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Abstract
We study an extension of the standard framework for pedigree analysis, in which we
allow pedigree founders to be inbred. This solves a number of practical challenges
in calculating coefficients of relatedness, including condensed identity coefficients.
As a consequence we expand considerably the class of pedigrees for which such
coefficients may be efficiently computed. An application of this is the modelling
of background inbreeding as a continuous effect. We also use inbred founders to
shed new light on constructibility of relatedness coefficients, i.e., the problem of
finding a genealogy yielding a given set of coefficients. In particular, we show that
any theoretically admissible coefficients for a pair of noninbred individuals can be
produced by a finite pedigree with inbred founders. Coupled with our computational
methods, implemented in the R package ribd, this allows for the first time computer
analysis of general constructibility solutions, thusmaking them accessible for practical
use.

Keywords Relatedness · Kinship · Inbreeding · Identity coefficients · IBD triangle ·
Pedigree construction

Mathematics Subject Classification 92D10 · 92D25

1 Introduction

Astandard convention in pedigree analysis is that the pedigree founders are assumed to
be noninbred.While this is natural in many settings, it is sometimes a severe limitation
leading to unjustified approximations and biased results (Brustad and Egeland 2019;
Kardos et al. 2018). In this paper we address this issue in the context of relatedness
coefficients. We show that substantial benefits, both theoretical and practical, can be
gained by relaxing the assumption of noninbred pedigree founders.

B Magnus Dehli Vigeland
magnusdv@medisin.uio.no

1 Department of Medical Genetics, University of Oslo, Oslo, Norway

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-020-01505-x&domain=pdf
http://orcid.org/0000-0002-9134-4962


186 M. D. Vigeland

Fig. 1 A pair of siblings whose
parents are completely inbred.
Current relatedness software
struggle with such pedigrees
because the inbred individuals
require infinite mating chains for
exact representation

f = 1 f = 1

The purpose of relatedness coefficients is to quantify the amount of identical-by-
descent (IBD) allele sharing between pedigree members. Alleles are said to be IBD
if they have the same origin in some fixed reference population, typically the pedi-
gree founders (Thompson 2013). It is important to distinguish the pedigree-based
and realised coefficients; the former measure the expected IBD sharing, while the
latter reflect the actual sharing in a given pair of individuals (Hill and Weir 2011).
The realised coefficients can be estimated from genetic data, and may be preferable
in certain situations (Speed and Balding 2015). However, family trees and pedigree
coefficients continue to be a rich source of information. A recent example from human
genetics is the massive undertaking by Kaplanis et al. (2018), where detailed pedigree-
based coefficients were computed between millions of related individuals.

A striking consequence of the conventional assumptions is that large classes of
pedigrees are beyond reach of current software. For example, no software that we
know of is capable of computing a complete set of IBD coefficients for the siblings
shown in Fig. 1, whose parents are completely inbred. (This particular case is in
fact trivial, since the two siblings are genetically like monozygotic twins.) In model
organism experiments inbred strains are typically created by many generations of
brother-sister mating or other breeding schemes. It is a mathematical fact, however,
that the inbreeding coefficient f measuring the expected amount of IBD within an
individual, will never reach 1 exactly; this is achievable only in the limit of an infinite
pedigree. As a result it is impossible to represent completely inbred individuals in
software following the standard conventions.

Another feature inadequately handled by existing methods is background inbreed-
ing. This refers to the fact that all living creatures are related if their ancestry is traced
far enough. Hence all individuals are in one sense inbred, including the designated
founders of any real-life pedigree. It is well known that background inbreeding may
seriously distort pedigree coefficients in wild pedigrees (see e.g. Kardos et al. 2018);
nevertheless it is often ignored in practice. The problem is also present in human pop-
ulations, where background inbreeding levels can rise to well over 5% (Pemberton and
Rosenberg 2014; Leutenegger et al. 2011). To account for this, models incorporating
background inbreeding have been proposed in various forms of pedigree analysis, e.g.
in linkage analysis (Hössjer 2006) and genetic mapping of quantitative trait loci (Yi
and Xu 2001).

The kinship coefficient, introduced by Wright (1922) almost 100 years ago, is the
simplest measure of relatedness between two pedigree members. It is noteworthy
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Relatedness coefficients in pedigrees with inbred founders 187

that Wright’s famous path formula for this coefficient (see Eq. (1) below) explicitly
incorporates founder inbreeding. Several previous authors, including Boichard (2002),
and more recently Kirkpatrick et al. (2018), have published software allowing inbred
founders in the computation of kinship coefficients.

In this work we extend the use of inbred founders to the full set of condensed
identity coefficients (Jacquard 1966), which characterise in detail the expected genetic
relationship between any two individuals. An efficient algorithm for computing these
coefficients was first given by Karigl (1981), and generalised by other authors (Weeks
and Lange 1988; Lange and Sinsheimer 1992). Karigl’s recursive approach remains
popular due to its relative simplicity, but several alternative methods have been pro-
posed over the years (Abney 2009; Cheng et al. 2009; García-Cortés 2015). We note
especially the fast graphical algorithm implemented in the software IdCoefs (Abney
2009), also available through the R package identity, but none of these programs
support inbred founders. To remedy this, we propose a modification of Karigl’s algo-
rithm which accounts for arbitrary founder inbreeding.

The premise that pedigree founders may be inbred, but not related, is generally
unrealistic under random mating. However, in specific cases our model assumptions
are often supported by prior information about the founders. This applies in particular
to pedigrees in medical and forensic genetics, where extensive data about themembers
are typically collected. For example, it may be known that the parents in a family are
from different populations, and therefore unrelated. Importantly, such information
may also be deduced from genetic data. Forensic pedigree analysis based on these
ideas are explored in Brustad and Egeland (2019) and Vigeland and Egeland (2019).

Whenmodelling background inbreeding inwild pedigrees, it is tempting to incorpo-
rate founder relatedness in addition to founder inbreeding. This idea has been pursued
by Lacy (2012) in the case of kinship coefficients, and also in other forms of pedi-
gree analysis (Sheehan and Egeland 2008). In the context of identity coefficients, the
complexity of multi-person relatedness makes this generalisation out of scope for the
present work, but perhaps not infeasible. We discuss this further in Section 6.1.

In this paper we apply pedigrees with inbred founders to take a fresh look at prob-
lems of constructing pedigree coefficients. This concerns the task of producing a
genealogy yielding a prescribed set of coefficients, if at all possible. In addition to being
theoretically attractive, such problems have considerable practical interest, for exam-
ple in studies of ancient DNA (Prüfer et al. 2013). Constructibility of the full-blown
identity coefficients remains elusive, but partial results have been found (Thompson
1980; Karigl 1984). In particular, Karigl (1984) gave a solution to the constructibil-
ity of pairwise identity coefficients in the case of noninbred individuals, employing
a method for constructing arbitrary kinship coefficients. However, his constructions
are difficult to work with, in general involving multiple infinite mating chains. More-
over, they are suboptimal in the sense that they always require infinite pedigrees,
even in cases where finite solutions exist. Above all, his solutions are not suitable for
computer implementation, thus effectively hindering researchers from analysing and
experimenting with such pedigrees.

We provide alternative pedigree constructions rectifying the above issues. By allow-
ing inbred founders, we show that any kinship coefficient, as well as any admissible
set of IBD coefficients between noninbred individuals, can be produced by a finite
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pedigree. It should be emphasised that these theoretical results gain practical rele-
vance from the computational methods presented in this paper. The algorithms are
implemented in the R package ribd, enabling our constructions to be computer val-
idated and used in practical examples. The ribd package is part of the ped suite
of packages covering a wide range of pedigree analysis, with founder inbreeding as a
core feature.

2 Definitions and notation

We define a pairwise relationship to be a triple (a, b,P), where P is a connected
pedigree, and a and b are (not necessarily distinct) members ofP . Founders ofP , i.e.,
members whose parents are not included inP , are assumed to be unrelated and nonin-
bred unless explicitly stated otherwise. Homologous alleles of a and b are identical by
descent (IBD) if they descend from the same allele carried by a common ancestor of
a and b within P . It should be emphasised that the concept of IBD, and consequently
all coefficients to be defined below, depend on the context pedigree. We restrict our
attention to diploid loci.

The simplest measure of relatedness between two pedigree members a and b is the
kinship coefficient ϕab, defined as the probability that a random allele from a is IBD
with a random allele from b at the same locus. Moreover, if a and b have a child c, the
inbreeding coefficient fc is the kinship coefficient of its parents, i.e., fc = ϕab. Equiv-
alently, fc can be defined as the expected fraction of c’s autosomes that are autozygous,
i.e., where the paternal and maternal alleles are IBD. The kinship/inbreeding coeffi-
cient was first studied by Wright (1922), who provided the following path formula:

ϕab =
∑

s

∑

u,v

1

2|u|+|v|+1 (1 + fs). (1)

The summation runs over all common ancestors s of a and b, and all pairs (u, v) of
non-overlapping pedigree paths from s to a and b respectively, with path lengths |u|
and |v|.

For noninbred individuals a and b their IBD coefficients κ = (κ0, κ1, κ2) are defined
as the probabilities of sharing respectively 0, 1 and2 alleles IBD, at a randomautosomal
locus. Since κ0 + κ1 + κ2 = 1, the triple κ can be represented as a point (κ0, κ2) in the
IBD triangle shown in Fig. 2, defined by κ0, κ2 ≥ 0 and κ0+κ2 ≤ 1. Thompson (1976)
discovered that all relationships between noninbred individuals satisfy the inequality
κ2
1 ≥ 4κ0κ2, thus defining an inadmissible region of the triangle, shown in grey in the
figure. A point in the IBD triangle is called admissible if it is not in the inadmissible
region. (Note that the boundary points are admissible.) Fig. 2 includes the location of
some common outbred relationships.

A complete characterisation of the expected IBDsharing at a single locus, of any two
individuals, is given by the condensed identity coefficients Δ1, . . . , Δ9, attributable to
Jacquard (1966). These are the expected relative frequencies of the condensed identity
states shown in Fig. 3. The nine states represent the possible patterns of IBD between
the four alleles carried by the two individuals, when the alleles within each individual
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Relatedness coefficients in pedigrees with inbred founders 189

Fig. 2 The IBD triangle. Each
axis ranges from 0 to 1.
Relationship abbreviations: FC
= first cousins; G =
grandparent-grandchild; H =
half siblings; MZ = monozygotic
twins; PO = parent-offspring; S
= full siblings; U = avuncular
(e.g. uncle-niece); UN =
unrelated

0

2

UNPO

MZ

S

H,U,G FC

inadmissable region

Δ1 Δ2 Δ3 Δ4 Δ5 Δ6 Δ7 Δ8

b 's alleles

Δ9

a 's alleles

Fig. 3 Jacquard’s condensed identity states and the corresponding coefficients. Each state represents a
pattern of IBD between the alleles of individuals a and b at a single locus. IBD alleles are connected with
a line segment

are unordered. Importantly, when both individuals are noninbred, the first six states
are impossible, and the remaining three correspond to the IBD coefficients in reverse
order: (κ0, κ1, κ2) = (Δ9,Δ8,Δ7).

3 Identity coefficients in pedigrees with inbred founders

3.1 Amodification of Karigl’s algorithm

In this section we briefly review Karigl’s recursive algorithm for computing con-
densed identity coefficients (Karigl 1981), and we describe the modifications needed
to accommodate inbred founders.

Define the generalised kinship coefficient ϕabc, for three (not necessarily distinct)
pedigree members a, b, c, as the probability that if a random allele is sampled from
each of them, at the same autosomal locus, all alleles are IBD. Similarly, we define
ϕabcd for 4 individuals. Finally let ϕab,cd be the probability that when homologous
alleles are sampled randomly from a, b, c, d, the two from a and b are IBD and the
two from c and d are IBD.

Karigl showed that the nine identity coefficients can be expressed as linear combi-
nations of the generalised kinship coefficients defined above. The easiest way to see
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190 M. D. Vigeland

this is to start with the inverse relations. For example, for any individuals a and b we
find by conditioning on the 9 identity states that

ϕaab = Δ1 + 1

2
Δ3 + 1

4
Δ5 + 1

4
Δ7 + 1

8
Δ8. (2)

From this and eight other similar identities a linear system of equations is obtained,
which can be uniquely solved for Δ, . . . ,Δ9. We refer to Karigl (1981) for details.

For the computation of generalised kinship coefficients, Karigl (1981) gave the
following recursion formulas, valid whenever a is a nonfounder with parents p and
m, and b, c, d are (not necessarily distinct) nondescendants of a.

ϕabc = 1
2 (ϕpbc + ϕmbc)

ϕaab = 1
2 (ϕab + ϕpmb)

ϕaaa = 1
4 (1 + 3ϕpm)

ϕabcd = 1
2 (ϕpbcd + ϕmbcd)

ϕaabc = 1
2 (ϕabc + ϕpmbc)

ϕaaab = 1
4 (ϕab + 3ϕpmb)

ϕaaaa = 1
8 (1 + 7ϕpm)

ϕab,cd = 1
2 (ϕpb,cd + ϕmb,cd)

ϕaa,bc = 1
2 (ϕbc + ϕpm,bc)

ϕab,ac = 1
4 (2ϕabc + ϕpb,mc + ϕmb,pc)

ϕaa,ab = 1
2 (ϕab + ϕpmb)

ϕaa,aa = 1
4 (1 + 3ϕpm)

(3)

From the definitions it is clear that the generalised kinship coefficients are invariant
under permutations of the indices, e.g. ϕabc = ϕbca and ϕab,cd = ϕba,cd = ϕcd,ab

a.s.o. The boundary conditions are as follows:Whenever a and b are different founders
(and c and d any members) the assumption of unrelatedness implies that

ϕab = ϕabc = ϕabcd = ϕab,cd = 0. (4)

Furthermore, under the assumption that all founders are outbred, elementary calcula-
tions show that

ϕaaa = 1
4

ϕaaaa = 1
8

ϕaa,aa = 1
4

ϕaa,bb = 1
4 .

(5)

From the recursions (3) and boundary conditions (4) and (5) one can compute any
generalised kinship coefficient involving up to four pedigree members, and thereby
obtain the condensed identity coefficients as explained above.
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Relatedness coefficients in pedigrees with inbred founders 191

Now we consider the situation when founders are allowed to be inbred. This has no
impact on the general recursions (3); only the boundary values require modification.
More precisely, the identities (5) must be replaced by the following formulas:

ϕaaa = 1
4 (1 + 3 fa)

ϕaaaa = 1
8 (1 + 7 fa)

ϕaa,aa = 1
4 (1 + 3 fa)

ϕaa,bb = 1
4 (1 + fa)(1 + fb)

(6)

Here fa and fb are the inbreeding coefficients of the founders a and b respectively. To
verify the first of these formulas, suppose i, j, k are alleles sampled with replacement
from a. We proceed by conditioning on the event that a is autozygous, i.e., that her
alleles are IBD, which has probability fa . Denoting this event by A we find

ϕaaa = P(i, j, k are IBD | A)P(A) + P(i, j, k are IBD | Ac)P(Ac)

= 1 · fa + 1
4 (1 − fa) = 1

4 (1 + 3 fa)

as claimed. The remaining formulas in (6) are proved similarly.

3.2 Implementation

Wehave implemented themodified algorithm presented in the previous section in the R
package ribd, which is freely available (https://CRAN.R-project.org/package=ribd).
In addition to the nine identity coefficients, the package offers separate functions
for generalised kinship coefficients, IBD coefficients (of noninbred individuals), and
standard kinship coefficients. Founder inbreeding is allowed in all cases. Furthermore,
ribd contains algorithms for computing X-chromosomal kinship and identity coeffi-
cients, as well as various two-locus coefficients.

4 Effects of background inbreeding on IBD coefficients

The presence of inbreeding in pedigree founders can have a large effect on the genetic
relationships within the pedigree. Fig. 4 illustrates this for a selection of sibling rela-
tionships. Note that in each pedigree the siblings are noninbred, and remain so even
if the founders are inbred; hence the IBD coefficients are well defined in all cases and
fully characterise the relationships. The arrows trace the IBD coefficients of the sibs as
the background inbreeding level f increases from 0 to 1. For example, the first arrow
shows that full siblings become indistinguishable from monozygotic twins when both
parents are completely inbred. Similarly, the half siblings in pedigree four will appear
as (outbred) parent-offspring if their shared parent is inbred.

An interesting feature of founder inbreeding is exemplified by pedigrees 1 and 2 in
Fig. 4. In the first of these, both parents are assigned the same background inbreeding
level, while in the second, only the father is inbred. The impact on the IBD coefficients
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f

1

2

3

4

3

2f f1

4 f

f

f

Fig. 4 The effect of founder inbreeding in full sib and a selection of full-and half-sib relationships. Each
arrow traces the IBD coefficients as the level of founder inbreeding increases from 0 to 1

is quite different in the two cases, as can be seen by the corresponding arrows. If both
of the parental inbreeding coefficients are allowed to vary freely, the resulting IBD
coefficients of the siblings cover the entire region between arrows 1 and 2.

5 Constructibility theorems

In this section we improve on two results of Karigl regarding the constructibility of
kinship and IBD coefficients. The main idea is to use inbred founders to mask most
of the complexity. It turns out that this can always be carried out in such a way that a
finite pedigree suffices. As a consequence, all of our constructions may be analysed
and verified with the ribd package.

5.1 Constructibility of kinship coefficients

The following theorem is due to Karigl (1984):

Theorem A (Karigl) Any number ϕ ∈ [0, 1] is constructible as a kinship coefficient in
the limit of an infinite pedigree.

What Karigl actually proved was that for any ϕ there exists a finite pedigree with
individuals a and b such that ϕab is arbitrarily close (but never equal) to ϕ. Only by
extending his mating scheme ad infinitum, can ϕ be generated exactly. In fact, his
construction contains two infinite parts: One needed to generate a completely inbred
individual (e.g. by an infinite chain of sib-mating), and another involving repeated
backcrosses. The latter part can be made finite if ϕ is a dyadic fraction, but never the
first; hence the construction always produces an infinite pedigree.

We now introduce a class of simple relationships, which we will use repeatedly
in what follows. Essentially, these are half-cousin relationships, but where we allow
the shared ancestor to be inbred. As we will see, this enables the construction of any
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Relatedness coefficients in pedigrees with inbred founders 193

Fig. 5 Half cousins with
separation m and founder
inbreeding f

ba
m

kinship coefficient, but with the crucial advantage of hiding all the infinite parts in a
single founder inbreeding coefficient.

Definition 1 Members a and b of a pedigree P are called half cousins with founder
inbreeding f if they are connected through a single non-collapsing path in P , and
the top-most path member has inbreeding coefficient f . The path length is called the
separation of a of b.

The actual genealogy of the inbred pathmember, i.e., how the inbreeding coefficient
f was produced, is irrelevant for our purposes of computing relatedness coefficients.
Hence we regard this individual as a founder with an assigned inbreeding coefficient,
as illustrated in Fig. 5. (Some limitations of this approach are discussed in Sect. 6.2.)
Note that in Fig. 5, and all other pedigree drawings in this paper, the founders not
shown are assumed to be outbred and unrelated.

Wedenote byHC f
m the set of half cousin relationshipswith separationm and founder

inbreeding f , and no further relationships or inbreeding involving the path members.
It is convenient to include in this notation the casesm = 0 (corresponding to a = b, or
identical twins) and m = ∞ (infinitely distant half cousins). Observe that for m > 1
the set HC f

m contains pedigrees of different structures. For example, HC02 contains

half siblings, but also grandparent/grandchild. In contrast, the setHC f
1 has essentially

only one element (ignoring gender swaps), namely a parent/child relationship where
the parent has inbreeding coefficient f .

At first glance half cousins may seem like a small class of relationships. But as the
next theorem shows, they in fact cover the entire spectrum of kinship coefficients:

Theorem 2 Any number ϕ ∈ [0, 1] is constructible as the kinship coefficient of a half
cousin relationship with inbred founder.

Proof Observe that when m is finite, the kinship coefficient of any half cousin rela-
tionship (a, b,P) ∈ HC f

m is given by Wright’s formula (1) to be

ϕab = 1

2m+1 (1 + f ). (7)

For a fixed m the map f �→ 1
2m+1 (1 + f ) maps the unit interval [0, 1] bijectively to

[ 1
2m+1 ,

1
2m ]. When m runs through 0, 1, . . . these intervals cover the entire (0, 1], as
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Fig. 6 Dissection of the kinship
formula for half cousin
relationships,
ϕ = 2−m−1(1 + f )

0 1

0

1

f

φ

m = 0

m = 1

m = 2

illustrated in Fig. 6. An inverse map is given by

m = �log2
1

ϕ
	 − 1

f = ϕ2m+1 − 1,
(8)

when ϕ ∈ (0, 1), and (m, f ) = (0, 1) when ϕ = 1. In fact m and f are uniquely
determined by ϕ, except when ϕ = 2−k for some k ∈ N; in this case both (m, f ) =
(k, 0) and (m, f ) = (k − 1, 1) will do.

Finally, the endpoint ϕ = 0 corresponds to m = ∞, i.e., infinitely distant half
cousins. In this case the value of f is irrelevant. 
�

We emphasise that Theorem 2 does not imply Theorem A. Such a leap would
require the existence of an individual with arbitrary inbreeding coefficient, leading to
a circular argument. However, we now give an independent proof of existence. In fact,
the following is an improved version of Theorem A, in the sense that our construction
provides a finite pedigree whenever this is theoretically possible (when ϕ is a dyadic
fraction), and at most one infinite chain in the general case.

Theorem 3 Any number ϕ ∈ [0, 1] is constructible as a kinship coefficient in a (pos-
sibly infinite) chain of half cousin relationships with outbred founders.

Proof The endpoint ϕ = 0 is solved by HC0∞, so we can assume ϕ > 0. By taking a
binary representation ϕ = 0.r1r2..., and letting s1, s2, . . . be the indices of the 1’s, we
can write ϕ as a sum of different negative powers of 2:

ϕ =
∑

2−si , 1 ≤ s1 < s2 < · · ·

The sum can be made finite if and only if ϕ is a dyadic fraction. Let t1, t2, . . . be the
increments of the si ’s, i.e., t1 = s1, t2 = s2 − s1 a.s.o., so that t1 + · · · + tk = sk for
all k ∈ N.

For each i = 1, 2, . . . , choose (ai , bi ,Pi ) ∈ HC0ti−1, and consider the pedigree
P∗ formed by chaining P1,P2, . . . such that the founder of Pi becomes a child of

123



Relatedness coefficients in pedigrees with inbred founders 195

Fig. 7 A relationship with
kinship coefficient
ϕ = 1/22 + 1/23 + 1/26. Each
arrow represents a parent-child
relationship

b3a3

a1 b1

a b

φ

2 2

ai+1 and bi+1. By repeated use of the formula (7) we find that within P∗ the kinship
coefficient between the bottom individuals is

ϕa1b1 = 2−t1(1 + 2−t2(1 + 2−t3(1 + · · · )))
= 2−t1 + 2−(t1+t2) + 2−(t1+t2+t3) + · · ·
= 2−s1 + 2−s2 + 2−s3 + · · ·
= ϕ.


�

Example 4 Fig. 7 shows an example of the construction for the kinship coefficient
ϕ = 0.390625 = 1/22+1/23+1/26. The exponent sequence {2, 3, 6} has increments
t = {2, 1, 3}, hence the layers are elements of HC01 , HC00 , HC02 respectively, starting
from the bottom. Note that the construction requires selfing whenever ti = 1.

We end this section with an observation about breeding schemes with stationary
inbreeding levels.

Proposition 5 For each m ∈ N0 there is a unique f ∗ ∈ (0, 1] such that, if a and b are
half cousins with separation m and founder inbreeding f ∗, then ϕab = f ∗.

Proof The point is that f ∗ must be a fixed point of the map f �→ 1
2m+1 (1 + f ). It is

straightforward to show that such f ∗ exists and is unique for each m, with value

f ∗ = 1

2m+1 − 1
.


�

An example is shown in Fig. 8, where sequential half-sibmatingsmaintain a stationary
inbreeding coefficient of f = 1/7.
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Fig. 8 A mating scheme with
stationary inbreeding level

=1/7

=1/7

=1/7

Fig. 9 Double half cousins with
separations m and n, and
founder inbreeding f1 and f2

n m

5.2 Constructibility of IBD coefficients

Karigl’s constructibility theorem for IBDcoefficients can be stated, in our terminology,
as follows (Karigl 1984):

Theorem B (Karigl) Any admissible point in the IBD triangle is constructible as IBD
coefficients in the limit of an infinite pedigree.

Karigl’s proof of this theorem relies on a combination of several limit processes.
The resulting pedigree in general contains 4 infinite parts, making it unsuitable for
computer implementation. In contrast, by using half cousins with inbred founders,
we are able to give a different construction which is always finite, and can be easily
analysed in appropriate software.

Definition 6 Let m, n be nonnegative integers, and f1, f2 numbers in the interval
[0, 1]. Then let DHC f1, f2

m,n denote the class of relationships between two individuals

such that the fathers are half cousins HC f1
m , the mothers are half cousins HC f2

n , and
there are no further relationships or inbreeding.

The definition is illustrated in Fig. 9. Note that the definition implies that the fathers
are not related to the mothers; hence neither of the two bottom individuals are inbred.
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Relatedness coefficients in pedigrees with inbred founders 197

Theorem 7 Any admissible point in the IBD triangle is constructible as a double half
cousin relationship with inbred founders.

Proof Consider two individuals a and b whose fathers have kinship coefficient ϕ1 and
whose mothers have kinship coefficient ϕ2. Without loss of generality we can assume
ϕ1 ≤ ϕ2. Suppose further that the fathers are unrelated to the mothers. Then it follows
that a and b are noninbred, and that their IBD coefficients are given by

κ0 = (1 − ϕ1)(1 − ϕ2)

κ2 = ϕ1ϕ2.
(9)

As observed by Thompson (1976) these equations can always be solved for ϕ1 and
ϕ2 when (κ0, κ2) is in the admissible region. In explicit terms, a little algebra shows
that ϕ1 and ϕ2 satisfy the quadratic equation ϕ2 − (1 − κ0 + κ2)ϕ + 4κ2 = 0, which
has solutions

ϕ1 = 1

2
(U − √

D)

ϕ2 = 1

2
(U + √

D),

(10)

whereU = 1+κ2−κ0 and D = U 2−4κ2. Note that the discriminant D = U 2−4κ2 =
κ2
1 − 4κ0κ2 is nonnegative if and only if κ is admissible. Furthermore, since D ≤ U 2

we have ϕ1 ≥ 0, and similarly D ≤ κ2
1 gives ϕ2 ≤ 1

2 (U + κ1) = 1 − κ0 ≤ 1. Hence
for any admissible κ the solutions (10) are well-defined and satisfy 0 ≤ ϕ1 ≤ ϕ2 ≤ 1.

The point is now that by Theorem 2, ϕ1 and ϕ2 can be constructed as kinship
coefficients by means of half cousin relationships HC f1

m and HC f2
n respectively, for

suitable values of m, n, f1, f2. But this means precisely that a and b are double half
cousins in DHC f1, f2

m,n .
For explicit values of m, n, f1, f2 we insert (10) into the formulas (8) in the proof

of Theorem 2:

m =
⌈
log2

1

U − √
D

⌉
, n =

⌈
log2

1

U + √
D

⌉
,

f1 = 2m(U − √
D) − 1, f2 = 2n(U + √

D) − 1.

(11)

The above formulas are valid and well-defined when 0 < ϕ1, ϕ2 < 1. The edge cases
are dealt with as follows: If ϕ1 = 1 we takem = 0 and f1 = 1; similarly ϕ2 = 1 gives
n = 0 and f2 = 1. When ϕ1 = 0 then Theorem 2 yields m = ∞, while f1 can take
any value in [0, 1]. Finally, if ϕ2 is also 0, a solution is given by m = n = ∞ (and
f1, f2 any values in [0, 1]). This concludes the proof. 
�
Note that if the fathers in a double half cousin relationship have infinite separation

(m = ∞), they are in fact unrelated. The relationship then reduces to (maternal) half
cousins, so we can write DHC f1, f2∞,n = HC f2

n . This simple observation enables us to
re-formulate the previous theorem into the following important result:

Theorem 8 If inbred founders are allowed, any admissible point in the IBD triangle
is constructible in a finite pedigree.
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Proof Suppose κ is an admissible point. If κ2 > 0, then the proof of Theorem 7 yields
finite values of m and n. If κ2 = 0, we obtain m = ∞, but as explained above this
can be viewed as a half cousin relationship HC f2

n . Finally, the vertex κ = (1, 0, 0) is
trivially constructible: any pedigree containing two noninbred founders will suffice. 
�

We now go on to describe a subdivision of the admissible region which results
from, and illuminates, our construction. For a fixed choice of m, n ∈ N0 ∪ {∞}, let
Am,n be the subset of points in the IBD triangle constructible by double half cousins
with separations m and n, i.e., relationships in DHC f1, f2

m,n for varying f1, f2. Clearly
Am,n = An,m , so to avoid redundancy we assume from now on that m ≥ n. The next
theorem shows that each Am,n is a closed subset, and implies that they in collection
form a subdivision of the admissible region. To prepare the statement, let vi, j denote
the point with coordinates

vi, j = (
(1 − 1

2i
)(1 − 1

2 j ),
1
2i

1
2 j

)
,

for any i, j ∈ N0. To include infinite indices we set v∞, j = v j,∞ = (1 − 1
2 j , 0) and

v∞,∞ = (1, 0). We define Vi, j to be the convex hull of vi, j , vi+1, j , vi, j+1, vi+1, j+1.

Theorem 9 The set Am,n is the intersection of the admissible region with Vm,n.

Proof Suppose first that κ = (κ0, κ2) ∈ Am,n , i.e., that κ is the IBD coefficients of
some relationship (a, b,P) ∈ DHC f1, f2

m,n . Combining Eqs. (7) and (9) we obtain

κ0 = (
1 − 1 + f1

2m+1

) · (
1 − 1 + f2

2n+1

)

κ2 = 1 + f1
2m+1 · 1 + f2

2n+1 .

(12)

By straightforward manipulation of these expressions it can be verified that

κ = f1 f2vm,n + f1 f 2vm,n+1 + f 1 f2vm+1,n + f 1 f 2vm+1,n+1, (13)

where f 1 = 1 − f1 and f 2 = 1 − f2. This shows that Am,n ⊆ Vm,n .
Conversely, suppose κ is an admissible point in the interior of Vm,n . By Theorem 7

κ is constructible by a relationship of type DHC f ′
1, f

′
2

m′,n′ for some m′, n′, f ′
1, f ′

2. The
previous argument then shows that κ ∈ Vm′,n′ . But it is easy to check that Vm,n and
Vm′,n′ have disjoint interiors if (m, n) �= (m′, n′). Thus, since κ was assumed to be in
the interior of Vm,n , we must have m = m′ and n = n′; in other words κ ∈ Am,n .

Finally, suppose κ is on the boundary of Vm,n , say, on the edge connecting vm,n

and vm,n+1. Then κ = λvm,n + (1−λ)vm,n+1 for some λ ∈ [0, 1]. Setting f1 = 1 and
f2 = λ in (13) it is clear that κ is constructible by DHC1,λm,n . In particular, this means
that κ ∈ Am,n . The other edges are proved similarly. This concludes the proof. 
�
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Fig. 10 The subdivision of the
admissible region described in
Theorem 9. The points S and Q
are examined in Examples 10
and 11 respectively

A0,0

A1,0

A2,0

A1,1 A2,1

A∞,0 A∞,1

…

Fig. 11 Three constructions of the IBD coefficients κ = ( 14 , 1
2 , 1

4 ). Left: Full siblings. Middle: Maternal
half siblings whose fathers are father-and-son, and the elder father is completely inbred. Right: A double
half avuncular relationship, where both common ancestors are completely inbred

Figure 10 shows the subdivision induced by varyingm and n. Note that whenm and
n are finite, Am,n is a quadrangle ifm > n+1, a triangle ifm = n+1, and a parabolic
subspace ifm = n. In the limit we find that A∞,n is a line segment on the bottom edge
of the triangle, and A∞,∞ is the vertex (1, 0) corresponding to unrelatedness.

Within the interior of each Am,n the values ofm, n, f1, f2 are uniquely determined
by κ . When κ lies on the border between two or more regions, however, multiple
realisations are possible.

Example 10 The point S = ( 14 ,
1
4 ) in the IBD triangle is normally associated with

the relationship between outbred, full siblings. As seen in Fig. 10, however, S in fact
belongs to three regions: A0,0, A1,0 and A1,1. Each of these give rise to fundamen-
tally different genealogies producing the IBD coefficients (κ0, κ2) = S. These are
illustrated in Fig. 11.

For our final example we turn to a popular case in the literature of pedigree analysis,
namely the relationship of quadruple half first cousins. It is well known that the IBD
coefficients of this relationship are κ = ( 1732 ,

14
32 ,

1
32 ), corresponding to the point Q in

Fig. 10 (see e.g. Thompson 2000). To the best of our knowledge the following is the
first known example of a different relationship with exactly these IBD coefficients.

Example 11 By Theorem 7, the coefficients κ = ( 1732 ,
14
32 ,

1
32 ) are constructible as

a double half cousin relationship. To find the separations and founder inbreeding
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Fig. 12 A relationship with the
same IBD coefficients as
quadruple half first cousins

coefficients first observe that U = 1
2 and D = 1

8 , where U and D are defined in
the proof of Theorem 7, and then use the formulas (11) to compute m = 3, n = 1,
f1 = 3− 2

√
2 and f2 = 1

2

√
2. The values for m and n imply that Q lies in the region

A3,1, which is in agreement with Fig. 10. An explicit construction is shown in Fig. 12,
where we have chosen the fathers to be half first cousins once removed (m = 3), while
the mothers are mother-and-daughter (n = 1).

We can verify Example 11 computationally in Rwith the ribd package as follows:

# load the ribd package
library(ribd)

# create the pedigree
x = doubleCousins(degree1 = 1, removal1 = 1, half1 = T,

degree2 = 0, removal2 = 1, half2 = T)

# assign founder inbreeding
founderInbreeding(x) = c(’1’ = 3 - 2*sqrt(2), ’4’ = .5*sqrt(2))

# compute the kappa coefficients of the children
kappaIBD(x, leaves(x))
[1] 0.53125 0.43750 0.03125

6 Discussion

The most immediate consequence of this work and its implementation in ribd, is
a substantial expansion of the class of pedigrees for which identity coefficients can
be exactly computed. This pertains to any pedigree containing a completely inbred
individual, or in fact, any member with a non-dyadic inbreeding coefficient. Several
examples of such pedigrees are provided by previous figures in this paper, for instance
Figs. 1, 4, 8, 11 and 12.
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Our work has important applications in the analysis of human pedigrees. Suppose
we wish to check if a model depending on pedigree coefficients is sensitive to back-
ground inbreeding. With ribd this is straightforward, simply by assigning a suitable
sequence of inbreeding values to the founders, and re-calculating the coefficients in
each case. With earlier methods, the only alternative would be to model background
inbreeding explicitly, by adding ever-larger genealogies to each founder. While theo-
retically possible to a certain extent, such an approach would be highly inefficient and
ill-suited for studying the background inbreeding as a continuous variable.

The results of Sect. 4 show that ignoring background inbreeding may lead to seri-
ous bias in the computation of relatedness coefficients. Moreover, the effect is most
pronounced in close relationships with small pedigrees. A striking conclusion one
may draw from Fig. 4 is that a description of two individuals as “full siblings” or “half
siblings”, may be quite misleading in terms of the closeness of their genetic relation-
ship - even under the restriction that both individuals are noninbred. For example, two
half siblings whose shared parent is completely inbred, are indistinguishable from an
outbred parent-child pair.

While we have focused on autosomal relatedness coefficients in this paper, the ideas
presented transfer easily to X-chromosomal coefficients. To our knowledge ribd is
the only package with a complete set of functions for computing kinship and identity
coefficients both for the autosomes and the X chromosome, as well as a variety of
other single-locus and two-locus coefficients. Table 1 shows a comparison with the
partially overlapping R packages kinship (Sinnwell et al. 2014), identity (Abney
2009) and XIBD (Henden et al. 2016), and the command-line tool PedKin (Kirkpatrick
et al. 2018).

We end the discussion by examining two possible extensions of the ideas presented
in this work.

6.1 Related founders

It is natural and interesting to seek a further extension of our approach, allowing
pedigree founders to be not only inbred, but also related to each other. This would be
particularly relevant for pedigrees in isolated populations, where the assumption of
unrelatedness between all founders is unrealistic. However, the complexity of multi-
person relatedness poses serious challenges for such an extension in full generality.
For example, consider the algorithm in Sect. 3.1 for computing identity coefficients. If
the founders are allowed to be related, then the boundary conditions (4) cease to hold,
andmust be replaced with formulas for ϕab, ϕabc, ϕabcd and ϕab,cd , expressed by some
coefficients describing the founder relationships. One might hope that these formulas
only involved coefficients between each pair of related founders. Unfortunately this
does not suffice in general, as shown by the following counter-example.

Example 12 Fig. 13 shows two pedigrees connecting three individuals a, b and c. We
claim that these three-way relationships are identical in terms of the pairwise relation-
ships, but have different generalised kinship coefficients. Indeed, in both pedigrees
a is a half sibling of b and a half-uncle of c. The relationships between b and c are
also inseparable, being uncle-nephew in the pedigree on the left hand side, and half
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ba

c b

a

c

Fig. 13 Two three-way relationships that have the same pairwise identity coefficients, but different gener-
alised kinship coefficients. The dotted features in the pedigree to the right indicate a duplicated individual

siblings in the pedigree to the right (both of these have κ = ( 12 ,
1
2 , 0)). This proves

the first part of the claim. For the last part, it is enough to observe that ϕabc > 0 in
the left case (since all three may carry an allele originating from the (grand)mother),
while ϕabc = 0 in the other (since there is no ancestor common to all of a, b and c).

To reiterate the point of Example 12, imagine a pedigree where a, b and c are
founders, and we want to compute identity coefficients for some pair among their
common descendants. Seeking a simple modification of the boundary conditions (4)
to allow founder relatedness, we could try to express ϕabc and the other generalised
coefficients in terms of the pairwise relationships between a, b and c. Example 12
shows that any such attempt would be futile, suggesting that more complicated mod-
ifications would be necessary.

It may be the case that the modified boundary formulas require a complete char-
acterisation of each quadruple of founders, i.e., the full set of 712 condensed identify
coefficients for four individuals, as enumerated by Thompson (1974).

Nevertheless, the concept of founder relatedness may be worth investigating in sim-
pler situations. One possibility is to restrict founder relatedness to pairs of founders,
i.e., where different pairs are assumed to be unrelated. This approachwas used by Lacy
(2012) in the case of kinship coefficients, and may well be generalised to identity
coefficients. This would allow extremely simple representations of many impor-
tant relationships, including all noninbred relationships and many standard breeding
schemes like brother-sister mating.

6.2 Multi-locus coefficients

The study of relatedness coefficients extends naturally to multiple linked loci, by
considering IBD distributions at two or more loci simultaneously. It is beyond our
scope to review this rich subject here, instead we will simply point to the influential
papers by Thompson (1988) and Weeks and Lange (1992) as good starting points.

Our use of inbred founders does not immediately apply to linked loci. The reason
for this boils down to insufficient information carried by the (single-locus) inbreeding
coefficient of an individual. To illustrate, consider the two cases of half sisters in
Fig. 14, both with an inbreeding coefficient of f = 1

4 in the shared mother. These
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Fig. 14 Half siblings with
different constructions of the
same inbreeding coefficient in
the shared mother

Fig. 15 Two-locus IBD as a
function of the recombination
rate ρ, for the relationships in
Fig. 14

0.0 0.5

0.
4

0.
6

ρ

1,
1

Mother's parents
parent-child
full siblings

relationships have the same single-locus IBD coefficients, κ = ( 38 ,
5
8 , 0), but not the

same two-locus IBD coefficient κ1,1(ρ). This is defined as the probability of sharing 1
allele IBD at each of two linked loci with recombination rate ρ. The graphs of κ1,1(ρ)

corresponding to the two cases are given in Fig. 15.1 The fact that these graphs are not
identical implies that, for the purpose of two-locus relatedness analysis, the genealogy
of the mother cannot be compressed into the single coefficient f = 1

4 .
There is one important special case, however, where the (single-locus) inbreed-

ing coefficient in fact captures the complete genetic constituency of the individual,
namely when f = 1. The choice of mating process used to produce a completely
inbred individual, has no bearing on the distribution of IBD alleles among his or her
descendants, even at linked loci. In particular, any recursive algorithm for computing
multi-locus relatedness coefficients can in principle be modified to allow completely
inbred founders.

1 The data underlying these graphs were computed with the ribd package; code available upon request
from the author.
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7 Conclusion

In this paper we have studied an extension of the conventional approach to pedigree
analysis, in which we allow the assignment of inbreeding coefficients to the founders.
The motivation is to enable a more compact representation of many pedigrees, while
retaining sufficient information for exact computation of relatedness coefficients. This
is particularly useful in cases where the true ancestries of certain pedigreemembers are
unknown or unsuitable for computermodelling, such as completely inbred individuals.
We believe that our implementation in ribd is the first software capable of computing
identity coefficients in such pedigrees, even as simple as that in Fig. 1.

We also showed that pedigrees with inbred founders are especially potent in con-
structibility problems for relatedness coefficients. Previous solutions by Karigl (1984)
required combinations of several infinite pedigrees in order to produce a given set of
IBD coefficients. In contrast, our Theorem 8 guarantees that a finite pedigree suffices
if inbred founders are allowed. The finiteness property is the crucial novelty here,
since this opens up for computer analysis and practical applications.

The R package ribd is available from the CRAN repository (https://CRAN.R-
project.org/package=ribd) and runs on all platforms. Importantly, ribd is part of the
ped suite of packages for pedigree analysis, giving the user access to a large range
of tools for creating, manipulating and visualising pedigrees, as well as likelihood
computations and simulations. Pedigrees can be be loaded from text files in stan-
dard pedigree format, or made from scratch using built-in utility functions. Founder
inbreeding is a core feature of the ped suite, allowing the ideas introduced in this
paper to be explored in a variety of contexts.
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