
Journal of Mathematical Biology (2021) 82:52
https://doi.org/10.1007/s00285-021-01602-5 Mathematical Biology

Dynamics of epidemic spreading on connected graphs

Christophe Besse1 · Grégory Faye1

Received: 23 November 2020 / Revised: 3 March 2021 / Accepted: 26 March 2021 /
Published online: 16 April 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
We propose a new model that describes the dynamics of epidemic spreading on con-
nected graphs. Our model consists in a PDE-ODE system where at each vertex of
the graph we have a standard SIR model and connections between vertices are given
by heat equations on the edges supplemented with Robin like boundary conditions at
the vertices modeling exchanges between incident edges and the associated vertex.
We describe the main properties of the system, and also derive the final total popu-
lation of infected individuals. We present a semi-implicit in time numerical scheme
based on finite differences in space which preserves the main properties of the con-
tinuous model such as the uniqueness and positivity of solutions and the conservation
of the total population. We also illustrate our results with a collection of numerical
simulations for a selection of connected graphs.

Keywords SIR model · Graph · Diffusion equation

Mathematics Subject Classification 34D05 · 35Q92 · 35B40 · 92-10 · 92D30

1 Introduction

Classical SIR compartment models are cornerstone models of epidemiology which
allow one to study the evolution of an infected population at a given spatial scale (e.g.
whole countries, regions, counties or cities). Such models date back to the pioneer
work of Kermack and McKendrick (1927) and describe the evolution of susceptible
(S) and infected (I) populations which eventually become removed (R) via systems of
ordinary differential equations which typically take the form
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⎧
⎪⎨

⎪⎩

S′(t) = −τ S(t)I (t),

I ′(t) = τ S(t)I (t) − ηI (t),

R′(t) = ηI (t),

(1.1)

where τ > 0 is a contact rate between susceptible and infected populations, and 1/η >

0 is the average infectious period; see Hethcote (2000) for a review on SIR models.
These models have been used in the past to reproduce data of epidemic outbreaks such
as the bubonic plague (Kermack andMcKendrick 1927), malaria (Mandal et al. 2011),
SARS influenza (Centers for Disease Control and Prevention 2003; Magal et al. 2016)
and most recently COVID-19 (New England Journal of Medicine 2020; Magal and
Webb 2018; Liu et al. 2020); see also Stolerman et al. (2015) and Magal and Webb
(2018) for other applications.

In classical SIRmodels such as (1.1), interactions among the infected population are
oversimplified, and when taken into account they typically involve transfer matrices
of populations of infected between various uniform patches (Van den Driessche and
Watmough 2002; Magal et al. 2016, 2018). Our interest lies in the understanding of
the intricate interplay between spatial effects and heterogeneous interactions among
infected populations. Schematically, we propose a model composed of cities linked by
a given transportation network (roads, railroads or rivers), see Fig. 1 for an illustration
in the case of France. It will turn out that the appropriate theoretical framework will
be graph theory where each vertices of the graph will be thought as the cities and the
edges the lines of transportation. In a first approximation, we will assume that infected
populations are only subject to spatial diffusion along the lines, as it is traditionally
assumed in classical spatial SIR models (Aronson 1977; Diekmann 1978; Reluga
2004; Berestycki et al. 2020). As a consequence, in our model, the dynamics of the
epidemic only takes place in the cities. Interactions are thenmodeled by flux exchanges
between cities and lines where we assume that some fraction of infected individuals
can either leave a city to be on a line, or leave a line and stop in a city, or pass from
one line to another through a city. The typical question that we address here can easily
be stated as follows. Given a connected graph of cities linked by roads and an initial
configuration of infected individuals, how does the epidemic spread into the network
and what is the eventual final configuration of the infected population? Our aim here
is to gain insight into this spreading aspect at the fundamental mathematical level of a
SIR type model that incorporates the possibility of infected individuals to travel along
a specific given transportation network.

Our framework is at the crossroad of models that take into account lines of trans-
portation such as recent reaction-diffusionmodels that study propagation of epidemics
along lines with fast diffusion (Berestycki et al. 2020) andmodels that incorporate net-
works withmore sophisticated interactions dynamics (Britton et al. 2008; Sahneh et al.
2013; Spricer and Britton 2019; Ball and Britton 2020; Bonnasse-Gahot et al. 2018).
On a formal level, our proposed model can be thought of as being a one-dimensional
version of the planar reaction-diffusion system of Berestycki et al. (2020) with a line
of fast diffusion in the case of one city and one line of transportation. Actually, the
graph structure of the transportation network provides a natural embedding into a
planar spatial domain. From a mathematical point of view, our model shares also
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Fig. 1 Map of France with an
illustration of a connected graph
connecting major cities

some similarities with the PDE-ODE model of David et al. (2020) which studies the
spread of airborne diseases where the movement of pathogens in the air is assumed
to follow a linear diffusion. Actually, one-dimensional PDE-ODE models have been
successfully used in other biological contexts, and we refer to the line of works (Gou
and Ward 2016; Gou et al. 2015; Paquin-Lefebvre et al. 2020) on cell-bulk models of
cell signaling. Although these models share some similarities, the long time dynamics
are different. In Gou and Ward (2016), Gou et al. (2015) and Paquin-Lefebvre et al.
(2020), one typically observes oscillatory dynamics caused by the coupling at the
boundary via the loss of stability of steady-states through Hopf bifurcations, whereas
the long time behavior of the solutions of our model presents the characteristics of
SIR compartment models with the convergence to a steady-state of the system. As
it will be demonstrated, the selected steady-state is entirely determined by the initial
configuration of individuals in our network.

Finally, we highlight that there is an intrinsic difference between the PDE-ODE
model that we propose and the compartmentmodels on fixed graphs that are prominent
in the literature on the subject, see for example (Britton et al. 2008; Sahneh et al. 2013;
Stolerman et al. 2015; Spricer and Britton 2019; Ball and Britton 2020; Bonnasse-
Gahot et al. 2018) and references therein. In our setting, connections between vertices
are not instantaneous as infected individuals have to diffuse along edges in order to be
transported from one vertex to another. As a consequence, our PDE-ODEmodel intrin-
sically incorporates very subtle nonlocal in time behaviors that typical compartment
models on fixed graph with local interactions do not take into account.

2 Model formulation andmain results

Throughout, we denote by G = (V, E) a compact metric graph, i.e. a collection of
vertices V and edges E and further assume that G is finite and connected. Each edge
e ∈ E is identified with a segment �e = [0, �e] with �e ∈ (0,∞), where �e is the
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finite length of the edge. A real valued function u : G −→ R is a collection of one
dimensional maps defined for each edge e ∈ E :

ue : �e −→ R.

For future references, we define BC(G, R) the space of bounded continuous functions
on G as

BC(G, R) :=
⊕

e∈E
BC(�e, R),

and similarly BCk(G, R)with k ≥ 1. We define the L∞ norm on G for u ∈ BC(G, R)

as

‖u‖∞ := max
e∈E

sup
x∈�e

|ue(x)|.

2.1 A SIRmodel on compact connected graph

Given a graph G, we let Xv(t) := (Sv(t), Iv(t), Rv(t)) ∈ R
3, for each v ∈ V , where

Sv(t) represents the population of susceptible individuals, Iv(t) the population of
infected individuals and Rv(t) the population of removed individuals at vertex v ∈ V
and time t > 0. We assume that Xv evolves according to a SIR model of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S′
v(t) = −τvSv(t)Iv(t),

I ′
v(t) = τvSv(t)Iv(t) − ηv Iv(t) +

∑

e∼v

αv
e ue(t, v) − λv Iv(t),

R′
v(t) = ηv Iv(t),

(2.1)

where τv, ηv > 0 are the intrinsic parameters of the epidemic which may depend
on the vertex v. The contribution −λv Iv(t) in the right-hand side of the equation for
the infected population encodes the fact that infected individuals can leave the vertex
v to incident edges whereas

∑
e∼v αv

e ue(t, v) reflects the contribution of incoming
infected individuals from incident edges. Here, e ∼ v denotes the edges incident to
the vertex v and

λv :=
∑

e∼v

λv
e ,

such that λv
e Iv(t) infected individuals leave vertex v to edge e. We have assumed that

only the infected population is subject to movement, and we think of Sv being an
ambient population whose movement does not affect its distribution. We recover the
standard SIR model (1.1) by considering the trivial graph G = ({v},∅). Throughout
the manuscript, we will assume the following standing hypothesis on the coefficients
αv
e and λv

e in (2.1).
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Hypothesis 2.1 For each (e, v) ∈ E × V we assume that

αv
e ∈ (0, 1) and λv

e ∈ (0, 1),

together with

∑

e∼v

λv
e ∈ (0, 1) and

∑

e∼v

αv
e ∈ (0, 1).

Next, for each e ∈ E , we let de > 0 and we assume that ue evolves according to

∂t ue(t, x) = de∂
2
x ue(t, x), t > 0, x ∈ ◦

�e. (2.2)

Assuming that infected individuals have local diffusion along the edges of the graph
is a first approximation, and this can be viewed as a limiting Brownian movement of
individuals. Possible extensions could be to incorporate nonlocal diffusion or transport
terms.

It now remains to model the exchanges of infected individuals at the vertices. For
each v ∈ V , we associate an integer δv ≥ 1 which we refer to as its degree (i.e.
number of edges incident to the vertex v). We define uv(t) ∈ R

δv as the column vector
function

uv(t) := (ue(t, v))e∼v,

where we recall that e ∼ v denotes the edges incident to the vertex v, and thus ue(t, v)

is the corresponding limit value of ue at x = v. Define also ∂nuv(t) ∈ R
δv as the

column vector function

∂nuv(t) := (∂nue(t, v))e∼v,

where ∂nue(t, v) is the outwardly normal derivative of ue at the vertex v. Our boundary
conditions at the vertex v that link (2.1) and (2.2) are described by

Dv∂nuv(t) + Kvuv(t) = 
vIv(t), (2.3)

where Dv ∈ Mδv (R) is the diagonal matrix Dv = diag[(de)e∼v] and Kv ∈ Mδv (R)

whose structure will be specified below. Formally, (2.3) encodes the balance of fluxes
of infected individuals at the vertex v, andwewill demonstrate this heuristic rigorously
by showing in the forthcoming Sect. 2.4 the conservation of total population.

2.2 Assumptions on the connectivity matrices Kv

We now precise the form of the matrix Kv entering in the boundary condition (2.3).
Essentially, Kv gathers two contributions. One contribution comes from the exchanges
between infected individuals at the vertex with the incoming infected individuals for
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the incident edges. The second contribution models exchanges between edges. Indeed
we allow infected individuals to pass from one edge to another one. More precisely,
we have that Kv splits into two parts

Kv := Av + Nv,

where the matrix Av ∈ Mδv (R) is the diagonal matrix Av = diag(αv
e )e∼v while the

matrix Nv ∈ Mδv (R) is such that the sum of each column is zero. More precisely, if
we label by e ∼ v = (e1, . . . , eδv ) the edges incident to the vertex v, we have that for
all i = 1, . . . , δv

(Nv)i,i =
∑

j �=i

νv
ei ,e j

and for i �= j = 1, . . . , δv

(Nv)i, j = −νv
e j ,ei .

In the case δv = 3, we get

Nv =
⎛

⎝
νv
e1,e2 + νv

e1,e3 −νv
e2,e1 −νv

e3,e1−νv
e1,e2 νv

e2,e1 + νv
e2,e3 −νv

e3,e2−νv
e1,e3 −νv

e2,e3 νv
e3,e1 + νv

e3,e2

⎞

⎠ ,

see Fig. 2 for an illustration in that case.
Furthermore, for the diagonal term we will use the shorthand notation

(Nv)e,e =
∑

e′ �=e

νv
e,e′ .

The fact that Nv ∈ Mδv (R) is such that the sum of each column is zero precisely
encodes the fact that there is the conservationof infected individuals through exchanges
between incident edges at each vertex. And, we remark that it implies that the matrix
Kv has a strict column diagonal dominance in the sense that for each i = 1, . . . , δv

δv∑

j=1

(Kv)e j ,ei = αv
ei > 0,

because of this specific structure of Nv . From now on we also assume that Kv has
a diagonal dominance with respect to its lines. This property will be crucial later on
in the proof of existence of solutions. As a consequence, we impose the following
running assumptions on the matrices Kv .

Hypothesis 2.2 For each v ∈ V and (e, e′) ∈ E × E , we assume that

νv
e,e′ ∈ [0, 1).
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Fig. 2 Schematic illustration of the exchanges at a given vertex v with δv = 3

Furthermore, we impose that for all v ∈ V
∑

e′ �=e

νv
e′,e < αv

e +
∑

e′ �=e

νv
e,e′ ,

together with

(Kv)e,e := αv
e +
∑

e′ �=e

νv
e,e′ ∈ (0, 1),

for each e ∼ v.

Remark 2.3 If the exchanges between the edges are symmetric, that is for each v ∈ V
the matrices Nv are symmetric, that is

νv
e,e′ = νv

e′,e, ∀(e, e′) ∈ E × E,

then Hypothesis 2.2 is automatically satisfied.

2.3 Initial configuration

Finally, we complement our coupled PDE-ODE (2.1)–(2.2)–(2.3) with some initial
conditions. We assume that at t = 0, we have
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u(t = 0, ·) = u0 ∈ BC(G, R),

such that for e ∈ E ,

u0e(x) ≥ 0, x ∈ �e.

On the other hand, for the ODE system (2.1), we suppose that

(Sv(t = 0), Iv(t = 0), Rv(t = 0)) = (S0v , I 0v , 0) ≥ 0, ∀v ∈ V.

We further assume that (2.3) is satisfied at t = 0

Dv∂nu0v + Kvu0v = 
vI0v,

with obvious notations u0v := (u0e(v))e∼v and I0v := (I 0v , . . . , I 0v )t. Last, we impose
that the initial total population of infected individuals is strictly positive,

∑

v∈V
I 0v > 0,

and that susceptible individuals are initially present at each vertex of the graph

S0v > 0, ∀v ∈ V.

This in turn implies that the total population is initially

M0 :=
∑

e∈E

∫

�e

u0e(x)dx +
∑

v∈V

(
S0v + I 0v

)
> 0.

2.4 Conservation of total population

Assuming that there is a solution to (u, (Xv)v∈V ) to (2.1)–(2.2)–(2.3), we have that
the total mass of the system M(t) defined as

M(t) :=
∑

e∈E

∫

�e

ue(t, x)dx +
∑

v∈V
(Sv(t) + Iv(t) + Rv(t))

is a conserved quantity and thus independent of t .
To see that, we first remark that

(
S′
v(t) + I ′

v(t) + R′
v(t)
) =
∑

e∼v

αv
e ue(t, v) − λv Iv(t) = 〈Avuv(t), 1δv 〉 − 〈
vIv(t), 1δv 〉

with

1δv := (1, . . . , 1)t ∈ R
δv ,
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and 〈·, ·〉 is the standard Euclidean inner product on R
δv . On the other hand let us

define

m(t) :=
∑

e∈E

∫

�e

ue(t, x)dx,

and assume that u is a classical solution of (2.2), which we will prove in the next
section, and compute

m′(t) =
∑

e∈E

∫

�e

∂t ue(t, x)dx =
∑

e∈E
de [∂xue(t, x)]∂�e

=
∑

v∈V
〈Dv∂nuv(t), 1δv 〉

=
∑

v∈V
〈
vIv(t) − Kvuv(t), 1δv 〉

=
∑

v∈V
〈
vIv(t) − Avuv(t), 1δv 〉 −

∑

v∈V
〈Nvuv(t), 1δv 〉

︸ ︷︷ ︸
=0

= −
∑

v∈V

(
S′
v(t) + I ′

v(t) + R′
v(t)
)
.

The fact that

∑

v∈V
〈Nvuv(t), 1δv 〉 = 0

is a direct consequence on the specific structure of each matrix Nv and the fact that
the sum of each column is zero. We therefore conclude that M ′(t) = 0 and

∑

e∈E

∫

�e

ue(t, x)dx +
∑

v∈V
(Sv(t) + Iv(t) + Rv(t)) = M0, ∀t ≥ 0.

Biological interpretation. Our model is thus consistent with the conservation of
the total population as it is traditionally the case for SIR model in the case of zero
natality/mortality rate. The exchanges between the vertices and the edges exactly
compensate each other as is natural.

2.5 Main results and outline of the paper

We now present our main results regarding our model (2.1)–(2.2)–(2.3). At this stage
of the presentation, we remain formal and refer to the following sections for precise
statements and assumptions.
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Main result 1: Existence and uniqueness of classical solutions. We prove in Theo-
rem 1 below that for each well prepared initial condition our model (2.1)–(2.2)–(2.3)
admits a unique positive classical solution which is global in time. We remark that the
system (2.1)–(2.2)–(2.3) is not standard as it couples a system of PDEs to ODEs at
each vertices through inhomogeneous Robin boundary conditions. As a consequence,
the existence and uniqueness of classical solutions has to be proved. This analysis is
conducted in Sect. 3.

Main result 2: Long time behavior of the solutions. We fully characterize the long
time behavior of the unique solution of our model. More precisely, we prove that the
final total population of infected individuals at each vertex, denoted by I∞

v , is a well
defined quantity: 0 < I∞

v < ∞ for v ∈ V and (I∞
v )v∈V are solutions of a system of

cV + 1 implicit equations, where cV stands for the cardinal of V , which belong to the
parametrized submanifold

∑

v∈V

(
S0ve

−τvI∞
v + ηvI∞

v

)
= M0,

where M0 is the initial total mass. We refer to Theorem 2 for a precise statement. We
also present further qualitative results on the final total configuration (I∞

v )v∈V in the
fully symmetric case where we obtain closed form formula (see Lemma 4.4) and in
the case of two vertices where we manage to obtain sharp bounds on the final total
populations of infected individuals (see Lemma 4.5). In each case, wemanage to relate
these quantities to standard basic and effective reproductive number for classical SIR
model. The aforementioned results are proved in Sect. 4.

Main result 3: Amass preserving semi-implicit numerical schemeMain result 3: Amass
preserving semi-implicit numerical scheme. Wepropose and analyze a semi-implicit
in time numerical scheme based on finite differences in space which has the property
to preserve a discrete total mass associated to the discretization. We prove that if the
time discretization constant is smaller than a universal constant depending only on the
parameters of the system (and not on the space discretization constant) and if Nv is
symmetric for each v ∈ V , then our mass preserving semi-implicit numerical scheme
is well-posed and preserves the positivity of the solutions. We refer to Sect. 5 for a
presentation of the numerical scheme and Theorem 3 for a precise statement of our
main result.

Main result 4: Numerical results for various types of graphs. We illustrate our
theoretical findings with selection of numerical simulations for various types of graphs
in Sect. 6. We respectively study the case of 2 vertices and 1 edge, 3 vertices and 3
edges (closed graph), 4 vertices and 3 edges (star-shape graph) and N +1 vertices and
N edges with N being arbitrarily large (lattice graph). Most notably, in the last case,
we show the propagation of the epidemics across the vertices of the graph in the form
of a traveling wave.
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3 The Cauchy problem: existence and uniqueness of classical
solutions

This section is devoted to the proof of the following main theorem which guarantees
that our model is well-posed.

Theorem 1 For each (S0v , I 0v ) ≥ 0 with S0v > 0,
∑

v∈V I 0v > 0 and u0 ∈ BC(G, R
+)

that satisfy the boundary condition (2.3), there exists a unique positive global solution
(Sv, Iv, Rv) ∈ C 1(R+, R

+ × R
+ × R

+) and u ∈ C 1,2(R+∗ × G, R
+).

The proof of Theorem 1 is divided into two parts. We first prove the existence of
positive global classical solutions and then show that such constructed solutions are
unique. We look for solutions that satisfy (2.1)–(2.2)–(2.3) in the classical sense, and
we always assume that (S0v , I 0v ) ≥ 0with S0v > 0,

∑
v∈V I 0v > 0 and u0 ∈ BC(G, R

+),
that is for all e ∈ E , u0e ≥ 0 is bounded continuous on �e. We further assume that
the initial conditions satisfy the boundary condition (2.3). We remark that the system
(2.1)–(2.2)–(2.3) is not standard as it couples a system PDEs to ODEs at each vertices
through inhomogeneous Robin boundary conditions. As a consequence, the well-
posedness of the Cauchy problem has to be proved.

Remark 3.1 Our existence and uniqueness result extends trivially in the case that
parameters τv > 0, αv

e ∈ (0, 1), λv
e ∈ (0, 1) and νv

e,e′ ∈ [0, 1) are continuous func-
tions of time satisfying τv(t) > 0, αv

e (t) ∈ (0, 1), λv
e (t) ∈ (0, 1) and νv

e,e′(t) ∈ [0, 1)
together with Hypotheses 2.1–2.2 verified at all times t > 0.

3.1 Existence

In this section, we construct a classical solution to (2.1)–(2.2)–(2.3) through a limiting
argument. We will obtain a solution (u, (Xv)v∈V ) has the limit of a subsequence of
solution ((un, (Xn

v )v∈V ))n≥0 of the following problems

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dSnv (t)

dt
= −τvS

n
v (t)I nv (t),

dI nv (t)

dt
= τvS

n
v (t)I nv (t) − (ηv + λv)I

n
v (t)

+
∑

e∼v

αv
e u

n−1
e (t, v),

dRn
v (t)

dt
= ηv I

n
v (t),

t > 0, ∀v ∈ V, (3.1)

with

Dv∂nunv(t) + Kvunv(t) = 
vInv(t), t > 0, ∀v ∈ V, (3.2)

and

∂t u
n
e (t, x) = de∂

2
x u

n
e (t, x), t > 0, x ∈ ◦

�e, ∀e ∈ E . (3.3)
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starting from u0 ∈ BC(G, R
+) and (X0

v)v∈V . Note that (3.1)–(3.2)–(3.3) is supple-
mented by the same initial condition (u0, (X0

v)v∈V ) at each step. We proceed along
three main steps.

Step #1: solvability of (3.1)–(3.2)–(3.3). We first show that (3.1)–(3.2)–(3.3) admits
a unique solution. It can be done by induction. Assume that at step n − 1, we have
constructed a solution (un−1, (Xn−1

v )v∈V ) such that for each t �→ un−1
e (t, v) is contin-

uous, then we get the existence of a unique solution of (3.1) which is C 1 in time. Next
we solve the system of PDEs (3.3)–(3.2) whose coupling comes from the boundary
conditions and owing that now the right-hand side of (3.2) can be seen as given inho-
mogeneous term of classC 1 in time. As both Dv and Kv are invertiblematrices, we get
the existence of a classical solution un ∈ C 1,2 which then ensures that t �→ une (t, v)

is continuous.

Step #2: a priori estimates. Let 0 < T < 1 be fixed. We first show by a recursive
argument that 0 < Snv , 0 ≤ I nv , 0 ≤ Rn

v for each v ∈ V and 0 ≤ une for each e ∈ E . It
is trivial at n = 0. Let assume that is it true at n − 1. We start from (3.1) and a direct
integration gives

Snv (t) = S0ve
−τv

∫ t
0 I nv (s)ds > 0,

I nv (t) = I 0v e
−(ηv+λv)t+

∫ t
0 Snv (s)ds

+
∑

e∼v

αv
e

∫ t

0
e−(ηv+λv)(t−s)+∫ ts Snv (τ )dτun−1

e (s, v)ds ≥ 0,

Rn
v (t) = ηv

∫ t

0
I nv (s)ds ≥ 0.

Now owing that 0 ≤ I nv for each v ∈ V , the maximum principle implies that une ≥ 0
for each e ∈ E . Assume by contradiction that e∗ ∈ E is the component which reaches
a negative minimum, namely une∗(t∗, x∗) = −δ < 0 with une∗(t, x) > −δ for t < t∗
and x ∈ �e∗ and for each e �= e∗ we have une (t, x) > −δ for t ≤ t∗ and x ∈ �e. We
know that x∗ ∈ ∂�e∗ and let denote v∗ = x∗ ∈ V the vertex where this occurs. The
Hopf lemma implies that ∂nune∗(t∗, v∗) < 0. Inspecting the boundary condition (3.2)
at v∗, we obtain that

de∗∂nu
n
e∗(t∗, v∗) + αv∗

e∗ u
n
e∗(t∗, v∗) +

(
∑

e∼e∗
νv∗
e∗,e

)

une∗(t∗, v∗)

−
∑

e∼e∗
νv∗
e,e∗u

n
e (t∗, v∗) = λv∗

e∗ I
n
v∗(t),

which writes

0 > de∗∂nu
n
e∗(t∗, v∗) + δ

(
∑

e∼e∗
νv∗
e,e∗ − αv∗

e∗ −
∑

e∼e∗
νv∗
e∗,e

)
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−
∑

e∼e∗
νv∗
e,e∗(δ + une (t∗, v∗)) = λv∗

e∗ I
n
v∗(t) ≥ 0,

and leads to a contradiction. Here we have used the fact that

∑

e∼e∗
νv∗
e,e∗ ≤ αv∗

e∗ +
∑

e∼e∗
νv∗
e∗,e,

from Hypothesis 2.2 on the matrices (Kv)v∈V .
Next, from the positivity of solutions, we obtain some uniform L∞ bounds.

More precisely, we claim that there exists a constant K > 0 depending only on
(T , I 0v , S0v , ‖u0‖∞) such that

0 ≤ Snv (t), I nv (t), Rn
v (t) ≤ K , and

∣
∣
∣
∣
dSnv (t)

dt

∣
∣
∣
∣ ,

∣
∣
∣
∣
dI nv (t)

dt

∣
∣
∣
∣ ,

∣
∣
∣
∣
dRn

v (t)

dt

∣
∣
∣
∣ ≤ K 0 < t ≤ T ,

and

0 ≤ une (t, x) ≤ K , 0 < t ≤ T , x ∈ �e.

First, using (3.1) we obtain that

dSnv (t)

dt
+ dI nv (t)

dt
+ dRn

v (t)

dt
= −λv I

n
v (t) +

∑

e∼v

αv
e u

n−1
e (t, v),

which gives that

0 ≤ Snv (t) + I nv (t) + Rn
v (t) ≤ S0v + I 0v + T ‖un−1‖∞, 0 < t ≤ T ,

together with

∣
∣
∣
∣
dSnv (t)

dt

∣
∣
∣
∣ ,

∣
∣
∣
∣
dI nv (t)

dt

∣
∣
∣
∣ ,

∣
∣
∣
∣
dRn

v (t)

dt

∣
∣
∣
∣ ≤ C‖un−1‖∞(1 + T + T 2‖un−1‖∞) 0 < t ≤ T ,

which in turn implies that

‖un‖∞ ≤ C̃T ‖un−1‖∞(1 + T + T 2‖un−1‖∞),

for C, C̃ > 0 only depend on the initial condition (u0, (X0
v)v∈V ) and the parameters

of the system. We now claim that by induction, we have for all 0 < t ≤ T ,

0 ≤ Snv (t) + I nv (t) + Rn
v (t) ≤ Ĉ

an∑

p=0

T p,

∣
∣
∣
∣
dSnv (t)

dt

∣
∣
∣
∣ ,

∣
∣
∣
∣
dI nv (t)

dt

∣
∣
∣
∣ ,

∣
∣
∣
∣
dRn

v (t)

dt

∣
∣
∣
∣ ≤ Ĉ

2an∑

p=0

T p,
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‖un‖∞ ≤ Ĉ
2an∑

p=0

T p+1,

with an = 2 + 2an−1 for n ≥ 2 and a1 = 1 for some Ĉ > 0 only depending on
(u0, (X0

v)v∈V ). As 0 < T < 1, we get that

0 ≤ Snv (t) + I nv (t) + Rn
v (t) ≤ ĈT , 0 < t ≤ T ,

together with

‖un‖∞,

∣
∣
∣
∣
dSnv (t)

dt

∣
∣
∣
∣ ,

∣
∣
∣
∣
dI nv (t)

dt

∣
∣
∣
∣ ,

∣
∣
∣
∣
dRn

v (t)

dt

∣
∣
∣
∣ ≤ ĈT ,

for some constant ĈT > 0 depending on (T , u0, (X0
v)v∈V ).

Step #3: existence of a solution. Parabolic Schauder estimates give that the time
derivative and the space derivatives up to order 2 of un are uniformlyHölder continuous
in compact sets. As a consequence, we can use the Arzela–Ascoli theorem to show
that (un, (Xn

v )v∈V ) converges (up to sequences) toward (u, (Xv)v∈V ) in C1,2loc ((0, T )×
G) × C1loc((0, T )) × C1loc((0, T )) × C1loc((0, T )). Passing to the limit n → +∞ in
(3.1)–(3.2)–(3.3) we get that (u, (Xv)v∈V ) satisfies (2.1)–(2.2) subject to boundary
conditions (2.3).

As a by product of the proof we get that for the just constructed solution
(u, (Xv)v∈V ) we have the uniform bounds:

0 < Sv(t) ≤ S0v , 0 < t ≤ T , v ∈ V,

and

0 ≤ Iv(t), Rv(t) 0 < t ≤ T ,

together with

0 ≤ ue(t, x), 0 < t ≤ T , x ∈ �e, e ∈ E .

The fact that Iv(t) ≥ 0 implies thanks to the strong maximum principle that in fact

0 < ue(t, x), 0 < t ≤ T , x ∈ �e, e ∈ E,

which in turn gives that Iv(t) > 0 for each v ∈ V since

I nv (t) = I 0v e
−(ηv+λv)t+∫ t0 Snv (s)ds

+
∑

e∼v

αv
e

∫ t

0
e−(ηv+λv)(t−s)+∫ ts Snv (τ )dτun−1

e (s, v)ds > 0.
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Finally, we use the conservation of mass which tells us that

∑

e∈E

∫

�e

ue(t, x)dx +
∑

v∈V
(Sv(t) + Iv(t) + Rv(t)) = M0 > 0, 0 < t ≤ T ,

such that both Iv(t) and Rv(t) are uniformly bounded in time, together with their
derivatives. This also implies that there exists a constant M > 0, depending only
(u0, (X0

v)v∈V ) such that

0 < ue(t, x) ≤ M, 0 < t ≤ M, x ∈ �e.

Using again parabolic regularity, we obtain the solution (u, (Xv)v∈V ) is global in time
and satisfies (2.1)–(2.2)–(2.3) in the classical sense.

3.2 Uniqueness

Let assume that (u, (Xv)v∈V ) and (ũ, (X̃v)v∈V ) are two classical solutions to
(2.2)–(2.3)–(2.1) starting from the same initial datum (u0, (X0

v)v∈V ). We denote
(û, (X̂v)v∈V ) where for each e ∈ E

ûe = ue − ũe,

and each v ∈ V

X̂v = (Ŝv, Îv, R̂v) = (Sv − S̃v, Iv − Ĩv, Rv − R̃v).

By linearity, we get that for e ∈ E

∂t ûe = de∂
2
x ûe, t > 0, x ∈ ◦

�e,

together with

Dv∂n ûv(t) + Kvûv(t) = 
v Îv(t), t > 0, v ∈ V.

On the other, one computes that X̂v satisfies for each v ∈ V

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ŝ′
v(t) = −τv

(
Sv(t) Îv(t) + Ŝv(t) Ĩv(t)

)
,

Î ′
v(t) = τv

(
Sv(t) Îv(t) + Ŝv(t) Ĩv(t)

)
− ηv Îv(t) +

∑

e∼v

αv
e ûe(t, v) − λv Îv(t),

R̂′
v(t) = ηv Îv(t),

123



52 Page 16 of 52 C. Besse, G. Faye

We define the energy

E (t) := 1

2

∑

e∈E

∫

�e

(
ûe(t, x)

)2 dx + 1

2

∑

v∈V

(
Ŝv(t)

2 + Îv(t)
2 + R̂v(t)

2
)

,

and note that E (0) = 0 by definition. Next, differentiating E (t), we obtain

E ′(t) =
∑

e∈E

∫

�e

ûe(t, x)∂t ûe(t, x)dx

+
∑

v∈V

(
Ŝv(t)Ŝ

′
v(t) + Îv(t) Î

′
v(t) + R̂v(t)R̂

′
v(t)
)

:= Eu(t) + EX (t).

On the one hand, we have

Eu(t) =
∑

e∈E

∫

�e

ûe(t, x)∂t ûe(t, x)dx =
∑

e∈E
de

∫

�e

ûe(t, x)∂
2
x ûe(t, x)dx

= −
∑

e∈E
de

∫

�e

(
∂x ûe(t, x)

)2 dx +
∑

e∈E
de
[
ûe(t, x)∂t ûe(t, x)

]

∂�e

≤
∑

v∈V
〈Dv∂n ûv(t), ûv(t)〉

=
∑

v∈V
〈
v Îv(t) − Kvûv(t), ûv(t)〉

=
∑

v∈V
〈
v Îv(t) − Avûv(t), ûv(t)〉 −

∑

v∈V
〈Nvûv(t), ûv(t)〉

≤
∑

v∈V
〈
v Îv(t) − Avûv(t), ûv(t)〉,

as Nv is symmetric positive. On the other hand, we compute

Eu(t) =
∑

v∈V

(
Ŝv(t)Ŝ

′
v(t) + Îv(t) Î

′
v(t) + R̂v(t)R̂

′
v(t)
)

=
∑

v∈V
τv

(
Sv(t) Îv(t)Ŝv(t) + Ŝv(t)

2 Ĩv(t) + Sv(t) Îv(t)
2 + Ŝv(t) Ĩv(t) Îv(t)

)

−
∑

v∈V
ηv Îv(t)

2 −
∑

v∈V
λv Îv(t)

2 +
∑

v∈V
Îv(t)
∑

e∼v

αv
e ûe(t, v)

+
∑

v∈V
ηv R̂v(t) Îv(t)

≤ CE (t) +
∑

v∈V
Îv(t)
∑

e∼v

αv
e ûe(t, v),
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where C > 0 is some large positive constant. Next, we see that

∑

v∈V
Îv(t)
∑

e∼v

αv
e ûe(t, v) =

∑

v∈V
〈Îv(t), Avûv(t)〉,

such that we obtain

E ′(t) ≤ CE (t) +
∑

v∈V
〈
v Îv(t) − Avûv(t), ûv(t)〉 +

∑

v∈V
〈Îv(t), Avûv(t)〉.

Next, if we denote ŵv(t) := 1
2 A

−1/2
v (
v + Av) Îv(t) − A1/2

v ûv(t), we compute

0 ≤
∑

v∈V
〈ŵv(t), ŵv(t)〉 = 1

4

∑

v∈V
〈A−1

v (
v + Av)
2 Îv(t), Îv(t)〉

−
∑

v∈V
〈(
v + Av) Îv(t), ûv(t)〉

+
∑

v∈V
〈Avûv(t), ûv(t)〉

= 1

4

∑

v∈V
〈A−1

v (
v + Av)
2 Îv(t), Îv(t)〉

−
∑

v∈V
〈
v Îv(t) − Avûv(t), ûv(t)〉

−
∑

v∈V
〈Îv(t), Avûv(t)〉.

As a consequence, we get

E ′(t) ≤ CE (t) + 1

4

∑

v∈V
〈A−1

v (
v + Av)
2 Îv(t), Îv(t)〉 −

∑

v∈V
〈ŵv(t), ŵv(t)〉

≤ C̃E (t),

for some C̃ > 0 and we conclude that E (t) = 0 for all time which then implies that
û = 0 and X̂v = 0.

4 Long-time behavior of the solutions

Throughout this section, we denote by (u, (Xv)v∈V ) the unique positive bounded
classical solution of the Cauchy problem (2.1)–(2.2)–(2.3) as given by Theorem 1 and
which further satisfies the conservation of total population, namely

∑

e∈E

∫

�e

ue(t, x)dx +
∑

v∈V
(Sv(t) + Iv(t) + Rv(t)) = M0 > 0, ∀t > 0.
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4.1 Final total populations: general results

As 0 < Sv(t) < S0v and Sv(t) is strictly decreasing, it asymptotically converges
towards a limit that we denote

S∞
v := lim

t→+∞Sv(t), v ∈ V.

Furthermore, as Rv(t) is strictly increasing and uniformly bounded, it asymptotically
converges towards a limit that is denoted

0 < R∞
v := lim

t→+∞Rv(t) < ∞, v ∈ V.

But as for each t > 0

Rv(t) = ηv

∫ t

0
Iv(s)ds,

this implies that

Iv(t) :=
∫ t

0
Iv(s)ds −→ I∞

v = R∞
v

ηv

< ∞ as t → +∞,

which in turn proves that

I∞
v = lim

t→+∞Iv(t) = 0,

pending that we prove that the limit of Iv(t) as t → +∞ exists. To see that, we use
the fact that

dIv(t)

dt
+ dSv(t)

dt
− ηv + λv

τv

d ln Sv(t)

dt
=
∑

e∼v

αv
e ue(t, v), v ∈ V,

to obtain that

Iv(t) + Sv(t) − ηv + λv

τv

ln Sv(t) − I 0v − S0v + ηv + λv

τv

ln S0v

=
∑

e∼v

αv
e

∫ t

0
ue(s, v)ds, v ∈ V. (4.1)

We now argue that the left-hand side of the previous equation is uniformly bounded
as S∞

v = S0ve
−τvI∞

v > 0, which ensures that
∫ t
0 ue(s, v)ds has a limit as t → +∞ by

positivity of ue. This in turn implies that the limit of Iv(t) as t → +∞ exists.
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If one recall the notation m(t) for the total population on the edges then we have

m(t) =
∑

e∈E

∫

�e

ue(t, x)dx,

and it verifies

∑

v∈V
(Sv(t) + Iv(t) + Rv(t)) + m(t) =

∑

v∈V

(
S0v + I 0v

)
+
∑

e∈E

∫

�e

u0e(x)dx .

The above computations shows that m(t) has a limit as t −→ +∞, that we denote
m∞ and which satisfies

∑

v∈V

(
S∞
v + R∞

v

)+ m∞ =
∑

v∈V

(
S0v + I 0v

)
+
∑

e∈E

∫

�e

u0e(x)dx . (4.2)

We shall also keep in mind that

S∞
v = S0ve

−τvI∞
v = S0ve

− τv
ηv

R∞
v , or R∞

v = −ηv

τv

ln
S∞
v

S0v
, v ∈ V

And so if we introduce the function�v(x) := x− ηv

τv
ln x , then the above conservation

of mass can be written as

∑

v∈V
�v(S

∞
v ) + m∞ =

∑

v∈V

(
I 0v + �v(S

0
v )
)

+
∑

e∈E

∫

�e

u0e(x)dx .

On the other, one can compute that

dm(t)

dt
=
∑

v∈V
λv Iv(t) −

∑

v∈V
〈Avuv(t), 1δv 〉,

such that

m(t) +
∑

v∈V

∫ t

0
〈Avuv(s), 1δv 〉ds =

∑

e∈E

∫

�e

u0e(x)dx +
∑

v∈V
λvIv(t).

Now, as m(t) and each Iv(t) are convergent we deduce that all
∫ t
0 uv(s)ds are also

convergent so that

m∞ +
∑

v∈V

∫ ∞

0
〈Avuv(s), 1δv 〉ds =

∑

e∈E

∫

�e

u0e(x)dx +
∑

v∈V
λvI∞

v , (4.3)
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and

∫ ∞

0
uv(s)ds < ∞, v ∈ V,

which proves that

uv(t) −→ 0 as t → +∞, v ∈ V.

And the boundary conditions imply that

∂nuv(t) −→ 0 as t → +∞, v ∈ V.

Next, we define the sequence of functions une (t, x) = ue(t + n, x) for each e ∈ E and
Xn

v (t) = Xv(t + n) for each v ∈ V which are uniformly bounded such that one can
extract a convergent subsequence. On the one hand we have that lim

n→∞Xn
v (t) = X∞

v =
(S∞

v , 0, R∞
v ) and on the other if u∞

e (t, x) = lim
n→∞une (t, x) it is solution of

∂t u
∞
e (t, x) = de∂

2
x u

∞
e (t, x),

with the boundary conditions

∂nu∞
v (t) = u∞

v (t) = 0δv , v ∈ V.

This then shows that u∞
e (t, x) = 0, t > 0 and x ∈ ◦

�e for each e ∈ E . As there is
unicity of the limit, we deduce that

lim
t→+∞ue(t, x) = 0, e ∈ E .

From which we also get that m∞ = 0 and that

∑

v∈V
�v(S

∞
v ) =

∑

v∈V

(
I 0v + �v(S

0
v )
)

+
∑

e∈E

∫

�e

u0e(x)dx .

We also get from (4.3), that

∑

v∈V

∫ ∞

0
〈Avuv(s), 1δv 〉ds =

∑

e∈E

∫

�e

u0e(x)dx +
∑

v∈V
λvI∞

v .

Finally, as a consequence of (4.1), the final total populations of infected individuals
at each vertices satisfy the following scalar differential equation

dIv(t)

dt
= S0v
(
1 − e−τvIv(t)

)
− ηvIv(t) + I 0v
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+
∑

e∼v

αv
e

∫ t

0
ue(s, v)ds − λvIv(t), v ∈ V. (4.4)

Passing to the limit as t → +∞, we get

0 = S0v
(
1 − e−τvI∞

v

)
− ηvI∞

v + I 0v +
∑

e∼v

αv
e

∫ ∞

0
ue(s, v)ds − λvI∞

v , v ∈ V.

To summarize, we have proved the following result.

Theorem 2 For each (S0v , I 0v ) ≥ 0 with S0v > 0,
∑

v∈V I 0v > 0 and u0 ∈ BC(G, R
+)

that satisfy the boundary condition (2.3), the long time behavior of the unique corre-
sponding solution (u, (Xv)v∈V ) is given by

lim
t→+∞ue(t, x) = 0, x ∈ �e, e ∈ E, with

∫ ∞

0
ue(s, v)ds < +∞, (v, e) ∈ G,

and

lim
t→+∞ (Sv(t), Iv(t), Rv(t)) =

(
S0ve

−τvI∞
v , 0, ηvI∞

v

)
, v ∈ V, (4.5)

where the final total populations of infected individuals 0 < I∞
v < ∞ at each vertices

v ∈ V are solutions of the system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S0ve
−τvI∞

v + ηvI∞
v = I 0v + S0v +

∑

e∼v

αv
e

∫ ∞

0
ue(s, v)ds − λvI∞

v , v ∈ V,

∑

v∈V

∫ ∞

0
〈Avuv(s), 1δv 〉ds =

∑

e∈E

∫

�e

u0e(x)dx +
∑

v∈V
λvI∞

v .

(4.6)

As a consequence, (I∞
v )v∈V belongs to the parametrized submanifold given by

∑

v∈V

(
S0ve

−τvI∞
v + ηvI∞

v

)
= M0. (4.7)

Remark 4.1 Equivalently, (S∞
v )v∈V belongs to the parametrized submanifold given

by

∑

v∈V

(

S∞
v − ηv

τv

log
(
S∞
v

)+ ηv

τv

log
(
S0v
))

= M0, (4.8)

and (R∞
v )v∈V belongs to the parametrized submanifold given by

∑

v∈V

(
S0v exp(−τv/ηv R∞

v ) + R∞
v

)
= M0. (4.9)
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The equations (4.7), (4.8), and (4.9) also read
∑

v∈V
(
S∞
v + R∞

v

) = M0, which is
nothing but (4.2) since we have proved that m∞ = 0.

Remark 4.2 If we assume that τ = τv > 0 and η = ηv > 0 are independent of v ∈ V
and let S̃v = τ/η Sv , R̃∞

v = exp(−τ/η R∞
v ) and Ĩ∞

v = exp(−τI∞
v ). Then, equations

(4.7), (4.8), and (4.9) are respectively equivalent to

∏

v∈V
exp
(
S̃∞
v

) S̃0v
S̃∞
v

= exp

(
τ

η
M0
)

,

∏

v∈V

exp
(
S̃0v R̃

∞
v

)

R̃∞
v

= exp

(
τ

η
M0
)

,

and

∏

v∈V

exp
(
S̃0v Ĩ∞

v

)

Ĩ∞
v

= exp

(
τ

η
M0
)

.

The common right hand side features τ
η
M0 that is nothing but the traditional basic

reproductive number R0.

Remark 4.3 The above equation (4.4) can be interpreted as the counter-part on graphs
to equations that were already derived in a spatially continuous setting (Diekmann
1978; Berestycki et al. 2020). In our case, we can rewrite (4.4) as

dIv(t)

dt
= Lv · Iv(t) + fv(Iv(t)) + I 0v , v ∈ V.

where fv(x) := S0v
(
1 − e−τvx

) − ηvx and Lv · Iv(t) := ∑e∼v αv
e

∫ t
0 ue(s, v)ds −

λvIv(t). As a consequence, Eq. (4.4) can be thought as a discrete reaction-diffusion
equation set on the graph G where Lv is a heterogenous diffusion process which takes
into account the connectivity of the graph, while fv encodes the nonlinear reaction
terms. As in Diekmann (1978) and Berestycki et al. (2020), the nonlinearity has some
concavity properties as

x �→ fv(x)

x
is decreasing and fv(x) ≤ (S0v τv − ηv) x ∀(x, v) ∈ [0,∞) × V.

We do not pursue this direction as it would require a thorough study of the heteroge-
neous diffusion operator Lv which is beyond the scope of the present manuscript.

4.2 Final total populations of infected individuals: further properties

The aim of this section is to present further qualitative results on the final total con-
figuration (I∞

v )v∈V in the fully symmetric case where one can obtain closed form
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formula and in the case of two vertices where we manage to obtain sharp bounds on
the final total populations of infected individuals. In each case, we manage to relate
these quantities to standard basic and effective reproductive number for classical SIR
model (Diekmann et al. 1990). We also refer to Stolerman et al. (2015) in the case of
networks without diffusion on the edges where properties of the basic reproduction
number are linked to the geometry and heterogeneity of the network.

4.2.1 Fully symmetric case

We assume that the length �e of every edge e ∈ E is equal to a reference length �. For
every e ∈ E , the diffusion coefficient de is equal to d. We moreover suppose that for
every vertex v ∈ V , S0v = S0, I 0v = I 0 and R0

v = R0. We also assume that τ = τv > 0
and η = ηv > 0 are independent of v ∈ V . In the same spirit, λv

e = λ and αv
e = α

for every e ∈ E and v ∈ V . We also assume νv
ei ,e j = ν for every edges incident to

the vertex v. Finally, the components u0e of initial condition on each edges e ∈ E are
supposed to be even with respect to the center of the interval�e = [0, �]. Thanks to all
these assumptions, I∞

v does not depend on the vertex v ∈ V and we set I∞
v = I∞. Let

us recall the notation cV for the cardinal of the set V . The parametrized submanifold
given by (4.7) becomes

S∞ + R∞ = S0e−τI∞ + ηI∞ = M̃0,

where M̃0 = M0/cV . We can transform this relation as

S0e−τI∞ + η

τ
τI∞ − M̃0 = 0. (4.10)

Let I = −τI∞. We have to solve

S0eI − η

τ
I − M̃0 = 0.

The solutions are given in terms of Lambert W function that is the multivalued inverse
relation of the function f (w) = wew for w ∈ C (Corless et al. 1996). Let us recall
how to compute the real solutions of the equation αex + βx + γ = 0 for (α, β, γ ) ∈
R

∗ × R
∗ × R. Let � = α/β exp(−γ /β) be the discriminant. If � ≥ 0 or � =

− exp(−1), the solution is unique and x = −W0(�)− γ /β whereW0 is the principal
branch. If � ∈ (− exp(−1), 0), there are two solutions x0 = −W0(�) − γ /β and
x−1 = −W−1(�)−γ /β, whereW−1 is another branch. When� < − exp(−1), there
is no solution.

In our symmetric case, the discriminant writes

� = − S0τ

η
exp

(

− M̃0τ

η

)

.
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Since � < 0, there exist solutions to (4.10) if � ≥ − exp(−1), which is equivalent
to

exp

(
M̃0τ

η
− 1

)

≥ S0τ

η
. (4.11)

We recall that when we consider the standard SIR model (meaning in the context of
this paper that we consider an isolated vertex), we can define the effective reproductive
number Re and the basic reproductive number R0 respectively given by

Re := S0τ

η
, and R0 := M0τ

η
, (4.12)

see Diekmann et al. (1990), Van den Driessche and Watmough (2002) and Hethcote
(2000) for further properties of effective and basic reproductive numbers. If we denote
R̃0 = M̃0τ/η, the equation (4.11) reads

exp
(
R̃0 − 1

) ≥ Re.

This inequality is satisfied as long as S0 ≤ M̃0, which is always true since M0 =∑
e∈E
∫

�e
u0e(x)dx+cV

(
S0 + I 0

) ≥ cV S0. Since� = −Re exp(−R̃0), the solutions
are

I0,−1 = −W0,−1
(−Re exp(−R̃0)

)− R̃0,

and so

I∞
0,−1 = W0,−1

(−Re exp(−R̃0)
)
/τ + R̃0/τ.

BothW0,−1
(−Re exp(−R̃0)

)
< 0. However, we can show that I∞

0 > 0 and I∞−1 < 0.
Thus, the only possibility is

I∞ = W0
(−Re exp(−R̃0)

)
/τ + R̃0/τ.

We also have access to S∞ and R∞ thanks to (4.5). Since exp(−W0(x)) = W0(x)/x ,
we obtain

S∞ = −η

τ
W0
(−Re exp(−R̃0)

)
,

and

R∞ = η

τ
W0
(−Re exp(−R̃0)

)+ M̃0.

We can summarize these results in the following lemma.
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Fig. 3 Schematic visualisation (red star) of I∞ = I∞
v1

= I∞
v2
, resp. S∞ = S∞

v1
= S∞

v2
, in the (Iv1 ,Iv2 )

plane, resp. in the (Sv1 , Sv2 )-plane, in the fully symmetric case. The asymptotic value I∞, resp. S∞, lies
at the intersection of the diagonal Iv1 = Iv2 , resp. Sv1 = Sv2 , and the implicit curve given by (4.7), resp.
(4.8) (color figure online)

Lemma 4.4 (Fully symmetric case.) Assume that our model is fully symmetric, then
the final total population of infected individuals as given by Theorem 2 is independent
on the vertex that is I∞

v = I∞ for each v ∈ V , and I∞ has the following closed form
formula

I∞ = W0 (−Re exp(−R0/cV ))

τ
+ R0

cV τ
,

whereRe andR0 are respectively the effective and basic reproductive number defined
in (4.12) and cV the cardinal of V . See Fig. 3 for an illustration.

4.2.2 Case of two vertices

In this simple case, it is possible to build explicit formulas to deal with the implicit
submanifold equations (4.7), (4.8), and (4.9). Let R0,vk := M0 τvk/ηvk and Re,vk :=
S0vk τvk/ηvk , k = 1, 2 be respectively the local to vertex vk basic and effective repro-
ductive number. Then,

S∞
v1

= −ηv1

τv1

W

⎛

⎝− exp
(−R0,v1

)
Re,v1

(
Re,v2

) τv1 ηv2
τv2 ηv1

exp
(
S∞
v2

τv1/ηv1

)

(
S∞
v2

τv2/ηv2

) τv1 ηv2
τv2 ηv1

⎞

⎠ ,

(4.13)
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where the Lambert W function W can be either W0 or W−1. Indeed, the argument of
W being negative, two solutions have to be considered. We obviously also have

S∞
v2

= −ηv2

τv2

W

⎛

⎝− exp
(−R0,v2

)
Re,v2

(
Re,v1

) τv2 ηv1
τv1 ηv2

exp
(
S∞
v1

τv2/ηv2

)

(
S∞
v1

τv1/ηv1

) τv2 ηv1
τv1 ηv2

⎞

⎠ ,

(4.14)

Due to the definition of the domain of the Lambert W function, the argument has
to be greater than − exp(−1). So, the following inequality must be satisfied for S∞

v2
(respectively of S∞

v1
)

− exp
(−R0,v1

)
Re,v1

(
Re,v2

) τv1 ηv2
τv2 ηv1

(
S∞
v2

τv2/ηv2

) τv1 ηv2
τv2 ηv1 exp

(−S∞
v2

τv1/ηv1

)
≥ − exp(−1).

Solving the equality part of this inequality, we find that

S∞
v2

= −ηv2

τv2

W

(

− (Re,v1

) τv2 ηv1
τv1 ηv2 Re,v2 exp

(
τv2ηv1

τv1ηv2

(
1 − R0,v1

)
))

.

This equation has to be verified both for W0 and W−1. Let �
v2
0,−1 be defined by

�
v2
0,−1 := −ηv2

τv2

W0,−1
(
Av2

)
,

where

Av2 = (Re,v1

) τv2 ηv1
τv1 ηv2 Re,v2 exp

(
τv2ηv1

τv1ηv2

(
1 − R0,v1

)
)

(4.15)

Then, the domain of S∞
v1

as a function of S∞
v2

is

S∞
v2

∈ [min
(
�

v2−1, �
v2
0

)
,max
(
�

v2−1, �
v2
0

)]
.

Concerning S∞
v2

as a function of S∞
v1
, we have

S∞
v1

∈ [min
(
�

v1−1, �
v1
0

)
,max
(
�

v1−1, �
v1
0

)]
,

with

�
v1
0,−1 := −ηv1

τv1

W0,−1
(
Av1

)
,
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Fig. 4 Location of S∞
v1

and S∞
v2

together with the visualisation of the domains �S (left) and ωS (right). The
final configuration of susceptible individuals (S∞

v1
, S∞

v2
) lies on the closed curve parametrized by the two

branches of the Lambert W function (blue and red curve). We note that
(
S∞
v1

, S∞
v2

)
∈ ωS as indicated by

the red star on the right figure. Values of the parameters are d = 10−3, λ1 = λ2 = 6/10, α1 = α2 = 1/8,
τv1 = 1, τv2 = 9/10, ηv1 = 2/5, ηv2 = 2/6, and initial conditions are set to: I 01 = I 02 = 10−6,

S10 = 3/4 − I 01 , S
2
0 = 1/4 − I 01 and u0(x) = 0. The mass M0 is therefore equal to 1 (color figure online)

where

Av1 = Re,v1

(
Re,v2

) τv1 ηv2
τv2 ηv1 exp

(
τv1ηv2

τv2ηv1

(
1 − R0,v2

)
)

. (4.16)

Thus,

(
S∞
v1

, S∞
v2

) ∈ �S := [min
(
�

v1−1, �
v1
0

)
,max
(
�

v1−1, �
v1
0

)]

× [min
(
�

v2−1, �
v2
0

)
,max
(
�

v2−1, �
v2
0

)]
.

We present on Fig. 4 (left) the functionsW0 andW−1 defining S∞
v2

as a function of S∞
v1

and the domain �S for a given set of the parameters and initial conditions. We refer
to Sect. 5 for details regarding the numerical integration of the model and Sect. 6 for
further numerical results on the case of two vertices.

Actually, we can reduce the domain of validity of (4.13)–(4.14) for S∞
v1

and S∞
v2
.

Indeed, we know that Svk , k = 1, 2, decay with respect to time, so S∞
vk

< Svk .
Moreover, the sum S∞

v1
+ S∞

v2
< M0. Thus, we have

(
S∞
v1

, S∞
v2

) ∈ ωS := [min
(
�

v1−1, �
v1
0

)
, S0v1 ]

×[min
(
�

v2−1, �
v2
0

)
, S0v2 ] ∩

{
S∞
v1

+ S∞
v2

< M0
}

.

The domain ωS is drawn on Fig. 4 (right).
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Concerning I∞
v1

and I∞
v2
, we can perform the same analysis. Let

J∞
v1

= −R0,v1 + τv1ηv2

τv2ηv1

(
Re,v2 exp

−τv2I∞
v2 +τv2I∞

v2

)
,

and

J∞
v2

= −R0,v2 + τv2ηv1

τv1ηv2

(
Re,v1 exp

−τv1I∞
v1 +τv1I∞

v1

)
.

We obtain for k = 1, 2,

I∞
vk

= 1

τvk

W
(−Re,vk exp

(
J∞

vk

))− J∞
vk

τvk

,

still with W equal to W−1 and W0. Let ι1−1,0 and ι2−1,0 be defined by

ι
v1−1,0 = W−1,0

(−Av1

)

τv1

+
τv1ηv2
τv2ηv1

(
R0,v2 − 1 − log

(
Re,v2

))

τv1

, (4.17)

and

ι
v2−1,0 = W−1,0

(−Av2

)

τv2

+
τv2ηv1
τv1ηv2

(
R0,v1 − 1 − log

(
Re,v1

))

τv2

, (4.18)

with Av1 and Av2 given by (4.15) and (4.16). Then,

(I∞
v1

, I∞
v2

) ∈ [min
(
ι
v1−1, ι

v1
0

)
,max
(
ι
v1−1, ι

v1
0

)] × [min
(
ι
v2−1, ι

v2
0

)
,max
(
ι
v2−1, ι

v2
0

)].

We can show that min
(
ι
vk−1, ι

vk
0

)
< 0 for k = 1, 2. So, we can reduce this domain since

I∞
vk

> 0. So, we define the domain ωI

(I∞
v1

, I∞
v2

) ∈ ωI := [0,max
(
ι
v1−1, ι

v1
0

)] × [0,max
(
ι
v2−1, ι

v2
0

)].

As a consequence, we have proved the following lemma.

Lemma 4.5 Case of two vertices. Assume that cV = 2 and cE = 1, where cE is the
cardinal of E . The final total population of infected individuals at each vertex I∞

vk
,

k = 1, 2 can be expressed as

I∞
vk

= 1

τvk

W
(−Re,vk exp

(
J∞

vk

))− J∞
vk

τvk

,

with

J∞
vk

= −R0,vk + τvkηv j

τv j ηvk

(
Re,v j exp

−τv j I∞
v j +τv jI∞

v j

)
, k �= j ∈ {1, 2} ,
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Fig. 5 Location of I∞
k and R∞

vk
, k = 1, 2, and visualisation of the domains ωI (left), and domain ωR

(right). In both cases, (I∞
1 ,I∞

2 ) ∈ ωI and (R∞
1 , R∞

2 ) ∈ ωR are represented by a red star. Values of the
parameters and initial conditions are similar to Fig. 4 (color figure online)

where R0,vk := M0 τvk/ηvk and Re,vk := S0vk τvk/ηvk , k = 1, 2. Furthermore, we
have the sharp bound

(I∞
v1

, I∞
v2

) ∈ ωI := [0,max
(
ι
v1−1, ι

v1
0

)] × [0,max
(
ι
v2−1, ι

v2
0

)],

with ι
vk−1,0, k = 1, 2 defined in (4.17)–(4.18). See Fig. 5 for an illustration.

Remark 4.6 As the solutions R∞
vk
, k = 1, 2, are simply given by R∞

vk
= ηvkI∞

vk
, if we

let ρvk−1,0 := ηι
vk−1,0 then we have

(R∞
v1

, R∞
v2

) ∈ ωR := [0,max
(
ρ

v1−1, ρ
v1
0

)] × [0,max
(
ρ

v2−1, ρ
v2
0

)].

We represent on Fig. 5 the domain ωR .

5 A semi-implicit numerical schemewhich preserves total mass

In this section, we propose a semi-implicit in time numerical scheme based on finite
differences in space which has the property to preserve the discrete total mass.

5.1 Notations

For each e ∈ E , we denote δxe > 0 the space discretization of each edge, and Je ∈ N

the number of points of the corresponding discretization. For each i = 1, . . . , Je, the
space grid on each edge is given by xi = (i − 1)δxe with �e = (Je − 1)δxe. And we
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let J :=∑e∈E Je ∈ N. Let δt > 0 be the time discretization and denote tm = mδt for
m ≥ 0.

For a given function u ∈ C 1,2(R+ × G, R
+), its space-time discretization is given

by some sequence of vectors

u ∼ (Um)m≥0, with Um = (Um
1 , . . . ,Um

J

)t ∈ R
J.

For each e ∈ E , there exists an integer je ∈ N such that

ue(tm, xi ) ∼ Um
je+i , i = 1, . . . , Je, m ≥ 0.

We approximate the laplacian on each edge via finite differences. That is, for each
e ∈ E ,

∂2x ue(tm, xi ) ∼ Um
je+i−1 − 2Um

je+i +Um
je+i+1

δx2e
, i = 2, . . . , Je − 1, m ≥ 1,

where we have only considered the interior points of the discretized domain. Let us
now precise how we approximate the laplacian at a given vertex v ∈ V of the graph.
So let v ∈ V such that there are δv edges incident to the vertex. We locally label
e ∼ v = (e1, . . . , eδv ) all these incident edges. For each v ∈ V , we introduce the map
σv : {e1, . . . , eδv

}→ {1, . . . , J} such that σv(ek) corresponds to the global index of
the grid discretization associated to the vertex v on edge ek . Finally, we denote by
n(σv(ek)) the global index of the nearest neighbor on edge ek to the vertex v. Note
that either n(σv(ek)) = σv(ek) − 1 or n(σv(ek)) = σv(ek) + 1. To approximate the
laplacian at a given vertex v ∈ V on edge ek , we use the following formula

∂2x uek (tm, v) ∼ U∗,m
σv(ek )

− 2Um
σv(ek)

+Um
n(σv(ek))

δx2ek
:= Zm

v,k, k = 1, . . . , δv, m ≥ 1.

The unknown U∗,m
σv(ek)

can be expressed by discretization of the boundary condition
as follows. For each v ∈ V with e ∼ v = (e1, . . . , eδv ), we approximate the normal
derivative ∂nuek (tm, v) as

∂nuek (tm, v) ∼ U∗,m
σv(ek)

−Um
n(σv(ek ))

2δxek
, k = 1, . . . , δv, m ≥ 1.

Using (2.3), and denoting Imv the time approximation of Iv(tm), we obtain the following
expression for U∗,m

σv(ek )

U∗,m
σv(ek)

= Um
n(σv(ek))

− 2δxek
dek

(

αv
ekU

m
σv(ek )

+
δv∑

l=1

(Nv)klU
m
σv(el )

−λv
ek I

m
v

)
, k = 1, . . . , δv, m ≥ 1.
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As a consequence, we obtain that for each k = 1, . . . , δv and m ≥ 1

Zm
v,k = 2Um

n(σv(ek ))
− 2Um

σv(ek)

δx2ek

− 2

dek δxek

(

αv
ekU

m
σv(ek )

+
δv∑

l=1

(Nv)klU
m
σv(el )

− λv
ek I

m
v

)

.

5.2 The semi-implicit numerical scheme

We introduce the following scheme for each m ≥ 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Um+1
je+i = Um

je+i + deδt

⎛

⎝
Um+1

je+i−1 − 2Um+1
je+i +Um+1

je+i+1

δx2e

⎞

⎠ , i = 2, . . . , Je − 1, e ∈ E,

Um+1
σv(ek )

= Um
σv(ek )

+ dek δtZ
m+1
v,k , k = 1, . . . , δv, v ∈ V,

Sm+1
v = Smv − δtτvS

m+1
v Imv ,

Im+1
v = Imv + δt

(
τvS

m+1
v Imv − ηv I

m+1
v

)
+ δt

⎛

⎝
δv∑

k=1

αv
ekU

m+1
σv(ek )

− λv I
m+1
v

⎞

⎠ ,

Rm+1
v = Rm

v + δtηv I
m+1
v ,

(5.1)

initialized with U 0 ∈ R
J and some (S0v , I 0v , R0

v)v∈V . One can find similar semi-
implicit discretization for the SIR part of the model in Sekiguchi and Emiko (2011).

5.2.1 Well-posedness and positivity

Weprove that the numerical scheme defined through (5.1) iswell defined and preserves
positivity under some condition on δt . Indeed, we first remark that the equation for
Sm+1
v and Im+1

v in (5.1) can be used to obtain that

Sm+1
v = Smv

1 + δtτv Imv
,

Im+1
v = Imv + δtτv Imv (Smv + Imv )

(
1 + δt(ηv + λv)

)
(1 + δtτv Imv )

+ δt

1 + δt(ηv + λv)

δv∑

l=1

αv
elU

m+1
σv(el )

,

such that Zm+1
v,k can be expressed only in terms of elements of Um+1 as

Zm+1
v,k = 2Um+1

n(σv(ek ))
− 2Um+1

σv(ek)

δx2ek

− 2

dek δxek

(

αv
ekU

m+1
σv(ek )

+
δv∑

l=1

(Nv)klU
m+1
σv(el )
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− δtλv
ek

1 + δt(ηv + λv)

δv∑

l=1

αv
elU

m+1
σv(el )

)

+ 2λv
ek

dek δxek

(
Imv + δtτv Imv (Smv + Imv )

(
1 + δt(ηv + λv)

)
(1 + δtτv Imv )

)

.

As a consequence, there exists a matrix A ∈ MJ(R) such that

(IJ + A)Um+1 = Um + Ym,

where Ym ∈ R
J is such that

Ym
j =

⎧
⎪⎨

⎪⎩

2δtλv
ek

δxek

(
Imv + δtτv Imv (Smv + Imv )

(
1 + δt(ηv + λv)

)
(1 + δtτv Imv )

)

, if j = σv(ek),

0 , otherwise.

Lemma 5.1 There exists a constant C0 > 0, which only depends on the parameters of
the system, such that if 0 < δt < C0 then we have

• IJ + A is invertible;
• if Nv is symmetric for each v ∈ V , then given V ∈ R

J with V ≥ 0, the unique
solution U ∈ R

J of (IJ + A)U = V also satisfies U ≥ 0.

Proof Let U ∈ R
J �= 0 be such that (IJ + A)U = 0. Without loss of generality,

assume that Uj0 = max j=1,...,JUj > 0. If there exists e ∈ E such that j0 = je + i0
for some i0 ∈ {2, . . . , Je − 1}, then we have

Uj0 + deδt

δx2e
(2Uj0 −Uj0−1 −Uj0+1) = 0,

which is a contradiction by definition ofUj0 . Next if j0 is such that there is v ∈ V and
k ∈ {1, . . . , δv} such that j0 = σv(ek), then we have

Uσv(ek ) + 2dek δt

δx2ek
(Uσv(ek) −Un(σv(ek )))

= − 2δt

δxek

(

αv
ekUσv(ek) +

δv∑

l=1

(Nv)klUσv(el ) − δtλv
ek

1 + δt(ηv + λv)

δv∑

l=1

αv
elUσv(el )

)

.

The left-hand side of the above equality is strictly positive and we claim that the
right-hand side is negative. We use the fact that (Nv)kl = −νv

el ,ek when k �= l and
(Nv)kk =∑ j �=k νv

ek ,e j

δv∑

l=1

(Nv)klUσv(el ) =
⎛

⎝
∑

j �=k

νv
ek ,e j

⎞

⎠Uσv(ek ) −
∑

l �=k

νv
el ,ekUσv(el )
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=
⎡

⎣
∑

j �=k

νv
ek ,e j −

∑

l �=k

νv
el ,ek

⎤

⎦Uσv(ek )

+
∑

l �=k

νv
el ,ek

(
Uσv(ek ) −Uσv(el )

)
.

As a consequence, we deduce that

Uv
k := αv

ekUσv(ek) +
δv∑

l=1

(Nv)klUσv(el ) − δtλv
ek

1 + δt(ηv + λv)

δv∑

l=1

αv
elUσv(el )

=
⎡

⎣αv
ek +
∑

j �=k

νv
ek ,e j −

∑

l �=k

νv
el ,ek − δtλv

ek

1 + δt(ηv + λv)

δv∑

l=1

αv
el

⎤

⎦Uσv(ek )

+
∑

l �=k

νv
el ,ek

(
Uσv(ek ) −Uσv(el )

)

+ δtλv
ek

1 + δt(ηv + λv)

δv∑

l=1

αv
el

(
Uσv(ek ) −Uσv(el )

)
.

The last two terms are positive by definition of Uj0 = Uσv(ek) = max j=1,...,JUj > 0.
Now using Hypothesis 2.2, we have that

αv
ek +
∑

j �=k

νv
ek ,e j −

∑

l �=k

νv
el ,ek > 0,

such that the term in bracket is positive provided that

δtλv
ek

1 + δt(ηv + λv)

δv∑

l=1

αv
el < αv

ek +
∑

j �=k

νv
ek ,e j −

∑

l �=k

νv
el ,ek ,

or equivalently

δt

⎡

⎣λv
ek

δv∑

l=1

αv
el − (ηv + λv)

⎛

⎝αv
ek +
∑

j �=k

νv
ek ,e j −

∑

l �=k

νv
el ,ek

⎞

⎠

⎤

⎦

< αv
ek +
∑

j �=k

νv
ek ,e j −

∑

l �=k

νv
el ,ek .

As a consequence, we impose that

0 < δt < min
v∈V

min
k=1,...,δv

αv
ek +∑ j �=k νv

ek ,e j −∑l �=k νv
el ,ek

[
λv
ek
∑δv

l=1 αv
el − (ηv + λv)

(
αv
ek +∑ j �=k νv

ek ,e j −∑l �=k νv
el ,ek

)]

+
,
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where it is understood that when the positive part is zero there is no condition on δt .
And we have reached a contradiction since

0 < Uσv(ek) + 2dek δt

δx2ek
(Uσv(ek ) −Un(σv(ek))) = − 2δt

δxek
Uv
k < 0.

This shows that IJ + A is invertible.
Next letU ∈ R

J be the unique solution of (IJ +A)U = V with V ≥ 0. We denote
by U− ∈ R

J the vector with components given by

U−
j = min(0,Uj ), j = 1, . . . , J.

Our aim is to evaluate 〈(IJ +A)U ,U−〉J where 〈·, ·〉J is the following scalar product
on R

J:

〈U , V 〉J :=
∑

e∈E

(Je−1∑

i=2

Uje+i V je+i

)

+ 1

2

∑

v∈V

(
δv∑

k=1

Uσv(ek )Vσv(ek)

)

.

We divide 〈(IJ + A)U ,U−〉J into three parts:

〈(IJ + A)U ,U−〉J = Q1 + Q2 + Q3,

where

Q1 :=
∑

e∈E

Je−1∑

i=2

(

Uje+i + deδt

δx2e

(
2Uje+i −Uje+i−1 −Uje+i+1

)
)

U−
je+i ,

Q2 := 1

2

∑

v∈V

δv∑

k=1

(

Uσv(ek) + 2dek δt

δx2ek

(
Uσv(ek ) −Un(σv(ek ))

)
)

U−
σv(ek)

,

Q3 := δt
∑

v∈V

δv∑

k=1

1

δxek

(

αv
ekUσv(ek ) +

δv∑

l=1

(Nv)klUσv(el )

− δtλv
ek

1 + δt(ηv + λv)

δv∑

l=1

αv
elUσv(el )

)

U−
σv(ek)

.

The first and second terms are handled as follows

Q1 + Q2 = 〈U ,U−〉J +
∑

e∈E

deδt

δx2e

Je−1∑

i=1

(
Uje+i+1 −Uje+i

) (
U−

je+i+1 −U−
je+i

)
≥ 0.

For the third term Q3, if we further assume that Nv is symmetric, then the matrix
Kv = Av + Nv is symmetric positive definite, and thus for each v ∈ V there exists
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some βv > 0 such that

δv∑

k=1

1

δxek

(

αv
ekUσv(ek ) +

δv∑

l=1

(Nv)klUσv(el )

)

U−
σv(ek )

≥ βv

δv∑

k=1

1

δxek
Uσv(ek)U

−
σv(ek)

,

while there exists ωv > 0 such that

(
δv∑

k=1

λek

δxek
U−

σv(ek)

)(
δv∑

l=1

αv
elUσv(el )

)

≤ ωv

δv∑

k=1

1

δxek
Uσv(ek)U

−
σv(ek)

.

And thus, we get an estimate for Q3 of the form

Q3 ≥ δt
∑

v∈V

[(

βv − δtωv

1 + δt(ηv + λv)

) δv∑

k=1

1

δxek
Uσv(ek)U

−
σv(ek)

]

,

which is positive provided that δt is small enough. As a consequence, we have proved
that

0 ≤ 〈(IJ + A)U ,U−〉J = 〈V ,U−〉J ≤ 0,

which implies that U− = 0 and thus U ≥ 0. ��
The previous lemma demonstrates the well-posedness of our numerical scheme

(5.1). It also ensures that if we start with positive initial conditions U 0 ≥ 0 and
S0v > 0, I 0v ≥ 0 with

∑
v∈V I 0v > 0 and R0

v ≥ 0, then for all m ≥ 1 we also have that
Um ≥ 0, Smv > 0, Imv ≥ 0 and Rm

v ≥ 0, provided δt > 0 is small enough and Nv is
symmetric for each v ∈ V .

5.2.2 Preservation of total discrete mass

For any U ∈ R
J, we define the following quantity

trapJ(U ) :=
∑

e∈E
δxe

(Je−1∑

i=2

Uje+i

)

+ 1

2

∑

v∈V
δxek

(
δv∑

k=1

Uσv(ek )

)

.

The expression trapJ(U ) is simply the trapezoidal rule applied to the elements of U
adapted to our graph G. From (5.1), we get that

trapJ(U
m+1) = trapJ(U

m) + δt
∑

e∈E

de
δxe

(Je−1∑

i=2

(
Um+1

je+i−1 − 2Um+1
je+i +Um+1

je+i+1

)
)

+δt

2

∑

v∈V
δxek dek

(
δv∑

k=1

Zm+1
v,k

)

.
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Upon denoting Z1,m
v,k the following quantity

Z1,m
v,k := 2Um

n(σv(ek ))
− 2Um

σv(ek )

δx2ek

we get that

1

2

∑

v∈V
δxek dek

(
δv∑

k=1

Z1,m+1
v,k

)

=
∑

v∈V

dek
δxek

(
δv∑

k=1

Um+1
n(σv(ek ))

−Um+1
σv(ek)

)

.

Next, we observe that

∑

e∈E

de
δxe

(Je−1∑

i=2

(
Um+1

je+i−1 − 2Um+1
je+i +Um+1

je+i+1

)
)

+
∑

v∈V

dek
δxek

(
δv∑

k=1

Um+1
n(σv(ek ))

−Um+1
σv(ek)

)

= 0,

where the cancellation comes from the specific structure of the discretized laplacian
through finite differences. As a consequence, we have that

trapJ(U
m+1) = trapJ(U

m)

−δt
∑

v∈V

δv∑

k=1

(

αv
ekU

m+1
σv(ek )

+
δv∑

l=1

(Nv)klU
m+1
σv(el )

− λv
ek I

m+1
v

)

.

We also have that

δv∑

k=1

δv∑

l=1

(Nv)klU
m+1
σv(el )

=
δv∑

l=1

(
δv∑

k=1

(Nv)kl

)

Um+1
σv(el )

= 0,

as the sum over the lines of Nv vanishes. And thus we get

trapJ(U
m+1) = trapJ(U

m) − δt
∑

v∈V

(
δv∑

k=1

αv
ekU

m+1
σv(ek)

− λv I
m+1
v

)

.
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On the other hand, from (5.1) we also have

∑

v∈V

(
Sm+1
v + Im+1

v + Rm+1
v

)
=
∑

v∈V

(
Smv + Imv + Rm

v

)

+δt
∑

v∈V

(
δv∑

k=1

αv
ekU

m+1
σv(ek)

− λv I
m+1
v

)

.

As a conclusion, we have proved the following result.

Lemma 5.2 Let (Um, Smv , Imv , Rm
v ) a solution of (5.1), then we have for each m ≥ 0

trapJ(U
m+1) +

∑

v∈V

(
Sm+1
v + Im+1

v + Rm+1
v

)
= trapJ(U

m) +
∑

v∈V

(
Smv + Imv + Rm

v

)
.

This is the discrete conter part of conservation of mass for the continuous model.
Now, combining Lemmas 5.1–5.2, we have proved the following theorem.

Theorem 3 There exists a constant C0 > 0, which only depends on the parameters of
the system, such that if 0 < δt < C0, then the numerical scheme (5.1) defines a unique
sequence (Um, Smv , Imv , Rm

v )m≥0. If we further assume that Nv is symmetric for each
v ∈ V , then the numerical scheme (5.1) preserves the positivity of the initial condition.
Finally, for each solution of (5.1), the total discrete mass is preserved, namely for each
m ≥ 0, we have

trapJ(U
m+1) +

∑

v∈V

(
Sm+1
v + Im+1

v + Rm+1
v

)

= trapJ(U
m) +
∑

v∈V

(
Smv + Imv + Rm

v

)
.

6 Numerical results for a selection of graphs

In the present section,we illustrate our theoretical resultswith a collection of numerical
simulations for various types of graphs. Throughout this section the time discretization
is set to δt = 0.01 while the space discretization to δxe = 0.01 for each e ∈ E .

6.1 Case of 2 vertices and 1 edge

v1 v2
• •

We first consider the case where cV = 2 and cE = 1, where cE denotes the cardinal
of E . In this setting, we recall that our model reads as follows

∂t u(t, x) = d∂2x u(t, x), t > 0, x ∈ (0, �),
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with boundary conditions

{
−d∂xu(t, 0) + α1u(t, 0) = λ1 I1(t),

d∂xu(t, �) + α2u(t, �) = λ2 I2(t),
t > 0,

where (Si (t), Ii (t), Ri (t)), for i = 1, 2, solution of

⎧
⎪⎨

⎪⎩

S′
i (t) = −τi Si (t)Ii (t),

I ′
i (t) = τi Si (t)Ii (t) − ηi Iv(t) + αi u(t, vi ) − λi Ii (t),

R′
i (t) = ηi Ii (t),

t > 0,

where v1 = 0 and v2 = �. This system is complemented by some initial condition
(u0, S0i , I

0
i , R0

i )with Si > 0, I 01 + I 02 > 0, R0
i = 0 and u0 ≥ 0 such that the boundary

condition is satisfied initially. Finally, we normalize the total mass as follows

M0 =
∫ �

0
u0(x)dx +

2∑

i=1

(
S0i + I 0i

)
= 1.

For the numerical simulations, we have fixed initial conditions to be of the form

u0(x) = λ1 I0
α1

exp

(

−α2x2

2d�

)

, x ∈ [0, �],

with

(S01 , I
0
1 , S02 , I

0
2 ) =
(

S0 − I0 −
∫ �

0
u0(x)dx, I0, 1 − S0, 0

)

,

where S0 and I0 may vary. In Figs. 6, 7 and 8, S0 and I0 are fixed to (S0, I0) =
(1/2, 10−6), while in Fig. 10, S0 is allowed to vary and I0 is fixed to I0 = 10−6.

In Fig. 6, we report the profiles of the solutions (Si (t), Ii (t)) together with the total
population on the edge

∫ �

0 u(t, x)dx and the total mass of the system M(t) as the
parameter λ1 is varied from 0.05 to 0.95, while all other parameters are being kept
fixed. We observe that the dynamics of the epidemic at the second vertex is almost
independent of the parameter λ1 while it has a significant impact on the dynamics
at the first vertex. Indeed, as λ1 is increased, the maximum of infected individuals
maxt≥0 I1(t) is decreased. In the last panel of the figure, we also illustrate the conser-
vation of total population where the fluctuations around M0 = 1 is of order 10−12. In
the top panel of Fig. 7, we present the final total populations of infected individuals
and corresponding final population of susceptible individuals as λ1 is varied. The blue
curve is the location of (I∞

1 , I∞
2 ) respectively (S∞

1 , S∞
2 ) while the dark red circles

indicate the numerically computed values. We recover the fact that λ1 has a more
significant impact on the final total populations at the first vertex than it has at the
second vertex. To get a better understanding of the intricate dynamics between the
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Fig. 6 Profiles of the solutions (Si (t), Ii (t)) together with the total population on the edge
∫ �
0 u(t, x)dx

and the total mass of the system M(t) as the parameter λ1 is varied from 0.05 to 0.95. All other parameters
are fixed and set to d = � = 1, λ2 = 1/10, α1 = α2 = 1/4, and τ1 = τ2 = 1 with η1 = η2 = 1/3. For
the initial condition we have (S0, I0) = (1/2, 10−6)

epidemic at the two vertices, we also present the relative distance �T := T2 − T1
between time of maximal infection T j in each population as λ1 is varied. We observe
that �T is not monotone in λ1, as it first decreases and then increases. But we also
note that �T < 0 for λ1 ≥ 0.1 traducing the fact that the pick of the epidemic occurs
at the second vertex before it does at the first vertex, although initially I 02 = 0. This
illustrates the effect of the diffusion of infected individuals along the edge.

Similarly, in Fig. 7, we report the final total populations of infected individuals
and corresponding final population of susceptible individuals as λ2 (second panel), α1
(third panel) and α2 (bottom panel) are varied from 0.05 to 0.95. As expected, the final
total population of infected individuals at the second vertex decreases as λ2 increases
while at the first vertex it varies less significantly. As α1 increases, the final total pop-
ulation of infected individuals at the first vertex increases while it decreases at the
second vertex. This time the relative distance �T := T2 − T1 between time of maxi-
mal infection is monotonically increasing with α1. We get the opposite monotonicity
properties as α2 is varied.

In Fig. 8, we investigate the joint effect of the diffusion coefficient d and the length
of the edge � on the dynamics of the epidemic at the vertices. Here, we focus on
the delay between time of maximal infection T j in each infected population I j (t). As
expected, when the diffusion coefficient is really small while the length is being kept at
order one, �T takes large value: �T ∼ 104 when d = 10−3 and � = 1. Biologically,
this means that when the diffusion coefficient is really small it takes more time for
infected individuals from vertex one to reach the second vertex and start an epidemic.
We also note that at fixed �,�T monotonically decreases as d increases, while at fixed
d, �T monotonically increases as � increases.

In Figs. 9 and 10, we vary respectively the initial population of susceptible individ-
uals S0 and infected individuals I0. We visualize the final total populations of infected

123



52 Page 40 of 52 C. Besse, G. Faye

Fig. 7 Final total populations of infected individuals (left) and corresponding final population of susceptible
individuals (middle) as one parameter is varied from 0.05 to 0.95 while all parameters are fixed. The blue
curve is the location of (I∞

1 ,I∞
2 ) respectively (S∞

1 , S∞
2 )while the dark red circles indicate the numerically

computed values. Right: relative distance �T := T2 − T1 between time of maximal infection T j in each
population, indicated by dark red circles, as the parameter is varied from 0.05 to 0.95. Varying parameters:
λ1 (top panel), λ2 (second panel), α1 (third panel) and α2 (bottom panel) (color figure online)

individuals and correspondingfinal population of susceptible individuals on the param-
eterized surfaces (I∞

1 , I∞
2 , S0) and (S∞

1 , S∞
2 , S0), respectively (I∞

1 , I∞
2 , I0) and

(S∞
1 , S∞

2 , I0), where the level sets of the parameterized surface are given by the
conservation of total mass (4.7). We note that (I∞

1 , I∞
2 ) and (S∞

1 , S∞
2 ) are almost

independent of I0 when I0 ≤ 10−3 with sensible variations only occurring for larger
values of I0. On the other hand, we observe that as S0 is increased the final total
population of infected individuals increases at the first vertex while it decreases at
the second one. The dependence of (S∞

1 , S∞
2 ) as a function of S0 is more subtile and

is presented in Fig. 11. In the same figure, we also show the location of max I j (t)
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Fig. 8 Log-plot of the relative distance �T = T2 − T1 between time of maximal infection T j in each
population I j (t) as the diffusion coefficient d and the length of the edge � are varied while all other
parameters are fixed to λ1 = λ2 = 1/10, α1 = α2 = 1/4, and τ1 = τ2 = 1 with η1 = η2 = 1/3. For the
initial condition we have (S0, I0) = (1/2, 10−6). We note that as d becomes smaller �T rapidly increases
as � increases

Fig. 9 Final total populations of infected individuals (left) and corresponding final population of susceptible
individuals (right) as the initial population of susceptible individuals I0 is varied from 10−7 to 10−1 in log-
scale while S0 = 1/2 is fixed. The dark blue curves are the location of (I∞

1 ,I∞
2 ) respectively (S∞

1 , S∞
2 )

for each value of S0, while the dark red circles indicate the numerically computed values. Each dark blue
curve is a level set of the parameterized surface given by the conservation of total mass (4.7). All other
parameters are fixed to d = � = 1,λ1 = λ2 = 1/10,α1 = α2 = 1/4, and τ1 = τ2 = 1with η1 = η2 = 1/3
(color figure online)

and its amplitude. We observe a strong nonlinear dependence with respect to S0. As
S0 increases, we first see that the time at which I1(t) is maximal increases and then
decreases, while max I1(t) is monotonically increasing. The converse is observed at
the second vertex.
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Fig. 10 Final total populations of infected individuals (left) and corresponding final population of suscep-
tible individuals (right) as the initial population of susceptible individuals S0 is varied from 0.05 to 0.95
while I0 = 10−6 is fixed. The dark blue curves are the location of (I∞

1 ,I∞
2 ) respectively (S∞

1 , S∞
2 ) for

each value of S0, while the dark red circles indicate the numerically computed values. Each dark blue curve
is a level set of the parameterized surface given by the conservation of total mass (4.7). All other parameters
are fixed to d = � = 1, λ1 = λ2 = 1/10, α1 = α2 = 1/4, and τ1 = τ2 = 1 with η1 = η2 = 1/3 (color
figure online)

Fig. 11 Locations of S∞
1,2 (top) and max I1,2(t) (bottom left and right) as functions of S01,2. Values of all

other parameters are similar to Fig. 10. The initial condition is of the form (S0, 1 − S0) with S0 ∈ [0, 1]
and to each initial configuration is associated a color code from blue to red. The curve in the top right panel
is a projection on the (S∞

1 , S∞
2 )-plane of the parametrized a curve from Fig. 10, right panel (color figure

online)

123



Dynamics of epidemic spreading on connected graphs Page 43 of 52 52

6.2 Case of 3 vertices and 3 edges

v1

v2

v3

•

•

•

A

B

C

Next, we consider the case of 3 vertices and 3 edges arranged in a triangular con-
figuration. For the numerical simulations presented in Fig. 12, we have assumed full
symmetry in the parameters that is

(�e, de) = (�, d), e ∈ E, (τv, ηv) = (τ, η), v ∈ V,

(αv
e , λ

v
e ) = (α, λ), (e, v) ∈ E × V, νv

e,e′ = ν, (e, e′, v) ∈ E × E × V.

Regarding the initial condition, we have chosen

(S01 , I
0
1 , S02 , I

0
2 , S03 , I

0
3 ) =
(
S0 − I0, I0, S

0, 0, S0, 0
)

v ∈ V,

for a given (S0, I0), while for each e ∈ E we have set u0e(x) = 0 on �e. Note
that, we have initially a boundary layer as our initial condition does not satisfy (2.3)
for small times. We remark that the final total populations of infected individuals
and corresponding final population of susceptible individuals belong to a surface as
provided by (4.7)–(4.8) from Theorem 2.

In Fig. 13, we tested a different configuration. Upon labeling by A the edge between
vertices v1 and v2, B the edge between vertices v2 and v3 and C the edge between
vertices v1 and v3, we have set the parameters to

α1
A = α2

B = α3
C = 0, and α2

A = α3
B = α2

C = 1/10,

while

λ1A = λ2B = λ3C = 1/20, and λ2A = λ3B = λ2C = 0,

and

ν1A,C = ν2B,A = ν3C,B = 0, and ν1C,A = ν2A,B = ν3B,C = 1/30.

The length of each edge is fixed �e = � = 1 and (τv, ηv) = (1, 1/7) at each vertex
v ∈ V . Finally, we have set different coefficients on each edge, namely dA = 1,
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Fig. 12 Final total populations of infected individuals (left) and corresponding final population of sus-
ceptible individuals (right) as ν is varied from 0.05 to 0.95. The dark blue surfaces are the location
of (I∞

1 ,I∞
2 ,I∞

3 ) respectively (S∞
1 , S∞

2 , S∞
3 ) for each value of S0, while the dark red circles indi-

cate the numerically computed values. Parameters were set to � = d = 1, (τ, η) = (1, 1/6), and
(α, λ) = (1/8, 1/10), while the initial condition is (S0, I0) = (1, 10−6) (color figure online)

Fig. 13 Time plot of infected populations in the case of 3 vertices and 3 edges in a triangular configuration
between times [0, 500] (left) and a zoom for times between [150, 400] (right). We observe a second wave
of infection at the first vertex resulting from incoming infected individuals that have successively passed
through the two other vertices. This second wave is also present at the second vertex with a slight increase
of I2(t) after the second wave has reached the first vertex. Parameters values are set in the text

dB = 10−2 and dC = 10−3. Initially, we assume that infected individuals are only
present at vertex v1 and each vertex has the same number of susceptible individuals
fixed to 1/3. Finally, for each e ∈ E we have set u0e(x) = 0 on �e. We see in Fig. 13
that such a configuration can generate a second wave of infection at the first and
second vertices showing that transient dynamics can be complex with multiple bumps
of infection.
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6.3 Case of 4 vertices and 3 edges

v1 v2

v3

v4

• •

•

•

Next, we consider a star-shape graph with 4 vertices and 3 edges where one vertex
is connected to the three others. In this configuration, we assume that our parameters
may vary with respect to time, modeling locked down strategies for example (Griette
et al. 2020; Liu et al. 2020). More precisely, we will assume that there exists Tlock and
μlock such that the transmission rates can be written as

τv(t) =
{

τ , t ∈ [0, Tlock],
τ exp(−μlock (t−Tlock))+τlock

1+exp(−μlock (t−Tlock ))
, t > Tlock,

for each v ∈ V and for a given 0 < τlock < τ . We will assume that the four vertices
are at equal distance such that �e = � for each e ∈ E and that the coefficient diffusion
are equal on each edge, de = d, e ∈ E . We further assume that at the central vertex v2
exchanges are no longer allowed after locked down. That is, we impose that

α2
e =
{

α , t ∈ [0, Tlock],
α exp(−μlock(t − Tlock)) , t > Tlock,

e ∈ E,

while α
j
e = α for j �= 2 and e ∈ E , together with

λ2e =
{

λ , t ∈ [0, Tlock],
λ exp(−μlock(t − Tlock)) , t > Tlock,

e ∈ E,

while λ
j
e = λ for j �= 2 and e ∈ E , and also

ν2e,e′ =
{

ν , t ∈ [0, Tlock],
ν exp(−μlock(t − Tlock)) , t > Tlock,

(e, e′) ∈ E × E .

Finally, we set ηv = η for all v ∈ V . Regarding the initial condition, we work with

(S01 , I
0
1 , S02 , I

0
2 , S03 , I

0
3 , S04 , I

0
4 ) = (S0 − I0, I0, S0, 0, S0 − ε, 0, S0 + ε, 0) ,

for given (S0, I0, ε), while for each e ∈ E we have set u0e(x) = 0 on �e.
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Fig. 14 Location of the time of maximal infection Tmax for each vertex together with the corresponding

amplitude I jmax as a function of τlock (left) with its projection in the (Tmax , τlock )-plane (middle) and a
zoom near the turning points (right). Other parameters are set to � = 1, d = 0.1, η = 1/8, (α, λ, ν) =
(1/8, 1/20, 1/20), Tlock = 50 and μlock = 100 with (S0, I0, ε) = (1/4, 10−6, 10−2)

In Fig. 14, we report the location of the time of maximal infection Tmax for each
vertex together with the corresponding amplitude I jmax = maxt≥0 I j (t) as a function
of τlock . We observe that below a critical value of τlock , the time of maximal infection
always occurs at t = Tmax = Tlock traducing the fact that the locked down strategy has
no effect on the dynamics of the epidemic. At each vertex, we observe the same pattern:
as τlock is decreased the corresponding I jmax is decreasing while Tmax is increasing up
to some value of τlock where we observe a sudden turning point (see the right panel of
Fig. 14). We observe that τ tplock,vk , the value of the turning point, is well approximated
(actually always bounded by below) by the value at which the effective reproduction
number of each vertex is equal to 1. Indeed we haveRe,vk = 1 if and only if τ cvk = ηvk

S0vk
,

and we find

τ cv1 � 0.5, τ cv2 = 0.5, τ cv3 � 0.52, and τ cv4 � 0.48,

with our specific values of the initial condition, while we have computed

τ
tp
lock,v1

� 0.53, τ
tp
lock,v2

� 0.51, τ
tp
lock,v3

� 0.53, and τ
tp
lock,v4

� 0.49.

We also point out that when τlock is below the turning point τ
tp
lock,vk

, the correspond-

ing value of I jmax is below 10−3. On the other hand, in Fig. 15, we present similar
results but this time τlock is fixed and Tlock varies. Above some critical value of Tlock ,
I jmax saturates to a fixed value independent of Tlock traducing the fact that the locked
down strategy has no effect on the dynamics of the epidemic if it occurs to late in
time. Depending on the initial configuration of susceptible populations at each vertex,
we observe intricate nonlinear relationships on the location of the time of maximal
infection Tmax .

6.4 Case of N+ 1 vertices and N edges

v1 v2 v3 v4 vN vN+1
• • • • • •
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Fig. 15 Location of the time of maximal infection Tmax for each vertex together with the corresponding

amplitude I jmax as a function of Tlock for two configurations of initial susceptible populations at vertices
v3 and v4, with ε = 10−1 (left) and ε = 10−2 (right). Other parameters are set to � = 1, d = 0.1, η = 1/8,
(α, λ, ν) = (1/8, 1/20, 1/20), Tlock = 50 and ηlock = 0.6 with (S0, I0) = (1/4, 10−6)

In our final example, we have considered a network of N + 1 vertices and N edges
arranged in a lattice, in the sense that vertex v j is only connected to vertices v j−1
and v j+1 via two different edges. Figure 16 shows the time evolution of the infected
population Iv j (t) and susceptible populations Sv j (t) at each vertex for several different
initial conditionswhen the length anddiffusion coefficient of each edge are equal. In the
first case (top panel), we assume that I 0v1 > 0 while I 0v j

= 0 for all other vertices, and
observe a propagation of burst of activity among infected and susceptible populations.
In the second case (middle panel), we assume that I 0v�N/2� > 0 while I 0v j

= 0 for all
other vertices, and we see the propagation of two bursts of activity among infected and
susceptible populations going leftwards and rightwards. In the last case (bottompanel),
we assume that I 0v1 = I 0vN+1

> 0 while I 0v j
= 0 for all other vertices, and we note

the propagation of two waves activity which collide at the middle vertex v�N/2�. For
very small values of the diffusion coefficient d, this burst of epidemic activity seems
to travel coherently and forms a coherent traveling wave, as can be seen in Fig. 17
where we represent the location of maxt>0 Iv j (t) at each vertex. Such a traveling
wave of epidemic activity share similarities with traveling waves in excitable media
such as the propagation of electrical activity along a nerve cell (Hodgkin and Huxley
1952; Hupkes and Sandstede 2010) or calcium waves Sneyd (2005). When d = 10−3,
they are all aligned on the same line, where for smaller values d ∈ {10−1, 10−2

}
the

location is a nonlinear curve. We also demonstrate that larger diffusion coefficient
leads to a faster propagation of epidemic burst across vertices. Finally, we also remark
that if I dmax,1 denotes the maximum as a function of d at the first vertex, we have

I d1max,1 ≤ I d2max,1 for d1 ≤ d2 while for larger vertices j ≥ 6 we have the reverse

ordering I d1max, j ≥ I d2max, j for d1 ≤ d2.
For the numerical simulations presented in Figs. 16 and 17, we have assumed full

symmetry in the parameters that is

(�e, de) = (�, d), e ∈ E, (τv, ηv) = (τ, η), v ∈ V,

(αv
e , λ

v
e ) = (α, λ), (e, v) ∈ E × V, νv

e,e′ = ν, (e, e′, v) ∈ E × E × V.
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Fig. 16 Time evolution of the infected (left) population I j (t) and susceptible (right) populations S j (t) at
each vertex for several different initial conditions and N = 24. Top: infected individuals are initially present
only at vertex. Middle: infected individuals are initially present only at the middle vertex. Bottom: infected
individuals are initially present only at the first and last vertices. We observe a traveling wave of infectious
activity propagating though the vertices. Parameters were set to � = 1, d = 10−3, (τ, η) = (1, 1/75), and
(α, λ, ν) = (1/8, 1/10, 1/20), while the initial condition is (S0, I0) = (1/25, 10−6)

Regarding the initial condition on the edge, we have set u0e(x) = 0 on �e for each
e ∈ E .

7 Discussion

7.1 Summary of main results

In this work, we have proposed a new model that describes the dynamics of epidemic
spreading on connected graphs. Our model consists in a PDE-ODE system where at
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Fig. 17 Left: Location of the maxima of the infected population I j (t) at each vertex j ∈ {1, . . . , 25} for
several different diffusion coefficients d ∈

{
10−3, 10−2, 10−1

}
. Right: Zoom of the left figure for small

times.We observe that for very small d the location of themaxima is a long a line while it is curved for larger
values of d. We also remark that if I dmax,1 denotes the maximum as a function of d at the first vertex, we have

I
d1
max,1 ≤ I

d2
max,1 for d1 ≤ d2 while for larger vertices j ≥ 6 we have the reverse ordering I

d1
max, j ≥ I

d2
max, j

for d1 ≤ d2. Other parameters were set to � = 1, (τ, η) = (1, 1/75), and (α, λ, ν) = (1/8, 1/10, 1/20),
while the initial condition is (S0, I0) = (1/25, 10−6)

each vertex of the graph we have a standard SIR model and connections between ver-
tices are given by heat equations on the edges supplemented with Robin like boundary
conditions at the vertices modeling exchanges between incident edges and the associ-
ated vertex. Our first main result is the existence and uniqueness of classical, global
in time, solutions of our PDE-ODE model. Our second main result is a complete
characterization of the long time behavior of the unique solution of our model. We
proved that the final total populations of infected individuals at each vertex are well
defined quantities and solutions of a system implicit equations. We also managed to
obtain further qualitative properties in the fully symmetric case by exhibiting closed
form formula and relate these quantities to standard basic and effective reproductive
number for classical SIR model. Next, we proposed and analyzed a semi-implicit in
time numerical scheme based on finite differences in space which has the property to
preserve a discrete total mass associated to the discretization. We have further proved
that if the time discretization constant is smaller than a universal constant depending
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only on the parameters of the system (and not on the space discretization constant)
and if the exchanges of fluxes are symmetric at each vertex, then our mass preserv-
ing semi-implicit numerical scheme is well-posed and preserves the positivity of the
solutions. And finally, we illustrated our theoretical findings with selection of numer-
ical simulations for various types of graphs showing very interesting dynamics such
traveling waves.

7.2 Biological limitations of themodel and possible extensions

The first biological limitation of our model comes from the purely diffusive behavior
imposed on each edge of the graph. It would be biologically relevant to incorporate
some kind of directed or ballistic motion (drift term in (2.2)) given that many individu-
als set off on transportation lines travel from one specific city to another preferentially,
see Bertaglia and Pareschi (2021) for a purely hyperbolic model. This would result in
an equation on each edge of the form

∂t ue(t, x) = de∂
2
x ue(t, x) + ce∂xue(t, x), t > 0, x ∈ ◦

�e,

for some speed ce ∈ R whose sign will determine the preferred direction of trans-
portation. Such a drift termmodifies the boundary conditions at each vertex according
to

Dv∂nuv(t) + K̃vuv(t) = 
vIv(t),

where K̃v is given by K̃v = Kv − Cv where Cv = diag [(ce)e∼v]. We expect that
the long time dynamics of the system with such a directed motion, which is still mass
preserving, will be somehow similar to the purely diffusive case, and that only transient
dynamics will be affected. However, we leave it as an open modeling problem at the
moment.

A second biological limitation comes from our assumption that the movement
of individuals in the susceptible population does not affect its distribution and thus
only the infected population is subject to movement. Considering the susceptible
population as an ambient population was a first step, and it would be natural to extend
our model to the case that individuals in the susceptible population can also move
along our transportation network. In the case of spatially extended systems of reaction-
diffusion type, it is notorious that allowing the susceptible population to diffuse ismore
challenging from a theoretical point of view asmonotonicity properties of the solutions
are lost (Berestycki et al. 2020). We leave such an analysis for a future work.

7.3 Scaling limits

Several scaling limits could be considered and we present two directions which seem
natural and very promising. First, it would be very interesting to investigate the limit
of large diffusivity along the edges of the graph. One should be able to recover a class
of network-based ODE models that have been studied in the literature. Indeed, we
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expect that in this limit, one should obtain an ODE for some Ue(t) (now independent

of x ∈ ◦
�e) along the edges that depends only on the population levels at the two

connecting nodes. This should lead to an ODE system at the vertices of the graph that
is globally coupled to (Ue)e∈E .

Another natural limit to investigate is the one where the number of vertices of
the graph goes to infinity along with the length of the edges which shall converge to
zero. One would expect to obtain in the limit a PDE system describing the evolution
of spatially continuous populations of susceptible, infected and removed populations.
Depending on the initial geometry of the graph the limiting PDEwill either be posed on
the real line or on some two-dimensional domain. The exchange term between infected
individuals at the edges, given by

∑
e∼v αv

e ue(t, v)−λv Iv(t), is likely to produce in the
limit a spatial diffusion term and we expect to recover reaction-diffusion like models
such as the ones in Aronson (1977), Berestycki et al. (2020) and Berestycki et al.
(2020).
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