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Abstract
A common task in experimental sciences is to fit mathematical models to real-world
measurements to improve understanding of natural phenomenon (reverse-engineering
or inverse modelling). When complex dynamical systems are considered, such as
partial differential equations, this task may become challenging or ill-posed. In this
work, a linear parabolic equation is considered as a model for protein transcription
fromMRNA. The objective is to estimate jointly the differential operator coefficients,
namely the rates of diffusion and self-regulation, as well as a functional source. The
recent Bayesian methodology for infinite dimensional inverse problems is applied,
providing a unique posterior distribution on the parameter space continuous in the
data. This posterior is then summarized using a Maximum a Posteriori estimator.
Finally, the theoretical solution is illustrated using a state-of-the-art MCMC algorithm
adapted to this non-Gaussian setting.
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1 Introduction

The problem of diffusion in a porous media, which is ubiquitous in Physics, Engineer-
ing and Biology, is usually represented by the following partial differential equation
(with constant diffusion and damping without transport):

∂z

∂t
(x, t) + λz(x, t) − DΔz(x, t) = f (x, t), ∀(x, t) ∈ Ω×]0, T ],

z(x, t) = 0, ∀(x, t) ∈ Ω × {t = 0},
z(x, t) = 0, ∀(x, t) ∈ ∂Ω×]0, T ],

(1)

where the spatial domain is an open set Ω ⊂ R
n (n ≤ 3) and the final time is T ∈ R

+
(other initial and boundary conditions are possible). In real world applications, the
quantity of interest z (hereafter called the solution of Eq. 1) is typically the concen-
tration of some chemical and evolves from a null initial state under three distinct
mechanisms: (a) direct variation in concentration, given by the source f , (b) diffu-
sion at rate D, (c) production or depletion at a rate λ. Different hypotheses on the
parameters lead to a well-defined solution [well-posedness in the sense of Hadamard
Hadamard (1902)] but only a particular case will be dealt with here. Besides the tra-
ditional computation of the solution from the parameters, one can use this model for
the determination of an optimal control (e.g. source leading to the minimization of a
particular cost functional) or the identification of parameters from partial knowledge
of the solution in an inverse setting and the latter is the objective of this paper. The
motivation comes from a challenging identification problem in Biology where the
objective is to infer jointly self-regulation and diffusion rates with the source f given
a limited number of noisy observations of the solution z. Note that given their physical
interpretation, the parameters u = (λ, D, f ) must all be non-negative (in an obvious
sense).

This problem has already been solved using various approaches. In Becker et al.
(2013), the authors use a system of ordinary differential equations instead of Eq. 1,
and minimize a discrete version of a least-square penalty functional, while confidence
intervals on parameters are given by bootstrapping. In a Bayesian setting, alterna-
tive methods have been based on Latent Force Models (Alvarez et al. 2013; Särkkä
et al. 2018). These approaches assume that the source can be modelled with Gaussian
Processes (Rasmussen and Williams 2006). In particular, if f is taken to be such a
process and if the decay and the diffusion are constants, z is Gaussian as well (since z
depends linearly in f ). The two constant parameters λ and D can then be optimized
as hyper-parameters through standard likelihood maximization (Lopez-Lopera et al.
2019).Major drawbacks of this approach are both the difficulty to enforce positiveness
of the reconstructed source and the absence of uncertainty quantification on λ, D.

In this work, a more general methodology is applied, based on the recent advent of
Bayesian Inverse Problems (Stuart 2010) for infinite dimensional spaces. This has the
advantage of dealing with the ill-posedness while fully integrating the quantification
of uncertainties in a unified approach. Moreover, the possibility to include previous
physical constraints in the prior will be particularly meaningful. The rest of this paper
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is organized as follows: Sect. 2 presents all the mathematical analysis underlying the
Bayesian inversion, namely sufficient regularity of the forward operator (mapping the
parameter (λ, D, f ) to the PDE solution z), existence and uniqueness of the posterior
under a simple class of priors, and finally uniqueness of the associated posterior. Sec-
tion 3 focuses on an adaptation of a geometric Markov Chain Monte-Carlo algorithm,
well-defined in function spaces. Finally, Sect. 4 contains all implementation details, as
well as amethodology to tune hyper-parameters of themodel. All numerical results are
based on a real-world dataset related to the developmental biology of the Drosophila
Melanogaster.

2 Bayesian inversion

As previously announced, the goal in this work is to infer a source term f (mRNA
concentration) jointly with rates of diffusion D and decay λ (i.e. the parameter
u = (λ, D, f )) from noisy and partial measurements of the solution z (gap pro-
tein concentration). This problem is ill-posed for multiple reasons: (a) the parameter
u is infinite dimensional and only finite data are available, (b) the solution map is not
injective and (c) observations are noisy. The typical approach to alleviate this issue
is to regularize the problem, usually adding more constraints with Tikhonov-Philips
functionals, to ensure uniqueness and continuity w.r.t. the observations (Isakov 2017;
Schuster et al. 2012). Doing so, the regularized solution will be compatible with
the dataset. Additionally, a particularly valuable information is a representation of
all parameters u that would lead to similar data, giving precise statement on how
the dataset is informative (Ghanem et al. 2017; Biegler et al. 2011; Sullivan 2015).
One approach consists in treating these 2 objectives sequentially, first regularizing
then quantifying the resulting uncertainty. However, the Bayesian methodology for
inverse problems (Stuart 2010) and more recently Dashti and Stuart (2015) is pre-
cisely tailored to complete both tasks at once in an elegant manner. One particularity
of these recent contributions is to tackle inverse problems directly in function spaces,
postponing discretization at the very end for implementation purposes, which leads
to robust algorithms w.r.t. discretization dimension. Indeed, finite approximations of
probability measures may be absolutely continuous while their infinite counterparts
are mutually singular. This becomes particularly troublesome in MCMC sampling for
instance (Cotter et al. 2013).

In essence, instead of searching for one particular parameter solving the regularized
problem, this approach considers conditional probabilitymeasures of parameters given
observations. Namely, given a prior distribution (see Sect. 2.2) and few technical
conditions on the forward operator (see Sect. 2.1), Bayes theorem applies and exhibits
a unique posterior distribution (see Sect. 2.3), which is continuous in the data [w.r.t.
Hellinger metric (Stuart 2010)]. Finally, one may summarize information from this
posterior distributionwith point estimators such as expected value ormodes (Sect. 2.4).
All these steps will now be presented.
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2.1 Forwardmodel analysis

Thefirst step is to detail precisely the required regularity of the solutionmap fromEq. 1.
Using common variational techniques from PDE theory [see Evans (1998) or Brezis
(2011)], one can show that this equation has a unique weak solution (see Proposition 1
which proof is in the appendix) given u = (λ, D, f ) in a domain U that will be
explicited later on. Moreover, this solution evolves smoothly when the parameter
varies. Without any loss of generality and keeping in mind the biological application,
the underlying physical domain will be Ω =]0, L[ with L ∈ R

+, representing the
anterior-posterior axis of a Drosophilia embryo.

Proposition 1 Let 0 < λM , 0 < Dm ≤ DM ,U = [0, λM ]×[Dm, DM ]×C ([0, T ]×
[0, L];R) with the norm ‖u‖U = |λ| + |D| + ‖ f ‖∞, then for all u ∈ U , Eq. 1 has a
unique weak solution z, continuous on the domain [0, L] × [0, T ], defining the map:

z : u ∈ U → z(u) ∈ C([0, T ] × [0, L];R).

Moreover, this map has the following properties:

1. (Energy estimate): it satisfies the following estimate ∀u ∈ U ,

‖z(u)‖∞ ≤ C‖ f ‖∞,

where C > 0 is a constant independent of u,
2. (Local Lipschitz continuity): ∀u in the interior ofU , ∀r > 0 such thatB(u, r) ⊂

U , ∃L(u, r) > 0,

∀(u1, u2) ∈ B(u, r) × B(u, r), ‖z(u1) − z(u2)‖∞ ≤ L(u, r)‖u1 − u2‖U

3. (Differentiability): it is twice Fréchet differentiable in the interior of U .

The proof is standard using methods from PDE and optimal control theory (Evans
1998). The properties stated in proposition 1 will be important for subsequent analysis
(Sect. 2.3):

1. The energy estimate is fundamental to establish most of the results concerning
the posterior distribution. Indeed, it gives a precise upper bound, useful to show
integrability of the yet-to-come likelihood,

2. Local Lipschitz continuity implies measurability of the solution map w.r.t. the
Borel σ -algebra and is used in the characterization of posterior modes (Maximum
a Posteriori estimators),

3. Second order Fréchet differentiability will be necessary for geometric methods in
optimization (research of posterior modes) and sampling (Markov-Chain Monte-
Carlo) since they rely on Hessian-type information.
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2.2 Choice of a prior distribution

The second step is to choose a prior probability distribution onU , encoding all knowl-
edge on the problem at hand, while being simple enough to keep the analysis tractable.
The prior will be constructed as a product measure, specifying marginal measures μλ

0,

μD
0 , μ

f
0 on all parameters:

μ0(du) := μλ
0(dλ) ⊗ μD

0 (dD) ⊗ μ
f
0 (d f ). (2)

For simplicity, bothmeasures for λ and D will be taken uniform on respective intervals
[Dm, DM ] and [0, λM ]. Now, since f must be non-negative, 1 is re-parametrized with
the following source term:

f ∗ = exp( f ), (3)

where f ∈ C([0, T ] × [0, L];R). Selecting a Borel probability measure μ
f
0 on

C([0, T ]×[0, L];R)will imply both continuity and positivity of the source f ∗ almost-
surely. The energy estimate is adjusted:

∀u ∈ U , ‖z(u)‖∞ ≤ C∗ exp (‖ f ‖∞) .

In this work, μ
f
0 will be taken as the Gaussian measure associated with a continu-

ous Gaussian process [see Bogachev (1998) for a presentation of infinite dimensional
Gaussian measures] such that f is almost-surely continuous. Remark that the expo-
nential map in Eq. 3 could be replaced with any sufficiently differentiable function
from R to R+ (thus keeping the second order Fréchet differentiability of the solution
map). Besides, alternative distributions are also possible for f like Besov priors [from
Dashti et al. (2013)] or more general convex measures [from Hosseini and Nigam
(2017)]. However, this choice is also motivated by practical reasons, since one can
build a Gaussian measure μre f dominating μ0:

μre f = N (λre f , σ
2
λ ) ⊗ N (Dref , σ

2
D) ⊗ μ

f
0 .

Indeed, choose (λre f , Dref ) ∈ R
2 and σ 2

λ , σ 2
D > 0 then μ0 << μre f with

dμ0

dμre f
(u) = dμλ

0

dμλ
re f

(λ)
dμD

0

dμD
re f

(D)

= 2πσλσD

λM (DM − Dm)
exp

(
(λ − λre f )

2

2σ 2
λ

+ (D − Dref )
2

2σ 2
D

)
1[0,λre f ](λ)1[Dm ,DM ](D).

The parameters ofμre f are tuned by choosing λre f = λM
2 , σ 2

λ = λ2M
12 , Dref = DM−Dm

2

and σ 2
D = (DM−Dm )2

12 (minimizing Kullback-Leibler divergence of μre f relative to
μ0). This dominant measure will be critical for posterior modes analysis (Sect. 2.4)
and MCMC sampling (Sect. 3.2).
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2.3 Posterior distribution

It is now time to show that the particular setting provided so far (forward model and
prior distribution) leads to a well defined posterior measure. This is the purpose of
Proposition 2 which is a direct application of the theory initially developed in Stuart
(2010) [see Dashti and Stuart (2015) for an updated presentation]. In this purpose,
consider a dataset y = (yi )i∈[1,n] ∈ R

n consisting of observations from the solution
z at different times and locations (ti , xi )i∈[1,n] ∈ ([0, T ] × [0, L])n , produced under
the following additive noise model (in vector notations):

y = G (u) + η, (4)

where η ∼ N (0, σ 2
η In) (In being the identity matrix of dimension n) and G : U →

R
n is the observation operator,mappingdirectly thePDEparameteru to the value of the

associated solution (z[u](xi , ti ))i∈[1,n] (composition of solutionmap z with Dirac type
measure). Note that it is well-defined since the function z is continuous on the domain
for every u ∈ U . The following proposition, which is again proved in the appendix,
establishes the existence, uniqueness and continuity in y of the posterior probability
measure μy (the solution of the inverse problem), expressing how observations y
updated prior beliefs μ0 on the parameter u.

Proposition 2 Let G be the observation operator defined in Eq. 4, y ∈ R
n a dataset

and μ0 the probability measure defined in Eq. 2, then there exists a unique posterior
measureμy for u|y. It is characterized by the following Radon-Nikodym density w.r.t.
μ0:

∀u ∈ U ,
dμy

dμ0
(u) = 1

Z(y)
exp (−Φ(u; y)) ,

with the negative log-likelihood

Φ(u; y) = 1

2σ 2
η

‖y − G (u)‖2
Rn ,

and the marginal

Z(y) =
∫
U

exp(−Φ(u; y)μ0(du).

Furthermore, μy is continuous in y w.r.t. Hellinger distance.

In fact, Proposition 2 gives two distinct results: a) the existence and uniqueness of a
posterior (as long as μ0 is Radon and μ0(U ) = 1, which is the case here), b) well-
posedness of the Bayesian inverse problem. In particular, the use of a Gaussian prior
on f gives sufficient integrability, even under the re-parametrization from Eq. 3 (using
Fernique’s theorem). If one chooses a different map between f ∗ and f in Eq. 3, this
condition may be considerably relaxed (using something slower than the exponential)
and prior measures with lower integrability conditions can be considered.
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2.4 Maximum a posteriori estimator

In the previous section, the well-posedness of the Bayesian inverse problem has been
proved. However, the posterior distribution is only known up to a multiplicative con-
stant, through its density w.r.t. μ0. In the application, μy will need to be summarized,
which is usually done by the selection of a particular estimator inU , such the posterior
mean or a mode. One consequence of Proposition 2 is that the posterior mean is auto-
matically continuous in the data y [since well-posedness is w.r.t. Hellinger distance,
see Dashti and Stuart (2015)]. However, optimality properties (in a decision theoretic
context) are not yet well-understood in infinite dimension to the best of our knowledge.
This is why posterior modes (or Maximum a Posteriori) are considered instead. Fur-
thermore, they provide a clear link with the classical Tikhonov–Philips regularization
[see Dashti et al. (2013); Helin and Burger (2015); Agapiou et al. (2018)] and a useful
variational characterization (in case of Gaussian or Besov priors) which will be the
cornerstone of the numerical application, see Proposition 3 (which proof is given in
the appendix).

Proposition 3 Let μ0 be the prior probability measure defined in Eq. 2 and μre f

the Gaussian reference measure from Eq. 2.2, then the modes of μy are exactly the
minimizers of the following (generalized) Onsager-Machlup functional:

I (u) := Φ(u; z) + 1

2
‖ f ‖2

μ
f
0
,

where ‖.‖
μ

f
0
is the Cameron–Martin norm associated to μ

f
0 .

Aminimizer of the previous generalized Onsager-Machlup functional will be noted
uMAP = (λMAP , DMAP , fM AP ) and need not be unique. The precise application of
this proposition to the biological setting is done in Sect. 4.1, once the prior distribution
is fully specified.

2.5 Approximation

The final step in the theoretical analysis of the Bayesian inverse problem is to study its
approximation properties, since it will be solved numerically. There are two important
things to check: (a) properties of the approximated posteriors (since it is what is
available), (b) the consistency of these approximated posteriors. This will be done by
projection of the parameter u onto a finite dimensional subspace of U , constructed
with a stochastic basis under μ

f
0 [see Okazaki (1986) for a detailed introduction on

stochastic bases including Banach spaces]. The second source of approximation is the
use of a numerical solver for the PDE solution, but this will be neglected here (but
can be conducted in a subsequent work). The next proposition will establish that the
posterior distribution is well approximated, giving an estimate of the error when the
Hilbert basis is chosen specifically (spectral basis of the covariance operator, namely
Karhunen-Loève decomposition) and its proof is in the appendix.
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Proposition 4 Let μ0 be the prior probability measure from 2, G the observation
operator from Eq. 4, y ∈ R

n a dataset, ( fn)n∈N ⊂ C ([0, L] × [0, T ];R) a stochastic
basis for μ0

f . Note ∀m ∈ N, Pm f the projection of f onto the span of f1, . . . , fm and
(Φm)m∈N the following sequence of approximate negative log-likelihoods:

Φm(u; y) := Φ((λ, D, Pm f ); y),

then the sequence (Φm)m∈N defines a family of posterior measures (μ
y
m)m∈N, all

continuous w.r.t. y and such that

lim
m→∞ dHell(μ

y, μ
y
m) = 0.

3 Metropolis–Hastings algorithm

As it was previously announced, the main motivation for the Bayesian methodology
here is quantification of uncertainty, which will be done by sampling the posterior
measure. Among the vast catalogue of methods for probability distributions simula-
tion (SequentialMonte-Carlo, Approximate Bayesian Computations, TransportMaps,
etc...), Markov chain Monte-Carlo is very popular [MCMC, see Brooks et al. (2011)]
and well defined on function spaces Tierney (1998) even though ergodicity analy-
sis of such algorithms is still in its infancy (Hairer et al. 2005, 2007, 2014; Rudolf
and Sprungk 2018). After a short presentation of the Metropolis–Hastings algorithm
(Sect. 3.1), this section will focus on a state-of-the-art Markov kernel designed to
sample from Gaussian measures (Sect. 3.2) and adapt it to the current non-Gaussian
prior using the Gaussian dominating measure μre f .

3.1 Metropolis–Hastings on function spaces

The Metropolis–Hastings algorithm (MH) is a very general (Tierney 1998) method to
design Markov chains to sample from a given probability measure. It is based on a
two-step process on each iteration:

1. Given a current state u ∈ U , propose a new candidate v according to a proposal
Markov kernel Q(u, dv) (it is a probability distribution on U for almost any
u ∈ U ),

2. Accept the new state v with probability α(u, v) or remain at u.

This algorithm provides a sample distributed under a predefined probability measure
μ, if one selects α and Q in a specific way [see Tierney (1998) for a discus-
sion in general state spaces]. For instance, let ν(du, dv) = μ(du)Q(u, dv) and
νT (du, dv) = ν(dv, du), the Metropolis–Hastings algorithm typically considers the
following acceptance probability:

αMH (u, v) = min

(
1,

dνT

dν
(u, v)

)
, (5)
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which, in particular, requires the absolute continuity of νT w.r.t. ν (detailed balance
conditionof theMarkovchain).Contrary tofinite dimensional situations, this condition
may be difficult to satisfy and a common way to overcome this situation in Bayesian
Inverse problems [see Dashti and Stuart (2015); Girolami and Calderhead (2011);
Beskos et al. (2017); Cotter et al. (2013); Hairer et al. (2014)] is to select Q revertible
w.r.t. μ0. Indeed, in this case (with ν0(du, dv) = μ0(du)Q(u, dv)):

dνT

dν
(u, v) =

dνT

dνT0
(u, v)

dν
dν0

(u, v)
=

dμy

dμ0
(v)

dμy

dμ0
(u)

= exp (Φ(u; y) − Φ(v; y)) . (6)

In theory, theMHalgorithmcanbe implementedwith a large family of proposal kernels
Q. In practice however, they need to be as efficient as possible and thus adapted to the
problem at hand. Two common desirable properties for Q are:

– to adjust to locally mimic the target distribution μy ,
– include a step size to tune acceptance probability to reasonable values.

These two properties may be used to trade-off self-correlation, acceptance rates and
convergence speed to high interest areas of the parameter space. Next section presents
a proposal Q with both properties to sample from a Gaussian prior distribution.

3.2 Geometric MCMC under Gaussian reference

The specific Markov proposal kernel Q, tailored to sample distributions having a
density w.r.t. a Gaussian measureμre f will now be presented. Most of the recent work
on infinite dimensionalMCMCmethods is based on the following Langevin stochastic
differential equation:

du

dt
= −1

2
K (u)

(
C−1
re f (u − ure f ) + ∇uΦ(u; y)

)
+ √

K (u)
dW

dt
, (7)

where K (u) is a (possibly position-dependent) preconditioner,W a cylindrical Brow-
nianmotion and∇uΦ(u; y) the gradient in u of the negative log-likelihood. According
to Beskos et al. (2017), a semi-implicit discretization of Eq. 7 leads to a Markov chain
with the following kernel:

Q(u, dv) = N

(
ρ(u − ure f ) + ure f +

√
1 − ρ2

√
h

2
g(u),

√
1 − ρ2K (u)

)
, (8)

where h > 0 is a step-size parameter, ρ = 1−h
1+h and:

g(u) = −K (u)
[
(C−1

re f − K (u)−1)(u − ure f ) + ∇uΦ(u; y)
]
.

This dynamic explores the parameter space with a balance between Newton-type
descent to zones of high density and Gaussian exploration. The philosophy behind this
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kernel is to use alternative Gaussian reference measures locally adapted to the poste-
rior distribution, since it has been recently showed that higher efficiency is obtained
from operator weighted proposals [Law (2014) and later generalized in Beskos et al.
(2017) and Cui et al. (2016)]. Indeed, highly informative datasets may result in a
posterior measure significantly different from the prior in likelihood-informed direc-
tions and non-geometric kernels (such as Independent sampler or preconditioned
Crank-Nicholson for instance) become ineffective in this case. However, the infinite
dimensional manifold Modified Adjusted Langevin Algorithm [∞-mMALA from
Beskos et al. (2017)] considers a specific preconditioner:

K (u) =
(
C−1
re f + HΦ(u)

)−1
,

where HΦ(u) is the Gauss–Newton Hessian operator of Φ, which locally adapts to
the posterior. This kernel does not preserve the distribution μy but is shown to be
absolutely continuous w.r.t. the reference measure μre f , almost-surely in u (under
technical assumptions regarding K (u) linked with Feldman-Hajek theorem) and the
Radon-Nikodym density is:

dQ(u, dv)

dμre f
(v) =

dN
(√

h
2 g(u), K (u)

)
dN (0,C )

(
v − ρ(u − ure f ) − ure f√

1 − ρ2

)
,

and notingw = v−ρ(u−ure f )−ure f√
1−ρ2

as it is done in Beskos et al. (2017), it finally comes:

ln

(
dQ(u, dv)

dμre f
(u, v)

)
= −h

8
|K (u)−

1
2 g(u)|2 +

√
h

2
〈K (u)−

1
2 g(u), K (u)−

1
2 w〉

− 1

2
〈w, HΦ(u)w〉 + ln

(∣∣∣∣C 1
2
re f K (u)−

1
2

∣∣∣∣
)

.

Finally, the acceptance probability associated to the Markov kernel from Eq. 8 is

α(u, v) = min

⎛
⎝1,

dQ
dμre f

(v, u)
dμy

dμ0
(v)

dQ
dμre f

(u, v)
dμy

dμ0
(u)

⎞
⎠ .

This algorithm is well-defined on function spaces (reversibility is ensured w.r.t. μ0),
thus it is robust to discretization as required. The ∞-mMALA proposal may be com-
putationally expensive, as it requires to compute both gradient ∇Φ, Gauss–Newton
Hessian HΦ and the Cholesky decomposition of K (u)−1 at each step. However, dif-
ferent dimension reduction techniques can be used [split in Beskos et al. (2017) or
likelihood-informed inCui et al. (2016)] to reduce the computational burden. A second
alternative is to choose a constant preconditioner, located at a (precomputed) posterior
mode for instance [similar to HMALA in Cui et al. (2016) and gpCN in Rudolf and
Sprungk (2018)], which is done in this work.
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4 Numerical application

This section will now introduce the practical implementation of the previous method-
ology on the problem of reverse-engineering for post-transcriptional gap-gene in
Drosophila Melanogaster. First, the prior distribution is detailed, as well as a ran-
dom series representation for f , leading to an approximation of f ∗. Moreover, the
associated generalized Onsager–Machlup functional is also provided. Then, quanti-
tative results are given on the dataset taken from Becker et al. (2013), consisting in
protein concentration measurements irregularly spread in space and time.

4.1 Choice of a continuous Gaussian process

In the previous analysis, μ
f
0 has been defined as the probability measure over

C ([0, L] × [0, T ];R) associated with a continuous Gaussian process. In practice,
it will be chosen centred for simplicity, thus completely specified by a covariance
kernel over the space-time domain [0, L] × [0, T ]. The literature on such processes
is vast [see Rasmussen and Williams (2006) for instance], and here a tensor product
of two Brownian bridges (in time and space) will be used. The associated covariance
kernel is given by:

K ((x, t), (x ′, t ′)) = σ 2 4

LT

(
min(x, x ′) − xx ′

L

)(
min(t, t ′) − t t ′

T

)
, (9)

where the scaling constant is such that the process has maximum variance equal to
σ 2. In particular, this process has a well-known Karhunen–Loeve decomposition (see
Bay and Croix) using Schauder-type hat functions. In turn, the process will thus be
approximated as follows:

f̃ =
∑

1≤i1,i2≤N

σ
√

λi1,i2ξiϕi1,i2 ,

ϕi1,i2(x, t) = ϕi1

( x

L

)
ϕi2

(
t

T

)
, ∀(x, t) ∈ [0, L] × [0, T ],

λi1,i2 = λi1λi2 ,

(10)

where (ξi1,i2)1≤i1,i2≤N are i.i.d. N (0, 1) random variables and ϕi are hat functions
on dyadic intervals and the precise weights are given in Bay and Croix. We consider
N = 20 (400 basis functions) thus the approximated parameter ũ = (λ, D, f̃ ) is of
dimension 402.

4.2 Solutionmap discretization

The analysis conducted in all previous sections happens to be valid for infinite
dimensional quantities. In practice however, one needs to discretize for numerical
experiments. In this work, the solution map is approximated using finite elements in
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space [FEniCS library in Python, see Alnaes et al. (2015) and Langtangen and Logg
(2017)] and finite differences in time. We use 100 finite elements and 30 time steps
on a 2018 standard laptop computer.1 We set L = 100 and T = 100 is the final
time (data-points have been rescaled). All quantities related to negative log-likelihood
derivatives (Gradient and Gauss–Newton Hessian matrix) are numerically computed
using discrete adjoint methods [see Hinze et al. (2009) or Heinkenschloss (2008)] to
keep scalability in N . The initial point in the chain is chosen at the MAP location,
obtained by minimization of the functional in Eq. 3 (Prior based initialization results
in long burnin phase). Practical optimization is done using L-BFGS-B algorithm from
the Scipy library (Byrd et al. 1995).

4.3 Estimation of noise variance

So far, the prior measure as well as the observation model include hyper-parameters
playing fundamental roles andneeding tobe tuned.The complete list isλM , Dm, DM , σ 2

η

and to the best of our knowledge, there are no general methods to estimate them effi-
ciently in this context. Indeed, no closed formulae exists for the likelihood (probability
density of G (u)) and cross-validation seems computationally out of reach. However,
we provide here an empirical approach to tune the noise variance level σ 2

η . The other
parameters are fixed to arbitrary values. Our approach consists in:

1. Fix σ̂ 2
η = 1.

2. Find uMAP minimizing I using the current noise level σ 2
η .

3. Update the current variance estimation σ̂ 2
η = 1

n−1‖y − G (uMAP )‖2.
4. Go back to 2.

The algorithm is stopped once the parameter σ 2
η reaches a stable value, which in

this application is σ̂ 2
η = 20, 50. The estimator uMAP is taken as the last computed

minimizer of the (discretized) Onsager-Machlup functional I .

4.4 Results

We now turn to our main objective, the inversion and uncertainty quantification of
gap-gene protein concentration from Becker et al. (2013). The dataset consists of
508 different measures which are non-uniformly spread in time and space (precise
repartition can be seen in Fig. 1). With this estimated value, we compute our initial
MAP estimate (numerical minimization of the Onsager-Machlup functional) and use
it as initial point in the MCMC sampling. The Markov chain is ran for 21,000 total
iterations and the resulting traceplot is given in Fig. 4 for negative log-likelihood,
decay, diffusion and first three components of f . The first thousand iterations are
used as burnin and according to the autocorrelation function (Fig. 3), we choose to
keep one iteration out of two hundreds as posterior sample (thinning). From this,
we compute both posterior mean and MAP estimates, the precise values of decay,
diffusion, negative log-likelihood and Onsager-Machlup functional being given in
Table 1.

1 All codes are available online at https://github.com/JeanCharlesCroix/2019_Bayesian_Melanogaster.
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Fig. 1 MAP estimator uMAP obtained from direct optimisation of the Onsager–Machlup functional. Left:
estimated source term fM AP (using 400 basis functions). Right: estimated solution z(uMAP )with absolute
error at data locations. Grey bar represents the level of error between y and G (uMAP )

Table 1 Values of decay, diffusion, negative log-likelihood and Onsager–Machlup functional for MAP and
posterior mean estimators

Parameter λ D Φ(u; z) I (u)

MAP (optimisation) 0.47 0.62 254.54 416.47

Posterior mean (sampling) 0.47 0.69 253.28 419.29

Additionally to the estimated values, one can also look at the marginal distribution
on Fig. 2. These values suggest that there is lack of identificability between Λ and
D (related to the non-injectivity of the forward operator). However, the strength of
the Bayesian approach is to quantify this phenomenon, giving here potential values
compatible with the data. Concerning the MAP estimator (Fig. 1), we recover both
events described in Becker et al. (2013), that is 2 pikes of protein concentrations. The
first happens on the anterior part of the embryo in the early experiment (x = 35, t =
35). The second is much more intense and happens in the posterior part during the
second half of the experiment. The estimated source explains these with an intense
and localized increase in concentration. Finally, the uncertainty on both source and
solution around data seems to be really low, which provides a good confidence on
the level of mRNA at this time and part of the embryo (see Fig. 5). However, the
point-wise variance on the solution y remains important before the first observations,
which translates into an expected level of uncertainty. This indicates that given the
data (and more precisely its time/space repartition), multiple scenarios are valid and
our model would require more data to progress in these areas.
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Fig. 2 Samples from the marginal posterior distributions for λ|y and D|y

Fig. 3 Self-correlation of Φ(u; y), λ, D, ξ0, ξ1 and ξ2, excluding the first 1000 iterations

5 Conclusions

In this work, we applied the Bayesian inverse problem methodology from Stuart
(2010) to a practical biological dynamical system. Doing so, we provide a rigorous
and detailed analysis of the forward model, existence and continuity of the posterior
measure, characterization of MAP estimates, a consistent approximation and apply
a state-of-the-art MCMC methodology. Because the forward MAP is non-linear, the
uniqueness of posterior modes is unclear and it appears that local maximas are present.
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Fig. 4 Trace plots of Φ(u; y), λ, D, ξ0, ξ1 and ξ2 (the first 1000 iterations are burned)

Fig. 5 Posterior point-wise variance of f ∗|y (left) and z(u)|y (right). Red dots indicate data locations

Nevertheless, the Bayesian methodology provides both a regularized solution to the
problem,while giving a precious quantification of uncertainty.However, the estimation
of prior hyper-parameters is still out of reach, giving poor confidence in the estimated
variance. This direction requires further research, that we intend to address it in a
future work.
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A Proofs

Proof of proposition 1 Using standard notations from PDE theory, letΩ =]0, L[, H =
L2(Ω), V = H1

0 (Ω), V ∗ = H−1(Ω) and

W =
{
z ∈ L2([0, T ], V ), z′ ∈ L2([0, T ], V ∗)

}
,

equipped with the norm:

‖z‖W =
(
‖z‖2L2([0,T ],V )

+ ‖z′‖2L2([0,T ],V ∗)

) 1
2

(11)

1. (Existence, uniqueness and energy estimate) Let U = [0, λM ] × [Dm, DM ] ×
C ([0, T ] × [0, L]) with λM > 0 and 0 < Dm ≤ DM < ∞, then the differential
operator in Eq. 1 is uniformly parabolic. By standard techniques, e.g. Galerkin
approximation, one can show the existence and uniqueness of a weak solution
w ∈ W to Eq. 1 [Theorems 3 and 4, section 7.1, Evans (1998)]. Moreover, the
regularity of the source term implies an improved regularity for the weak solution,
namely z ∈ L2([0, T ], H2(Ω)) with z′ ∈ L2([0, T ], H) [Theorem 5, section 7.1,
Evans (1998)]. The last result is an energy estimate:

‖z‖L2([0,T ],H2(Ω)) + ‖z′‖L2([0,T ],H) ≤ C‖ f ‖L2([0,T ]×[0,L]). (12)

Since D is bounded below by Dm > 0, the constant C only on the coercivity
property of the differential operator, thus Dm and does not depend on D. This in
turn implies the announced energy estimate, by the two continuous embeddings:
L2([0, T ]× [0, L]) in C ([0, T ]× [0, L]) and z into C ([0, T ]× [0, L]) [Theorem
4, section 5.9, Evans (1998)]:

‖z‖∞ ≤ C ′‖ f ‖∞. (13)

2. (Local Lipschitz continuity in u, weaker norm) Let u in the interior of U , r > 0
such thatB(u, r) ⊂ U and (u1, u2) ∈ B(u, r)×B(u, r). There exists two unique
solutions with respect to u1 and u2 such that ∀i ∈ {1, 2}, ∀v ∈ L2([0, T ], V ) and
for almost-every t in [0, T ]:

〈z′i (t), v(t)〉V ∗,V + λi 〈zi (t), v(t)〉H + Di 〈zi (t), v(t)〉V = 〈 fi (t), v(t)〉V ∗,V ,
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which, using subtraction and rearranging the terms, leads to:

〈z′1(t) − z′2(t), v(t)〉V ∗,V + λ1〈z1(t) − z2(t), v(t)〉H + D1〈z1(t) − z2(t), v(t)〉V
= 〈 f1(t) − f2(t), v(t)〉V ∗,V + (λ2 − λ1)〈z2(t), v(t)〉H

+ (D2 − D1)〈z2(t), v(t)〉V .

(14)
Now, let v = z1 − z2 in Eq. 14, drop the term λ1‖z1 − z2‖2H in the left-hand side,
use Cauchy–Schwarz and Poincaré’s inequalities in the right-hand side, then:

〈z′1(t) − z′2(t), z1(t) − z2(t)〉V ∗,V + D1‖z1(t) − z2(t)‖2V
≤ (‖ f1 − f2‖V ∗ + c|λ2 − λ1|‖z2‖V + |D2 − D1|‖z2‖V ) ‖z1 − z2‖V ,

where c ≥ 0 is Poincaré’s constant. Integrating both sides between 0 and T ,
using the identity d

dt

( 1
2‖z1(t) − z2(t)‖2H

) = 〈z′1(t) − z′2(t), z1(t) − z2(t)〉V ∗,V
and z1(0) = z2(0) = 0 gives:

D1‖z1 − z2‖2L2([0,T ],V )
≤

∫ T

0
‖ f1 − f2‖V ∗‖z1 − z2‖V dt

+ (c|λ2 − λ1| + |D2 − D1|)
∫ T

0
‖z2‖V ‖z1 − z2‖V dt .

(15)

Now, it remains to use the identity ab ≤ a2

2ε2
+ ε2b2

2 , that is

D1‖z1 − z2‖2L2([0,T ],V )
≤ 1

D1
‖ f1 − f2‖2L2([0,T ],V ∗) + D1

4
‖z1 − z2‖2L2([0,T ],V )

+ (c|λ2 − λ1| + |D2 − D1|)2
D1

‖z2‖2L2([0,T ],V )
+ D1

4
‖z1 − z2‖2L2([0,T ],V )

which gives
‖z1 − z2‖2L2([0,T ],V )

≤ C(u, r)‖u1 − u2‖2U , (16)

with C(u, r) ≥ 0. Let’s rewrite equality 14 this way:

〈z′1(t) − z′2(t), v(t)〉V ∗,V
= −λ1〈z1(t) − z2(t), v(t)〉H − D1〈z1(t) − z2(t), v(t)〉V

+ 〈 f1(t) − f2(t), v(t)〉V ∗,V + (λ2 − λ1)〈z2(t), v(t)〉H
+ (D2 − D1)〈z2(t), v(t)〉V .

(17)

Applying Cauchy–Schwarz and Poincaré’s inequalities in the right-hand side of
Eq. 17 gives:

〈z′1(t) − z′2(t), v(t)〉V ∗,V
≤ ((λ1 + D1) ‖z1(t) − z2(t)‖V + ‖ f1(t) − f2(t)‖V ∗ + c|λ2

−λ1|‖z2(t)‖V ) ‖v(t)‖V + |D2 − D1|‖z2(t)‖V ‖v(t)‖V .

(18)
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It remains to integrate, take the supremum for v in the unit ball of L2([0, T ], V )

and use the previous estimate from Eq. 16 to conclude that

‖z′1 − z′2‖2L2([0,T ],V ∗) ≤ C ′(u, r)‖u1 − u2‖2U

where C ′(u, r) ≥ 0.
3. (Local Lipschitz continuity in u, stronger norm). The previous analysis will be

used to provide a similar result under a stronger norm. Indeed, the solutions are
both satisfying zi ∈ L2([0, T ], H2(Ω)) with z′i ∈ L2([0, T ], V ), ∀i ∈ {1, 2}.
Consider again Eq. 16, then it is equivalent to:

λ1〈z1(t) − z2(t), v(t)〉H + D1〈z1(t) − z2(t), v(t)〉V
= 〈 f1(t) − f2(t) + z′2(t) − z′1(t) + (λ2 − λ1)z2(t)

− (D2 − D1)(z2)xx (t), v(t)〉H .

(19)

Using theorem 5 p. 323 in Evans (1998), one has:

‖z1(t) − z2(t)‖2H2(Ω)

≤ C
(
‖z1(t) − z2(t)‖2L2(Ω)

+ ‖ f1(t) − f2(t) + z′2(t) − z′1(t)

+(λ2 − λ1)z2(t) − (D2 − D1)(z2)xx (t)‖L2(Ω)

)
,

(20)

which in turn, using integration, triangle inequality and the estimates obtained
before leads to

‖z1 − z2‖L2([0,T ],H2(Ω)) ≤ C ′′(u, r)‖u1 − u2‖U , (21)

with C ′′(u, r) ≥ 0. Consider one last time the weak formulation from Eq. 14,
equivalent to (using integration by parts):

〈z′1(t) − z′2(t), v(t)〉H + λ1〈z1(t) − z2(t), v(t)〉H − D1〈z1(t) − z2(t), v(t)〉H
= 〈 f1(t) − f2(t), v(t)〉H + (λ2 − λ1)〈z2(t), v(t)〉H

− (D2 − D1)〈z2(t), v(t)〉H .

(22)
Now, choosing v(t) = z′1(t) − z′2(t) gives:

‖z′1(t) − z′2(t)‖2H + λ1
d

dt

(
1

2
‖z1(t) − z2(t)‖2H

)
= 〈 f1(t) − f2(t), z

′
1(t) − z′2(t)〉H + (λ2 − λ1)〈z2(t), z′1(t) − z′2(t)〉H

− (D2 − D1)〈(z2)xx (t), z′1(t) − z′2(t)〉H + D1〈(z1)xx (t)
− (z2)xx (t), z

′
1(t) − z′2(t)〉H .

(23)
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Using integration and Cauchy–Schwarz inequality, one obtains

‖z′1(t) − z′2(t)‖L2([0,T ],H) ≤ C ′′′(u, r)‖u1 − u2‖U , (24)

which concludes the proof on the local Lipschitz continuity. Finally, the continuous
embedding of C ([0, L] × [0, T ],R) into the more regular space, gives the result.

4. (Fréchet differentiability) Now, we deal with the Fréchet differentiability. Let u =
(λ, D, f ) in the interior of U , hu = (hλ, hD, h f ) ∈ U such that u + hu ∈ U
and hz ∈ W , then ∀v ∈ L2([0, T ], V ), we will use the following notation:

〈F(z, u), v〉

=
∫ T

0
〈z′(t), v(t)〉V ∗,V dt + λ

∫ T

0
〈z(t), v(t)〉V dt

+ D
∫ T

0
〈z(t), v(t)〉Hdt −

∫ T

0
〈 f (t), v(t)〉V ∗,V dt,

(25)

then

〈F(z + hz, u + hu) − F(z, u), v〉 = 〈F ′(z, u)[hz, hu], v〉 + c(hu, hz),

with (using triangle, Poincaré’s and Cauchy-Schwarz inequalities):

|c(hu, hz)| =
∣∣∣∣hλ

∫ T

0
〈hz(t), v(t)〉Hdt + hD

∫ T

0
〈hz(t), v(t)〉V dt

∣∣∣∣
≤ C‖v‖L2([0,T ],V )‖hu‖U ‖hz‖L2([0,T ],V )

≤ C‖v‖L2([0,T ],V )‖hu‖U ‖hz‖W

where C ≥ 0 is a (new) constant independent from u and:

〈F ′(z, u)[hz, hu], v〉

=
∫ T

0
〈(hz)′(t), v(t)〉V ∗,V dt + hλ

∫ T

0
〈z(t), v(t)〉Hdt + hD

∫ T

0
〈z(t), v(t)〉V dt

+ λ

∫ T

0
〈hz(t), v(t)〉Hdt + D

∫ T

0
〈hz(t), v(t)〉V dt −

∫ T

0
〈h f (t), v(t)〉V ∗,V dt .

Using again Cauchy–Schwarz and Poincaré’s inequalities, we have:

|〈F ′(z, u)[hz, hu], v〉| ≤ C‖(hu, hz)‖‖v‖L2([0,T ],V )

with C ≥ 0 another constant independent of (hz, hu) thus F ′(z, u) is linear and
bounded, whichmeans that F is Fréchet-differentiable onW×U . Consider Fz the
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partial derivative of F w.r.t. its first variable and hz ∈ W , then ∀v ∈ L2([0, T ], V ):

〈Fz(z, u)hz, v〉 =
∫ T

0
〈(hz)′(t), v(t)〉V ∗,V dt

+ λ

∫ T

0
〈hz(t), v(t)〉Hdt + D

∫ T

0
〈hz(t), v(t)〉V dt .

This is theweak form associated to the same evolution problem (since F is linear in
z), which thus has a unique weak solution hz ∈ W , thus F−1

z exists. The previous
energy estimate gives that F−1

z is bounded. Because F is differentiable and F−1
z

exists and is bounded, the implicit function theorem applies and z is differentiable
on U for the norm of W . The second order differentiability is obtained similarly
so is the final embedding into the supremum norm.

��
Proof of proposition 2 In this proof, the conclusion will follow both theorems 4.3 and
4.5 fromDashti and Stuart (2015),which require to show that the following assumption
is satisfied: Φ(u; y) ∈ C (U × R

n;R), there exists two positive functions Mi :
R

+×R
+, monotonic non-decreasing in each variable, withM2 > 0, such that ∀r > 0,

∀u ∈ U , ∀y, y1, y2 ∈ B(0, r):

1. Φ(u; y) ≥ −M1(r , ‖u‖U ),
2. |Φ(u; y1) − Φ(u; y2)| ≤ M2(r , ‖u‖U )‖y1 − y2‖Rn .

Here, the the negative log-likelihood is:

Φ(u; y) = 1

2σ 2
η

‖y − G (u)‖2
Rn , (26)

thus it is clear that Φ ∈ C (U × R
n;R+) (since G is continuous) and furthermore

M1 = 0 is a valid choice. To derive a valid function M2, first observe that:

∀u ∈ U , ‖G (u)‖Rn ≤ n‖z(u)‖∞ ≤ C exp (‖u‖U ) .

Consequently, ∀r > 0 and ∀y1, y2 ∈ B(0, r) ⊂ R
n , ∀u ∈ U :

|Φ(u; y1) − Φ(u; y2)| = 1

2σ 2
ε

∣∣∣‖y1‖2Rn − ‖y2‖2Rn + 2〈y2 − y1,G (u)〉Rn

∣∣∣
= 1

2σ 2
ε

|(‖y1‖Rn − ‖y2‖Rn )(‖y1‖Rn + ‖y2‖Rn )

+2〈y2 − y1,G (u)〉Rn |
≤ 1

σ 2
η

(r + ‖G (u)‖Rn )‖y1 − y2‖Rn ,

≤ 1

σ 2
η

(r + C exp (‖u‖U )) ‖y1 − y2‖Rn ,

≤ M2(r , ‖u‖U )‖y1 − y2‖Rn .
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It remains to show that:

(1 + M2(r , ‖u‖U )2) ∈ L1(U ,B(U ), μ0), (27)

which is a direct consequence of Fernique’s and Fubini’s theorems, since μ
f
0 is Gaus-

sian. Finally, all conditions from Dashti and Stuart (2015) are verified, leading to
existence, uniqueness and continuity of the posterior distribution. ��

Proof of proposition 3 In this work, the prior measure μ0 is non-Gaussian. However,
it might be seen as a small departure from a Gaussian measure of reference, μre f and
this provides a useful variational characterization of modes. Indeed, one has

dμy

dμre f
(u) = dμy

dμ0
(u)

dμ0

dμre f
(u) ∝ exp

(
− 1

2σ 2
η

‖y − G (u)‖2 − 1

2
‖ f ‖2

μ
f
0

)
1[0,λre f ](λ)1[Dm ,DM ](D).

(28)

Now, sinceΦ is locally Lipschitz continuous in u (as a consequence of proposition 1),
the analysis from section 4.3 inDashti and Stuart (2015), initially valid under Gaussian
priors, apply as is. ��

Proof of proposition 4 First of all, let us show that the sequence of maps (Φm)m∈N
provides a well-defined sequence of posterior measures (μ

y
m), all continuous in the

data w.r.t. Hellinger metric. The fundamental tool here, is the existence of a Banach
space E ⊂ C ([0, L] × [0, T ]), continuously embedded, where ( fm)m is a Schauder
basis and such that μ

f
0 (E) = 1 [Theorem 2 in Okazaki (1986)]. This implies that

μ0-almost surely,

∀m ∈ N, ‖Pm f ‖∞ ≤ C‖Pm f ‖E ≤ C ′‖ f ‖E . (29)

In particular, since Fernique’s theorem applies for the norm of E , the analysis from
Proposition 2 applies to all measures μm . Now, to see that the approximation is con-
sistent, we will apply theorem 4.8 in Dashti and Stuart (2015), which requires to show
that

|Φ(u; y) − Φm(u; y)| ≤ M(‖u‖U )ψ(m) (30)

where limm→∞ ψ(m) = 0 and 1 + M2(‖u‖U ) ∈ L1(μ0). Now, noting um =
(λ, D, Pm f ) it comes:

‖G (um)‖Rn ≤ n‖z(um)‖∞ ≤ C exp (‖Pm f ‖∞) ≤ C1 exp (C2‖ f ‖E ) . (31)
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This now gives ∀y ∈ B(0, r):

|Φ(u; y) − Φm(u; y)|
= 1

2σ 2
η

∣∣∣‖G(u)‖2
Rn − ‖G (um)‖2

Rn + 2〈y,G (um) − G (u)〉Rn

∣∣∣
= 1

2σ 2
η

|(‖G (u)‖Rn − ‖G (um)‖Rn )(‖G (u)‖Rn + ‖G (um)‖Rn )

+2〈y,G (um) − G (u)〉Rn |
≤ 1

σ 2
η

(r + C1 exp (C2‖ f ‖E ) ‖G (u) − G (um)‖Rn .

Now, one can use the linearity of z in f ∗, thus

‖G (u) − G (um)‖Rn ≤ n‖z(u) − z(um)‖∞ ≤ C‖exp( f ) − exp(Pm f )‖∞. (32)

It remains to see that

‖exp( f ) − exp(Pm f )‖∞ ≤ C exp(‖ f ‖E )‖ f − Pm f ‖E (33)

and since ‖ f − Pm f ‖E → 0, the result is clear as Fernique’s theorem in E gives the
required integrability. ��

References

Agapiou S, Burger M, Dashti M, Helin T (2018) Sparsity-promoting and edge-preserving maximum a
posteriori estimators in non-parametric Bayesian inverse problems. Inverse Prob 34(4)

Alnaes MS, Blechta J, Hake J, Johansson A, Kehlet B, Logg A, Richardson C, Ring J, Rognes ME, Wells
GN (2015) The FEniCS project version 15. Arch Numer Softw 3(100):9–23

AlvarezMA, Luengo-Garcia D, Lawrence ND (2013) Latent forcesmodels using Gaussian processes. IEEE
Trans Pattern Anal Mach Intell 35(11):1–20

Bay X, Croix JC Karhunen-Loève decomposition of Gaussian measures on Banach spaces. In: Probability
and mathematical statistics

Becker K, Balsa-Canto E, Cicin-Sain D, Hoermann A, Janssens H, Banga JR, Jaeger J (2013) Reverse-
engineering post-transcriptional regulation of gap genes in Drosophilia melanogaster. PLoS Comput
Biol 9(10)

Beskos A, Girolami MA, Lan S, Farrell PE, Stuart AM (2017) Geometric MCMC for infinite-dimensional
inverse problems. J Comput Phys 335:327–351

Biegler L, Biros G, Ghattas O, Heinkenschloss M, Keyes D, Mallick B, Marzouk YM, Tenorio L, van
Bloemen WB, Willcox KE (2011) Large-scale inverse problems and quantification of uncertainty.
Wiley, New York

Bogachev VI (1998) Gaussian measures. American Mathematical Society, Providence
Brezis H (2011) Functional analysis. Sobolev spaces and partial differential equations. Springer, Berlin
Brooks S, Gelman A, Jones G, Meng XL (2011) Handbook of Markov Chain Monte Carlo. CRC Press,

Boca Raton
Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization.

SIAM J Sci Comput 16(5):1190–1208
Cotter SL,RobertsGO,StuartAM,WhiteD (2013)MCMCmethods for functions:modifyingold algorithms

to make them faster. Stat Sci 28(3):424–446

123



Bayesian inversion of a diffusion model with application… Page 23 of 23 13

Cui T, Law KJH, Marzouk YM (2016) Dimension-independent likelihood-informed MCMC. J Comput
Phys 304:109–137

Dashti M, Stuart AM (2015) The bayesian approach to inverse problems
Dashti M, Law KJH, Stuart AM, Voss J (2013) MAP estimators and their consistency in Bayesian nonpara-

metric inverse problems. Inverse Prob 29(9)
Evans LC (1998) Partial differential equations. American Mathematical Society, Providence
Ghanem R, Higdon D, Owhadi H (2017) Handbook of uncertainty quantification. Springer, Berlin
Girolami MA, Calderhead B (2011) Riemann manifold Langevin and Hamiltonian Monte Carlo methods.

J R Stat Soc Ser B (Stat Methodol) 73(2):123–214
Hadamard J (1902) Sur les problèmes aux dérivées partielles et leur signification physique. Princeton

University Bulletin, Princeton, pp 49–52
Hairer M, Stuart AM, Voss J, Wiberg P (2005) Analysis of SPDEs arising in path sampling part I: The

Gaussian case. Commun Math Sci 3(4):587–603
Hairer M, Stuart AM, Voss J (2007) Analysis of SPDEs arising in path sampling part II: the nonlinear case.

Ann Appl Probab 17(5–6):1657–1706
Hairer M, Stuart AM, Vollmer SJ (2014) Spectral gaps for a Metropolis–Hastings algorithm in infinite

dimensions. Ann Appl Probab 24(6):2455–2490
Heinkenschloss M (2008) Numerical solution to implicitely constrained optimization problems. Technical

report
Helin T, Burger M (2015) Maximum a posteriori probability estimates in infinite-dimensional Bayesian

inverse problems. Inverse Prob 31(8)
Hinze M, Pinnau R, Ulbrich M, Ulbrich S (2009) Optimization with PDE constraints. Springer, Berlin
Hosseini B, Nigam N (2017) Well-posed Bayesian inverse problems: priors with exponential tails.

SIAM/ASA J Uncertain Quant 5(1):436–465
Isakov V (2017) Inverse problems for partial differential equations, applied mathematical sciences, vol 127.

Springer International Publishing, Cham
Langtangen HP, Logg A (2017) Solving PDEs in python: the FEniCS tutorial I
Law KJH (2014) Proposals which speed up function-space MCMC. J Comput Appl Math 262:127–138
Lopez-Lopera AF, Durrande N, Alvarez MA (2019) Physically-inspired Gaussian process models for post-

transcriptional regulation in Drosophila. IEEE/ACM Trans Comput Biol Bioinform
Okazaki Y (1986) Stochastic basis in Fréchet space 383:379–383
Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge
Rudolf D, Sprungk B (2018) On a generalization of the preconditioned Crank–Nicolson metropolis algo-

rithm. Found Comput Math 18(2):309–343
Särkkä S, AlvarezMA, Lawrence ND (2018) Gaussian process latent force models for learning and stochas-

tic control of physical systems. IEEE Trans Autom Control, pp 1–16
Schuster T, Kaltenbacher B, Hofmann B, Kazimierski KS (2012) Regularization methods in Banach spaces.

De Gruyter, Berlin
Stuart AM (2010) Inverse problems: a Bayesian perspective. Acta Numerica 19:451–459
Sullivan TJ (2015) Introduction to uncertainty quantification. Springer, Berlin
Tierney L (1998)A note onMetropolis–Hastings kernels for general state spaces. AnnAppl Probab 8(1):1–9

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Bayesian inversion of a diffusion model with application to biology
	Abstract
	1 Introduction
	2 Bayesian inversion
	2.1 Forward model analysis
	2.2 Choice of a prior distribution
	2.3 Posterior distribution
	2.4 Maximum a posteriori estimator
	2.5 Approximation

	3 Metropolis–Hastings algorithm
	3.1 Metropolis–Hastings on function spaces
	3.2 Geometric MCMC under Gaussian reference

	4 Numerical application
	4.1 Choice of a continuous Gaussian process
	4.2 Solution map discretization
	4.3 Estimation of noise variance
	4.4 Results

	5 Conclusions
	Acknowledgements
	A Proofs
	References




