697. The corresponding Hopf bifurcation normal form up to third
order term is

dr1
dt1

= r1(v10ε + v11r
2
1 ),

dθ1

dt1
= ω10 + τ10ε + τ11r

2
1 ,

where v10 and τ10 are derived from linear analysis as follows

v10 = 1

2

(
∂2g11
∂u11∂ε

+ ∂2g12
∂u12∂ε

)
|u1i=0,ε=0 = 0.0046752,

τ10 = 1

2

(
∂2g11
∂u12∂ε

− ∂2g12
∂u11∂ε

)
|u1i=0,ε=0 = 0.0042939.

The first focus value v11 and the coefficient τ11 are derived from the Maple program
(Yu 1998) taking ε = 0 as input. We obtain

v11 = −0.1195 × 10−6, τ11 = −0.1632 × 10−7.

The trivial equilibrium r̄10 = 0 indicates the equilibrium EH1 for model (1). While
the nontrivial equilibrium r̄11 = − v10ε

v11
exists if ε > 0 and represents the amplitude

of the bifurcating limit cycle. Since

d(v10εr1 + v11r31 )

dr1
|r̄1 =

{
v10ε, r̄1 = r̄10,

−2v10ε, r̄1 = r̄11.

The trivial equilibrium r̄10 = 0 is stable when ε < 0. When ε > 0, r̄10 = 0 becomes
unstable, then a stable limit cycle merged with an amplitude of r̄11.

3.2.2 The Hopf bifurcation at bH2

Employing the similar approach as shown in the previous subsection, we first take
the linear approximation of b(ε) solved from F(y3|EH2 + ε, b) = 0. That is, b(ε) =

123



31 Page 20 of 32 W. Zhang et al.

bH2 + μ with μ = 0.0027ε ( μ and ε are small perturbations). Then we introduce the
following transformation

⎡
⎢⎢⎣
y1
y2
y3
y4

⎤
⎥⎥⎦ = E∗

H2(ε) + TH2

⎡
⎢⎢⎣
u21
u22
u23
u24

⎤
⎥⎥⎦ , TH1 =

⎡
⎢⎢⎣

0.2376 −0.1206 0.0387 −0.9999
−0.0051 −0.0149 −0.0396 −0.0002
−0.0057 −0.0087 0.9908 0.8749 × 10−5

−0.9637 0. −0.1231 −0.0045

⎤
⎥⎥⎦ ,

E∗
H2(ε) = EH2 + [−235.8751 ε, 0.5539 ε, ε, 158.9314 ε]T + O(ε2),

(17)
into (1). It yields du2i

dt = g2i (u21, u22, u23, u24; ε), for i = 1, 2, 3, 4, where g2i
are stored in (11)-(14) in the Appendix (see supplementary material). The expression
of functions g1i (u11, u12, u13, u14; ε) are omitted for brevity. The corresponding
Jacobian matrix of equations evaluated at the equilibrium u2i = 0 (i = 1, 2, 3, 4) is

in the Jordan canonical form JH2 = diag[
[

0 ω20
−ω20 0

]
, −0.1605, −0.0103], where

ω20 = 0.0948. The corresponding Hopf bifurcation normal form up to third order
term is written as dr2

dt2
= r2(v10ε + v21r22 ) and dθ2

dt2
= ω20 + τ20ε + τ21r22 , where

v20 = −0.0034, τ20 = −0.0034, v21 = −0.1238×10−8, and τ21 = −0.1584×10−9.
The trivial equilibrium r̄20 = 0 indicating EH2 is stable if ε > 0 and unstable if ε < 0,
while the non-trivial equilibrium r̄21 = − v20ε

v21
exists and is stable if ε < 0. A stable

limit cycle is generated from this Hopf bifurcation.

4 Demonstrating roles of macrophage programmed cell death
through numerical simulations

The bifurcation diagrams in Fig. 3 demonstrate the diverse Mtb levels B with regard
to the infected macrophage programmed cell death (apoptosis) rate b. Disease-free
equilibrium E0 (red line in Fig. 3b) and infected equilibrium E∗ (blue curve in Fig.
3a, b) intersect and exchange stability at a transcritical bifurcation (marked as point
BP at b = bT 4). In the first branch from the bottom of the infected equilibrium, E∗
is unstable and undergoes two neutral saddle points (marked as NS), then bifurcates
to a stable equilibrium solution in the second branch from the bottom at a saddle-
node bifurcation (marked as LP1 at b = bT 1). The stable E∗ loses its stability at
a supercritical Hopf bifurcation at b = bH1 (marked as H1). The stable bifurcating
limit cycles disappear when the periodic solution merges with the lowest branch of
E∗ (see Fig. 3b) and induces a blow up in the period (see Fig. 3c top). E∗ keeps
being unstable until reaching to a second supercritical Hopf bifurcation at b = bH2
(marked as H2). The corresponding bifurcating stable limit cycles also vanish when
the cycles merge with the lowest branch of E∗ (see Fig. 3b), and induce a blow up
in the period (see Fig. 3c bottom). This leaves a window in the branch at the second
from the bottom of E∗ (approximately b ∈ (0.052, 0.163 day−1), where solutions
converge to the stable disease-free equilibrium E0 (red line). Bistability is possible
if b ∈ (bT 3, 0.163) day−1. The stable branch at the second from the bottom of E∗
after H2 bifurcates an unstable branch (at the second from the top) at another saddle
node bifurcation (marked as LP2) at b = bH2. Then E∗ gains back stability at the third
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(a) (b)

(c)

Fig. 3 Bifurcation diagram of Mtb concentration B (y3 ) vs macrophage apoptosis rate b. Infected (E∗)
equilibriums are plotted according to Equation 1 in Appendix (see supplementary material) as F(y3, b) = 0
in blue lines (see (a) and (b)). The disease-free (E0) is in red. The solid and broken line styles distinguish
stable and unstable equilibriums. Oscillating bacterial load are due to two supercritical Hopf bifurcations.
Two oscillation regions are separated because periodic solutions merge with the lowest branch of E∗ (see
(b)) and generate blow-up periods (see (c)) (color figure online)

saddle node bifurcation (marked as LP3) at b = bH3. It yields the top stable branch for
the infected equilibrium E∗. Overall, the model (1) admits various disease outcomes
(clearance, latent infection (LTBI), and active infection Cadena et al. 2017) through
the occurrence of three saddle node bifurcations (LP1 at b = bT 1, LP2 at b = bT 2,
LP3 at b = bT 3 and BP at b = bT 4). Interestingly, in the second E∗ branch from
the bottom, where Mtb level B is in latent stage (b ∈ (PL1, LP2)), the Mtb level
first stabilizes at a low level (b ∈ (LP1, H1)), then oscillates b ∈ (H1, 0.052), then
vanished (b ∈ (0.052, 0.163) day−1), and oscillate again (b ∈ (0.163, bH2) day−1),
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then gain back stability (b ∈ (H1, LP2)). These surprisingly complex dynamical
behaviorsmotivate us to investigate themacrophage-Mtb interactionmodel 1 regarding
the macrophage apoptosis against Mtb.

4.1 Macrophage programmed cell death in TB infection

Before interpreting the complex macrophage-Mtb interplay shown in the bifurca-
tion diagrams in Fig. 3 and the simulations in Figs. 4 and 5, it may be helpful to
reviewmacrophage apoptosis as a defense strategy againstMtb infection.Host immune
responses to tuberculosis infection start from the inhalation of air droplets containing
Mtb pathogens. These bacilli first manage to enter into resident alveolar macrophages
through the phagocytosis process. A phagolysosome is then formed by the fusion of
lysosomes with phagosomes containing engulfed Mtb pathogens. In the phagolyso-
some, internalized bacilli are degradedby reactive oxygen species and the acidification.
However,Mtb pathogens evolve to survive from this cell anti-bacterial mechanism and
to reproduce inside the macrophage. At this point, infected macrophages prohibit the
extracellular Mtb pathogens, but facilitate intracellular bacterial replication at least
until the activation of the adaptive immune responses (Sturgill-Koszycki et al. 1994),
and provide an intracellular environment in favor of bacterial latency (Kornfeld et al.
1999). To defend against intracellular parasiticMtb pathogens, a common strategy is to
initiate host cell apoptosis. It destroys the protected intracellular environment, which
promote intracellular bacterial reproduction and latency (Lee et al. 2009). However,
to confront the elimination through host cell apoptosis, Mtb pathogens (especially
virulent Mtb strains) evolve to interrupt tumor necrosis factor-α (TNF-α) signaling
(Spira et al. 2003) and promote anti-apoptotic Mcl-1 (Sly et al. 2003). These signals
suppress the infected macrophage apoptosis. On the other hand, after maintaining the
suitable intracellular environment, virulent strain Mtb pathogens manage to replicate,
but still need a mean to spread the newly replicated pathogens. Host cell death is then
triggered by heavy load of intracellular bacteria to spread the infection to other host
cells. This heavily infected macrophage apoptosis process progresses rapidly and ends
up in macrophage necrosis. It is found that the intracellular Mtb pathogens released
from this process are not killed by host immune cells and able to replicate as extra-
cellular bacteria (Lee et al. 2006). The macrophage necrosis caused by heavy load of
intracellular Mtb benefits the TB progression to active TB disease.

4.2 TB outcomes with a small bacterial load

Pathogen clearance is possible if b < bT 4, due to the local stability of the dis-
ease free equilibrium E0. To represent the low bacterial level due to low inhaled
bacterial load or antibiotic drug treatments, we choose a low initial bacterial load
(Mu(0), Mi (0), B(0), T (0)) = (10, 1, 1, 100) cells/ml for the simulations in Fig.
4. The simulated Mtb infection clearance are shown in Fig. 4 panel (a) for six dif-
ferent macrophage apoptosis rates satisfying b < bT 4 day−1. Simulations in Fig. 4a
also demonstrate a positive relation between infection clearance time (and the Mtb
peak magnitude) and infected macrophage apoptosis rate b. It is probably because the
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(a) (b)

Fig. 4 Clearance and development of infection with different speeds

release of intracellular Mtb pathogens during the Mtb-containing macrophage apop-
tosis process causes the increase of the total bacterial load, which takes the immune
system longer time to eliminate.

Increasing the Mtb-containing macrophage apoptosis rate passing b > bT 4 day−1

indicates the occurrence of heavily infected macrophage necrosis. In this scenario, the
host immune system loses control of the growth of the invading pathogen. Either a
small amount of inhaled Mtb pathogens or a small load of latent Mtb bacteria will
eventually progress to active TB disease (see Fig. 4b). A positive relation between the
speed (and magnitude) and infected macrophages apoptosis rate b is also observed in
Fig. 4b. This result supports the experimental finding that the release ofMtb pathogens
through necrosis induces the high Mtb bacterial burden (Lee et al. 2011).

Overall, simulation results confirm the experimental findings that the infected
macrophage undergoing apoptosis promotes the clearance of Mtb infection (Keane
et al. 1997, 2000; Lee et al. 2009) even though the released Mtb pathogens increase
the total bacterial burden and result in longer clearance time. Moreover, the apop-
tosis for heavily infected macrophages culminates in necrosis, which releases more
intracellular Mtb pathogens (Lee et al. 2009). The uncontrolled infection prolongs
clearance time and facilitates infection progression to active TB disease.

4.3 The tug of war betweenmacrophage apoptosis and TB infection in LTBI state

Latent tuberculosis infection (LTBI) describes an Mtb-infected individual who does
not develop active disease and is not contagious. In this stage, the Mtb-infected
macrophages provide a suitable environment for the latency and persistence of intra-
cellular bacteria. However, diseases impairing the immune system (such as AIDS),
treatments causing immune system suppression (such as chemotherapy for cancer), or
advanced age can trigger LTBI reactivation. The LTBI status is demonstrated as low
levels of Mtb pathogen load in Fig. 3 when the macrophage apoptosis rate is between
LP1 and LP2. Low levels of Mtb load can be both persistent (b between LP1 and H1
or between H2 and LP2) and oscillatory (generated from two Hopf bifurcations H1
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(a) (b)

(c) (d)

Fig. 5 Simulated Mtb concentration as the result of the interplay between the host defense mechanism
(macrophage apoptosis) and virulent Mtb strains counteract strategies (inhibition of macrophage apoptosis
and trigger macrophage necrosis)

and H2). Interestingly, the oscillations won’t persist in the whole parameter interval
of (H1, H2), but disappear when oscillations starting from H1 and starting from H2
merge with the lower branch of the infected equilibrium E∗ (see Fig. 3b). It follows
blowing-up oscillation periods (see Fig. 3c), where the coexisting unstable branches
of infected equilibrium E∗ repel nearby solutions to the locally asymptotically sta-
ble disease free equilibrium E0. Amacrophage apoptosis rate window (approximately
(0.052, 0.163 day−1) between two Hopf bifurcations H1 and H2 are generated, where
oscillations disappear. Moreover, the risk to progress to active disease is possible if
the macrophage apoptosis rate b is between LP3 and LP2, and if large load of Mtb
pathogens is released due to the weakened immune system.

The role of macrophage apoptosis on the Mtb pathogen dynamics can be demon-
strated by time-history simulations (see Fig. 5) based on the analytical predictions
in bifurcation diagrams in Fig. 3. The clearance of internalized Mtb pathogens after
phagocytosis by the acidification is demonstrated (see Fig. 5a) by a low level of
macrophage apoptosis rate b near LP1 (b < bT 1 and b = 0.0294 day−1) and a
low initial Mtb concentration in LTBI state. To confront the parasite pathogen after
the infection establishment, Mtb-containing macrophages adopt a defense strategy to
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activate the host cell programmed death (macrophage apoptosis). This host defense
mechanism is demonstrated by increasing the macrophage apoptosis rate b to the
window (approximately (0.052, 0.163 day−1). Disease clearance is shown in both
LTBI case (with low initial Mtb load) for b = 0.131 day−1 and b = 0.1317 day−1)
(see Fig. 5b) and high initial Mtb load case for bT 3 > b = 0.134 day−1 (see Fig.
5c). Infected macrophage apoptosis effectively inhibits intracellular Mtb reproduc-
tion. To counteract this survival disadvantage, Mtb pathogens evolve virulent strains,
which are capable of suppressing Mtb-containing macrophage apoptosis and continu-
ing intracellular replication. The reduced macrophage apoptosis rate by virulent Mtb
strains is between bT 1 = 0.0295 day−1 (LP1) and 0.163 day−1. The low level persis-
tent and oscillatory Mtb levels are shown in Fig. 5a for bT 1 < b = 0.02952 day−1

and 0.043 day−1). Virulent Mtb strains manage to suppress macrophage apoptosis
for the intracellular replication, but also provoke host macrophage necrosis when the
intracellular pathogen load passes a threshold or the host cell resources are depleted.
The rapid macrophage apoptosis progresses to macrophage necrosis, which induces
a large amount of intracellular pathogen release and benefits the infection. Figure
5b and c show that the low-level oscillatory Mtb level for b = 0.165 day−1 and
b = 0.2 day−1 (∈ (0.043, H2) day−1) and an active disease case for b = 0.15 day−1

(∈ (bT 3, 0.043) day−1) if the patient is exposed with high level Mtb pathogen. Even
undergoing host cell necrosis, the immune system can still manage to control the
growth of Mtb pathogens (shown in Fig. 5 for b = 0.26 day−1 and b = 0.29 day−1),
but fails if the infected macrophage loss rate passes through the threshold bT 4 (BP)
(shown in Fig. 5 for b = 0.32 day−1).

Our analytical and numerical results confirm the mechanism that the host immune
system employs programmed cell death (apoptosis) as a strategy to defend against
intracellular Mtb parasitism (Lee et al. 2009). However, Mtb pathogens counteract
macrophage apoptosis by evolving virulent Mtb strains. Virulent Mtb strains can both
inhibit macrophage apoptosis to facilitate intracellular Mtb replication and trigger
heavily-infected macrophage necrosis to release intracellular pathogens (Zychlinsky
1993; McCormick 2008; Lee et al. 2009). This complex parasitic relationship deter-
mines the various TB disease outcomes. Moreover, a comprehensive understanding
of the interplay between macrophage apoptosis and Mtb pathogens is fundamental for
the TB treatment design.

5 New treatments suggested by the new insights of macrophages
programmed cell death

The current standard treatment of TB involves four first-line antibiotics (WHO 2019).
Effective treatment for curing TB, however, can be hampered by the development of
drug resistance, which can occur when treatment is not properly completed or adhered
to. Host directed therapy (HDT), which includes small molecule therapies that can
modulate the host immune response, can be used to augment treatment regimens to
better control TB infection of both antibiotic sensitive and resistant TB strains (Kolloli
and Subbian 2017). Antibiotic and HDT treatment can increase bacterial elimination
(η), infected macrophage loss (b, γ ), T-cell generation (sT , cm , cb), and decrease
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(a) (b)

(c) (d)

Fig. 6 2-dimensional bifurcation diagrams of b vs β, δ, γ and N1

macrophage infection (β), and intracellular and extracellular bacterial proliferation (δ,
N1, N2). Sensitivity analysis has shown that η, sT , cm , cb, and N2 do not significantly
affect the reproduction number (Fig. 1) or LTBI reactivation (Fig. 2). These parameters
are therefore ignored, and we proceed with an analysis of b, β, δ, and γ and N1, which
significantly affect the reproduction number and LTBI reactivation.

Figure 6 plots two parameter bifurcation diagrams that consider parameter b with
β, δ, γ , and N1. For convenience in the bifurcation analyses, we denote the TB model
(1) as dx

dt = f (x, p), where x = (Mu, Mi , B, T ) ∈ R4, p = (pb, p f ) ∈ R18,
and f : R4+18 → R4. Here, pb ∈ R2 denotes the two chosen bifurcation param-
eters, which are one of the following pairs: (b, β), (b, δ), (b, γ ), and (b, N1). p f

represents the remaining 16 parameters, which take the corresponding fixed values
from Table 1. We represent equilibrium solutions as xe = xe(pb). Single-zero eigen-
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value bifurcation happens if det(J (xe(pb), pb)) = 0 with positive Hurwitz conditions
�i > 0, for i = 1, 2, 3. Hopf bifurcation occurs when (1) �3(xe(pb), pb)) = 0, (2)
�1,2(xe(pb), pb) > 0, (3) det(J (xe(pb), pb)) > 0 (positive determinant of the cor-
responding Jacobian matrix), and (4) d�3(xe(pb),pb)

dpb
�= 0. Single-zero (saddle-node)

bifurcation curves are denoted as LP in blue. Transcritical bifurcation satisfying (4)
are denoted as BP in green. Hopf bifurcation curves are plotted in red. Here, LP1, LP2,
and LP3 correspond to the three limit point (saddle-node) bifurcations in Fig. 3a. BP is
consistent with the branching point (transcritical) bifurcation and Hopf matches with
the two Hopf bifurcations. Note that LP1 and LP3 denote two different branches of
equilibrium solutions in Fig. 3a. Therefore, even though the parameter curves for LP1
and LP3 intersect (see Fig. 6) in the corresponding 2-dimensional parameter space,
the corresponding equilibrium solutions are different. Therefore, there is no intersec-
tion in the parameter-state space. It follows that no higher-codimension bifurcation
occurs. We note that Bogdanov-Takens, generalized Hopf, and zero-Hopf bifurcations
are detected for the bifurcation analyses b vs γ and b vs δ. However, the bifurcation
critical points lie outside of biologically feasible regions from Table 1, and therefore,
are not considered.

Figure 6first shows thatwith afixedvalue forβ, δ,γ , and N1, the order of bifurcation
occurrence matches the order shown in Fig. 3a – as b increases, we have LP1, Hopf1,
LP3, Hopf2, LP3, and BP. Panels (a) and (b) also show that as b changes, the infection
outcome does not vary widely, given change in β and δ. Therefore, if drug therapy
moderates the macrophage apoptosis rate b, very large changes inMtb infection rate β

orMtb proliferation rate δ are needed to see a change from a current stable equilibrium
or periodic cycle.Additionally, to achieve bacteria elimination and prevent reactivation
of LTBI, for a given β or δ, b must be decreased to a value smaller than LP2. As the
macrophage apoptosis rate b changes, changes in cell-mediated immunity rate γ and
average number of released bacteria N1 can also have an effect. Here, we identify the
disease clearance region (in Fig. 6 above LP1 in (c) or below LP1 in (d)) and LTBI
controllable region (in Fig. 6 above LP2 in (c) or below LP2 in (d)). To enlarge the
disease clearance and LTBI controllable regions, we need to increase b and increase γ

or decrease N1. It means that a drug therapy that moderates the macrophage apoptosis
works better with the combination of an increased killing rate of infected cells by the
immune system γ or a decreased Mtb released number N1 during programmed cell
death.

In drug development, research on apoptosis modulation indicates therapeutic value
in cancer (Reed 2004), cardiovascular disease, and other diseases (Cotter et al. 2003).
Our findings enhance the idea that a drug therapy promoting macrophage apoptosis,
but inhibiting the progression to necrosis induced by heavily-infected cell death, could
benefit host defense against Mtb. In the mean time, we should consider the pathogen
anti-apoptosis strategies, which could increase bacillary viability, then increase the
number of released intracellularMtb N1. For example,Mtb virulent strains are capable
of inhibiting host macrophage apoptosis for intracellular reproduction by hindering
the tumor necrosis factorα (TNFα). A negative therapeutic effect is associated with
treating TBwith infliximab, a TNFα-neutralizing agent (Keane et al. 2001).Moreover,
adaptive immunity is promoted by the effect of the efferocytosis process, in which
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Mtb-infected apoptotic corpses are removed by phagocytic cells. These phagocytic
cells then present Mtb antigen and active CD8+ T cells. This phenomenon not only
explains the positive effect of macrophage apoptosis on host, but also inspires vaccine
development to promote adaptive immunity (Lee et al. 2009).

In conclusion, to preventLTBI reactivation and to eliminateTBdisease, the develop-
ment of apoptosis modulation drugsmust take theMtb survival strategies into account.
Furthermore, an understanding of the enhanced cell-mediated immunity gives new
insight into vaccine development.

6 Conclusion

In this paper, we investigate the macrophage and Mycobacterium tuberculosis (Mtb)
dynamics through an established 4-dimensional host-pathogen model. We pay par-
ticular attention to identify the determining mechanisms for Mtb elimination, LTBI
reactivation prevention, and active TB treatment.

The first goal is to identify the determining factors for various disease outcomes
that are unique features for TB infection. These include clearance, LTBI, active dis-
ease, and LTBI reactivation. Various disease outcomes in the mathematical model
indicate the co-existing Mtb steady states levels (equilibriums). The basic mathemat-
ical mechanism for the creation and emergence of steady states is the occurrence of
saddle-node bifurcation. Additionally, the fundamental mathematical mechanism for
the disease clearance and persistence is the occurrence of transcritical bifurcation. Both
saddle-node and transcritical bifurcations are single zero-eigenvalue bifurcation. The
problem of identifying parameter sensitivity for TB elimination and LTBI reactivation
is replaced by the problem of identifying parameter sensitivity for the occurrence of
single zero-eigenvalue bifurcation. Note that pitchfork bifurcation is the other single
zero-eigenvalue bifurcation, but is not common in infectious disease models due to its
symmetric nature. It is therefore left out of our consideration.

We then perform a sample-based sensitivity analysis for the condition of trans-
critical bifurcation (the basic reproduction number) on all eleven model parameters.
Our results demonstrate that eight of the eleven parameters significantly influence
the basic reproduction number (R0). The eight parameters are the infection rate β, T
cell-mediated immunity rate γ , extracellular bacterium proliferation rate δ, infected
macrophages apoptotic rate b, uninfected macrophages bacterial killing rate η, and
average number of bacterium engulfed by uninfected macrophages N3 or released
through the death of infected macrophage induced by apoptosis N1 and cell-mediated
immunity N2. Fixing the parameters that do not statistically significantly affect the
basic reproduction number, another sensitivity analysis is carried out for the condi-
tions of saddle node bifurcation on the eight parameters that significantly influence
R0. These two steps of sensitivity analyses find that the infected macrophage cell
death rate b is the most influential factor on both R0 and the occurrence of saddle-
node bifurcation, which determines the occurrence of various disease outcomes and,
in turn, rules the fate of the disease. Biologically, the host cell death in the form of
apoptosis is considered to inhibits Mtb replication and to produce bacterial antigens
to activate adaptive immune responses (Behar et al. 2011; Queval et al. 2017). On the
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other hand, cell death in the form of necrosis is associated with spreading infection
(Behar et al. 2011; Queval et al. 2017). Other proposed host factors and Mtb invad-
ing strategies, which contribute to the disease progression, include genetic diversity
(Gagneux 2013), T-cell mediated immune responses (Verrall et al. 2014; Flynn and
Chan 2001), the responses of two pivotal cytokines gamma interferon (IFN-γ ) and
tumor necrosis factor alpha (TNF-α) (Flynn and Chan 2001), Mtb inhibiting the elim-
ination of phagocytized bacteria Queval et al. (2017), and Mtb controlling host cell
death to escape from kaltilling Queval et al. 2017. One limitation of our mathematical
results is the choice of parameter values. The parameter ranges in Table 1 are based
on current experimental and clinical literature, but still inherit their restrictions. Nev-
ertheless, our mathematical results confirm the crucial and controversial role in the
host immune defense against invading Mtb pathogens (Queval et al. 2017).

Sensitivity analysis dramatically narrows down parameters of interest for under-
standing model behaviors (including infection elimination and LTBI progression), but
it can not tell how the identified parameters affect the model behaviors, or what model
dynamics can be unfolded from the change of the identified parameters. Answering
these two questions serves as our second goal. We employ bifurcation analysis to
tackle these questions. Considering the macrophage apoptosis rate b as a bifurca-
tion parameter, we explore the role of macrophage apoptosis in TB infection through
bifurcation analyses. A spectrum of disease outcomes are verified by numerical simu-
lations. We carry out bifurcation analyses on single-zero eigenvalues bifurcations and
derive Hopf bifurcation normal forms. Our analytical results are consistent with the
numerical bifurcation output from MatCont (Dhooge et al. 2003).

Regarding TB pathobiology, our findings of the mathematical model dynamics
agree with the clinical and experimental macrophage-Mtb interaction outcomes (Lee
et al. 2009), which consider the complex roles of macrophage apoptosis in the host
defense against TB infection. Ourmathematicalmodel (1) demonstrates the following:
(1) the clearance of low level Mtb load during phagocytosis is associated with low
macrophage apoptosis rate (Verrall et al. 2014); (2) the TNFα-induced macrophage
apoptosis facilitates the host defense against intracellular Mtb proliferation (Lee et al.
2009); (3) macrophage apoptosis is suppressed by virulent Mtb strains interfering
with TNFα signaling pathways. Virulent Mtb then gain an intracellular reproduction
environment (Kornfeld et al. 1999); and (4) heavily infected macrophage apoptosis
induces macrophage necrosis, which releases a large amount of intracellular bacteria
and benefits the spread of the pathogen (Lee et al. 2009; Behar et al. 2011).

Elucidating the complex roles of macrophage apoptosis played in Mtb in-host
dynamics could give new insights into the treatments aiming at TB elimination and
LTBI reactivation prevention. Treatment strategies regulate macrophage apoptosis
in combination with the control of bacillary viability is recommended. Mtb antigen
presentation after the efferocytosis of Mtb-containing apoptotic remaining enhance
adaptive immunity by activating CD8+ T cells. The adaptive immunity promoting
mechanism can help the development of the new vaccine and new treatments.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00285-021-01655-6.

123

https://doi.org/10.1007/s00285-021-01655-6
https://doi.org/10.1007/s00285-021-01655-6


31 Page 30 of 32 W. Zhang et al.

Acknowledgements We acknowledge the financial support from Simons Foundation (A21-0013-001) and
Texas Tech University (New Faculty Startup) for Wenjing Zhang, Canadian Network for Research and
Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (Dis-
covery Grant) and York University Research Chair for Jane Heffernan, and Australian Research Council
(DP180101512) for Federico Frascoli. Conceptualization, methodology, formal analysis were carried out
by Wenjing Zhang. The original draft of the manuscript was written by Wenjing Zhang and co-edited by
Wenjing Zhang and Leif Ellingson. The investigation of the sensitivity analysis was performed by Wenjing
Zhang and Leif Ellingson. The biological interpretation was carried out by Wenjing Zhang and Jane Hef-
fernan. The revision is carried out by Wenjing Zhang and Leif Ellingson. All authors read and approved
the final manuscript. The authors thank the editor and anonymous reviewers for their careful reading of our
manuscript and their insightful comments and suggestions.

References

Abdelrazec A, Bélair J, Shan C, Zhu H (2016) Modeling the spread and control of dengue with limited
public health resources. Math Biosci 271:136–145

Antia R, Koella JC, Perrot V (1996) Models of the within-host dynamics of persistent mycobacterial
infections. Proc R Soc Lond B 263(1368):257–263

Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D
(2009) The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat
Rev Microbiol 7(12):845–855

Bauer AL, Hogue IB, Marino S, Kirschner DE (2008) The effects of HIV-1 infection on latent tuberculosis.
Math Modell Nat Phenom 3(7):229–266

Behar SM, Martin CJ, Booty MG, Nishimura T, Zhao X, Gan HX, Divangahi M, Remold HG (2011)
Apoptosis is an innate defense function of macrophages against mycobacterium tuberculosis. Mucosal
Immunol 4(3):279–287

BoseDasgupta S, Pieters J (2014) Striking the right balance determines TB or not TB. Front Immunol 5:455
CadenaAM,Fortune SM, Flynn JL (2017)Heterogeneity in tuberculosis. NatRev Immunol 17(11):691–702
Canetti G (1955) The tubercle bacillus in the pulmonary Lesion of Man: Histobacteriology and Its Bearing

on the Therapy of Pulmonary Tuberculosis. Springer Publishing Company, New York
Conover WJ, Iman RL (1981) Rank transformations as a bridge between parametric and nonparametric

statistics. Am Stat 35(3):124–129
Cooper AM (2009) Cell-mediated immune responses in tuberculosis. Annu Rev Immunol 27:393–422
Cotter T, Murphy FJ, Seery LT, Hayes I (2003) Therapeutic approaches to the modulation of apoptosis.

Essays Biochem 39:131–153
Dhooge A, Govaerts W, Kuznetsov YA (2003) Matcont: a MATLAB package for numerical bifurcation

analysis of ODEs. ACM Trans Math Softw (TOMS) 29(2):141–164
Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Bar-Gal GK, Matheson C, Vernon K, Nerlich

AG, Zink AR (2004) Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA.
Lancet Infect Dis 4(9):584–592

Du Y, Wu J, Heffernan JM (2017) A simple in-host model for Mycobacterium tuberculosis that captures
all infection outcomes. Math Popul Stud 24(1):37–63

Ehlers S, Schaible UE (2013) The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front
Immunol 3:411

Flynn JL, Chan J (2001) Tuberculosis: latency and reactivation. Infect Immun 69(7):4195–4201
Gagneux S (2013) Genetic diversity inmycobacterium tuberculosis. PathogMycobacteriumTuberc Interact

Host Organism, pages 1–25 (2013)
Gammack D, Ganguli S, Marino S, Segovia-Juarez J, Kirschner DE (2005) Understanding the immune

response in tuberculosis using different mathematical models and biological scales. Multiscale Model
Simul 3(2):312–345

Gideon HP, Flynn JL (2011) Latent tuberculosis: what the host “sees”? Immunol Res 50(2–3):202–212
Gong C, Linderman JJ, Kirschner D (2015) A population model capturing dynamics of tuberculosis gran-

ulomas predicts host infection outcomes. Math Biosci Eng MBE 12(3):625
Guckenheimer J, Holmes P (2013) Nonlinear oscillations, dynamical systems, and bifurcations of vector

fields, vol 42. Springer Science & Business Media, Berlin

123



An investigation of tuberculosis progression revealing the… Page 31 of 32 31

Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of
complex systems. Reliab Eng Syst Saf 81(1):23–69

Iman RL, Helton JC (1988) An investigation of uncertainty and sensitivity analysis techniques for computer
models. Risk Anal 8(1):71–90

Keane J, Balcewicz-Sablinska MK, Remold HG, Chupp GL, Meek BB, Fenton MJ, Kornfeld H (1997)
Infection by Mycobacterium tuberculosis promotes human alveolar macrophage apoptosis. Infect
Immun 65(1):298–304

Keane J, Remold HG, Kornfeld H (2000) Virulent Mycobacterium tuberculosis strains evade apoptosis of
infected alveolar macrophages. J Immunol 164(4):2016–2020

Keane J, Gershon S, Wise RP, Mirabile-Levens E, Kasznica J, Schwieterman WD, Siegel JN, Braun MM
(2001) Tuberculosis associated with infliximab, a tumor necrosis factor alpha-neutralizing agent. N
Engl J Med 345(15):1098–1104

Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol
Cell Biol 9(10):781–795

Kirschner D (1999) Dynamics of co-infection with M. tuberculosisand HIV-1. Theor Popul Biol 55(1):94–
109

Kleijnen JP, Helton JC (1999) Statistical analyses of scatterplots to identify important factors in large-scale
simulations, 1: Review and comparison of techniques. Reliab Eng Syst Saf 65(2):147–185

Kolloli A, Subbian S (2017) Host-directed therapeutic strategies for tuberculosis. Front Med 4:171
Kornfeld H, Mancino G, Colizzi V (1999) The role of macrophage cell death in tuberculosis. Cell Death

Differ 6(1):71–78
LauffenburgerD, Linderman J (1993)Cell surface receptor/ligand binding fundamentals. Receptors:models

for binding, trafficking and signaling Oxford Press, New York, NY pp 9–72
Lee J, Remold HG, Ieong MH, Kornfeld H (2006) Macrophage apoptosis in response to high intracellu-

lar burden of Mycobacterium tuberculosis is mediated by a novel caspase-independent pathway. J
Immunol 176(7):4267–4274

Lee J, Hartman M, Kornfeld H (2009) Macrophage apoptosis in tuberculosis. Yonsei Med J 50(1):1–11
Lee J, RepasyT, PapavinasasundaramK, Sassetti C,KornfeldH (2011)Mycobacterium tuberculosis induces

an atypical cell death mode to escape from infected macrophages. PLoS ONE 6(3):e18367
Lewinsohn D, Bement T, Xu J, Lynch D, Grabstein K, Reed S, Alderson M (1998) Human purified protein

derivative-specific CD4+ t cells use both CD95-dependent and CD95-independent cytolytic mecha-
nisms. J Immunol 160(5):2374–2379

Lin PL, Flynn JL (2010) Understanding latent tuberculosis: a moving target. J Immunol 185(1):15–22
Magombedze G, Garira W, Mwenje E (2006) Modelling the human immune response mechanisms to

Mycobacterium tuberculosis infection in the lungs. Math Biosci Eng 3(4):661
Marino S, Kirschner DE (2004) The human immune response to Mycobacterium tuberculosis in lung and

lymph node. J Theor Biol 227(4):463–486
Marino S, Kirschner DE (2016) A multi-compartment hybrid computational model predicts key roles for

dendritic cells in tuberculosis infection. Computation 4(4):39
Marino S, Hogue IB, Ray CJ, Kirschner DE (2008) A methodology for performing global uncertainty and

sensitivity analysis in systems biology. J Theor Biol 254(1):178–196
McCormick AL (2008) Control of apoptosis by human cytomegalovirus. Curr Top Microbiol Immunol

325:281–295. https://doi.org/10.1007/978-3-540-77349-8_16
McKay MD, Beckman RJ, Conover WJ (1979) Comparison of three methods for selecting values of input

variables in the analysis of output from a computer code. Technometrics 21(2):239–245
O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP (2013) The immune response in

tuberculosis. Annu Rev Immunol 31:475–527
Organization WH, et al (2017) Global tuberculosis report 2017
Orme IM, Robinson RT, Cooper AM (2015) The balance between protective and pathogenic immune

responses in the TB-infected lung. Nat Immunol 16(1):57–63
Queval CJ, Brosch R, Roxane S (2017) The macrophage: a disputed fortress in the battle against mycobac-

terium tuberculosis. Front Microbiol 8:2284
Ray JCJ, Flynn JL, Kirschner DE (2009) Synergy between individual tnf-dependent functions deter-

mines granuloma performance for controlling Mycobacterium tuberculosis infection. J Immunol
182(6):3706–3717

Reed JC (2004) Apoptosis mechanisms: implications for cancer drug discovery. Oncology (Williston Park,
NY) 18(13 Suppl 10):11–20

123

https://doi.org/10.1007/978-3-540-77349-8_16


31 Page 32 of 32 W. Zhang et al.

Rich AR et al. (1951) The pathogenesis of tuberculosis. The Pathogenesis of Tuberculosis (Edn 2)(1951)
Russell DG, Barry CE, Flynn JL (2010) Tuberculosis: what we don’t know can, and does, hurt us. Science

328(5980):852–856
Saltelli A, Annoni P (2011) Sensitivity analysis. Springer, Berlin Heidelberg, pp 1298–1301
Saltelli A, Sobol IM (1995) About the use of rank transformation in sensitivity analysis of model output.

Reliab Eng Syst Saf 50(3):225–239
Segovia-Juarez JL, Ganguli S, Kirschner D (2004) Identifying control mechanisms of granuloma formation

during M. tuberculosis infection using an agent-based model. J Theor Biol 231(3):357–376
Sly LM, Hingley-Wilson SM, Reiner NE, McMaster WR (2003) Survival of mycobacterium tuberculosis in

host macrophages involves resistance to apoptosis dependent upon induction of antiapoptotic BCL-2
family member MCL-1. J Immunol 170(1):430–437

Spira A, Carroll JD, Liu G, Aziz Z, Shah V, Kornfeld H, Keane J (2003) Apoptosis genes in human alveolar
macrophages infected with virulent or attenuatedMycobacterium tuberculosis: a pivotal role for tumor
necrosis factor. Am J Respir Cell Mol Biol 29(5):545–551

Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, Haddix PL, Collins HL, Fok AK, Allen RD, Gluck
SL, Heuser J, Russell DG (1994) Lack of acidification in Mycobacterium phagosomes produced by
exclusion of the vesicular proton-atpase. Science 263(5147):678–681

Sud D, Bigbee C, Flynn JL, Kirschner DE (2006) Contribution of cd8+ t cells to control of Mycobacterium
tuberculosis infection. J Immunol 176(7):4296–4314

Torrado E, Cooper AM (2013) Cytokines in the balance of protection and pathology during mycobacterial
infections. Adv Exp Med Biol 783:121–140. https://doi.org/10.1007/978-1-4614-6111-1_7

Ulrichs T, Kaufmann SH (2006) New insights into the function of granulomas in human tuberculosis. J
Pathol J Pathol Soc Great Br Ireland 208(2):261–269

Upadhyay S, Mittal E, Philips JA (2018) Tuberculosis and the art of macrophage manipulation. Pathog
Disease 76(4):fty037

Verrall AJ, Netea MG, Alisjahbana B, Hill PC, van Crevel R (2014) Early clearance of m ycobacterium
tuberculosis: a new frontier in prevention. Immunology 141(4):506–513

Warner DF, Mizrahi V (2007) The survival kit of Mycobacterium tuberculosis. Nat Med 13(3):282–284
WHO: Golbal tuberculosis report 2019. World Health Organization (2019)
Wigginton JE, Kirschner D (2001) Amodel to predict cell-mediated immune regulatorymechanisms during

human infection with Mycobacterium tuberculosis. J Immunol 166(3):1951–1967
WmLiu (1994) Criterion ofHopf bifurcationswithout using eigenvalues. JMathAnalAppl 182(1):250–256
Yu P, Wang X (2019) Analysis on recurrence behavior in oscillating networks of biologically relevant

organic reactions. Math Biosci Eng 16(5):5263–5286
Yu P (2005) Closed-form conditions of bifurcation points for general differential equations. Int J Bifurc

Chaos 15(04):1467–1483
Yu P, Wang X (2019) Analysis on recurrence behavior in oscillating networks of biologically relevant

organic reactions. Math Biosci Eng 16:5263–5286
Zhang W, Frascoli F, Heffernan J (2020) Analysis of solutions and disease progressions for a within-host

tuberculosis model. Math Appl Sci Eng 1:39–49
Zychlinsky A (1993) Programmed cell death in infectious diseases. Trends Microbiol 1(3):114–117

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1007/978-1-4614-6111-1_7

	An investigation of tuberculosis progression revealing the role of macrophages apoptosis via sensitivity and bifurcation analysis
	Abstract
	1 Introduction
	1.1 TB epidemiology and immunology background
	1.2 Mathematical modeling background
	1.3 Overview

	2 Investigation of the driving factors for disease progression through sensitivity analysis
	2.1 Model
	2.2 Basic model properties
	2.3 Sensitivity analysis of R0 for the early stage of TB infection
	2.4 Sensitivity analysis of saddle-node bifurcations for LTBI reactivation

	3 Bifurcation analysis of the macrophages programmed cell death rate
	3.1 Investigation of the single-zero eigenvalue bifurcation
	3.2 Investigation of the Hopf bifurcations
	3.2.1 The Hopf bifurcation at bH1
	3.2.2 The Hopf bifurcation at bH2


	4 Demonstrating roles of macrophage programmed cell death through numerical simulations
	4.1 Macrophage programmed cell death in TB infection
	4.2 TB outcomes with a small bacterial load
	4.3 The tug of war between macrophage apoptosis and TB infection in LTBI state

	5 New treatments suggested by the new insights of macrophages programmed cell death
	6 Conclusion
	Acknowledgements
	References




