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Abstract
As ecosystems evolve, species can become extinct due to fluctuations in the environ-
ment. This leads to the evolutionary adaption known as bet-hedging, where species
hedge against these fluctuations to reduce their likelihood of extinction. Environmen-
tal variation can be either within or between generations. Previous work has shown
that selection for bet-hedging against within-generational variation should not occur in
large populations. However, this work has been limited by assumptions of well-mixed
populations, whereas real populations usually have some degree of structure. Using
the framework of evolutionary graph theory, we show that through adding competition
structure to the population, within-generational variation can have a significant impact
on the evolutionary process for any population size. This complements research using
subdivided populations, which suggests that within-generational variation is important
when local population sizes are small. Together, these conclusions provide evidence to
support observations by some ecologists that are contrary to the widely held view that
only between-generational environmental variation has an impact on natural selec-
tion. This provides theoretical justification for further empirical study into this largely
unexplored area.
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1 Introduction

Many traits in biological populations have been explained by selection for risk-
spreading to safeguard against environmental variation, known as evolutionary
bet-hedging (Beaumont et al. 2009; Levy et al. 2012; Sarhan and Kokko 2007; Seger
1987; Starrfelt and Kokko 2012; Stumpf et al. 2002; Venable 2007). In a stochastically
varying environment, a species that maximises its mean reproductive rate, or mean
fitness, is not necessarily the strongest, since this could coincide with increased sen-
sitivity to fluctuations in the environment. A bet-hedger is defined as a strategy that
has lower mean fitness than its rival, but is selected over the rival since it has reduced
variation in its fitness, due to being less sensitive to these fluctuations. For example,
consider a simple habitat that fluctuates between a short wet season and a long dry sea-
son. Mean fitness would be maximised by adapting to the dry season. However, such
an adaptation may result in terrible performance during the wet season. A generalist,
who is well-adapted to both seasons, will have lower mean fitness, but is protected
from the environmental fluctuations and therefore has reduced variation in its fitness
across seasons.

An ecological example of bet-hedging can be observed in the delayed germina-
tion strategy in desert annuals (Cohen 1966; Philippi 1993; Venable 2007). These
plants release multiple seeds, most of whom germinate in the next season with a frac-
tion remaining dormant until future seasons. Such a strategy reduces mean fitness,
since some dormant seeds may be lost before germination. However, this strategy
also reduces the variation in fitness, because it ensures that not all offspring will die
if the next season is bad. Bet-hedging adaptations have also evolved in microbial
communities under turbulent environments (Beaumont et al. 2009; Levy et al. 2012).
These examples consider between-generational variation (Gillespie 1973), whereby
all individuals experience the same conditions at any time. Mathematically, adaption
to counter this type of variation is easily described and understood assuming evenly
mixed populations of species (Gillespie 1973; Hopper 1999; Starrfelt and Kokko
2012).

Environmental variation can also act locally on individuals, causing within-
generational (or demographic) variation. In this context, the fitness of an individual
can be different from that of another individual of the same type at a given time, but
both will have fitness drawn from the same distribution. One example is where pre-
dation levels across the habitat are variable. Assuming a cost of spreading offspring
across numerous sites, the strategy to maximise fitness corresponds to choosing a sin-
gle nesting location. However, since this site could be predated, a bet-hedger could
evolve that spreads offspring across numerous sites to reduce the predation risk. An
ecological example of potential bet-hedging against within-generational variation has
been observed in female sierra dome spiders (Watson 1991). These females exhibit a
multiple paternity strategy, whereby the primary mate is the victor of a fight among
potential suitors, and secondary mates are selected at random. Mean fitness would be
maximised by only selecting the primary mate, but random secondary mating hedges
against the fight only taking place betweenweak suitors.Many other examples are sim-
ilar and focus on multiple-paternity as a bet-hedging strategy (Fox and Rauter 2003;
Sarhan and Kokko 2007; Watson 1991; Yasui 2001). Other work has identified strate-
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gies in Cabbage Butterflies (Root and Kareiva 1984) and Aphids (Ward and Dixon
1984) that potentially evolved as bet-hedgers against within-generational variation.

Despite the ecological observations, mathematical models in well-mixed popula-
tions lead to the conclusion that such variation does not drive evolutionary adaption
unless the population is unrealistically small (Gillespie 1974; Hopper 1999; Hopper
et al. 2003), contradicting and challenging the ecological observations (Courtney 1986;
Hopper 1999; Hopper et al. 2003). Such challenges have potentially led to the lack
of examples of bet-hedging against within-generational variation in recent literature,
apart from cases restricting themselves to small population sizes (Sarhan and Kokko
2007).

Real populations are often not well-mixed and typically exist within some defined
population structure, such as spatial or social structure. Some population structures
consist of distinct groups of individualswithin patches (or demes). Bet-hedging in such
populations has been investigated using metapopulation models and deme-structured
models (Lehmann and Balloux 2007; Shpak 2005; Shpak and Proulx 2007; Yasui
and Garcia-Gonzalez 2016). These cases have demonstrated that within-generational
bet-hedging strategies can evolve in metapopulations, provided the deme (or patch)
contains sufficiently few individuals. Here we generalise the study of bet-hedging
to graph structured populations, which can capture interaction/competition structure
as well as deme-structure. The benefit of graph structure over metapopulations is
that different types of contact structure can be considered. For example, popula-
tions where individuals interact and compete on a local scale but not within closed
groups of individuals, such as competition in epithelial cells (Renton and Page 2019)
and cancer growth (Hindersin et al. 2016). One distinction is that individuals do not
necessarily interact with the neighbours of their neighbours, which can capture interac-
tions such as social behaviour and spatially constrained competition. Mathematically,
evolution in structured populations is described by evolutionary graph theory (Lieber-
man et al. 2005; Ohtsuki et al. 2006), which we build upon to incorporate variation.
By analysing the evolutionary process in structured populations, we show that both
between- and within-generational bet-hedging can be favoured in the evolutionary
process, regardless of population size. This supports the conclusions from metapop-
ulations in providing an explanation for the ecological observations. We also discuss
how different types of structure impact selection for within-generational bet-hedging.

2 Evolutionarymodel

To determine the impact of population structure on the evolution of bet-hedging strate-
gies we model the dynamics of the process. We are interested in when a bet-hedging
strategy has a competitive advantage over the non-bet-hedging strategy, which we call
the normal-type. Evolution in structured populations (generally in a non-variable envi-
ronment) is described by evolutionary graph theory (Antal et al. 2006; Broom et al.
2010; Broom and Rychtář 2008; Hindersin et al. 2016; Lieberman et al. 2005; Renton
and Page 2019). Here, population structure is represented by an undirected connected
graph in which connections between individuals represent potential for competition.
This framework is an extension of theMoran process (Moran 1958) to structured popu-
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lations. Metapopulation and deme-structured models fit this framework if we consider
each patch (or deme) to be akin to a cluster of individuals who are connected, and the
connections between patches to be represented by links between these clusters.

We consider a population with two types (or strategies) of individuals, the bet-
hedging strategy M and the normal-type strategy R, either of which can play the role
of the resident. The population structure is defined by a graph G = (V , E), where
V is the set of nodes and E is the set of edges between these nodes. The biological
interpretation is that individuals in the population each occupy a node, with only one
individual per node. The edges represent competition between individuals, in the sense
that individuals can only place their offspring onto connected nodes.

Following Argasinski and Broom (2013), Roff (2008), andWild and Taylor (2004),
the fitness of an individual is proportional to its birth rate. Therefore, an individual is
first selected to die at random, resulting in a vacant node in the population. The neigh-
bouring (connected) individuals of this node then compete to replace with an identical
offspring, with probability proportional to their fitness (Fig. 1). Since offspring are
identical, there is no further mutation until one strategy eliminates the other. Following
Ohtsuki et al. (2006), we refer to these dynamics as death-birth with selection on birth.
Other dynamics have been proposed for evolution in structured populations, which we
highlight in the discussion.

Traditional evolutionary graph theory dynamics do not capture variation in fitness,
which is present in many real-world populations. To incorporate this we treat fitness
as a random variable, the changes in which can be considered as changes in the local
conditions. We assume that offspring inherit the fitness distribution of their parent,
rather than the absolute fitness value. This general definition of fitness can account for
either between and/or within-generational variation by changing correlations between
each random variable. Many real-world examples (Beaumont et al. 2009; Gravenmier
et al. 2018; Olofsson et al. 2009; Sarhan and Kokko 2007; Tufto 2015; Venable 2007;
Yasui 2001; Yasui and Garcia-Gonzalez 2016; Yasui and Yoshimura 2018) can be
modelled using random variables to capture the variability in future conditions. Mod-
elling in this manner allows us to focus on the effect of variation. However, if applied
to real populations, the explicit environmental changes may need to be modelled more
directly.

Todescribe how this stochastic process changes,wedefine the probability ofmoving
from one state to another, where a state represents which nodes are occupied by M
and which are occupied by R. From any state S that is not all M or all R, we can
move to a state S+ with more type M individuals (bet-hedgers) or S− with more type
R individuals (normal-types). To move from S to S+ we require a normal-type to die
followed by selecting a bet-hedger for reproduction. For a given node j , the probability
of death is 1/N . After j is selected for death, the neighbouring individuals, which we
will refer to as the selection group (Fig. 2), compete to replace j . We will refer to the
probability of selecting a certain type (given that an individual has been selected for
death) as the selection probability of that type. Therefore, the probability of moving to
a state S+ is given by summing the products of the probability that each normal-type
individual is selected for death multiplied by the corresponding bet-hedger selection
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Fig. 1 The update dynamics of the evolutionary process. Firstly, an individual is randomly selected for
death, indicated by the white arrow (left-most image). This results in a vacant node in the population, which
the neighbouring individuals can then compete to fill (middle image). One of these individuals is then
selected for birth, with probabilities proportional to their fitness, and the vacant node updates to become the
type of selected individual (right-most image). Either the selected node becomes a bet-hedger M (top-case)
or a normal-type R (bottom-case)

probability. That is,

P(S → S+) =
N∑

j=1

1

N
RS
j P(type M selected to reproduce | j dies and state S) (1)

where RS
j = 1 if the individual in node j is a normal-type in state S, and zero otherwise.

Similarly, the probability of moving to a state with more R individuals is given by

P(S → S−) =
N∑

j=1

1

N
MS

j P(type R selected to reproduce | j dies and state S), (2)
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Fig. 2 Figure showing how node-degree changes the selection group size. The two figures on the left show
the selection group for a high degree focal node and the two figures on the right for a low degree focal node.
The top figures indicate the graphs before an individual is selected for death, and the lower two figures
show the resulting selection groups. After an individual is selected for death (central node), the connected
individuals (in dashed circles) compete to replace this individual. We refer to these connected individuals
as the selection group. The different structures can influence the number of nodes in the selection group,
with a higher degree node having a much larger selection group

where MS
j = 1 if and only if the individual in node j is a bet-hedger in state S, and

zero otherwise. These two probabilities dictate how the system evolves at each time
step, and therefore provide a measure of the relative strength between the competing
strategies.

3 The effect of fitness variation on bet-hedger selection probability

An obvious measure of variation is the variance, which is useful since it is easily
calculated. However, it has limitations; for example, if two distributions have equal
mean and variance it gives no insight into which is more varied. This information
is captured in the higher order moments of the distributions, such as the skew and
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kurtosis. A more comprehensive representation of variation is given by the convex
order (Shaked and Shanthikumar 2007;Wilkinson and Sharkey 2018), such that if one
distribution is greater than another in convex order then it is more variable. Convex
order describes variability by ordering the expected values of convex functions, which
are sensitive to the variation.

For two random variables X and Y , we say that X is less than Y in convex order (and
therefore less variable than Y ), denoted X ≤cx Y , if and only if E[φ(X)] ≤ E[φ(Y )]
for all convex functions φ. A useful result that can be obtained from convex ordering
is (Shaked and Shanthikumar 2007)

X ≤cx Y �⇒ E[X ] = E[Y ],Var(X) ≤ Var(Y ),

so if one randomvariable is less than another in convex order then its variance cannot be
larger than the other. Establishing convex order can be difficult, but there are methods
for doing this and under certain circumstances, this ordering of distributions reduces
to ordering of the variance of the distributions (Shaked and Shanthikumar 2007).
However, for our purposes, we only need to use this as a precise ordering of variability
between any two distributions.

In the evolutionary process, selective pressure is governed by the selection prob-
abilities on the right-hand side of Eqs. (1) and (2). For any given replacement event,
the selection group consists of m bet-hedgers and n normal-types, so the selection
probability depends on m and n. The bet-hedger selection probability can be shown
(“Appendix” A) to reduce to

P(M reproduces |m type M and n type R) = E

⎡

⎢⎢⎢⎣

m∑
i=1

f Mi

m∑
i=1

f Mi +
n∑
j=1

f Rj

⎤

⎥⎥⎥⎦ , (3)

where f Mi is the fitness of a bet-hedger i and f Rj is the fitness of a normal-type j .
Here, the bet-hedgers in the selection group (immediate neighbours of the individual
selected for death) are labelled from 1 to m and the normal-types are labelled from
1 to n, so that m + n = k where k is the size of the selection group. Noting that the
selection probability of a normal type and the selection probability of a bet hedger sum
to 1, the strength of selection can be represented solely by the bet-hedger selection
probability. Equation (3) is the expected value of a convex function of normal-type
fitness. Therefore, by the definition of convex order, increasing the variation of normal-
type fitness in convex order can only increase the selection probability of the bet-
hedger.
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The bet-hedger selection probability can be also written as 1 minus the normal-type
selection probability, which gives

P(M reproduces |m type M and n type R) = 1 − E

⎡

⎢⎢⎢⎣

n∑
j=1

f Rj

m∑
i=1

f Mi +
n∑
j=1

f Rj

⎤

⎥⎥⎥⎦ .

The second term here is a convex function of the bet-hedger fitness, which implies that
decreasing the bet-hedger fitness variation through convex order can only decrease the
value of this term, thus increasing the bet-hedger selection probability. Therefore, bet-
hedger performance increases through either the environment experienced by normal-
type individuals becoming more variable or by reducing its own fitness variability.

To obtain the selection probability (Eq. (3)), the bet-hedger fitness is averaged over
the total fitness of the surrounding individuals (“Appendix” A). Assuming that the
proportion of bet-hedgers to normal-types remains approximately constant (m/n ≈
γ ), the selection probability can be transformed to depend on sample averages,

P(M reproduces |m type M and n type R) = E

⎡

⎢⎢⎢⎣

γ (
m∑
i=1

f Mi )/m

γ (
m∑
i=1

f Mi )/m + (
n∑
j=1

f Rj )/n

⎤

⎥⎥⎥⎦ .

For within-generational variation, each individual can sample a different value at
the same time. Therefore, as the selection group size increases, these sample aver-
ages become less sensitive to normal-type variation, due to the law of large numbers.
Consequently, the selection probability becomes less sensitive to this variation as we
increase selection group size, and for large selection groups, selection for reduced
within-generational variation is diminished. This explains why in large well-mixed
populations, within-generational bet-hedging should not evolve (Gillespie 1974).
However, since the selection group depends on the degree of the node chosen for death
(see Fig. 2 for an illustration), if the degree of this node is low then within-generational
variation can have a large impact on the selection probability, regardless of population
size. By taking small clusters of fully connected individuals, inter-connected with a
sparse number of edges, we can create metapopulation-like graphs. In this case, if the
cluster size is small, the selection group will be small and within-generational bet-
hedging can evolve, agreeingwith predictions frommetapopulationmodels (Lehmann
and Balloux 2007; Shpak 2005; Shpak and Proulx 2007; Yasui and Garcia-Gonzalez
2016).

For between-generational variation, individuals experience identical conditions
during a generation. This is modelled by having all individuals of a given type sample
the same value. Therefore, the selection probability can be written as

P(M reproduces |m type M and n type R) = E

[
m f M1

m f M1 + n f R1

]
.
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Assuming the proportion of bet-hedgers to normal-types is constant (m/n ≈ γ ), this
becomes

P(M reproduces |m type M and n type R) = E

[
γ f M1

γ f M1 + f R1

]
,

for any selection group size. Therefore, for between-generational bet-hedging there
is no diminishing effect due to large selection groups since there is no dependence
on selection group size, and between-generational variation will have a large impact
for all graphs and population sizes. Since there is no significant impact of population
structure on selection, and evolution of between-generational bet-hedging has been
widely explored mathematically (Gillespie 1974; Hopper 1999; Starrfelt and Kokko
2012), we focus on within-generational bet-hedging for the remainder of this paper,
and hence will drop the within-generational prefix in what follows.

3.1 Approximate result for variance

For evolutionary bet-hedging models, approximate results are often derived using
a second order Taylor approximation (Frank and Slatkin 1990; Gillespie 1974; Rice
2008; Rice and Papadopoulos 2009; Shpak 2005; Shpak and Proulx 2007; Starrfelt and
Kokko 2012). Following this approach,we apply a two-dimensional second-order Tay-
lor approximation about themean fitness of both types, which yields (“Appendix” B.1)

P(M reproduces | m type M and n type R)

≈ mμM

(mμM + nμR)
+ mnμM

(mμM + nμR)3
σ 2
R

− m

(mμM + nμR)2
σ 2
M + m2μM

(mμM + nμR)3
σ 2
M (4)

whereμZ andσ 2
Z are the expected value and the variance of the type Z ∈ {M, R}fitness

distribution, respectively. This suggests that mean and variance are key parameters
controlling the selection probability.

The coefficient of σ 2
R is positive, so increasing the variation of the normal-type

fitness through the variance is likely to increase the bet-hedger selection probability.
The total coefficient of σ 2

M is negative, so decreasing the bet-hedger variation through
the variance is also likely to increase the bet-hedger selection probability. We again
observe that selection for bet-hedging depends on the size of the selection group rather
than population size, since the variance dependent terms in Eq. (4) diminish with m
and n. The diminishing effect occurs since the order and m and n in the denominator
are higher than in the numerator.

For the bet-hedger to be favoured in a given replacement event, we require the
selection probability of the bet-hedger in this event to be larger than the selection
probability of the normal-type in the opposite event. That is, we require the bet-hedger
selection probability from m bet-hedgers against n normal-types to be larger than the
normal-type selection probability fromm normal-types against n bet-hedgers. Treating
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the bet-hedger variance as fixed, the normal-type variance at which these are equal,
which we call the critical normal-type variance, is approximated by (“Appendix” B.2)

σ 2
R(k,m)

≈ 1(
(k2 − 3km + 3m2)μ2

R − μM (k2 − 6km + 6m2)μR + μ2
M (k2 − 3km + 3m2)

)
kμM

×
[
μ5
Rm

2(k − m)2 + 2(k − m)μM
(5
2
m2 − 5

2
km + k2

)
mμ4

R

+
(
(k4 − 6k3m + 16k2m2 − 20km3 + 10m4)μ2

M + kσ 2
M (k2 − 3km + 3m2)

)
μ3
R

−
(
(k4 − 6k3m + 16k2m2 − 20km3 + 10m4)μ2

M + kσ 2
M (k2 − 6km + 6m2)

)
μMμ2

R

− 2μ2
M

(
(k − m)

(5
2
m2 − 5

2
km + k2

)
mμ2

M − kσ 2
M

(k2 − 3km + 3m2)

2

)
μR − m2(k − m)2μ5

M

]
.

(5)

Alternatively, we can treat normal-type variance as fixed and find the critical bet-
hedger variance by rearranging Eq. (5) to find σ 2

M (not shown). Taking the derivative
of Eq. (5) with respect to m we obtain

∂σ 2
R(k,m)

∂m

= 1

μM ((k2 − 3km + 3m2)μ2
R − μM (k2 − 6km + 6m2)μR + μ2

M (k2 − 3km + 3m2))2k

×
[

− 2
(
(k2 − 3

2
km + 3

2
m2)μ2

M + μR(k2 + 6km − 6m2)
μM

2

+ μ2
R(k2 − 3

2
km + 3

2
m2)

)

× (
(k − m)μM + μRm

)
(k − 2m)

(
mμM + μR(k − m)

)
(μM − μR)3

]
.

This can be written as

f (m) = ∂σ 2
R(k,m)

∂m
= g(m)h(m)

z(m)
,

where

g(m) =2(k2 − 3/2km + 3/2m2)μ2
M + μR(k2 + 6km − 6m2)μM

+ 2μ2
R(k2 − 3/2km + 3/2m2),

h(m) =
(
(k − m)μM + μRm

)
(k − 2m)

(
mμM + μR(k − m)

)
,

z(m) =μM

(
(k2 − 3km + 3m2)μ2

R − μM (k2 − 6km + 6m2)μR

+ μ2
M (k2 − 3km + 3m2)

)2
k.
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Both h(m) and z(m) are strictly positive for m ≤ k/2. Therefore, we only need
to consider the sign of g(m). The derivative of g(m) with respect to m is a negative
function of m, so the minimum value occurs at m = k/2. Since g(k/2) > 0, g(m)

must be positive for all m ≤ k/2. Since all three functions are positive over the range
ofm that we consider, f (m) is positive for allm ≤ k/2. Therefore, the critical normal-
type variance is an increasing function of m, and the maximum critical normal-type
variance occurs in the evenly-mixed scenario, m = n = k/2, where

σ 2
R(k, k/2) ≈ (μ2

R − μ2
M )(μM + μR)k + 4μRσ 2

M

4μM
. (6)

In this scenario, the critical normal-type variance grows linearly with the selection
group size k, showing that selection forwithin generational bet-hedging quickly dimin-
ishes with selection group size. In the case where σ 2

M = 0, the critical normal-type
variance is proportional to k, so any increase in k requires a increase in the critical
normal-type variance. In the general case, if both k and σ 2

M increase by the same
proportion, then the critical normal-type variance also increases by this proportion.

3.2 Implications for the fixation probability

The results in Sects. 3 and 3.1 focus on the relative strength of each strategy for a
given selection event. However, the evolutionary process consists of multiple selection
events with different selection groups. Therefore, the fixation probability determines
the overall strength of each strategy. This is the probability that an initial subset of
mutants takes over the population, and is a popular measure to compare different
strategies within evolutionary theory (Altrock and Traulsen 2009; Broom and Rychtář
2008;Czuppon andTraulsen 2018;Giaimo et al. 2018; Lieberman et al. 2005; Traulsen
and Hauert 2010). Since increasing variation in normal-type fitness (or decreasing bet-
hedger fitness variation) increases the relative strength of bet-hedgers, we assume that
bet-hedger fixation probability will also increase.

Assuming that bet-hedger fixation probability is increasing with normal-type vari-
ation, we want to find the level of variation above which the bet-hedger becomes
favoured in the evolutionary process; i.e. the fixation probability of a bet-hedger invad-
ing a normal-type population is higher than the normal-type invading bet-hedgers. We
call this the overall critical normal-type variation. Subject to the assumptions of the
Taylor approximation, we showed that there is a level of variation in the normal-type
fitness above which the bet-hedger is favoured for a given selection event. We assume
that there is also a critical normal-type variation for arbitrary fitness distributions
(where the assumptions of the Taylor approximation may not be satisfied). For certain
distributions, such as the gamma distribution, this can be calculated using numerical
methods (e.g. “Appendix” C.1). Alternatively, this critical normal-type variation can
be approximated by setting the variance of the distribution to be given by Eq. (5). Since
there is a level of variation above which, for a given selection group, the bet-hedger
will be favoured, eventually the bet-hedger will be favoured in every selection group.
Therefore, the overall critical normal-type variation must exist.
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On k-regular graphs, the conclusions from the selection probability can easily be
applied to fixation probability, since each selection group is of size k. Here, if the bet-
hedger is favoured in every scenario for a size k selection group, theymust be favoured
overall. From the Taylor approximation, if the bet-hedger is favoured in the evenly-
mixed scenario then the bet-hedger is favoured in every scenario, sowe assume that the
critical normal-type variation for the evenly-mixed scenario provides an upper bound
for the overall critical normal-type variation. Extending the conclusions to arbitrary
graphs is less clear, since there can be variability in node-degree. In such cases, it is
not obvious how the cumulative effects of different selection group sizes will affect
the relative strength of bet-hedgers (the upper bound can be determined by looking
at the maximum selection group size on the network, but this may be a very loose
upper bound). To investigate this, and to confirm that our assumptions hold, we now
investigate the fixation probability numerically.

4 Numerical results

Here we investigate the fixation probability numerically using stochastic simulations,
in order to test the assumptions from Sect. 3.2. For a fitness distribution, we require a
distribution bounded below by zero. Right-skewed distributions are common in many
biological systems, so we choose to use gamma distributions to represent fitness for
both bet-hedgers and normal-types. We opt to use gamma over other right-skewed
distributions since for the gamma distribution, convex order reduces to ordering the
variance, which enables the variation of the distribution to be easily controlled.

4.1 Regular graphs

We consider four 50 node graphs: a complete graph, and three k-regular random
graphs, with degrees 16, 8 and 4. The relative strengths of the normal-type and the bet-
hedger is determined by the ratio of their fixation probabilities. The overall critical
normal-type variation for each graph is given by the variation at which this ratio
is equal to 1. We compare this to the upper bounds predicted by the evenly-mixed
critical normal-type variation, calculated numerically (see “Appendix” C.1) and using
the Taylor approximation [Eq. (6)].

Figure 3 illustrates that increasing the normal-type variation increases the bet-
hedger fixation probability and decreases the normal-type fixation probability for all
graphs, as expected based on the assumptions in Sect. 3.2. Since the selection proba-
bility is very sensitive to the degree of the graph [Eq. (3)], for graphs with high degree,
such as the complete graph, variation has little impact on the selection probability. This
is reflected in the slight impact of normal-type variance on the fixation probability and
is consistent with established results in well-mixed populations (Gillespie 1974; Seger
1987). For graphs with low average degree, variation has a significant effect on the
fixation probability and can be a key factor in the evolutionary process. As we increase
the variation in bet-hedger fitness (measured through increasing the variance, σ 2

M ) we
observe the same pattern (Fig. 3), however the critical normal-type variation required
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Fig. 3 The impact of within-generational variation on the overall relative strength of bet-hedgers on four
50 node k-regular graphs. Bet-hedger has mean fitness equal to 0.95 with normal-type mean fitness equal
to 1. The left-hand figures show the ratio of bet-hedger to normal-type fixation probability, calculated from
a single mutant of the invading type. The right-hand figures show the fixation probabilities, with the solid
curves indicating the bet-hedger and the dashed-curves indicating the normal-type. Along the x-axis we
change the variance of the normal-type fitness distribution, σ 2

R . Moving from the top through the middle

to the bottom subgraphs, the variance of the bet-hedger fitness distribution, σ 2
M , increases. When variance

is non-zero, we assume fitness is given by a gamma distribution (the parameters of which are uniquely
determined by the mean and variance), so changing the variance changes the convex order (and therefore
changes the variation in the distribution). On the left-hand figures, the black horizontal line at 1 is used
to indicate which strategy is favoured. If the ratio is below 1 the normal-type is favoured, and above 1
the bet-hedger if favoured. The overall critical normal-type variance is the x-coordinate when each ratio
crosses 1. The upper bounds are indicated by the dashed vertical lines and the approximate upper bounds
are marked by the dotted vertical lines

for the bet-hedger to be favoured increases. This is in line with the results from the
Taylor approximation (Eq. 5), which suggested that critical normal-type variation is
an increasing function of bet-hedger variation.

We argued in Sect. 3.2 that the evenly-mixed critical normal-type variation pro-
vides an upper bound on the overall critical normal-type variation. This upper bound
in fact provides a good approximation to the overall critical normal-type variation
for each graph tested (the dashed lines in Fig. 3 are at a slightly higher normal-
type variance than where the ratio crosses 1), which we can use to gain insight into
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how much variation is required for the bet-hedger to be favoured in regular graphs.
Under the gamma distribution, the evenly-mixed critical normal-type variation lin-
early increases with selection group size when the bet-hedger has no variation in their
fitness (“Appendix” C.2), showing that increasing selection group size can quickly
suppress selection for bet-hedging strategies. Comparing the Taylor approximation
to the computed upper bound (the dotted and dashed lines in Fig. 3, respectively),
we observe that this provides a rough approximation to the upper bound when the
variance required for the bet-hedger to be favoured is low. However, as the variance
required increases (in this case by increasing selection group size or increasing the
bet-hedger variation) the discrepancy between the two increases. This is because as
the normal-type fitness distribution becomes more variable, the higher order moments
increase, which causes the assumptions underpinning the Taylor approximation to no
longer hold.

4.2 Impact of degree heterogeneity

On k-regular graphs, we have shown that the average degree controls selection for bet-
hedging. Such graphs have no variability in the degree of different nodes, however, in
real populations we would expect some level of degree variability. Here, we consider
the effect of degree variability on selection for bet-hedging.

We first consider the star graph and the circle, which have the same average degree
in the limit of large population size but different degree variability. On the star graph,
there is one focal individual who is connected to every other individual. All other
individuals are only connected to this focal individual. This graph has high degree
variability, with one node having degree N − 1 and all others having degree 1, where
N is the population size. On the circle, individuals are connected in a loop, so all nodes
have degree 2 and there is no variability.

For the star graph, there are a few possible distinct transitions that can occur. If
a bet-hedger is in the central node, the changes that can happen to the system are
either this node dying and being replaced by a normal-type from the leaf nodes, or a
normal-type leaf node dying and being replaced by a bet-hedger from the central node.
Similarly, if the central node is a normal-type, either this node can die and be replaced
by a bet-hedger from a leaf node, or a bet-hedger leaf node can die and be replaced by
a normal-type from the central node. Due to the symmetry of the leaf nodes, we can
group all these events together so that we only have these four possible state transitions
to consider. Let pMM

i,i+1 denote the probability that the system transitions from a state
with a bet-hedger in the central node and i bet-hedgers on the leaves to a state with a
bet-hedger on the central node and i + 1 bet-hedgers on the leaves. Let pMR

i,i denote
the probability that the system transitions from a state with a bet-hedger in the central
node and i bet-hedgers on the leaves to a state with a normal-type in the central node
and i bet-hedgers on the leaves. From Eqs. (1) and (2), these transition probabilities
are given by

pMM
i,i+1 =N − 1 − i

N
,
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pMR
i,i = 1

N
E

⎡

⎢⎢⎢⎣

N−1−i∑
j=1

f Rj

i∑
j=1

f Mj +
N−1−i∑
j=1

f Rj

⎤

⎥⎥⎥⎦ , (7)

pRRi,i−1 = i

N
,

pRMi,i = 1

N
E

⎡

⎢⎢⎢⎣

i∑
j=1

f Mj

i∑
j=1

f Mj +
N−1−i∑
j=1

f Rj

⎤

⎥⎥⎥⎦ . (8)

Selection is only taking place when an individual on a leaf node replaces the central
node (Eqs. (7) and (8)). This is because when a leaf node dies only the central node can
replace this, so there is no competition-based selection taking place. When the central
node is replaced, the selection group size is equal to the number of leaves, which is
N−1 for population size N . Therefore, for a sufficiently large population, the impact of
within-generational variation on the selection probability rapidly diminishes, resulting
in no selection for within-generational bet-hedging on a large star graph.

For the circle, suppose there is a single cluster of connected bet-hedger individuals
with no normal-type individuals between them. The symmetry of the graph allows
us to consider the number of bet-hedger individuals rather than their locations, since
the group of bet-hedgers can only change at the two boundaries where they meet
normal-types (Broom et al. 2010). Denoting the probability of moving from a state
with i bet-hedgers to i + 1 bet-hedgers by pi,i+1, and the reverse process by pi,i−1,
we can describe the transition probabilities between different states with the following
equations

p1,0 = 1

N
,

pi,i+1 = 2

N
E

[
f Mj

f Mj + f Rj

]
, i < N − 1

pi,i−1 = 2

N
E

[
f Rj

f Mj + f Rj

]
, i > 1

pN−1,N = 1

N
,

where j is arbitrary since the fitness distributions for a given type are independent
and identically distributed. From this we can see that on the circle within-generational
variation will always have an influence on selection, since there is no dependence
on N , potentially paving the way for a bet-hedging strategy to evolve. Although an
extreme case, this shows that increasing the variability in the degree distribution of
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Fig. 4 The impact of variance in the degree distribution on the overall critical normal-type variation. We
consider sixteen 8 node graphs with average degree equal to 4, each with a different variance in their node
degree distribution. Along the x-axis we change the variance of the normal-type fitness distribution, σ 2

R .
The y-axis shows the ratio between the bet-hedger fixation probability and normal-type fixation probability

the graph (by going from no variation on the circle to high variation on the star) may
reduce the selection for bet-hedging.

To investigate this further, we generate a sample of graphswith fixed population size
and average node degree but different degree variability (measured using the variance
of the degree distribution). Generating 1,000,000 random graphs (Erdős and Rényi
1960)with N = 8 and average degree equal to 4 results in 16 unique degree distribution
variances being sampled. From these graphs, we select a cohort of 16 graphs by
randomly selecting a single graph for each variance. We label these numerically from
“Graph 1” to “Graph 16”, where increasing the index corresponds to an increase in
the degree distribution variance.

For each graph, we assume the bet-hedger has gamma distributed fitness with mean
0.95 and variance 2. Normal-type fitness is gamma distributed with mean 1, and we
change the variation to numerically determine the overall critical normal-type vari-
ation. For each value of normal-type variation, we perform 30,000,000 stochastic
simulations to identify the fixation probability of a single mutant of each type in a res-
ident population of the other, fromwhichwe calculate the ratio of fixation probabilities,
with the results shown in Fig. 4. Using this, we determine the critical normal-type vari-
ation, which gives the ordering: 1, 2, 3, 4, 5, 6, 7, 9, 10, 8, 11, 12, 13, 16, 14, 15. In
the majority of cases, increasing variance in the degree distribution increases the over-
all critical normal-type variation, and therefore decreases selection for bet-hedging.
There are however some outliers in this pattern (graphs 8 and 16 in this example).
This is a common occurrence in evolutionary graph theory, where it has been found
that under the death-birth with selection on birth dynamics considered here, although
most random graphs suppress fixation probability relative to a well-mixed population,
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Fig. 5 The impact of population size on the overall critical normal-type variation. We consider three k-
regular random graphs with degree equal to 4 and population sizes: 50, 100 and 200. We change the
normal-type variance, σ 2

R , along the x-axis. The y-axis shows the ratio between the bet-hedger fixation
probability and normal-type fixation probability

there are a small minority of outliers for which this is reversed (Hindersin and Traulsen
2015).

4.3 Population size

We have shown that, for regular graphs, increasing the average degree of the graph
increases the critical normal-type variation required for the bet-hedger to be favoured.
From Sects. 3 and 3.1, the critical normal-type variation on such graphs should be
independent of total population size. Here, we investigate the impact of population
size on regular graphs using three populations sizes: N = 50, N = 100, N = 200.

For eachpopulation size,we assume that bet-hedgers havegammadistributedfitness
with mean 0.95 and variance 2, and that normal-type have gamma distributed fitness
with mean 1. To determine the overall critical normal-type variation, we vary the
normal-type variation. We perform 1,000,000 stochastic simulations for each value
of normal-type variance, first with the bet-hedger invading the normal-type and then
with the normal-type invading the bet-hedger, from which we calculate the ratio of
bet-hedger to normal-type fixation probabilities. Figure 5 shows that the population
size does not have an influence on the critical normal-type variation, which is instead
governed by selection group size.We see that larger population sizes amplify selection
for the favoured type. This occurs since in a larger population, a rare invader is less
likely to be randomly selected for death. Therefore, if the invader has a selective
advantage over the resident, it will be more likely to have a chance to reproduce and
gain a foothold than it would in smaller populations.
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5 Discussion

Evolutionary bet-hedging refers to the theory that the evolutionary process is sensitive
to variation in fitness, with some species potentially accepting a decrease in their
mean fitness to reduce this variation. A key area of discussion within evolutionary
bet-hedging is the existence of strategies that potentially bet-hedge against within-
generational variation; i.e. variations that affect individuals of the same type differently
within eachgeneration. Such strategies havebeenobserved (FoxandRauter 2003;Root
andKareiva 1984; Sarhan andKokko 2007;Ward andDixon 1984;Watson 1991;Yasui
2001), however mathematical theory has widely challenged their existence, instead
suggesting that evolution should not select for this type of variation.

Traditional work has been mostly limited to well-mixed populations. Real popu-
lations however often exhibit some degree of structure, and this structure can have
a significant impact on the evolutionary process. These impacts include amplifying
the probability of advantageous mutants taking over a population (Lieberman et al.
2005) and facilitating the evolution of cooperative strategies in social dilemmas (Oht-
suki et al. 2006). Using models with metapopulation structure has demonstrated
that within-generational variation can be important when the patches are sufficiently
small (Lehmann and Balloux 2007; Shpak 2005; Shpak and Proulx 2007; Yasui and
Garcia-Gonzalez 2016). By analysing bet-hedging strategies in graph structured pop-
ulations, we have shown that within-generational variation can be a key factor in
selection, and strategies that bet-hedge against such variation can be favoured in the
evolutionary process, regardless of population size. In particular, provided that the
average degree of the graph is reasonably low and degree variability is not too high,
selection for within-generational bet-hedging is strong.

In such populations, bet-hedging strategies are likely to evolve, underpinning the
results of some ecologists who have used bet-hedging against within-generational
variation to explain observed strategies (Root and Kareiva 1984; Sarhan and Kokko
2007; Ward and Dixon 1984; Watson 1991). Many real-world population structures
will have these properties, since individuals compete with a subset of the whole pop-
ulation and there will not be wide variability in the size of such competition groups.
For example, the spread of cancer has been modelled using evolutionary graph the-
ory frameworks (Hindersin et al. 2016). Recent results have shown the potential for
between-generational bet-hedging within cancer cells (Gravenmier et al. 2018). Mod-
elling the variable environment experienced by cancer cells with an evolutionary graph
theory competition framework could provide evidence for the potential of within-
generational bet-hedging in cancer cells. This scenariowould not be directly evidenced
by a subdivided population model since there are no clear divisions in the population,
only local competition between the cells.

This paper has focused on death-birth with selection on birth dynamics. However,
other evolutionary dynamics have been suggested for evolution in structured popula-
tions, such as birth-death with selection on death (Antal et al. 2006), where first an
individual is randomly selected to reproduce, with the offspring replacing a neigh-
bour selected with probability proportional to the inverse of their fitness. Under these
dynamics, if fitness is taken to be a measure of survivability rather than birth rate, then
adding population structure also allows bet-hedging against within-generational vari-
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ation to take place. This is because here the selection groups in Eq. (3) only depend
on local competition between the immediate neighbours. There are also dynamics
that have global rather than local competition, such as birth-death with selection on
birth (Lieberman et al. 2005) (where first an individual is selected to reproduce pro-
portional to their fitness, with the offspring replacing a randomly selected neighbour)
and death-birth with selection on death (Masuda 2009) (where first an individual is
selected for death inversely proportional to their fitness, and is then replaced by a
randomly selected neighbour). Within such global update mechanisms, evolution is
unlikely to select for bet-hedging againstwithin-generational variation. This is because
global competition results in the selection probabilities always involving every indi-
vidual within the population, so the effect is diminished by the law of large numbers.
Within-generational bet-hedging is facilitated by local competition between subsets
of the population.

The evolutionary graph theory framework is quite restrictive, in that it considers
asexual reproduction, and many of the bet-hedging examples concern sexual repro-
duction. However, since our results only depend on the local competition aspect of the
dynamics, it is reasonable to extend our conclusions to real-world evolutionary pro-
cesses in which competition happens between small subsets of the population at any
given time, going beyond the restrictions of the evolutionary graph theory framework.
For example, in the multiple paternity scenario, although there is interaction between
males and females, and males are competing to mate, once offspring are produced, the
success of the offspring can be interpreted as competition between distinct females. In
such a scenario, our result requires that the competition between these females is local,
which is likely to be satisfied since an individual will not interact with all other indi-
viduals within their environment. This presented analysis focused on fixed population
structures, whereas in real populations individuals may change who they interact with.
Since our results only depend on the interaction structure at the time of the event, if the
properties of the population structure do not significantly change over time our con-
clusions will still hold. Using evolutionary graph theory structure therefore provides
further evidence that within-generational variation is important in empirical systems
and within-generational bet-hedging is likely to be observed. This provides a theoret-
ical basis for the existing observations and can motivate further empirical research to
identify within-generational bet-hedging species, which has not been fully explored,
perhaps due to the existing theoretical conclusions from well-mixed populations.
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Appendices

Appendix A Selection probability

Given that an individual has been selected for death, one of the neighbours of this
individual must be selected for birth, with probability one. We are therefore interested
in deriving the probability that the selected individual is a bet-hedging type. We can
assume without loss of generality that there are m bet-hedgers and n normal-type
neighbours around the focal individual. We can label the bet-hedgers arbitrarily from
1 to m and the normal-types arbitrarily from 1 to n, such that bet-hedger i has fitness
distribution f Mi and normal-type j has fitness distribution f Rj . The individuals in
the neighbourhood compete and a random individual is selected, with probability
proportional to their fitness, to reproduce.

Once we have sampled the fitness values for each individual, the total fitness is

given by
m∑
i=1

f Mi +
n∑
j=1

f Rj , and therefore the probability of selecting bet-hedger i is

f Mi /(
∑m

i=1 f Mi +
n∑
j=1

f Rj ), and normal-type j is f Rj /(
∑m

i=1 f Mi +
n∑
j=1

f Rj ). Therefore,

the probability of selecting any bet-hedger is given by

P(M reproduces |m type M and n type R) =

m∑
i=1

f Mi

m∑
i=1

f Mi +
n∑
j=1

f Rj

. (9)

When selecting which individual reproduces, we draw a random number from the
uniform distribution between 0 and 1. If this number is smaller than Eq. (9) then
we select a bet-hedger, otherwise we select a normal-type. Therefore, the selection
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probability of a bet-hedger, before sampling any of the fitness values, is given by

P(M reproduces |m type M and n type R) = P

⎛

⎜⎜⎜⎝Z <

m∑
i=1

f Mi

m∑
i=1

f Mi +
n∑
j=1

f Rj

⎞

⎟⎟⎟⎠ ,

where Z ∼ U (0, 1). Defining Y = ∑n
j=1 f Rj and X = ∑m

i=1 f Mi , we have

P

(
Z <

X

X + Y

)
=

∞∫

0

∞∫

0

x
x+y∫

0

fZ ,X ,Y (z, x, y)dzdxdy

=
∞∫

0

∞∫

0

⎛

⎜⎝

x
x+y∫

0

fZ |X ,Y (z|x, y)dZ
⎞

⎟⎠ fX ,Y (x, y)dxdy

=
∞∫

0

∞∫

0

(
x

x + y

)
fX ,Y (x, y)dxdy

= E

[
X

X + Y

]
,

where fZ ,X ,Y (z, x, y) is the joint distribution function of Z ,X , and Y , fZ |X ,Y (z|x, y)
is the conditional distribution function of Z given X and Y , and fX ,Y (x, y) is the joint
distribution function of X and Y .

Appendix B Taylor approximation

B.1 Selection probability approximation

Let X and Y be any random variables and f be an infinitely differentiable function of
X and Y . We can approximate the expected value of f (X ,Y ) by performing a Taylor
expansion:

E [ f (X ,Y )] = E [ f (μX + (X − μX ), μY + (Y − μY ))]

≈ E

[
f (μX , μY ) + fX (μX , μY )(X − μX ) + fY (μX , μY )(Y − μY )

+ fXY (μX , μY )(X − μX )(Y − μY )

+1

2
fX X (μX , μY )(X − μX )2 + 1

2
fYY (μX , μY )(Y − μY )2

]
,
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where μX and μY are the expected values of X and Y , respectively. Since
E [(X − μX )] = E [(Y − μY )] = 0, and X and Y are independent, this simplifies
to

E [ f (μX , μY )] ≈ f (μX , μY ) + 1

2
fX X (μX , μY )σ 2

X + 1

2
fYY (μX , μY )σ 2

Y ,

where σ 2
X and σ 2

Y are the variances of X and Y , respectively.

If we define Y =
n∑
j=1

f Rj and X =
m∑
i=1

f Mi , then the selection probability is the

expected value of a function of X and Y , f (X ,Y ) = X
X+Y , and we can approximate

this as

E

[
X

X + Y

]
≈ μX

μX + μY
+ μX

(μX + μY )3
σ 2
Y + μX

(μX + μY )3
σ 2
X − 1

(μX + μY )2
σ 2
X .

Since Y =
n∑
j=1

f Rj and X =
m∑
i=1

f Mi , we have μX = mμM , μY = nμR , σ 2
X = mσ 2

M

and σ 2
Y = nσ 2

R , where μZ and σ 2
Z are mean and variance, respectively, for type

Z ∈ {M, R} (when the f Rj are independent for all j and the f Mi are independent for
all i , which holds for within-generational variation).

B.2 Critical variance

Assume we have m bet-hedgers in the selection group. We want to know when a
bet-hedger would be have a higher relative strength in this scenario, and therefore we
want to compare the selection probability P(M |m type M and k − m type R) to the
selection probability of a normal-type when there are m normal-types in the selection
group, P(R|k −m type M and m type R) = 1− P(M |k −m type M and m type R).
When these two probabilities are equal, the two types are equally favoured in such
a scenario. Finding the variances for which these two are equal therefore gives the
critical variances at which the bet-hedger becomes stronger in this scenario. Setting
P(M |m type M and n type R) = P(R|k−m type M and m type R) under the Taylor
approximation we get

mμM

(mμM + nμR)
+ mnμM

(mμM + nμR)3
σ 2
R − m

(mμM + nμR)2
σ 2
M + m2μM

(mμM + nμR)3
σ 2
M

= 1 − nμM

(nμM + mμR)
+ nmμM

(nμM + mμR)3
σ 2
R

− n

(nμM + mμR)2
σ 2
M + n2μM

(nμM + mμR)3
σ 2
M

which we can solve for σ 2
R to obtain Eq. (5), which gives the critical normal-type

variance at which the bet-hedging type is stronger, as a function of bet-hedger variance,
when there are m bet-hedgers competing among k individuals.
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Appendix C Gamma distribution properties

C.1 Calculating the upper bound

C.1.1 Case 1: �2
M = 0

To calculate the upper bound exactlywewish the find the variation (which is equivalent
to variance for the gamma distribution) at which the probability of selecting a bet-
hedger to reproduce in the evenly-mixed scenario, i.e. k/2 bet-hedger versus k/2
normal-types, is equal to 1/2. We first consider the case where σ 2

M = 0, so bet-
hedger fitness is assumed constant rather than a random variable. In this case, selection
probability is only a function of the normal-type fitness.

If we assume that the bet-hedger has constant fitness μM and that the normal-
type fitness is drawn from a gamma distribution, f Rj ∼ �(μR/θ, θ), then the sum
of normal-type fitness is given by Z ∼ �(mμR/θ, θ), where m = k/2. To find the
critical normal-type variation, we need to find the value of θ which satisfies

∞∫

0

mμM

mμM + z

1

�(
mμR

θ
)θ

mμR
θ

z
mμR

θ
−1e− z

θ dz = 1

2
.

To solve this, we define

f (θ) =
∞∫

0

mμM

mμM + z

1

�(
mμR

θ
)θ

mμR
θ

z
mμR

θ
−1e− z

θ dz − 1

2
.

Solving f (θ) = 0 analytically is challenging. However, for given values of θ it is
easy to solve the integral numerically, since m = k/2, μM and μR are all known.
Therefore we can construct a minimisation problem, where we aim the minimise the
function | f (θ)|. Since the integral is an increasing function of θ , which we know from
the definition of convex order, f (θ) is an increasing function and therefore | f (θ)|
does not have local minima, and therefore minimising this function can be efficiently
implemented in Matlab (or other language) to find the critical value for θ .

C.1.2 Case 2: �2
M �= 0

Now we calculate the upper bound in the case where σ 2
M 
= 0. Here, selection proba-

bility is a function of both bet-hedger and normal-type fitness.We assume that the sum
of bet-hedger fitness is drawn from X ∼ �(mμM/θM , θM ) and normal-type fitness is
drawn from Y ∼ �(mμR/θR, θR). We are interested in pairs (θM , θR) that satisfy

∞∫

0

∞∫

0

x

x + y

1

�(
mμM
θM

)θ

mμM
θM

M

x
mμM
θM

−1
e
− x

θM
1

�(
mμR
θR

)θ

mμR
θR

R

y
mμR
θR

−1
e
− y

θR dxdy = 1

2
.
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Defining

f (θM , θR) =
∞∫

0

∞∫

0

x

x + y

1

�(
mμM
θM

)θ

mμM
θM

M

x
mμM
θM

−1
e
− x

θM
1

�(
mμR
θR

)θ

mμR
θR

R

y
mμR
θR

−1
e
− y

θR dxdy − 1

2
,

such pairs are given by solutions to f (θM , θR) = 0. Similarly to the previous case, this
is challenging to solve analytically. However, this can again be solved efficiently using
numerical minimisation. In particular, assuming either θM or θR is known, then this
becomes a one dimensional function, which we will denote g(θ). As before, this will
be an increasing function of the remaining θ term, so |g(θ)| has no local minima, and
the function can easily be minimised in Matlab to find the critical θ . If θM is known
this will give the corresponding critical θR , or if θR is known then this will give θM .

C.2 Linear upper bound

C.2.1 Case 1: �2
M = 0

Our results from the Taylor approximation suggest that the upper bound on the overall
critical normal-type variance required for the bet-hedger to be favoured is given by the
evenly mixed scenario, i.e. m = n = k/2. Here we explore how changing selection
group size impacts the critical normal-type variance for this scenario (and therefore
the upper bound) using the exact selection probability, when normal-type fitness is
drawn from a gamma distribution. For the gamma distribution convex order reduces
to ordering the variance of the distributions, so we can represent the critical normal-
type variation using the variance.Wefirst assume that bet-hedgers have constant fitness
equal to μM and normal-types have fitness f Rj ∼ �(μR/θ, θ), such that the normal-
type have mean fitnessμR and variance in fitness given byμRθ . We consider this case
first since the results from the Taylor approximation suggest that in this case critical
normal-type variation will increase linearly with selection group size. The selection
probability of a bet-hedger is given by

P(M |m) = E

⎡

⎢⎢⎢⎣
mμM

mμM +
m∑
j=1

f Rj

⎤

⎥⎥⎥⎦ .

Since each f Rj is independent and identically distributed we can write Z =
∑m

j=1 f Rj ∼ �(mμR/θ, θ). Therefore, we can now write the selection probability
as

P(M |m) = E

[
mμM

mμM + Z

]
=

∞∫

0

mμM

mμM + z

1

�(
mμR

θ
)θ

mμR
θ

z
mμR

θ
−1e− z

θ dz.
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The critical normal-type variance for the evenly mixed scenario, σ 2
R(k,m) = μRθk,m ,

needs to satisfy

∞∫

0

mμM

mμM + z

1

�(
mμR
θk,m

)θ

mμR
θk,m
k,m

z
mμR
θk,m

−1
e
− z

θk,m dz = 1

2
,

where m = n = k/2. Changing the selection group size to hk, we are interested in
the selection probability with x = hm bet-hedgers. The critical normal-type variance
μRθhk,hm needs to satisfy

∞∫

0

hmμM

hmμM + z

1

�(
hmμR
θhk,hm

)θ

hmμR
θhk,hm
hk,hm

z
hmμR
θhk,hm

−1
e
− z

θhk,hm dz = 1

2
.

Using a change of variable z′ = z/h this becomes

∞∫

0

hmμM

hmμM + hz′
1

�(
hmμR
θhk,hm

)θ

hmμR
θhk,hm
hk,hm

(hz′)
hmμR
θhk,hm

−1
e
− hz′

θhk,hm hdz′ = 1

2
.

Now if we set σ 2
k,hm = dθk,hm = dhθk,m = hσ 2

k,m then this reduces to

∞∫

0

mμM

mμM + z′
1

�(
mμR
θk,m

)θ

mμR
θk,m
k,m

(z′)
mμR
θk,m

−1
e
− z′

θk,m dz′ = 1

2
,

which we know holds, and therefore for the gamma distribution the critical normal-
type variance in the evenly mixed scenario is proportional to the size of the selection
group.

C.2.2 Case 2: �2
M �= 0

In the case where σ 2
M 
= 0, the critical normal-type variation is no longer proportional

to the selection group size. However, in the Taylor approximation we showed that the
critical normal-type variation is a linear function of both σ 2

M and k, so that if σ 2
M and

k increase by a given proportion, so does the critical variation. Here we show that this
also holds when the fitnesses are drawn from gamma distributions.

If the bet-hedger and normal-type strategies are balanced, then we have a pair
(θM , θR) that satisfies

∞∫

0

∞∫

0

x

x + y

1

�
(
mμM
θM

)
θ

mμM
θM

M

x
mμM
θM

−1
e
− x

θM
1

�
(
mμR
θR

)
θ

mμR
θR

R

y
mμR
θR

−1
e
− y

θR dxdy = 1

2
.
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where m = k/2. Changing the selection group size to hk, we are interested in the
selection probability with m′ = hm bet-hedgers. To keep the balance, we need a pair
(θ ′

M , θ ′
R) that satisfies

∞∫

0

∞∫

0

x

x + y

1

�
(
hmμM

θ ′
M

)
θ

′ hmμM
θ ′
M

M

x
hmμM

θ ′
M

−1
e
− x

θ ′
M

× 1

�
(
hmμR

θ ′
R

)
θ

′ hmμR
θ ′
R

R

y
hmμR

θ ′
R

−1
e
− y

θ ′
R dxdy = 1

2
.

Based on the Taylor approximation, trying (θ ′
M , θ ′

R) = h × (θM , θR) gives

∞∫

0

∞∫

0

x

x + y

1

�
(
hmμM
hθM

)
(hθM )

hmμM
hθM

x
hmμM
hθM

−1
e
− x

hθM

× 1

�
(
hmμR
hθR

)
(hθR)

hmμR
hθR

y
hmμR
hθR

−1
e
− y

hθR dxdy = 1

2
.

Using a change of variable x = hx ′ and y = hy′ this becomes

∞∫

0

∞∫

0

hx ′

hx ′ + hy′
1

�
(
hmμM
hθM

)
(hθM )

hmμM
hθM

(hx ′)
hmμM
hθM

−1
e
− hx ′

hθM

× 1

�
(
hmμR
hθR

)
(hθR)

hmμR
hθR

(hy′)
hmμR
hθR

−1
e
− hy′

hθR h2dx ′dy′ = 1

2
,

which reduces to

∞∫

0

∞∫

0

x ′

x ′ + y′
1

�
(
mμM
θM

)
(θM )

mμM
θM

(x ′)
mμM
θM

−1
e
− x ′

θM

× 1

�
(
mμR
θR

)
(θR)

mμR
θR

(y′)
mμR
θR

−1
e
− y′

θR dx ′dy′ = 1

2
.

We know this equation holds, and therefore for the gamma distribution in the evenly-
mixed case, if the selection group size undergoes a proportional increase, the dynamics
will be balanced if both variances increase by this proportion.
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