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Abstract
Weuse a geometric approach to prove the existence of smooth travellingwave solutions
of a nonlinear diffusion–reaction equationwith logistic kinetics and a convex nonlinear
diffusivity function which changes sign twice in our domain of interest. We determine
the minimum wave speed, c∗, and investigate its relation to the spectral stability of a
desingularised linear operator associated with the travelling wave solutions.

Keywords Nonlinear diffusion · Travelling wave solutions · Geometric methods ·
Phase plane analysis · Spectral stability

Mathematics Subject Classification 92C17 · 92D25 · 35K57 · 35B35

1 Introduction

Invasion processes have been studied with mathematical models, especially partial
differential equations (PDEs), for many years; see, for example, Murray (2002) and
references therein. These models describe, for instance, how cells are transported to
new areas in which they persist, proliferate, and spread (Mack et al. 2000). To incorpo-
rate information about individual-level behaviours in invasion processes, lattice-based
discrete models are widely used (Deroulers et al. 2009; Johnston et al. 2017, 2012;
Simpson et al. 2010c). In these discrete models, individual agents are permitted to
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move, proliferate and die on a lattice, and the average density of agents is related toPDE
descriptions obtained using truncated Taylor series in the continuum limit (Anguige
andSchmeiser 2009;Codling et al. 2008). Themacroscopic behaviour described by the
PDEs in terms of expected agent density reflects the individual microscopic behaviour.
Travelling wave solutions are of particular interest among the macroscopic behaviours
arising from these continuum models, as they reflect various modes of microscopic
invasive behaviours. One famous model exhibiting travelling wave solutions is the
Fisher–KPP equation (KPP refers to Kolmogorov, Petrovsky, Piskunov) proposed in
1937 to study population dynamics with linear diffusion and logistic growth (Fisher
1937; Kolmogorov et al. 1937). The existence and stability of travelling wave solu-
tions of the Fisher–KPP equation has been widely studied, see, for instance, Aronson
andWeinberger (1978), Fisher (1937), Harley et al. (2015), Kolmogorov et al. (1937),
Larson (1978), Murray (2002) and Sherratt (1998).

The Fisher–KPP equation can be derived as a continuum limit of a discrete model
under the assumption that the population of cells can be treated as a uniform population
without any differences in subpopulations (Bramson et al. 1986). However, differences
between individual and collective behaviour have been observed in cell biology and
ecology in practice. For instance, in cell biology, isolated cells called leader cells are
more motile than the grouped cells, called follower cells (Poujade et al. 2007). Also,
contact interactions lead to different motility rates between isolated cells and grouped
cells in the migration of breast cancer cells (Simpson et al. 2010c, 2014), glioma cells
(Khain et al. 2011),would healing processes (Khain et al. 2007) and the development of
the enteric nervous system (Druckenbrod andEpstein 2007). In ecology, the population
growth rate of some species decreases as their populations reach small sizes or low
densities (Courchamp et al. 1999). This phenomenon is usually referred to as the Allee
effect (Allee and Bowen 1932).

To describe the invasion process and reflect the difference between collective and
individual behaviour, Johnston and coworkers introduced a discretemodel considering
birth, death andmovement events of agents that are isolated or groupedon a simple one-
dimensional lattice (Johnston et al. 2017).Adiscrete conservation statement describing
δUj , which is the change of the occupancy of a lattice site j during a time step τ ,
gives

δUj = Pi
m

2
[Uj−1(1 −Uj )(1 −Uj−2) +Uj+1(1 −Uj )(1 −Uj+2)

−2Uj (1 −Uj−1)(1 −Uj+1)]
+ Pg

m

2
[Uj−1(1 −Uj ) +Uj+1(1 −Uj ) −Uj (1 −Uj−1) −Uj (1 −Uj+1)]

− Pg
m

2
[Uj−1(1 −Uj )(1 −Uj−2) +Uj+1(1 −Uj )(1 −Uj+2)

−2Uj (1 −Uj−1)(1 −Uj+1)]

+ Pi
p

2
[Uj−1(1 −Uj )(1 −Uj−2) +Uj+1(1 −Uj )(1 −Uj+2)]
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+ Pg
p

2
[Uj−1(1 −Uj ) +Uj+1(1 −Uj )]

− Pg
p

2
[Uj−1(1 −Uj )(1 −Uj−2) +Uj+1(1 −Uj )(1 −Uj+2)]

−Pi
d [Uj (1 −Uj−1)(1 −Uj+1)] − Pg

d U j + Pg
d [Uj (1 −Uj−1)(1 −Uj+1)].

(1)

Here, Uj represents the probability that an agent occupies lattice site j , thus, 1 − Uj

represents the probability that lattice site j is vacant (Simpson et al. 2010a). Pi
m and Pg

m
represents the probability per time step that isolated or grouped agents, respectively,
attempt to step to a nearest neighbour lattice site; Pi

p and Pg
p represents the proba-

bility per time step that isolated or grouped agents, respectively, attempt to undergo
a proliferation event and deposit a daughter agent at a nearest neighbour lattice site;
Pi
d and Pg

d represents the probability per time step that isolated or grouped agents,
respectively, die, and are removed from the lattice. See Fig. 1a for a schematic of the
lattice-based discrete model.

To obtain a continuous description, Johnston and coworkers treatUj as a continuous
function, U (x, t), and divide (1) by the time step τ . Next, they expand all terms in
(1) in a Taylor series around x = jΔ, where Δ is the lattice spacing, and neglect
terms of O(Δ3) (Simpson et al. 2010a). As Δ → 0 and τ → 0 with the ratio Δ2/τ

held constant (Codling et al. 2008; Simpson et al. 2010a), they obtain a nonlinear
diffusion–reaction equation

∂U

∂t
= ∂

∂x

(
D(U )

∂U

∂x

)
+ R (U ) , (2)

where

D (U ) = Di

(
1 − 4U + 3U 2

)
+ Dg

(
4U − 3U 2

)
, (3)

is the nonlinear diffusivity function, and

R (U ) = λgU (1 −U ) + (
λi − λg − Ki + Kg

)
U (1 −U )2 − KgU , (4)

is the kinetic term. Furthermore, the parameters are given by

Dg = lim
Δ,τ→0

Pg
mΔ2

2τ
, Di = lim

Δ,τ→0

Pi
mΔ2

2τ
, λg = lim

τ→0

Pg
p

τ
,

λi = lim
τ→0

Pi
p

τ
, Kg = lim

τ→0

Pg
d

τ
, Ki = lim

τ→0

Pi
d

τ
,

where we require that Pi
p, P

g
p , Pi

d , P
g
d areO(τ ) (Simpson et al. 2010a). Here,U (x, t)

denotes the total density of the agents at position x ∈ R and time t ∈ R+; Di ≥ 0
and Dg ≥ 0 are diffusivities of the isolated and grouped agents, respectively; λi ≥ 0
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Fig. 1 a One possible time step of the lattice-based discrete model of Johnston et al. (2017): a new grouped
agent (agent E) is born and the grouped agent B moves from lattice site 5 to lattice site 4 to become an
isolated agent. Pink circles represent isolated agents with birth rate Pi

p , death rate Pi
d and motility rate

related to Pi
m ; cyan circles represent grouped agents with birth rate P

g
p , death rate P

g
d and motility rate Pg

m .
b presents a diffusivity function D(U ), given by (3) (cyan curve) satisfying Di > 4Dg which makes D(U )

change sign twice on (0, 1), and the kinetic term R(U ), given by (5) (orange curve) which is positive on
(0, 1) and zero at end points U = 0 and U = 1 (colour figure online)

and λg ≥ 0 are the proliferation rates of isolated and grouped agents, respectively;
Ki ≥ 0 and Kg ≥ 0 are the death rates of isolated and grouped agents, respectively
(Johnston et al. 2017). Note that this particular form (2)was proposed by Johnston et al.
(2017). This was one of the first studies that proposed a nonlinear diffusion–reaction
model to a mean-field description of a lattice-based stochastic model incorporating
agent movement, proliferation and death. Previous work leading to nonlinear diffusion
equations only considered the movement of agents and thus did not involve kinetic
terms (Johnston et al. 2012; Anguige and Schmeiser 2009).

In this manuscript, we study the effect that aggregation, which is modelled with
a nonlinear diffusivity function that goes negative (Simpson et al. 2010b), has on
the dynamics of the continuous PDE model. Therefore, we assume that Di > 4Dg

such that D(U ) given by (3) is convex and changes sign twice in our domain of
interest (additionally, see Sect. 4.2 for a short discussion related to the other case).
For simplicity, we furthermore assume equal proliferation rates, λ = λi = λg , and no
agent death, Ki = Kg = 0. This way, the kinetic term simplifies to a logistic term

R (U ) = λU (1 −U ) , (5)

and D (U ) has a sign condition:

D (U ) > 0 for U ∈ [0, α) ∪ (β, 1] , D (U ) < 0 for U ∈ (α, β) , (6)
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Fig. 2 a The evolution of a Heaviside initial condition to a smooth travelling wave solution obtained by
simulating (2) with (3) and (5) with parameters Di = 0.25, Dg = 0.05 and λ = 0.75. We use a finite
difference method with space step δx = 0.1, time step δt = 0.01 and no-flux boundary conditions. Notice
that D(U ) = 0 at α = 0.5 and β ≈ 0.83. b The position of the wave L(t), measured by the left-most leading
edge point where U is smaller than 10–5, indicating that the solution is travelling at a constant speed c =
0.864. c Thewave speed as a function of the initial conditionU (x, 0) = 1/2+tanh (−η(x − 40)) /2. Notice
that as η grows to infinity this initial condition limits to theHeaviside initial condition used for the simulation
in (a), and the wave speed converges to c ≈ 0.864. The minimum wave speed c∗ = 2

√
λDi ≈ 0.866 (11)

(colour figure online)

where the interval where D(U ) < 0 is centred at U = 2/3, and α, β are given by

α = 2

3
−

√
D2
i + 4D2

g − 5Di Dg

3
(
Di − Dg

) , β = 2

3
+

√
D2
i + 4D2

g − 5Di Dg

3
(
Di − Dg

) , (7)

with 1/3 < α < 2/3 and 2/3 < β < 1, see Fig. 1b. That is, we have negative diffusion
forU ∈ (α, β). The relation that Di is larger than Dg indicates that isolated agents are
more active than grouped agents, which agrees with the experimental observation that
leader cells are more motile than follower cells (Poujade et al. 2007; Simpson et al.
2014). Ferracuti et al. (2009) showed the existence of travelling wave solutions for
a range of positive wave speeds for (2) with general convex D(U ) that changes sign
twice on (0, 1) and R(U ) given by (5) based on the comparison method introduced
by Aronson andWeinberger (1978). Related studies proved the existence of travelling
wave solutions for a similar range of speeds for nonlinear diffusion–reaction equations
with different D(U ) and different R(U ):Malaguti andMarcelli (2003) studied (2)with
a logistic kinetic term and a nonlinear diffusivity function satisfying

D(0) = 0 and D(0) > 0 for all U ∈ (0, 1].

Maini et al. (2006) studied (2) with a logistic kinetic term and a nonlinear diffusivity
function satisfying

D(U ) > 0 in (0, θ) and D(U ) < 0 in U ∈ (θ, 1), (8)

123



1500 Y. Li et al.

for some given θ ∈ (0, 1) and with D(0) = D(θ) = D(1) = 0. In addition, Maini
et al. (2007) studied (2) with (8) and a bistable kinetic term satisfying

R(0) = R(φ) = R(1) = 0, R(U ) < 0 in U ∈ (0, φ) and R(U ) > 0 in U ∈ (φ, 1).

A travelling wave solution of (2) is a solution that travels with constant speed c > 0
and constant wave shape, and that asymptotes to 1 as x → −∞ and to 0 as x → ∞
(i.e. the roots of R(U )). We only consider positive wave speeds since (2) with (3) and
(5) is monostable with a Fisher–KPP imprint, that is, U ≡ 1 is a PDE stable solution
of (2), whileU ≡ 0 is a PDE unstable solution (in an appropriate function space which
will be introduced in Sect. 3). Hence, to study travelling wave solutions we introduce
the travelling wave coordinate z = x − ct , where z ∈ R and c > 0, and write (2) in
its travelling wave coordinate

∂U

∂t
= ∂

∂z

(
D(U )

∂U

∂z

)
+ c

∂U

∂z
+ R(U ). (9)

A travelling wave solution is now a stationary solution to (9), that is, ∂U/∂t = 0
(Sandstede 2002). In other words, a travellingwave solution is a solution to the second-
order ordinary differential equation (ODE)

d

dz

(
D(u)

du

dz

)
+ c

du

dz
+ R(u) = 0, (10)

with asymptotic boundary conditions limz→−∞u = 1 and limz→∞u = 0.
In this manuscript, we show the following result:

Theorem 1 Model (2) with (3) and (5) and Di > 4Dg supports smooth monotone
nonnegative travelling wave solutions for

c ≥ 2
√

λDi =: c∗. (11)

This theorem agrees with the result of Ferracuti et al. (2009), and because of the
specific nonlinear diffusivity function, we can further extend their results. Moreover,
instead of the comparison method used by Ferracuti et al. (2009), we use a geometric
approach to prove the existence of travelling wave solutions. This geometric approach
has the advantage that it can also be used to study shock-fronted, discontinuous trav-
elling wave solutions (Wechselberger and Pettet 2010; Harley et al. 2014a, b). While
shock-fronted travelling wave solutions are not the focus in this manuscript, we show
in the final section that they do exist for (5) with different D(U ), see Fig. 10a in
Sect. 4.3. The lower bound c∗ in Theorem 1 is often called the minimum wave speed
as it represents the monotone nonnegative travelling wave solutions with the lowest
wave speed (Murray 2002). Numerical simulations show that (2) with (3) and (5)
indeed support smooth travelling wave solutions even though the nonlinear diffusivity
function goes negative. Moreover, the speed relates to the initial condition, and the
wave speed converges to the minimum wave speed c∗ as the initial condition limits to
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the Heaviside initial condition, see Fig. 2. We will also show the connection between
the existence of smoothmonotone nonnegative travellingwave solutions, the spectrum
of a desingularised linearised operator associated with the travelling wave solutions,
and the minimum wave speed c∗.

This manuscript is organised as follows. We prove Theorem 1 in Sect. 2 by using
desingularisation techniques (Aronson 1980) and detailed phase plane analysis which
have not been applied to (2) before. In Sect. 3, we determine the spectral properties of
a desingularised linearised operator associated with the travelling wave solutions and
show how the minimum wave speed c∗ is related to absolute instabilities (Sandstede
2002; Kapitula and Promislow 2013; Sherratt et al. 2014). Some interesting results for
different nonlinear diffusivity functions with the same kinetic term (5) are discussed in
Sect. 4. Here, we also discuss the implications of the analytical results for the discrete
model. Note that throughout the manuscript all theoretical results are supported by
high-quality numerical simulations of the continuum PDE model.

Remark 1 Many essential mathematical questions related to, for instance, well-
posedness, remain open for PDEs with forward–backward diffusion, i.e. models like
(2) with nonlinear diffusivity functions that change sign. For instance, the well-studied
Perona–Malik model (Perona and Malik 1990) from image analysis with forward–
backward diffusion, but without a kinetic term, is ill-posed (Weickert 1988). See also
Höllig (1983).

The ill-posedness of these PDEs with forward–backward diffusion can often be
addressed by adding a small regularisation term, like a viscous regularisation term
(Novick-Cohen and Pego 1991) or a nonlocal Cahn–Hilliard-type regularisation term
(Pego and Penrose 1989). For the Perona–Malik model this was done, with another
type of regularisation term, by Barenblatt et al. (1993). Interestingly, different regu-
larisations can have different singular limits, in particular, when shock solutions are
formed (see also Sect. 4.3). This is particularly interesting when you realise that most
numerical schemes introduce some artificial regularisation. In other words, different
numerical schemes can correctly yield different solutions (Witelski 1995). Also, recall
that in the derivation of the continuum limit higher order terms were ignored. These
higher order terms potentially have a regularising effect and can shed light on the
“right” type of regularisation.

Since we are constructing smooth solutions in this manuscript, we do not address
the question of well-posedness of (2).

2 Existence of travelling wave solutions

2.1 Transformation and desingularisation

We use a dynamical systems approach to analyse the second-order ODE (10) whose
solutions that asymptote to limz→−∞u = 1 and limz→∞u = 0 correspond to travelling
wave solutions of (2). Upon introducing p := D(u)du/dz, (10) can be written as a
singular system of first-order ODEs
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⎧⎪⎪⎨
⎪⎪⎩

D(u)
du

dz
= p,

D(u)
dp

dz
= −cp − D(u)R(u).

(12)

Travelling wave solutions of (2) now correspond to heteroclinic orbits of (12) con-
necting (1, 0) to (0, 0). Note that p > 0 if du/dz < 0 and D(u) < 0. Thus, while
we expect that the derivative of a travelling wave solution is always negative, p is not
necessarily always negative.The nullclines of system (12) are given by p = 0 and
−cp − D(u)R(u) = 0 with the constraint that D(u) �= 0. However, D(u) vanishes
when u = α and u = β (7), and system (12) is thus undefined, or singular, along the
lines u = α and u = β (Simpson and Landman 2007). These lines are sometimes
calledwalls of singularities (Pettet et al. 2000; Wechselberger and Pettet 2010; Harley
et al. 2014a). Trajectories can potentially still cross through these walls at special
points, sometimes referred to as holes in the wall (Pettet et al. 2000; Wechselberger
and Pettet 2010; Harley et al. 2014a), when, in addition to D(u) = 0, the right hand
sides of the singular system also vanish (and if the holes in the wall are of the cor-
rect type (Wechselberger 2005; Wechselberger and Pettet 2010; Harley et al. 2014a)).
These holes in the wall, and the trajectories crossing them, can often be linked to
folded singularities and canard solutions upon embedding the singular system into
higher-dimensional singularly perturbed systems with folded critical manifolds, we
refer to Szmolyan and Wechselberger (2001), Wechselberger (2005), Wechselberger
and Pettet (2010) and Harley et al. (2014a), and references therein, for more details
on this now well-established theory. For system (12) the holes in the wall are (α, 0)
and (β, 0). To remove the singularities, we desingularise system (12) by introduc-
ing a stretched variable ξ satisfying D(u)dξ = dz (Aronson 1980; Murray 2002;
Sánchez-Garduño and Maini 1994; Harley et al. 2014a). Subsequently, system (12)
becomes

⎧⎪⎪⎨
⎪⎪⎩

du

dξ
= p,

dp

dξ
= −cp − D(u)R(u).

(13)

Herewe see that the desingularisation changes the independent variable z in a nonlinear
fashion, but it does not change the dependent variables (u, p). Consequently, the (u, p)
phase planes of (12) and (13) will have the same trajectories but the “time” it takes to
evolve along such a trajectory is different. In particular, when D(u) > 0, dξ/dz > 0
and therefore trajectories on the phase planes of (12) and (13) have the sameorientation.
In contrast, when D(u) < 0, dξ/dz < 0 and trajectories on the two phase planes are
in the opposite direction, see Fig. 3. Therefore, heteroclinic orbits of (12) connecting
(1, 0) to (0, 0) crossing the holes in the walls (α, 0) and (β, 0), if they exist, are
transformed and separated as heteroclinic orbits connecting (1, 0) to (β, 0), (α, 0) to
(β, 0) and (α, 0) to (0, 0) of (13) and vice versa. Next, we will prove the existence of
these heteroclinic orbits in system (13) for a range of wave speeds c, and then combine
these heteroclinic orbits in system (13) as one global heteroclinic orbit in system (12).
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Fig. 3 a The phase plane of system (12) with parameters Di = 0.25, Dg = 0.05, λ = 0.75 and c = 0.866.
The vertical dashed lines are thewalls of singularities u = α and u = β and the solid blue lines are nullclines.
Red arrows show the orientation of the trajectories. b The phase plane of system (13) for the same parameter
values and red lines are nullclines. For u in between α and β, the orientation of the trajectories is opposite
compared to (a), while the orientation is the same for u < α and u > β (colour figure online)

2.2 Phase plane analysis of the desingularised system

We first study the desingularised system (13). It has nullclines p = 0 and

p = −D(u)R(u)

c
. (14)

The intersections of the two nullclines give four equilibrium points: (0, 0), (1, 0),
(α, 0), (β, 0).

Lemma 1 The equilibrium points (1, 0) and (α, 0) are saddles. The equilibrium point
(0, 0) is a stable node if

c ≥ 2
√
D(0)R′(0) = 2

√
λDi = c∗, (15)

and a stable spiral otherwise. The equilibrium point (β, 0) is a stable node if

c ≥ 2
√
D′(β)R(β), (16)

and a stable spiral otherwise.
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Proof The Jacobian of system (13) is

J (u, p) =
(

0 1
−F(u) −c

)
, where

F(u) := d

du
(D(u)R(u)) = D′(u)R(u) + D(u)R′(u), (17)

with D(u)R(u) the pointwise product of D(u) and R(u) and where we, as usual, omit
the dot. The Jacobian has eigenvalues and eigenvectors

λ± = −c ± √
c2 − 4F(u)

2
, E± = (1, λ±).

For the equilibrium point (1, 0) this reduces to

λ1± = −c ± √
c2 − 4D(1)R′(1)

2
, E1± = (1, λ1±). (18)

The eigenvalues λ1± are real and of opposite sign since D(1) = Dg > 0 and R′(1) =
−λ < 0. Thus (1, 0) is a saddle.

Similarly, the Jacobian of the equilibrium point (α, 0) has eigenvalues and eigen-
vectors

λα± = −c ± √
c2 − 4D′(α)R(α)

2
, Eα± = (1, λα±). (19)

Knowing that D′(α) < 0 and R(α) > 0, λα+ is real and positive and λα− is real and
negative. Thus (α, 0) is a saddle.

The Jacobian of the equilibrium point (0, 0) has eigenvalues and eigenvectors

λ0± = −c ± √
c2 − 4D(0)R′(0)

2
, E0± = (1, λ0±). (20)

The eigenvalues λ0± are real and negative if (15) holds since D(0) = Di > 0 and
R′(0) = λ > 0. Thus the equilibrium point (0, 0) is a stable node if (15) holds.
Otherwise, λ0± are complex-valued with negative real parts and (1, 0) is a stable
spiral.

Similarly, the Jacobian of equilibriumpoint (β, 0) has eigenvalues and eigenvectors

λβ± = −c ± √
c2 − 4D′(β)R(β)

2
, Eβ± = (1, λβ±). (21)

The eigenvaluesλβ± are real and negative if (16) holds since D′(β) > 0 and R(β) > 0.
Thus the equilibrium point (β, 0) is a stable node if (16) holds. Otherwise, λβ± are
complex-valued with negative real parts and (β, 0) is a stable spiral. �
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Lemma 2 For Di > 4Dg, the thresholds of conditions (15) and (16) are ordered as

c∗ > 2
√
D′(β)R(β). (22)

Proof The right hand side of (22) is given by

2
√
D′(β)R(β) = 2

√
3λ(Di − Dg)β(1 − β)(β − α).

Since c∗ = 2
√

λDi , proving relation (22) is equivalent to proving

Di > 3(Di − Dg)β(1 − β)(β − α),

which is equivalent to proving

Di

Di − Dg
> 3β(1 − β)(β − α). (23)

Knowing that 2/3 < β < 1 and 0 < β − α < 2/3 gives 3β(1 − β)(β − α) < 2/3.
Since Di > 4Dg , we have that Di/(Di − Dg) > 1 since Di > Di − Dg . Hence, (23)
holds and thus (22) holds. �

For c < c∗, (0, 0) becomes a spiral node and hencewe expect trajectories approach-
ing (0, 0) to become negative which in the end would lead to travelling wave solutions
becoming negative. Therefore, we now assume that c ≥ c∗. To prove the existence of
heteroclinic orbits between the equilibrium points, we construct invariant regions in
the phase plane from which trajectories cannot leave, so that the Poincaré–Bendixson
theorem can be applied (Jordan and Smith 1999), see Fig. 4. The slope of nullcline
(14) is χ(u) = −F(u)/c, where F(u) is given by (17), while the slope of the unstable
eigenvector of (1, 0) is λ1+, see (18). We thus have

λ1+ − χ(1) = −c + √
c2 − 4D(1)R′(1)

2
+ 1

c
D(1)R′(1)

= c
√
c2 − 4D(1)R′(1) − (

c2 − 2D(1)R′(1)
)

2c

=
√
c4 − 4c2D(1)R′(1) −

√
c4 − 4c2D(1)R′(1) + 4 (D(1)R′(1))2

2c
< 0.

(24)

That is, the unstable eigenvector of (1, 0) has a smaller slope than nullcline (14) at
(1, 0). In other words, the trajectory leaving (1, 0) with decreasing u initially lies
above the nullcline (14).

Similarly, the slope of the unstable eigenvector of (α, 0) is λα+, see (19). We have,
after similar computation as (24), λα+ − χ(α) < 0. Thus, the unstable eigenvector of
(α, 0) has a smaller slope than nullcline (14) at (α, 0). Therefore, the trajectory leaving
(α, 0) with decreasing u initially lies above the nullcline (14), while the trajectory
leaving (α, 0) with increasing u initially lies below the nullcline (14).
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R1

R2

R3

l1

l2

E+
0

E−
0

E+
α

E−
α

E+
β

E−
β

E−
1

E+
1

Fig. 4 A qualitative phase plane of system (13). The three dashed lines are u = α, u = β and u = 1. The
blue lines are the nullclines p = 0 and p = −D(u)R(u)/c. RegionR1 is bounded by p = 0, u = α and a
straight line l1 with negative slope passing through (0, 0). Region R2 is bounded by p = 0, u = α and a
straight line l2 with negative slope passing through (β, 0). Region R3 is bounded by p = 0, u = 1 and l2
(colour figure online)

Under condition (15), the least negative slope of the stable eigenvectors of equi-
librium point (0, 0) is λ0+, see (20). This gives, after a similar computation as (24),
λ0+ − χ(0) < 0. Thus, both eigenvectors of (0, 0) have slopes that are more negative
than nullcline (14) at (0, 0). In other words, the eigenvectors of (0, 0) initially lie under
the nullcline (14) for u > 0.

Similarly, under condition (16), the least negative slope of the stable eigenvectors
of (β, 0) is λβ+, see (21). This gives λβ+ − χ(β) < 0. Thus, both eigenvectors have
slopes that are more negative than nullcline (14) at (β, 0). Therefore, the trajectory
moving in (β, 0) with decreasing u initially lies under the nullcline (14) for u > β,
while they lie above the nullcline (14) for u < β, see also Fig. 4.

Next, we consider the region R1 bounded by p = 0, u = α and a straight line l1
through (0, 0) with a negative slope μ1. We aim to prove that for c ≥ c∗, there always
exists a slope μ1 so that no trajectories in regionR1 can cross through its boundaries.
Trajectories starting on p = 0 have negative vertical directions since du/dξ = p = 0
and dp/dξ = −D(u)R(u) < 0 for u ∈ (0, α). Thus, trajectories in R1 cannot cross
through p = 0. Trajectories starting on u = α with negative p values point into region
R1 since du/dξ = p < 0 and dp/dξ = −cp > 0. Trajectories starting on l1 satisfy
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p = μ1u, and they point into R1 only if

dp

du

∣∣∣
p=μ1u

= −c − D(u)R(u)

μ1u
≤ μ1, for u ∈ (0, α).

After rearranging and recalling that μ1 < 0, we obtain

μ1(μ1 + c) ≤ −D(u)R(u)

u
= −λD(u)(1 − u), for u ∈ (0, α). (25)

Lemma 3 For c ≥ c∗, there exists a μ1 such that inequality (25) is valid for any
u ∈ (0, α).

Proof Proving inequality (25) is equivalent to proving

μ1(μ1 + c) ≤ −λ sup
u∈(0,α)

D(u)(1 − u). (26)

The left hand side of inequality (26) is minimal whenμ1 = −c/2. Settingμ1 = −c/2
and substituting into inequality (26) gives a lower bound

c1 = 2
√

λ sup
u∈(0,α]

√
D(u)(1 − u), (27)

such that (26) holds for c ≥ c1. The right hand side of (27) gives

2
√

λ sup
u∈(0,α)

√
D(u)(1 − u) = 2

√
λD(0) = 2

√
λDi ,

since D(u) and (1 − u) are both decreasing functions on u ∈ (0, α). Thus, c1 = c∗.
Hence, for c ≥ c∗, inequality (26) is valid for μ1 = −c/2. �

Knowing that for c ≥ c∗ inequality (25) is valid, trajectories on l1 with μ1 = −c/2
point into region R1. Thus, based on the Poincaré-Bendixson theorem (Jordan and
Smith 1999), the observation that the derivative of u is negative in the region R1
(preventing the existence of a homoclinic orbit) and the absence of fixed points in the
interior of R1 (preventing the existence of a limit cycle), the trajectory leaving from
the equilibrium point (α, 0) with decreasing u and decreasing p must connect with
the equilibrium point (0, 0) without going negative in u.

Similarly, we consider the regionR2 bounded by p = 0, u = α and a straight line l2
through (β, 0) with a negative slope μ2, and the regionR3 bounded by p = 0, u = 1
and l2. Trajectories starting on p = 0 have positive vertical directions for u ∈ (α, β)

since du/dξ = p = 0 and dp/dξ = −D(u)R(u) > 0 and they have negative
vertical directions since for u ∈ (β, 1), du/dξ = 0 and dp/dξ = −D(u)R(u) < 0.
Trajectories starting on u = α with positive p point into region R2 since du/dξ =
p > 0 and dp/dξ = −cp < 0. Similarly, trajectories starting on u = 1 with negative
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p point into region R3. In addition, requiring the existence of a slope μ2 such that
trajectories starting on l2 point into regions R2 and R3 leads to the condition

μ2(μ2 + c) ≤ −D(u)R(u)

u − β
= −3(Di − Dg)(u − α)R(u), for u ∈ (α, 1). (28)

Lemma 4 For c ≥ c∗, there exists a μ2 such that inequality (28) is valid for any
u ∈ (α, 1).

Proof The proof of Lemma 4 is analogous to the proof of Lemma 3 and we will omit
some of the details. Again, there exists a lower bound

c2 = 2
√
3(Di − Dg) sup

u∈(α,1)

√
(u − α)R(u),

such that (28) holds for c ≥ c2. Next, we show that c2 < c∗. That is, we show that

2
√

λDi > 2
√
3(Di − Dg) sup

u∈(α,1)

√
(u − α)R(u).

This is equivalent to proving Di/(Di − Dg) > 3u(1 − u)(u − α) for u ∈ (α, 1).
Noticing that u − α < 2/3, and u(1− u) ≤ 1/4, we obtain 3u(1− u)(u − α) < 1/2.
Subsequently, we have

Di

Di − Dg
> 1 >

1

2
> 3u(1 − u)(u − α),

since Di > 4Dg by assumption. Thus, c2 < c∗. �
Knowing that for c ≥ c∗ the inequality (28) is valid, trajectories on l2 in between

α and β point into region R2. Thus, based on the Poincaré–Bendixson theorem (Jor-
dan and Smith 1999), the trajectory leaving from the equilibrium point (α, 0) with
increasing u and increasing p must connect with the equilibrium point (β, 0). Analo-
gously, the trajectory leaving from the equilibrium point (1, 0) with decreasing u and
decreasing p must connect with the equilibrium point (β, 0).

In summary, for c ≥ c∗ there exist heteroclinic orbits connecting (1, 0) to
(β, 0), (α, 0) to (β, 0) and (α, 0) to (0, 0) in system (13). Since trajectories in
u ∈ (0, α) ∪ (β, 0) in system (12) are the same, and have the same orientation,
as in system (13), there exist trajectories connecting (1, 0) to the hole in the wall
(β, 0) and trajectories connecting the hole in the wall (α, 0) to (0, 0) in system (12).
For u ∈ (α, β), trajectories of system (12) move in the opposite direction compared
to (13), see Fig. 3. The trajectory leaving from (α, 0) with increasing u, positive p
and connecting to (β, 0) in system (13) becomes a trajectory leaving from (β, 0) with
decreasing u, positive p and connecting to (α, 0) in system (12). Thus, there exists an
orbit connecting (β, 0) to (α, 0) in system (12). Combining the above, we get that for
c ≥ c∗, there exists a heteroclinic orbit with u ≥ 0 connecting (1, 0) to (0, 0) passing

123



Travelling wave solutions in a negative . . . 1509

p

u
10 α β

Fig. 5 Phase plane of system (13) with parameters Di = 0.25, Dg = 0.05, λ = 0.75 and c = 0.4. The

latter is smaller than c∗ ≈ 0.866 but larger than 2
√
D′(β)R(β) ≈ 0.289. The blue lines are the nullclines

p = 0 and p = −D(u)R(u)/c. The red lines are the heteroclinic orbits connecting (0, 0), (α, 0), (β, 0),
and (1, 0) (colour figure online)

through holes in the walls (α, 0) and (β, 0) in system (12), however, see Remark 2.
Hence, there exist smooth monotone travelling wave solutions of (2) with positive
speed c ≥ c∗. This completes the proof of Theorem 1.

For 2
√
D′(β)R(β) < c < c∗ the equilibrium point (β, 0) of the desingularised

system (13) is still a stable node, while (0, 0) is a stable spiral, see Lemma 1. We can
use similar techniques as above to show that system (13) still possesses heteroclinic
orbits connecting (1, 0) to (β, 0), (α, 0) to (β, 0) and (α, 0) to (0, 0), see also Fig. 5.
However, this latter heteroclinic orbit now spirals into (0, 0). Consequently, also for
2
√
D′(β)R(β) < c < c∗ there exists a heteroclinic orbit connecting (1, 0) to (0, 0)

passing through holes in the walls (α, 0) and (β, 0) in system (12). However, these
correspond to smooth travelling wave solutions of (2) with (3) and (5) that are not
monotone and instead oscillate around 0. These solutions are not biologically rele-
vant as U represents the population density in the discrete model and thus cannot be
negative.

For 0 < c < 2
√
D′(β)R(β), (β, 0) becomes a stable spiral in (13) and hence

trajectories in system (12) can no longer pass through this hole in the wall, i.e. the
hole in the wall is not of the correct type (Harley et al. 2014a). That is, (2) with (3)
and (5) do not support smooth travelling wave solutions for 0 < c < 2

√
D′(β)R(β).

Note that there may exist shock-fronted travelling wave solutions, however, we are
not interested in such solutions in this manuscript as (0, 0) is still a stable spiral of
(13) and thus again yields solutions that are not biologically relevant. See Sect. 4.3
for a further discussion related to shock-fronted travelling wave solutions supported
by (2).

Remark 2 It is important to note that combining the three heteroclinic orbits in the
desingularised system (13) to get the global orbit in the original system (12) is not
trivial. Although the relationship between the trajectories, and their orientation, in the
two systems is clear, we still need to prove that orbits are able to pass through the holes
in the wall in (12) by, for instance, using canard theory (Szmolyan andWechselberger
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2001; Wechselberger 2005, 2012). Roughly speaking, we embed the original ODE
(10) into a larger class of problems by adding a higer order perturbation term with a
small parameter 0 ≤ ε � 1. Subsequently, rather than obtaining the two-dimensional
system (12), we have a higher-dimensional systemwhich has a slow–fast structure that
can be studied by geometric singular perturbation theory (Jones 1995). Most notably,
the two-dimensional system (12) would become the reduced problem of the higher-
dimensional system in the singular limit ε → 0 and it is constraint on a folded critical
manifold. With canard theory we can show the existence of solutions crossing through
the holes in the wall (or folded canard points) in the higher-dimensional system for
0 ≤ ε � 1.As this is by now relatively standard and straightforward,we decide to omit
the details and instead refer to Szmolyan and Wechselberger (2001), Wechselberger
(2005) and Wechselberger (2012), and references therein.

3 Stability analysis

We showed that, similar to the Fisher–KPP equation (Harley et al. 2015, e.g.), (2) with
(3) and (5) supports smooth travelling wave solutions for c > 2

√
D′(β)R(β), but

that only the travelling wave solutions with c ≥ c∗ (11) have nonnegative densities.
The minimal wave speed for the Fisher–KPP equation is closely related to the onset
of absolute instabilities.1 Roughly speaking, absolute instabilities imply that pertur-
bations to a travelling wave solution (in an appropriate Sobolev space that will be
discussed further on) will grow for all time and at every point in space (Sherratt et al.
2014). These instabilities are related to the absolute spectrum of the linear operator
associated with the travelling wave solution and is fully determined by the asymptotic
behaviour (z → ±∞) of the travelling wave solution (Kapitula and Promislow 2013;
Sandstede 2002). Note that the absolute spectrum is, strictly speaking, not part of the
spectrum of the linear operator. However, it gives an indication on how far the essential
spectrum can be shifted to the left upon using a weighted Sobolev space (Kapitula and
Promislow 2013; Sandstede 2002). Consequently, if parts of the absolute spectrum
lie in the right half plane, then the essential spectrum cannot be fully weighted into
the open left half plane, and the associate solution is hence absolutely unstable.2 The
travelling wave solutions of (2) with (3) and (5) as constructed in Sect. 2 asymptote to
0 and 1 and the nonlinear diffusivity function D(U ) is positive nearU = 0 andU = 1,
see (6). That is, near these points (2) with (3) and (5) has a Fisher–KPP imprint and
we therefore expect that the minimal wave speed c∗ of (2) is also closely related to
the onset of absolute instabilities. In other words, we expect that the travelling wave
solutions of (2) with (3) and (5) are absolutely unstable for 2

√
D′(β)R(β) < c < c∗.

Therefore, we expect perturbations to these travelling wave solutions to always grow
and we will never observe travelling waves with these speeds in, for instance, numer-
ical simulations. Consequently, while (2) with (3) and (5) support these biologically

1 Note that there are several other ways, for instance with sub-solutions (Larson 1978), to show that the
minimal wave speed for the Fisher–KPP equation is c∗.
2 See the introduction of Davis et al. (2017) for definitions, and an explicit computation, of the absolute
spectrum for the Fisher–KPP equation.

123



Travelling wave solutions in a negative . . . 1511

irrelevant travelling wave solutions that go negative, they will never be observed and
thus do not effect the feasibility of the model.

Startingwith a travellingwave solution û(z), we add a small perturbation q(z, t) and
substitute u(z, t) = û(z)+q(z, t) into (9) and, upon ignoring higher-order perturbative
terms O(q2), we get

∂q

∂t
= Lq , with Lq := ∂

∂z

(
∂

∂z

(
D(û)q

)) + c
∂q

∂z
+ (

R′(û)
)
q . (29)

The associated eigenvalue problem, which is obtained by setting q(z, t) = eΛt q(z),
is given by

Lq = Λq. (30)

Upon introducing s := d

dz

(
D(û)q

)
, the eigenvalue problem (30) can be written as a

system of first order singular ODEs

T (Λ)

(
q

s

)
:=

(
D(û)

d

dz
− A(z;Λ)

) (
q

s

)
= 0 , where (31)

A(z;Λ) :=
( −B(z) 1

cB(z) + D(û)
(
Λ − R′(û)

) −c

)
,

with B = D′(û)
dû

dz
. We desingularise the above system by making (essentially) the

same transformation that we made to get to equation (13). That is, we define ξ so that
D(û)dξ = dz and (31) becomes

T̃ (Λ)

(
q

s

)
:=

(
d

dξ
− A(ξ ;Λ)

)(
q

s

)
= 0 , (32)

with A and B as above, but with the observation that dû/dz = (dû/dξ)/D(û). We
have shown in the previous section that dû/dz is a smooth bounded function, and,
as such, (32) is a perfectly well-defined system of equations on R. In particular, it
is well-posed and the usual analysis for continuous and absolute spectrum will apply
here (though the introduction of the variable ξ means that for certain parts of the linear
system the flow will go in the opposite direction—but this will not happen in the far
field z → ±∞).

We call the operator T̃ spectrally stable if the spectrum is in the open left half plane
and unstable otherwise, with the possible exception of 0. The spectrum of T̃ naturally
breaks up into two sets, the point spectrum and the essential spectrum (Kapitula and
Promislow 2013; Sandstede 2002). Roughly speaking, the essential spectrum of the
operator deals with the behaviour in the far field, while the point spectrum contains
information about more localised solutions to the eigenvalue problem.
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Obviously the spectral properties T̃ depend on the domain we choose for it. A
natural choice is the space of square integrable functions whose first (weak) derivative
(in z) is also square integrable, that is, the Sobolev space H1(R). Another choice is
the related one-sided weighted space H

1
ν(R) defined as q ∈ H

1
ν(R) if and only if

eνzq ∈ H
1(R) (Kapitula and Promislow 2013; Sattinger 1977). For positive ν the

weight forces q to decay at a rate faster than e−νz as z → ∞ while it is allowed
to grow exponentially, but at a rate less than e−νz as z → −∞. That is, the weight
provides information whether solutions to (32) are more prone to growing at plus
or minus infinity (Davis et al. 2017). The weighting of H1(R) shifts the essential
spectrum (Kapitula and Promislow 2013), so an operator can be spectrally unstable
with respect to perturbations inH1(R), while it is stablewith respect to perturbations in
an appropriatelyweighted spaceH1

ν(R). This is, for instance, the case for the linearised
Fisher–KPP equation and the linearisation of a particular Keller–Segel model (Davis
et al. 2017, 2019). The absolute spectrumof anoperator is not affected by theweighting
of the space and gives an indication on how far the essential spectrum can be weighted
(as the absolute spectrum is always to the left of the rightmost boundary of the essential
spectrum (Davis et al. 2017)). In other words, if the absolute spectrum of a solution
contains part of the right half plane then the essential spectrum cannot be weighted
into the open left half plane and the solution is said to be absolutely unstable.

The unweighted essential spectrum and the absolute spectrum of the operator T̃
are determined by its asymptotic behaviour, since the operator is a relatively compact
perturbation of the limiting operator as z = ±∞ (Kapitula and Promislow 2013).
Therefore, we define the asymptotic matrices

A+(Λ) := lim
z→+∞ A(z,Λ) =

(
0 1

D(0)(Λ − R′(0)) −c

)
,

and

A−(Λ) := lim
z→−∞ A(z,Λ) =

(
0 1

D(1)(Λ − R′(1)) −c

)
.

More specifically, for the problem at hand the boundary of the unweighted essential
spectrum of T̃ is determined by those Λ for which A±(Λ) has a purely imaginary
eigenvalue. In contrast, the absolute spectrum at ±∞ is determined by those Λ for
which the eigenvalues of A±(Λ) have the same real part (Sandstede 2002). The eigen-
values of A+ are

μ±+ = −c ± √
c2 + 4D(0)(Λ − R′(0))

2
, (33)

and those of A− are

μ±− = −c ± √
c2 + 4D(1)(Λ − R′(1))

2
. (34)
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Fig. 6 a The unweighted essential spectrum and the absolute spectrum of the linear operator T̃ for c > c∗.
The boundary of the unweighted essential spectrum is determined by the dispersion relations of A+ (dashed
blue curve) and A− (solid blue curve) and the green region is the interior of the unweighted essential
spectrum. The solid red line is the absolute spectrum σ+

abs (35), while the dashed red line is the absolute

spectrum σ+
abs (35). b The unweighted essential spectrum is, for a weight ν = c/(2D(0)) with c ≥ c∗,

shifted to the rightmost boundary of the absolute spectrum σ+
abs (colour figure online)

Hence, the boundary of the unweighted essential spectrum is given by the so-called
dispersion relations

Λ+ = −D(0)k2 + ick + R′(0), and Λ− = −D(1)k2 + ick + R′(1),

where k ∈ R and where μ++ = i D(0)k and μ+− = i D(1)k are the purely imaginary
spatial eigenvalue of A±. These dispersion relations form two parabolas, opening
leftward and intersecting the real axis at R′(0) = λ > 0 and R′(1) = −λ < 0, see
Fig. 6. That is, all travelling wave solutions of (2) with (3) and (5) have unweighted
essential spectrum in the right half plane.

From (33) we get that the absolute spectrum at +∞ is given by

σ+
abs =

{
Λ ∈ R

∣∣∣∣ Λ < − c2

4D(0)
+ R′(0) = − c2

4Di
+ λ =: K+

}
. (35)

Similarly, from (34) we get that the absolute spectrum at −∞ is given by

σ−
abs =

{
Λ ∈ R

∣∣∣∣ Λ < − c2

4D(1)
+ R′(1) = − c2

4Dg
− λ =: K−

}
. (36)

That is, σ−
abs is always fully contained in the open left half plane including the origin,

while σ+
abs is only fully contained in the open left half plane including the origin for

c ≥ c∗ = 2
√

λDi , see Fig. 6.
The essential spectrum in the weighted spaceH1

ν(R) is determined by the operator

T ν(Λ)

(
q

s

)
:=

(
D(û)

d

dz
− (

A(z;Λ) + D(û)ν I
))(

q

s

)
= 0 ,
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or

T̃ ν(Λ)

(
q

s

)
:=

(
d

dξ
− (

A(ξ ;Λ) + D(û)ν I
)) (

q

s

)
= 0 ,

see Kapitula and Promislow (2013), and the weighted asymptotic matrices are

Aν+(Λ) = A+(Λ) + D(0)ν I =
(

D(0)ν 1
D(0)(Λ − R′(0)) −c + D(0)ν

)
,

and

Aν−(Λ) = A−(Λ) + D(1)ν I =
(

D(1)ν 1
D(1)(Λ − R′(1)) −c + D(1)ν

)
.

Hence, the boundary of the essential spectrum in the weighted space is given by the
dispersion relations

Λν+ = −D(0)k2 + i(c − 2D(0)ν)k + D(0)ν2 − cν + R′(0),
Λν− = −D(1)k2 + i(c − 2D(1)ν)k + D(1)ν2 − cν + R′(1).

These dispersion relations still form two parabolas opening leftward and the intersec-
tions with the real axis now depend on ν. We define the intersection of Λν+ with the
real axis as K ν+ := D(0)ν2 − cν + R′(0), and the intersection of Λ− on the real axis
as K ν− := D(1)ν2 − cν + R′(1). For 2

√
D′(β)R(β) < c < c∗, K ν+ is positive for

all weights ν, that is, Λν+ always has a positive intersection on the real axis. In other
words, for 2

√
D′(β)R(β) < c < c∗ and in any weighted space H1

ν(R), parts of the
boundary of the weighted essential spectrum lie in the open right half plane. For speed
c ≥ c∗, there exists a range of weights

ν ∈
(
c − √

c2 − (c∗)2
2D(0)

,
c + √

c2 + (c∗)2
2D(0)

)
(37)

such that K ν+ < 0, that is, Λ+ has a negative intersection with the real axis. Further-
more, K ν− < K ν+. Therefore, for c ≥ c∗, the unweighted essential spectrum is shifted
into the open left half plane for weights in the above range (37). Furthermore, when
ν = c/(2D(0)), K ν+ reaches its minimum, which coincides with K+, the rightmost
boundary of the absolute spectrum σ+

abs (35). Note that ν = c/(2D(0)) is the ideal
one-sided weight (Davis et al. 2017), i.e. the weight that shifts the right most boundary
of the essential spectrum furthest into the left half plane (since σ+

abs is to the right of
σ−
abs). See Fig. 6.
In conclusion, the operator T̃ is absolutely unstable for 2

√
D′(β)R(β) < c < c∗

and no weights exist to shift its unweighted essential spectrum into the open left half
plane. In contrast, the absolute spectrum of T̃ with speed c ≥ c∗ is fully contained in
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the open left half plane including the origin and weights can be found that shift the
unweighted essential spectrum into this region.

Remark 3 While the desingularised operator T̃ (32) is well-posed, the original eigen-
value operator L (30) has a forward–backward diffusion part and is therefore not.
However, we do find the travelling wave solutions numerically in parameter regimes
in accordance with the stable spectrum for (32). Lastly, we note that the travelling
wave solution û consists of three heteroclinic orbits in the desingularised variable ξ ,
and while the asymptotic matrices related to the holes in the wall at α and β

⎛
⎜⎜⎝

−D′(û)
dû

dz
1

cD′(û)
dû

dz
−c

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
û=α,û=β

.

are not Fredholm since they have a zero eigenvalue, the corresponding constant solu-
tions (i.e. u = α, β) are not fixed points of the original travelling wave Eq. (10). So,
these points are not really to be considered in the far field in terms of the variable z. It
remains to be seen whether or not the asymptotic matrices in ξ contribute to stability
or instability of the travelling wave solutions û in z. Though, as we have mentioned
above, numerical solutions to the travelling wave solutions have been found, so it
appears as though, for some parameter regimes at least, they do not destabilise the
wave.

4 Summary and future work

4.1 Summary of results

We started this manuscript with a lattice-based discrete model introduced in Johnston
et al. (2017) that explicitly accounts for differences in individual and collective cell
behaviour. Based on Johnston et al. (2017), the discrete model has the continuous
description (2) obtained by using truncated Taylor series in the continuum limit. Our
analysis focused on the case where Di > 4Dg so that we can obtain a convex nonlinear
diffusivity function D(U ), given by (3), which changes sign twice in our domain
of interest. Furthermore, the assumption of equal proliferation rates and zero death
rates leads to a logistic kinetic term R(U ), given by (5). The associated numerical
simulations of (2) with (3) and (5), see Fig. 2, provided evidence of the existence of
smooth monotone travelling wave solutions. To study these travelling wave solutions
of (2), we used a travelling wave coordinate z = x − ct and looked for stationary
solutions in the moving frame. Consequently, (2) was transformed into the singular
second-order ODE (10) which we transformed into a singular system of first-order
ODEs (12). To remove the singularities, we used the stretched variable D(u)dξ = dz
and transformed (12) into system (13). Next, we analysed the phase plane of the
desingularised system (13) and proved the existence of heteroclinic orbits connecting
the equilibrium points (0, 0), (α, 0), (β, 0) and (1, 0) for wave speeds c ≥ c∗, given by
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Fig. 7 a D(U ) with Di = 0.25 and two different Dg . b The corresponding phase planes of system (12)
for λ = 0.75, c = 1, Di = 0.25, Dg = 0.2 and Dg = 0.6, respectively. The two solid curves are the
nullclines p = −D(u)R(u)/c with Dg = 0.2 (blue curve) and Dg = 0.6 (orange curve), respectively.
The red dashed lines are the corresponding heteroclinic orbits representing travelling wave solutions in (2)
(colour figure online)

(11). Subsequently, based on the relation between the phase planes of (12) and (13), we
proved the existence of a heteroclinic orbit in (12) connecting the equilibrium points
(1, 0) and (0, 0) passing through (α, 0) and (β, 0), that are special points on the phase
plane called a hole in the wall of singularities. That is, we proved the existence of
smooth monotone travelling wave solutions of (2) for c ≥ c∗. In the end, we showed
that the linear operator T̃ (32), associatedwith the travellingwave solutions of (2), with
wave speed c < c∗ is absolutely unstable, which in turn explained that the numerical
simulations only provided travelling wave solutions with wave speeds c ≥ c∗.

Based on our analysis, one-dimensional agent density profiles in the discrete model
will eventually spread with a speed c ≥ c∗ if the two types of agents have equal
proliferation rates, zero death rates and different diffusivities satisfying Di > 4Dg .
Notice that c∗ = 2

√
λDi , hence, the lowest speed for the travelling wave only relates

to the diffusivity of individuals and is independent of the diffusivity of the grouped
agents. That is, the diffusivity of grouped agents which is smaller than that of isolated
agents (Di > 4Dg) does not give restrictions for the lowest speed of the moving
front. Consequently, we infer that the speed of invasion processes for organisms, for
instance, cells, is mainly determined by the behaviour of individuals. Furthermore,
the Fisher–KPP equation also has a minimum wave speed for the existence of smooth
monotone travelling wave solutions (Kolmogorov et al. 1937; Fife 2013). Hence, a
discretemechanism of invasion processes considering the differences in individual and
collective behaviours can lead to a macroscopic behaviour similar to that observed in
the discrete mechanism with no differences in isolated and grouped agents.

4.2 Smooth travelling wave solutions for positive D(U)

If Di < 4Dg , then the nonlinear diffusivity function D(U ) is positive for U ∈ [0, 1],
see Fig. 7a. Thus the corresponding system of first-order ODEs (12) is not singular,
and the nullcline p = −D(u)R(u)/c does not cross u-axis, see Fig. 7b. In other
words, (0, 0) and (1, 0) are the only equilibrium points. Following the same method
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Fig. 8 a The wave speed as a function of the initial condition U (x, 0) = 1/2 + tanh (−η(x − 40)) /2.
Notice that as η grows to infinity this initial condition limits to the Heaviside initial condition. Parameters
are λ = 0.75, Di = 0.25 and Dg = 0.6. The wave speed reaches its minimum which is between S1 and
S2 and then converges to a bigger value which is still between S1 and S2. In (b), Dg = 0.2 while the other
parameters are the same as in (a). In this case, the wave speed converges to S2 (colour figure online)

as applied in Sect. 2, we obtain the lower bound

S1 = sup
u∈(0,1)

2

√
D(u)R(u)

u
= sup

u∈(0,1)
2
√

λ(1 − u)D(u),

such that there exist smooth monotone travelling wave solutions of (2) for c ≥ S1. The
origin is still a stable node for c ≥ 2

√
λDi := S2 and S1 ≥ S2. So, if S1 �= S2, c ≥ S1

is only a sufficient condition because there may exist smooth monotone travelling
wave solutions of (2) for wave speeds S2 ≤ c < S1. Thus, we can only conclude that
the minimum wave speed is in the range

S2 ≤ ĉ ≤ S1, (38)

such that there exist smooth monotone nonnegative travelling wave solutions of (2)
for c ≥ ĉ. Note that the minimum wave speed ĉ can be different from the minimum
wave speed c∗ in Theorem 1, and Lemma 2 does not necessarily hold.

This estimate is consistent with the result in Malaguti andMarcelli (2003) obtained
by using the comparison method introduced by Aronson and Weinberger (1978).
The corresponding numerical simulations also give the expected results, see Fig. 8.
Witelski (1994) obtained an asymptotic travelling wave solution for a PDE motivated
by polymer diffusionwith a positive nonlinear diffusivity function and logistic kinetics
for wave speeds greater than a minimum wave speed which is greater than S2. This is
consistent with the estimate of the minimumwave speed in (38). For solutions with an
asymptotic wave speed equal to S2, the front of the travelling wave is called a pulled
front; for solutions with asymptotic speeds greater than S2, the front of the travelling
wave is called a pushed front (van Saarloos 2003). Unravelling the differences in wave
speed selection remains to be explored.
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(a)

p

u
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Fig. 9 a The phase plane of the desingularised system (13) with D̂(u), c = 0.3 and λ = 0.75. The vertical
dashed lines are the wall of singularities at u = 0.1 and u = 0.3. The blue lines are the nullclines p = 0 and
p = −D(u)R(u)/c. The red line is the heteroclinic orbit connecting (1, 0) to (0.3, 0). b The phase plane
of system (12) with D̂(u), c = 0.3 and λ = 0.75. The vertical dashed lines are the walls of singularities
u = 0.1 and u = 0.3. The blue lines are the nullclines p = 0 and p = −D(u)R(u)/c. The red line shows
the orientation of the same trajectory in (a) on different sides of the wall of singularities u = 0.3 (colour
figure online)

4.3 Shock-fronted travelling waves

In Sect. 2, we mainly considered the equilibrium point (0, 0) as a stable node in the
phase plane of system (13). With (0, 0) a stable node, (β, 0) is also a stable node based
on (22). However, (22) does not hold for any convex D(U ) which changes sign twice.
For instance, for

D̂(U ) = (U − 0.1)(U − 0.3), (39)

condition (15) and condition (16) become

c ≥ 2
√
D̂(0)R′(0) = 0.3, c ≥ 2

√
D̂′(0.3)R(0.3) ≈ 0.355.

With the nonlinear diffusivity function D̂(U ), the equilibrium point (0, 0) is a stable
node and the equilibrium point (β, 0) is a stable spiral for speeds 0.3 < c < 0.355 in
(13). In this case, only shock-fronted travelling wave solutions of (2) can exist since
(13) no longer possesses heteroclinic orbits connecting to (β, 0) that do not cross the
walls of singularities, see Fig. 9. The corresponding numerical simulation of (2) indeed
gives a shock-fronted travelling wave solution with a speed c = 0.3, see Fig. 10.

It is not a surprise to see shock-fronted travelling wave solutions in negative non-
linear diffusion equations. Shocks in negative nonlinear diffusion equations with no
kinetic terms have been studied in the context of many physical phenomena, such as
themovement ofmoisture in partially saturated porousmedia (DiCarlo et al. 2008); the
motion of nanofluids (Landman and White 2011) and these kinds of PDEs also arise
in the study of Cahn–Hilliard models (Witelski 1995). Numerical simulations of (2)
with nonlinear diffusivity function (3) and Allee kinetics (4) also lead to shock-fronted
solutions, see Johnston et al. (2017). In addition, Allee kinetics support shock-fronted
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Fig. 10 a The evolution of a Heaviside initial condition to a shock-fronted travelling wave solution obtained
by simulating (2) with (39) and (5) with λ = 0.75 at t = 0, t = 25 and t = 50. Notice that D(U ) = 0 at
α = 0.1 and β = 0.3. The travelling wave solution eventually has a constant positive speed, c = 0.3. b
∂U/∂x corresponding to the numerical solution in (a) at t = 50 and for x between 40 and 60 (colour figure
online)

travelling wave solutions for reaction–diffusion–advection equations with small diffu-
sion coefficients (Sewalt et al. 2016; Wang et al. 2019). The analysis of shock-fronted
travelling wave solutions in nonlinear diffusion–reaction equations with generic dif-
fusivity functions and logistic kinetics is left for future work.

4.4 Point spectrum

The real point spectrum of the operator in (32) is also computable. For this problem
we employ the ‘standard’ trick of setting θ := tan−1(s/q) and then evaluating dθ/dξ

at where the line (q, s) is vertical (Jones and Marangell 2012; Harley et al. 2015). In
particular, we need to analyse the sign of the following quantity

dθ

dξ
=

−s2 +
(
D′(û)

D(û)

dû

dξ
− c

)
sq +

(
D(û)(Λ − R′(û)) + c

D′(û)

D(û)

dû

dξ

)
q2

s2 + q2

∣∣∣∣
q=0

= 1,

which in particular is independent of Λ. The implications of this are that if we know
the number of times the solution of (32) is vertical for Λ = 0 as ξ ranges over R and
then again for Λ = Λ∞ � 1, then the difference is the number of eigenvalues in
the interval (0,Λ∞) and we can use the previous phase portrait analysis to determine
the number of real positive eigenvalues. The number of times the solution of (32) is
vertical for Λ = 0 is (as in standard Sturm–Liouville theory) the number of times that
the solution curve has a vertical tangent in the phase portrait. This is seen from Fig. 4
as being 0.

Acknowledgements The authors would like to thank P.N. Davis and M. Wechselberger for fruitful discus-
sions. We also thank the two referees for their helpful suggestions.

123



1520 Y. Li et al.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Allee W, Bowen ES (1932) Studies in animal aggregations: mass protection against colloidal silver among
goldfishes. J Exp Zool 61(2):185–207

Anguige K, Schmeiser C (2009) A one-dimensional model of cell diffusion and aggregation, incorporating
volume filling and cell-to-cell adhesion. J Math Biol 58(3):395

Aronson DG (1980) Density-dependent interaction–diffusion systems. In: Dynamics and modelling of
reactive systems. Elsevier, pp 161–176

Aronson DG, Weinberger HF (1978) Multidimensional nonlinear diffusion arising in population genetics.
Adv. Math. 30(1):33–76

Barenblatt G, Bertsch M, Passo RD, Ughi M (1993) A degenerate pseudoparabolic regularization of a
nonlinear forward–backward heat equation arising in the theory of heat and mass exchange in stably
stratified turbulent shear flow. SIAM J. Math. Anal. 24(6):1414–1439

Bramson M, Calderoni P, De Masi A, Ferrari P, Lebowitz J, Schonmann RH (1986) Microscopic selection
principle for a diffusion–reaction equation. J Stat Phys 45(5–6):905–920

Codling EA, Plank MJ, Benhamou S (2008) Random walk models in biology. J R Soc Interface 5(25):813–
834

Courchamp F, Clutton-Brock T, Grenfell B (1999) Inverse density dependence and the Allee effect. Trends
Ecol Evolut 14(10):405–410

Davis PN, van Heijster P, Marangell R (2017) Absolute instabilities of travelling wave solutions in a Keller–
Segel model. Nonlinearity 30(11):4029

Davis PN, vanHeijster P,Marangell R (2019) Spectral stability of travellingwave solutions in aKeller–Segel
model. Appl Numer Math 141:54–61

Deroulers C, Aubert M, Badoual M, Grammaticos B (2009) Modeling tumor cell migration: from micro-
scopic to macroscopic models. Phys Rev E 79(3):031917

DiCarloDA, Juanes R, LaForce T,Witelski TP (2008)Nonmonotonic travelingwave solutions of infiltration
into porous media. Water Resour Res 44(2):W02406

Druckenbrod NR, Epstein ML (2007) Behavior of enteric neural crest-derived cells varies with respect to
the migratory wavefront. Dev Dyn 236(1):84–92

Ferracuti L,Marcelli C, Papalini F (2009) Travellingwaves in some reaction–diffusion–aggregationmodels.
Adv Dyn Syst Appl 4(1):19–33

Fife PC (2013) Mathematical aspects of reacting and diffusing systems, vol 28. Springer, Berlin
Fisher RA (1937) The wave of advance of advantageous genes. Ann Eugen 7(4):355–369
Harley K, van Heijster P, Marangell R, Pettet GJ, Wechselberger M (2014a) Existence of traveling wave

solutions for a model of tumor invasion. SIAM J Appl Dyn Syst 13(1):366–396
Harley K, van Heijster P, Marangell R, Pettet GJ, Wechselberger M (2014b) Novel solutions for a model of

wound healing angiogenesis. Nonlinearity 27(12):2975
Harley K, van Heijster P, Marangell R, Pettet GJ, Wechselberger M (2015) Numerical computation of an

Evans function for travelling waves. Math Biosci 266:36–51
Höllig K (1983) Existence of infinitely many solutions for a forward backward heat equation. Trans Am

Math Soc 278(1):299–316
Johnston ST, Simpson MJ, Baker RE (2012) Mean-field descriptions of collective migration with strong

adhesion. Phys Rev E 85(5):051922
Johnston ST, Baker RE, McElwain DLS, Simpson MJ (2017) Co-operation, competition and crowding:

a discrete framework linking Allee kinetics, nonlinear diffusion, shocks and sharp-fronted travelling
waves. Sci Rep 7:42134

123

http://creativecommons.org/licenses/by/4.0/


Travelling wave solutions in a negative . . . 1521

Jones CK (1995) Geometric singular perturbation theory. In: Johnson R (ed) Dynamical systems: lectures
given at the 2nd session of the centro internazionale matematico estivo (C.I.M.E.) held in Montecatini
Terme, Italy, June 13–22. Springer, Berlin, pp 44–118

Jones CKRT, Marangell R (2012) The spectrum of traveling wave solutions to the sine-Gordon equation.
Discrete Contin Dyn Syst 5(5):925–937

JordanDW, Smith P (1999)Nonlinear ordinary differential equations: an introduction to dynamical systems,
vol 2. Oxford University Press, Oxford

Kapitula T, Promislow K (2013) Spectral and dynamical stability of nonlinear waves. Springer, Berlin
Khain E, Sander LM, Schneider-Mizell CM (2007) The role of cell–cell adhesion in wound healing. J Stat

Phys 128(1–2):209–218
Khain E, Katakowski M, Hopkins S, Szalad A, Zheng X, Jiang F, Chopp M (2011) Collective behavior of

brain tumor cells: the role of hypoxia. Phys Rev E 83(3):031920
Kolmogorov A, Petrovsky I, Piscounov N (1937) Étude de l’équation de la diffusion avec croissance de la

quantité de matière et son application à un problème biologique. Moscow Univ Math Bull 1:1–25
LandmanKA,White LR (2011) Terraced spreading of nanofilms under a nonmonotonic disjoining pressure.

Phys Fluids 23(1):012004
Larson DA (1978) Transient bounds and time-asymptotic behavior of solutions to nonlinear equations of

Fisher type. SIAM J Appl Math 34(1):93–104
Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes,

epidemiology, global consequences, and control. Ecol Appl 10(3):689–710
Maini PK, Malaguti L, Marcelli C, Matucci S (2006) Diffusion–aggregation processes with mono-stable

reaction terms. Discrete Contin Dyn Syst Ser B 6(5):1175–1189
Maini PK, Malaguti L, Marcelli C, Matucci S (2007) Aggregative movement and front propagation for

bi-stable population models. Math Models Methods Appl Sci 17(9):1351–1368
Malaguti L, Marcelli C (2003) Sharp profiles in degenerate and doubly degenerate Fisher–Kpp equations.

J Differ Equ 195(2):471–496
Murray JD (2002) Mathematical biology: I. An introduction, mathematical biology. Springer, Berlin
Novick-Cohen A, Pego RL (1991) Stable patterns in a viscous diffusion equation. Trans Am Math Soc

324(1):331–351
Pego RL, Penrose O (1989) Front migration in the nonlinear Cahn–Hilliard equation. Proc Roy Soc Lond

A Math Phys Sci 422(1863):261–278
Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern

Anal Mach Intell 12(7):629–639
Pettet GJ, McElwain DLS, Norbury J (2000) Lotka-Volterra equations with chemotaxis: walls, barriers and

travelling waves. Math Med Biol A J IMA 17(4):395–413
Poujade M, Grasland-Mongrain E, Hertzog A, Jouanneau J, Chavrier P, Ladoux B, Buguin A, Silberzan P

(2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad
Sci 104(41):15988–15993

Sánchez-Garduño F, Maini PK (1994) Existence and uniqueness of a sharp travelling wave in degenerate
non-linear diffusion Fisher–Kpp equations. J Math Biol 33(2):163–192

Sandstede B (2002) Stability of travelling waves. In: Handbook of dynamical systems, vol 2. Elsevier,
Amsterdam, pp 983–1055

Sattinger D (1977) Weighted norms for the stability of traveling waves. J Differ Equ 25(1):130–144
Sewalt L, Harley K, van Heijster P, Balasuriya S (2016) Influences of allee effects in the spreading of

malignant tumours. J Theor Biol 394:77–92
Sherratt JA (1998) On the transition from initial data to travelling waves in the Fisher–KPP equation. Dyn

Stab Syst 13(2):167–174
Sherratt JA, Dagbovie AS, Hilker FM (2014) A mathematical biologist’s guide to absolute and convective

instability. Bull Math Biol 76(1):1–26
SimpsonMJ, Landman KA (2007) Nonmonotone chemotactic invasion: high-resolution simulations, phase

plane analysis and new benchmark problems. J Comput Phys 225(1):6–12
Simpson MJ, Landman KA, Hughes BD (2010a) Cell invasion with proliferation mechanisms motivated

by time-lapse data. Phys A 389(18):3779–3790
Simpson MJ, Landman KA, Hughes BD, Fernando AE (2010b) A model for mesoscale patterns in motile

populations. Phys A 389(7):1412–1424
Simpson MJ, Towne C, McElwain DLS, Upton Z (2010c) Migration of breast cancer cells: understanding

the roles of volume exclusion and cell-to-cell adhesion. Phys Rev E 82(4):041901

123



1522 Y. Li et al.

Simpson MJ, Haridas P, McElwain DLS (2014) Do pioneer cells exist? PLoS ONE 9(1):e85488
Szmolyan P, Wechselberger M (2001) Canards in R3. J Differ Equ 177(2):419–453
van Saarloos W (2003) Front propagation into unstable states. Phys Rep 386(2–6):29–222
Wang Y, Shi J, Wang J (2019) Persistence and extinction of population in reaction–diffusion–advection

model with strong Allee effect growth. J Math Biol 78(7):2093–2140
Wechselberger M (2005) Existence and bifurcation of canards in R

3 in the case of a folded node. SIAM J
Appl Dyn Syst 4(1):101–139

Wechselberger M (2012) A propos de canards (apropos canards). Trans Am Math Soc 364(6):3289–3309
Wechselberger M, Pettet GJ (2010) Folds, canards and shocks in advection–reaction–diffusion models.

Nonlinearity 23(8):1949–1969
Weickert J (1998) Anisotropic diffusion in image processing, vol 1. Teubner Stuttgart, Stuttgart
Witelski TP (1994) An asymptotic solution for traveling waves of a nonlinear-diffusion Fisher’s equation.

J Math Biol 33(1):1–16
Witelski TP (1995) Shocks in nonlinear diffusion. Appl Math Lett 8(5):27–32

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Travelling wave solutions in a negative nonlinear diffusion–reaction model
	Abstract
	1 Introduction
	2 Existence of travelling wave solutions
	2.1 Transformation and desingularisation
	2.2 Phase plane analysis of the desingularised system

	3 Stability analysis
	4 Summary and future work
	4.1 Summary of results
	4.2 Smooth travelling wave solutions for positive D(U)
	4.3 Shock-fronted travelling waves
	4.4 Point spectrum

	Acknowledgements
	References




