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Abstract
In this study we propose a novel method for identifying the locations of earliest activa-
tion in the human left ventricle fromactivationmapsmeasured at the epicardial surface.
Electrical activation is modeled based on the viscous Eikonal equation. The sites of
earliest activation are identified by solving a minimization problem. Arbitrary initial
locations are assumed, which are then modified based on a shape derivative based
perturbation field until a minimal mismatch between the computed and the given acti-
vation maps on the epicardial surface is achieved. The proposed method is tested in
two numerical benchmarks, a generic 2D unit-square benchmark, and an anatomically
accurate MRI-derived 3D human left ventricle benchmark to demonstrate potential
utility in a clinical context. For unperturbed input data, our localization method is able
to accurately reconstruct the earliest activation sites in both benchmarks with devia-
tions of only a fraction of the used spatial discretization size. Further,with the quality of
the input data reduced by spatial undersampling and addition of noise, we demonstrate
that an accurate identification of the sites of earliest activation is still feasible.

Keywords Shape optimization · Nonlinear elliptic PDEs · Inverse problems · Electro
physiology

Mathematics Subject Classification 49Q10 · 35J60 · 49N45 · 92C50

1 Introduction

Computational models of cardiac function are increasingly considered as a clin-
ical research tool with the perspective of being used, ultimately, as a diagnostic

Karl Kunisch was supported in part by the ERC advanced Grant 668998 (OCLOC) under the EU H2020
research program. Aurel Neic and Gernot Plank were supported in part by the Grant SFB MOBIS (FWF
F3210-N18) and the BioTechMed Projekt “ILearnHeart”.

B Philip Trautmann
philip.trautmann@uni-graz.at

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00285-019-01419-3&domain=pdf
http://orcid.org/0000-0002-3300-7028


2034 K. Kunisch et al.

modality. Independently of which functional aspects are being considered, a key
driving mechanism of cardiac electro–mechano–fluidic function is the sequence of
electrical activation. Owing to its pivotal role, computer models intended for clini-
cal applications must be parameterized in a patient-specific manner to approximate
the electrical activation sequence in a given patient’s heart. Anatomical (Demoulin
and Kulbertus 1972; Ono et al. 2009) as well as early experimental mapping studies
(Durrer et al. 1970), using ex vivo human hearts provided evidence that electrical
activation in the left ventricle (LV), i.e. the main pumping chamber that drives blood
into the circulatory system, is initiated by the His–Purkinje system (Haissaguerre et al.
2016) at several specific sites of earliest activation (root points) which are located at
the endocardial (inner) surface of the LV. In a first approximation it can be assumed
that the healthy human LV is activated at these root points by a tri-fascicular conduc-
tion system (Rosenbaum et al. 1969) consisting of three major fascicles referred to
as anterior, septal and posterior fascicle. Owing to the fast conduction properties of
the Purkinje network tissue patches surrounding root points are activated fast enough
so that their activation can be considered instantaneous. Size and location of these
patches as well as the corresponding instants of their activation are key determinants
shaping the activation sequence of the LV. Since the His–Purkinje system is highly
variable in humans, there is significant interest in inversemethods for identifying these
sites, ideally non-invasively.

In general, non-invasive electrocardiographic imaging attempts to reconstruct the
spatio-temporal behavior of the electrical sources of the heart from electrocardiograms
recorded from the body surface by solving the inverse problem of electrocardiog-
raphy (Gulrajani et al. 1989). Solving this inverse problem is complicated by the
non-uniqueness of the relation between myocardial sources and their signature out-
side the heart, recorded in the form of extracellular electrograms. The vast body of
research found in the literature can be broadly categorized based on the regulariza-
tion techniques used to rule out solutions that are unlikely on physiological grounds
(Tikhonov and Arsenin 1977) and the model used for representing the cardiac sources,
with the predominant source models being transmembrane voltage-based (He et al.
2003; Wang et al. 2010), extracellular-potential based (Rudy and Burnes 1999; Bear
et al. 2018), and activation/recovery-based (van Dam et al. 2009; Erem et al. 2014;
Han et al. 2015; Janssen et al. 2018). These models have their pros and cons in
terms of verifiability with experimental data, the domains in which sources can be
reconstructed—on epicardial and endocardial surfaces or transmurally throughout the
myocardial wall—and their accuracy in pathological scenarios such as the presence
of infarcts (Wang et al. 2013) or more complex non-physiological activation patterns
such as arrhythmias (Rudy 2013). For a comprehensive overview of these aspects of
ECG imaging we refer to the recent review of Cluitmans et al. (2018).

In this study we propose a novel method for identifying these sites of earliest acti-
vation from activation maps measured at the epicardial (outer) surface of the heart.
Such maps can be obtained non-invasively from body surface potential maps within
clinical routine using inverse mapping systems such as CardioInsight (Ramanathan
et al. 2004). Epicardial activation maps depend not only on location and timing of
initial activation sites, but also on the orthotropic conduction velocities within the LV
wall. Therefore, in patient-specific applications, conduction velocity tensors have to be
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identified using fast forward computational models (Zettinig et al. 2014; Marchesseau
et al. 2013a, b), or biophysically detailed models (Potse et al. 2014). The propagation
of electrical wavefronts in the LV is modeled based on the viscous Eikonal equation
which is able to represent activation sequences and takes into account the dependency
of conduction velocity on wavefront curvature. Identification of sites of earliest acti-
vation is achieved by solving a minimization problem. Initially geometries are chosen
which represent the activation sites. Then they are relocated based on a perturba-
tion field until a minimal mismatch between the computed and the given activation
maps at the epicardial surface is achieved. The perturbation field is designed to reduce
the functional subject to minimization during the relocation process. The proposed
method is tested in two numerical benchmarks, a generic 2D unit-square benchmark
serving the sole purpose of theoretical analysis, and an anatomically accurate MRI-
derived 3D human LV benchmark to demonstrate potential utility in a clinical context.
For unperturbed input data, our localization method is able to accurately reconstruct
earliest activation sites in both benchmarks with deviations of only a fraction of the
used spatial discretization size. With the quality of the input data reduced by spatial
undersampling and addition of noise, we demonstrate that an accurate identification
is still feasible.

From a mathematical point of view the described problem can be interpreted as
an inverse problem involving a non-linear elliptic PDE. On the activation sites ωi ,
i = 1, . . . , N an electrical depolarization wave is initiated which travels through the
heart Ω = U\ ∪N

i=1 ωi . This is modelled by a nonlinear elliptic PDE, given by a
viscous Eikonal equation, see Colli Franzone et al. (1990). The solution of the viscous
Eikonal equation quantifies the arrival times of wave fronts at points in the heart Ω

or on its surface ΓO . Since the wave is initiated on ∪N
i=1ωi the arrival time is zero on

∂∪N
i=1ωi and thus the viscous Eikonal equation has zeroDirichlet boundary conditions

on ∂∪N
i=1ωi andNeumann boundary conditions on the rest of the boundary ofΩ . Given

measurements of the arrival times on the surface of the heart ΓO the positions of the
activation sites ωi are searched for. This inverse problem can be formulated as a shape
optimization problem, see Delfour and Zolesio (2011) or Sokołowski and Zolésio
(1992), in which the positions of ωi is optimized such that the misfit between the
measured data and the solution of the viscous Eikonal equation on ΓO is minimal. We
assume that the shape and number of activation sites is known and stays constant during
the optimization. Thus only the locations of the activation sites are changed during the
optimization. For the derivation of the shape derivative of the shape functional we use
a technique which does not require the shape differentiability of the geometry-to-state
mapping, see Ito et al. (2008) and Laurain and Sturm (2016). In order to apply this
techniquewefirst prove thewellposedness of the state equation. It is a nonlinear elliptic
PDE which can be transformed to a linear one using the Hopf–Cole transformation,
see Capuzzo Dolcetta (2003). The proof of the continuous dependence of the state on
the data requires non-standard techniques. Furthermore we prove the wellposedness
of the linearized and adjoint state equation using the weak maximum principle. In
order to compute the shape derivative the averaged adjoint technique from Laurain
and Sturm (2016) is used. In this manner we arrive at domain-based representation of
the shape derivative, in contrast to the more common boundary-based representation,
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see Sokołowski and Zolésio (1992). This simplifies the numerical implementation of
the shape derivative in a finite element environment, since only domain integrals need
to be calculated. For the calculation of the perturbation field which is the basis for
changing the geometry of the activation sites in an iterative gradient based algorithm
a linear elasticity problem is solved in which the shape derivative enters as righthand
side. To give a brief account of the contents of the paper, in Sect. 2 after the statement
of the model on which our approach is based, we give its mathematical analysis,
involving primal, tangent, and adjoint equations, and the shape derivative. The use
of this information for numerical realization is described in Sect. 3. Finally Sect. 4
contains the two benchmark examples alluded to above.

2 Theoretical analysis

2.1 Problem statement

Let U ⊂ R
d , with d = 2 or d = 3, be a bounded domain with C2,1 boundary, rep-

resenting the cardiac domain. Within U we introduce N subdomains ωi with C2,1

boundaries ∂ωi , which represent the volumes of the earliest activation sites, also
denoted as activation sources. The union of ωi is denoted by ω = ∪N

i=1ωi and its
boundary by Γ = ∪N

i=1∂ωi . As such, Γ is the surface from which activation spreads
into our computational cardiac domain Ω := U\ω̄. We have ∂Ω = Γ ∪ ∂U , and thus
Ω is a bounded domain withC2,1 boundary. In particular it is connected, but due to the
holes it is not simply connected. Furthermore Γ ⊂ ∂Ω is closed. We set ΓN = ∂U ,
and further introduce the observatory boundary ΓO ⊆ ΓN , which in our application is
given by epicardium of the heart. We consider the following minimization problem:

min
Ω,Γ

J (Ω, Γ ) = 1

2

∫
ΓO

(T (x) − z(x))2dx (1)

subject to the viscous Eikonal equation in the form

⎧⎪⎨
⎪⎩

−ε div(M∇T ) + |∇T |2M = 1 in Ω

T = 0 on Γ

−εM∇T · n = g on ΓN

(2)

for some non-negative function g, and with

|∇T (x)|M := √∇T (x)∗M(x)∇T (x).

The function T (x) represents the activation time, while the epicardial activation input
data is denoted by z(x) which is assumed to be an element of L∞(ΓO). The matrix
M(x) models the squared cardiac conduction velocity (see Sect. 3.5). It is assumed to
be symmetric and uniformly elliptic, i.e. there exists a α > 0 such that

M(x)ζ · ζ ≥ α|ζ |2 ∀ζ ∈ R
d , ∀x ∈ Ū .
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For the rest of this work we use the notation M ≥ α. The vector n denotes the outer
unit normal vector on ΓN .

The use of Eikonal equations is well-established to approximate the excitation
process in the myocardium. We refer, for instance, to Colli Franzone et al. (1990)
where a careful singular perturbation technique analysis with respect to the thickness
of the myocardial wall and the time taken by the excitation wave front to cross the
heart wall is carried out on the basis of the bidomain equations to arrive at various
forms of Eikonal equations (Colli Franzone et al. 1990, Section 5).

Problem (1) falls in the class of inverse shape problems. For the numerical solution
of (1) we require the shape derivative of J with respect to Γ in order to use it in a
gradient decent method. As prerequisite we need to prove well-posedness of the state
equation (2) which arises as PDE constraint in (1), and we analyze the tangent and
adjoint equations.

2.2 Well-posedness of the viscous Eikonal equation

In this section, we discuss the well-posedness of the equation

⎧⎪⎨
⎪⎩

− ε div(M∇T ) + |∇T |2M = f in Ω

T = 0 on Γ

εM∇T · n = g on ΓN ,

(3)

for some functions f , g specified later. Using the transformation T (x) = −ε log(w(x)
+ 1) this problem can be transformed into

⎧⎪⎨
⎪⎩

−ε2 div(M∇w) + f w = − f in Ω

w = 0 on Γ

ε2M∇w · n + gw = −g on ΓN ,

(4)

which is linear in the unknown w. Let us introduce the spaces

W 1,p
0 (Ω ∪ ΓN ) := C∞

c (Ω ∪ ΓN )
W 1,p(Ω) =

{
v ∈ W 1,p(Ω)| v|Γ = 0

}

for 1 ≤ p < ∞ which are equipped with the norm

‖v‖
W 1,p

0 (Ω∪ΓN )
:= ‖∇v‖L p(Ω).

Moreover we set V := H1
0 (Ω ∪ ΓN ) := W 1,2

0 (Ω ∪ ΓN ). For p > 1 let p′ its
conjugate exponent. We introduce the positive and negative part of f defined by
f + := max(0, f ) and f − := max(0,− f ) as well as the embedding constant cp > 0
of the embedding ‖w‖L2p′ (Ω)

≤ cp‖w‖V . Next we require the following assumptions
on the regularity of the data:
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(Ai) M ∈ C0,δ(Ω̄,Rd2) with 0 < δ < 1, M ≥ α/2 and ‖M‖C0,δ(Ω̄,Rd2 )
≤ ρM

(Aii) f ∈ L p(Ω) with ‖ f −‖L p(Ω) ≤ ε2α/4c2p, p > d and ‖ f ‖L p(Ω) ≤ ρ f

(Aiii) g ∈ L∞(ΓN ) with g ≥ 0 and ‖g‖L∞(ΓN ) ≤ ρg

Lemma 1 For every (M, f , g) satisfying (Ai), (Aii) and (Aiii), there exists a unique
solutionw ∈ V of (4).Moreover the solution satisfiesw ∈ W 1,p

0 (Ω ∪ΓN )with p > 2
if d = 2, and with p ∈ (3, 6] if d = 3, and

‖w‖
W 1,p

0 (Ω∪ΓN )
≤ C

where C > 0 depends continuously on ε, α, ρM, ρ f and ρ f .

Proof Let τN : V → L2(d−1)/(d−2)(ΓN ) denote the continuous trace operator onto
ΓN . Using the embedding V ↪→ L2d/(d−2)(Ω) and (Aii), it is easy to see that the
integral

∫
Ω

f wv dx is well defined for every v ∈ V . Due to thementioned properties of
the trace operator τN and (Aiii) we can conclude that the boundary integral

∫
ΓN

gwv ds
is well defined. Thus we can formulate the weak form of (4) as

ε2
∫

Ω

M∇w · ∇v dx +
∫

Ω

f wv dx +
∫

ΓN

gwv ds = −
∫

Ω

f v dx −
∫

ΓN

gv ds

(5)

for all v ∈ V . To argue existence of a solution of (5) we use the Lax–Milgram theorem.
To prove the required coercivity in V we estimate for anyw ∈ V using (Aii) and (Aiii)

ε2
∫

Ω

M∇w · ∇w dx +
∫

Ω

( f + − f −)w2 dx +
∫

ΓN

gw2 ds

≥ ε2α

2
‖w‖2V − ‖ f −‖L p(Ω)‖w‖2

L2p′ (Ω)

≥
(

ε2α

2
− c2p‖ f −‖L p(Ω)

)
‖w‖2V ≥ ε2α

4
‖w‖2V .

Thus we obtain coercivity and the existence of a unique solution w to (5). Moreover
there exists a constant C > 0 depending on α and ε such that

‖w‖V ≤ C(‖ f ‖L p(Ω) + ‖g‖L∞(ΓN )).

Next we argue additional regularity of w. For this purpose we consider the terms
involving f w and gw as known inhomogeneities withw ∈ V . We show that the func-
tionals F1(v) := ∫

Ω
f wv dx and F2(v) := ∫

ΓN
gwv ds are elements of (W 1,p′

(Ω))∗
with p′ ∈ (1, 2) for d = 2 and p′ ∈ [6/5, 3/2) for d = 3. First we consider F1. We
recall the embeddingW 1,p′

(Ω) ↪→ Lq̄(Ω)with q̄ = dp′/(d− p′) = dp/(dp−d− p)
and q̄ ′ = dp/(d + p). We prove that f w ∈ Lq̄ ′

(Ω). Using Hölder’s inequality with
r = (d + p)/d resp. r ′ = (d + p)/p we obtain

‖ f w‖Lq̄′
(Ω)

≤ ‖ f ‖L p(Ω)‖w‖Ld (Ω) ≤ c‖ f ‖L p(Ω)‖w‖V
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and thus

‖F1‖(W 1,p′ (Ω))∗ ≤ c‖ f ‖L p(Ω)‖w‖V .

Next we consider F2. We recall from Adams and Fournier (2003, Theorem 5.22) that
τN is continuous from W 1,p′

(Ω) to Lq(ΓN ) with q = (dp′ − p′)/(d − p′). Next we
verify that gτNw ∈ Lq ′

(ΓN ) with q ′ = p′(d − 1)/d(p′ − 1) = p(d − 1)/d. We have

‖gτNw‖Lq̄′
(ΓN )

≤ ‖g‖L∞(ΓN )‖τNw‖Lq̄′
(ΓN )

≤ c‖g‖L∞(ΓN )‖w‖V
since τN : V → L2(d−1)/(d−2)(ΓN ). Here the restriction p ≤ 6 is necessary. Then
assumption (Aiii) implies the assertion. Finally we get

‖F2‖(W 1,p′ (Ω))∗ ≤ c‖g‖L∞(ΓN )‖w‖V .

Moreover v �→ ∫
Ω

f v dx and v �→ ∫
ΓN

gτNv dx are functionals from (W 1,p′
(Ω))∗.

A functional F from (W 1,p′
(Ω))∗ can represented in the form

〈F, v〉
(W 1,p′ (Ω))∗,W 1,p′ (Ω)

=
∫

Ω

f1v + f2 · ∇v dx

with f1 ∈ L p(Ω) and a vector field f2 ∈ L p(Ω,Rd), see Adams and Fournier (2003,
Theorem 3.8). Thus the results from Troianiello (1987, Theorem 3.16) imply that
w ∈ W 1,p

0 (Ω ∩ ΓN ) holds and the existence of a constant C depending on ρM , ε and
α such that

‖w‖
W 1,p

0 (Ω∪ΓN )
≤ C

(
(‖g‖L∞(ΓN ) + ‖ f ‖L p(Ω))‖w‖V

+‖g‖L∞(ΓN ) + ‖ f ‖L p(Ω)

)
≤ C

(
(‖g‖L∞(ΓN ) + ‖ f ‖L p(Ω))

2 + ‖g‖L∞(ΓN ) + ‖ f ‖L p(Ω)

)
.

These results are applicable since the Dirichlet part Γ of ∂Ω is closed. ��
In order to proof even higher regularity of w we use the following assumptions:

(Bi) M ∈ C1,δ(Ω̄,Rd2) with M ≥ α and ‖M‖C1,δ(Ω̄,Rd2 )
≤ ρM

(Bii) f ∈ C0,δ(Ω̄) with f > 0 and ‖ f ‖C0,δ(Ω̄) ≤ ρ f

(Biii) g ∈ C1,δ(ΓN ) with g ≥ 0 and ‖g‖C1,δ(ΓN ) ≤ ρg

for some 0 < δ < 1.

Lemma 2 Let Assumptions (Bi), (Bii) and (Biii) be satisfied. Then the solution of (4)
satisfies w ∈ C2,δ(Ω̄) with 0 < δ < 1 given according to the data. Moreover there
exists a constant C > 0 depending continuously on α, ε, ρM, ρ f and ρg such that

‖w‖C2,δ(Ω̄) ≤ C

and − 1 < w(x) ≤ 0 holds for all x ∈ Ω̄ .
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Proof Theorem 3.28 (ii) and 3.29 (ii) from Troianiello (1987) can be applied, since
(4) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ε2
d∑

i, j=1

Mi, j∂xi x j w +
d∑

i=1

ai∂xi w + f w = − f in Ω

w = 0 on Γ

d∑
i=1

bi∂xi w + gw = −g on ΓN

with ai := −ε2 div(Mi ) ∈ C0,δ(Ω̄) (Mi ith column of M) and bi := ε2(Mn)i ∈
C1,δ(ΓN ) since M ∈ C1,δ(Ω̄,Rd2) and ΓN is of class C2,1. This gives us the stated
regularity and the corresponding a priori estimate. Next we define w+ := max(0, w)

and (w + 1)− := max(0,−(w + 1)). Since (w + 1)−|Γ = 0 we can test (5) with
v = −(w + 1)− and get

−
∫

Ω

f |(w + 1)−|2 dx = −ε2
∫

Ω

M∇w · ∇(w + 1)− dx

−
∫

ΓN

g(w + 1)(w + 1)− ds

≤ ε2
∫

Ω

M∇(w + 1)− · ∇(w + 1)− dx

+
∫

ΓN

g|(w + 1)−|2 ds ≥ 0

This implies − 1 ≤ w in Ω̄ , since f > 0. Testing (5) with v = w+. We get

∫
Ω

f |w+|2 dx = −
∫

Ω

f w+ dx − ε2
∫

Ω

M∇w · ∇w+ dx

−
∫

ΓN

g(w + 1)w+ ds ≤ 0.

This implies w ≤ 0 in Ω̄ . Next we introduce the variable ŵ = −(w + 1) which
satisfies the equation

⎧⎪⎨
⎪⎩

−ε2 div(M∇ŵ) + ŵ f = 0 in Ω

ŵ = −1 on Γ

ε2M∇ŵ · n + ŵg = 0 on ΓN .

If the solution ŵ were constant, it has to be equal to −1. However, in this case we
have ŵ = 0 in Ω , which is a contradiction. We define O := maxx∈Ω̄ ŵ ∈ [− 1, 0],
see above. First we assume O = 0. Then Theorem 3.27 in Troianiello (1987) is
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applicable which states that such a maximum cannot be achieved on Ω ∪ ΓN . This is
a contradiction. Thus O ∈ [− 1, 0) and ŵ ∈ [− 1, 0). This implies the assertion. ��
For the rest of this work we fix a g ∈ C1,δ(ΓN ) with g ≥ 0, 0 < δ < 1 and
‖q‖C1,δ(ΓN ) ≤ ρg . Let

Y = YM × Y f ⊂ C1,δ(Ω̄,Rd2) × C0,δ(Ω̄)

be a reflexive Banach space which embeds compactly into C0,δ(Ω̄,Rd2)× L p(Ω) for
some 0 < δ < 1, where the range of p is defined in Lemma 1. We define the set

BY := {(M, f ) ∈ Y : ‖(M, f )‖Y ≤ ρ, M ≥ α, f ≥ β} . (6)

for some ρ = 2max(ρM , ρ f ), β > 0. Note that for (M, f ) ∈ BY conditions (Bi),
(Bii) are satisfied.

Proposition 1 There exists a constant c̄ ∈ (0, 1) such that

−c̄ ≤ w(M, f ; x) ≤ 0 ∀x ∈ Ω̄

for all (M, f ) ∈ BY .

Proof We shall employ a compactness argument. For this purpose we argue that BY is
compact in C0,δ(Ω̄,Rd2)×L p(Ω). The compact embedding of Y into C0,δ(Ω̄,Rd2)×
L p(Ω) implies precompactness of BY . Moreover BY is closed in C0,δ(Ω̄, ,Rd2) ×
L p(Ω). Indeed, let (Mn, fn)∞n=1 ⊂ BY be a convergent sequence in C0,δ(Ω̄, ,Rd2) ×
L p(Ω) with the limit point (M, f ). It is easy to see that M ≥ α holds. There exists
a subsequence (Mnk , fnk )

∞
k=1 such that fnk converges for almost every x ∈ Ω to f .

Thus f satisfies f ≥ β. On another subsequence of this subsequence there holds
(Mnk , fnk )⇀(M, f ) in Y due to the reflexivity of Y . Since BY is convex and closed in
Y , it is weakly closed in Y . Thus we have (M, f ) ∈ BY which implies the closedness
of BY in C0,δ(Ω̄, ,Rd2) × L p(Ω). Finally this implies that BY is a compact subset of
C0,δ(Ω̄, ,Rd2) × L p(Ω).
Next we define

B =
{
(M, f ) : satisfy (Ai), (Aii) and ‖(M, f )‖C0,δ(Ω̄,Rd2 )×L p(Ω)

≤ K
}

,

where K > sup(M, f )∈BY ‖(M, f )‖C0,δ×L p(Ω). We observe that there exists a κ ∈
(0, ε2α

8c2p
) such that for every (M̄, f̄ ) ∈ BY the set

Bκ(M̄, f̄ ) :=
{
(M, f ) : ‖(M − M̄, f − f̄ )‖C0,δ(Ω̄,,Rd2 )×L p(Ω)

< κ
}

satisfies the inclusion Bκ(M̄, f̄ ) ⊂ B. For the coordinate f this is a consequence of
the estimates

‖ f −‖L p(Ω) − ‖ f + − f̄ ‖L p(Ω) ≤ ‖ f − f̄ ‖L p(Ω) ≤ κ,
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and hence

‖ f −‖L p(Ω) ≤ 2κ <
ε2α

4 c2p
.

We remark that Lemma 1 is applicable for (M, f ) ∈ B and thus for elements of
Bκ(M̄, f̄ )with (M̄, f̄ ) ∈ BY .Nextwe choose an arbitrary (M̄, f̄ ) ∈ BY and (M, f ) ∈
Bκ(M̄, f̄ ). Furthermore we introduce (δM, δ f ) = (M̄ − M, f̄ − f ) and δw =
w̄ − w = w(M̄, f̄ ) − w(M, f ). The solution w exists according to Lemma 1. The
function δw satisfies the equation

ε2
∫

Ω

M̄∇δw · ∇v dx +
∫

Ω

f̄ δwv dx +
∫

ΓN

gδwv ds

= ε2
∫

Ω

δM∇w · ∇v dx −
∫

Ω

δ f (w + 1)v dx (7)

for all v ∈ V . Next we prove that v �→ ε2
∫
Ω

δM∇w · ∇v dx is an element of

(W 1,p′
(Ω))∗. Since M ∈ C0,δ(Ω̄,Rd2) and w ∈ W 1,p

0 (Ω ∪ ΓN ), there holds

ε2
∫

Ω

δM∇w · ∇v dx ≤ ε2‖δM‖C0,δ(Ω̄,,Rd2 )
‖w‖

W 1,p
0 (Ω∪ΓN )

‖v‖W 1,p′ (Ω)
.

Then similar arguments as in the proof of Lemma 1 yield a constant C > 0 depending
on ε, α and ρM such that

‖δw‖
W 1,p

0 (Ω∪ΓN )
≤ C

((‖ f̄ ‖L p(Ω) + ‖g‖L∞(ΓN )

) ‖δw‖V
+ ε2‖δM‖C0,δ(Ω̄,Rd2 )

‖w‖
W 1,p

0 (Ω∪ΓN )
+ ‖δ f ‖L p(Ω)‖w + 1‖W 1,p(Ω)

)

≤ C
((‖ f̄ ‖L p(Ω) + ‖g‖L∞(ΓN )

)
(
ε2‖δM‖C0,δ(Ω̄,Rd2 )

‖w‖
W 1,p

0 (Ω∪ΓN )
+ ‖δ f ‖L p(Ω)‖w + 1‖W 1,p(Ω)

)

+ ε2‖δM‖C0,δ(Ω̄,Rd2 )
‖w‖

W 1,p
0 (Ω∪ΓN )

+ ‖δ f ‖L p(Ω)‖w + 1‖W 1,p(Ω)

)
, (8)

where p is specified in Lemma 1. The expressions involving w are estimated in terms
of ρg , ε, α and K . Thus there holds

‖δw‖
W 1,p

0 (Ω∪ΓN )
≤ h(‖δM‖C0,δ(Ω̄,Rd2 )

, ‖δ f ‖L p(Ω)), (9)

where h : R
2 → R is a continuous function with h(0, 0) = 0.

Now, let (M̄, f̄ ) be an arbitrary element in BY . By Lemma 2 there exists a constant
c̃ = c̃(M̄, f̄ ) ∈ (0, 1) such that −c̃ ≤ w(M̄, f̄ ; x) ≤ 0 for all x ∈ Ω̄ . Since
W 1,p

0 (Ω ∪ ΓN ) ↪→ C(Ω̄) for p > d and due to (9) there exists a γ = γ (M̄, f̄ ) < κ
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such that

−1 + c̃

2
≤ w(M, f ; x) ∀x ∈ Ω̄

for all (M, f ) ∈ Bγ (M̄, f̄ ). The family {Bγ (M̄, f̄ ) : (M̄, f̄ ) ∈ BY } is an open covering

in C0,δ(Ω̄,Rd2) × L p(Ω) of the compact set BY . Hence there exists a finite subcover
{Bγ (M̄i , f̄i )

: (M̄i , f̄i )}Ni=1. Then we choose

c̄ := 1 + max1≤i≤N c̃(M̄i , f̄i )

2
,

to conclude the desired result. ��
With the help of Lemma 2 we are able to define T = −ε log(w + 1) and calculate

∇T = − ε

w + 1
∇w, div(M∇T ) = − ε

w + 1
div(M∇w) + ε

(w + 1)2
|∇w|2M .

Thus there holds

− ε div(M∇T ) + |∇T |2M
= ε2

w + 1
div(M∇w) − ε2

(w + 1)2
|∇w|2M + ε2

(w + 1)2
|∇w|2M = f .

Moreover we have on the boundary

T |Γ = −ε log(1) = 0, εM∇T · n|ΓN = −ε2

w + 1
M∇w · n|ΓN = g.

We are now prepared to state the existence theorem for the state equation (3).

Theorem 1 Let (M, f ) ∈ BY where BY is defined in (6). Then Eq. (3) has a unique
solution T ∈ C2(Ω̄) satisfying

‖T ‖C2(Ω̄) ≤ CT , (10)

where CT only depends on BY .

Proof Since existence of T was argued above only the estimate has to be proven. We
know T = −ε log(w + 1), ∇T = − ε

w+1∇w and

∂xi x j T = ε

(w + 1)2
∂xi w∂x j w − ε

w + 1
∂xi x j w.

Thus there holds

T (x) = −ε log(w(x) + 1) ≤ −ε log(−c̄ + 1) ≤ K1,
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|∇T (x)| = ε
1

(w + 1)
|∇w(x)| ≤ ε

1

(−c̄ + 1)
|∇w(x)| ≤ K2

and

|D2T (x)| ≤ ε

(−c̄ + 1)2
|∇w(x)| + ε

−c̄ + 1
|D2w(x)| ≤ K3

where c̄ is the constant from Proposition 1 and Ki only depends on BY . This implies
(10). ��

2.3 Well-posedness of the tangent and adjoint equations

Let T ∈ C2(Ω̄) ∩ V be the solution of the state equation for a (M, f ) ∈ BY and T̂
for (M̂, f̂ ) ∈ BY . Associated to the linearization of (2) we define the bilinear form
B : V × V → R by

B(v, ϕ) :=
∫

Ω

εM∇v · ∇ϕ + M∇(T + T̂ ) · ∇v ϕ dx

for any ϕ, v ∈ V . Moreover we introduce the operators A : V → V ∗ and A∗ : V →
V ∗ defined by

〈Av, ϕ〉V ∗,V = B(v, ϕ) = 〈v,A∗ϕ〉V ,V ∗

for all v, ϕ ∈ V .

Definition 1 For F ∈ V ∗ we call v ∈ V a solution of the linearized state equation if
it solves the equation Av = F or equivalently

B(v, ϕ) = 〈F, ϕ〉V ∗,V ∀ϕ ∈ V . (11)

Lemma 3 The mapping (M, f ) �→ T from BY endowed with the topology of
C0,δ(Ω̄,Rd2) × L6(Ω) to W 1,6

0 (Ω) is continuous.

Proof Let T be the solution of the state equation for M and f and T̃ for M̃ and f̃ .
Let w be the solution of (4) for M , f and w̃ for M̃ and f̃ . Due to Taylor expansion
of 1/x at w̃(x) + 1 the partial derivative of the difference δT := T − T̃ satisfies the
equation

∂x j δT (x) = ε

w̃(x) + 1
∂x j w̃(x) − ε

w(x) + 1
∂x j w(x)

=
(

ε

w̃(x) + 1
− ε

w(x) + 1

)
∂x j w̃(x) − ε

w(x) + 1
∂x j δw(x)

=
(

ε

(w̃(x) + 1)2
δw(x) − ε

η(x)3
δw(x)2

)
∂x j w̃(x) − ε

w(x) + 1
∂x j δw(x),
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where δw := w−w̃ and η(x) lies betweenw(x)+1 and w̃(x)+1. Due to Proposition
1 we have

|∂x j δT (x)| ≤ ε|δw(x)|
(

1

(−c̄ + 1)2
+ c̄

(−c̄ + 1)3

)
|∂x j w̃(x)|

+ ε

−c̄ + 1
|∂x j δw(x)|.

Now estimate (9) for δw in the proof of Proposition 1 with p = 6 and Lemma 2 imply
the assertion. ��
Proposition 2 Let r ∈ (2,∞) and F ∈ W 1,r ′

(Ω)∗. Then the linearized state equation
has a unique solution v ∈ W 1,r

0 (Ω ∪ ΓN ) and there exists a constant C > 0 such that
for all (M, f ) ∈ BY

‖v‖W 1,r
0 (Ω∪ΓN )

≤ C(‖F‖W 1,r ′ (Ω)∗).

Proof First we observe the following estimate

∣∣∣∣
∫

Ω

M∇(T + T̂ ) · ∇v v dx

∣∣∣∣
≤ αε

2
‖v‖2V + 1

2αε
‖M‖2C(Ω̄,Rd2 )

‖∇(T + T̂ )‖2C(Ω̄)
‖v‖2L2(Ω)

.

Then we have

B(v, v) + λ‖v‖2L2(Ω)

≥ αε

2
‖v‖2V +

(
λ − 1

2αε
‖M‖2C(Ω̄,Rd2 )

‖∇(T + T̂ )‖2C(Ω̄)

)
‖v‖2L2(Ω)

≥ αε

2
‖v‖2V + (λ − 1

2αε
c2ρ2

MC2
T )‖v‖2L2(Ω)

for some c > 0. Now for the choice λ ≥ 1
2αε

c2ρ2
MC2

T the form B is coercive relative to
L2(Ω). It can be easily checked that B is bounded. The bilinear form B is also defined
on H1(Ω) × V and there holds that B(1, v) = 0 for any v ∈ V . Then Troianiello
(1987, Theorem 2.4) implies that A satisfies the weak maximum principle. Thus the
homogenous equation Av = 0 has the unique solution 0. Then Troianiello (1987,
Theorem 2.2) yields the existence of a unique solution v ∈ V of Av = F for every
F ∈ V ∗ which satisfied the inequality

‖v‖V ≤ ‖A−1‖‖F‖V ∗ .

Next we discuss the dependence of ‖A−1‖ on M and T . First we remark that T
depends on M and f . Thus we prove that the mapping (M, f ) �→ A is continuous
from BY endowed with the topology of C0,δ(Ω̄,Rd2) × L6(Ω) to L(V , V ∗). Let
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(M, f ) and (M̃, f̃ ) be elements of BY and A resp. Ã the corresponding operators.
Then we estimate

〈(A − Ã)v, ϕ〉V ∗,V =
∫

Ω

(M − M̃)∇v · ∇ϕ dx +
∫

Ω

(M − M̃)∇(T + T̂ ) · ∇vϕ dx

+ 2
∫

Ω

M̃∇(T − T̃ ) · ∇vϕ dx

≤ c
(
‖M − M̃‖C(Ω̄,Rd2 )

(1 + ‖∇(T + T̂ )‖L6(Ω))

+‖M̃‖C(Ω̄,Rd2 )
‖∇(T − T̃ )‖L6(Ω)

)
‖v‖V ‖ϕ‖V

Thus we have

‖A − Ã‖ ≤ c
(
‖M − M̃‖C(Ω̄,Rd2 )

+ ‖∇(T − T̃ )‖L6(Ω)

)
,

since ‖∇(T + T̂ )‖L6(Ω) ≤ c̃ CT for some c̃ > 0 and ‖M̃‖L∞(Ω) ≤ ĉρM for
some ĉ > 0. Then Lemma 3 implies the continuity of (M, f ) �→ A from BY ⊂
C0,δ(Ω̄,Rd2) × L6(Ω) to L(V , V ∗). Thus the mapping (M, f ) �→ A−1 is contin-
uous from BY endowed with the topology of C0,δ(Ω̄,Rd2) × L6(Ω) to L(V ∗, V ).
Since BY is compact in C0,δ(Ω̄,Rd2) × L6(Ω) for some 0 < δ < 1 there exists a
constant C > 0 only depending on BY such that ‖A−1‖ ≤ C .

Finally we apply Troianiello (1987, Theorem 3.16, (iv)) which implies that v ∈
W 1,r

0 (Ω ∪ ΓN ) and

‖v‖W 1,r
0 (Ω∪ΓN )

≤ Ĉ(‖F‖W 1,r ′ (Ω)∗ + ‖v‖V ),

where Ĉ depends on ε, α, ρM and CT . ��
Definition 2 For F ∈ V ∗ we call ϕ ∈ V a solution of the adjoint state equation if it
satisfies the equation A∗ϕ = F or equivalently

B(v, ϕ) = 〈F, v〉V ∗,V ∀v ∈ V . (12)

Theorem 2 Let r ∈ (2,∞) and F ∈ W 1,r ′
(Ω)∗. Then Eq. (12) has a unique solution

ϕ ∈ W 1,r
0 (Ω∪ΓN ). Moreover there exists a constant C > 0 such that for all (M, f ) ∈

BY

‖ϕ‖W 1,r
0 (Ω∪ΓN )

≤ C(‖F‖W 1,r ′ (Ω)∗). (13)

Proof From the proof of Proposition 2 it follows thatA : V → V ∗ is continuous and
bijective. Thus A∗ : V → V ∗ is also continuous and bijective. In particular we have
(A∗)−1 = (A−1)∗. So the equation A∗ϕ = F has a unique solution ϕ ∈ V for every
F ∈ V ∗ and

‖ϕ‖V ≤ ‖(A−1)∗‖‖F‖V ∗ = ‖A−1‖‖F‖V ∗ ≤ C‖F‖V ∗
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for some constantC > 0which is uniform in (M, f ) ∈ BY . Thenwe apply Troianiello
(1987, Theorem 3.16, (iv)) which implies that ϕ ∈ W 1,r

0 (Ω ∪ ΓN ) and

‖ϕ‖W 1,r
0 (Ω∪ΓN )

≤ Ĉ(‖F‖W 1,r ′ (Ω)∗ + ‖ϕ‖V ),

where Ĉ depends on ε, α, ρM and CT . ��

Let us note that the strong form corresponding to (12) is formally given by

⎧⎪⎪⎨
⎪⎪⎩

−ε div(M∇ϕ) − div
(
M∇(T + T̂ )ϕ

)
= F |Ω in Ω

ϕ = 0 on Γ

εM∇ϕ · n + 2ϕM∇T · n = F |ΓN on ΓN .

(14)

2.4 Shape derivative of J

We follow the notation and strategy in Ito et al. (2008) and Laurain and Sturm (2016).
For a field h ∈ C3c (U ,Rd) and t > 0 we define the mappings Ft : U → R

d by
Ft = idRd + th. Then we introduce the perturbed domains Ωt = Ft (Ω) and the
perturbed manifolds Γt = Ft (Γ ). Since h vanishes near ΓN there exists a τ > 0 such
that Ωt ⊂ U for all t ∈ [0, τ ]. Moreover, let g ∈ C2(ΓN ) with g ≥ 0 as well as
‖g‖C1,δ(ΓN ) ≤ ρg for some 0 < δ < 1 and M ∈ C2(Ū ,Rd2) with M ≥ α be given.
The perturbed state equation has the form

∫
Ωt

εM∇Tt · ∇v + (M∇Tt · ∇Tt − 1)v dx −
∫

ΓN

gv ds = 0 ∀v ∈ H1
0 (Ωt ∪ ΓN ),

for t ∈ [0, τ ]. We introduce

A(t) = ξ(t)B∗(t)M(t)B(t), where B(t) = DF−∗
t , ξ(t) = det(DFt ),

M(t) = M ◦ Ft ,

and define the non-linear form e : [0, τ ] × W 1,4
0 (Ω ∪ ΓN ) × V → R as

e(t, T t , v) =
∫

Ω

εA(t)∇T t · ∇v + (A(t)∇T t · ∇T t − ξ(t))v dx −
∫

ΓN

gv ds.

After transformation to the reference domain Ω , the perturbed state equation can be
cast as

e(t, T t , v) = 0 ∀v ∈ V , t ∈ [0, τ ], (15)

with the relation between T t and Tt given by T t = Tt ◦ Ft . Next we discuss the
differentiability of A(t) and ξ(t). We shall use the notation
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Mvh =
(

d∑
k=1

DMkvk

)
h,

where Mk stands for the kth column of M .

Lemma 4 There holds

lim
t↓0

1

t
‖ξ(t) − 1 − tξ ′(0)‖C(Ω̄) = 0,

lim
t↓0

1

t
‖A(t) − M − t A′(0)‖C(Ω̄,Rd2 )

= 0,

where ξ ′(0) = div(h), and

A′(0)v = div(h)Mv − DhMv + Mvh − MDh∗v, for v ∈ R
d . (16)

Proof Let x ∈ Ω̄ be arbitrary. The function ξ(t; x) has the form

ξ(t; x) = 1 + tr(Dh(x))t − det(Dh(x))t2, d = 2 (17)

and

ξ(t; x) = 1 + tr(Dh(x))t − (det(Dh1(x)) + det(Dh2(x)) + det(Dh3(x)))t
2

+ det(Dh(x))t3, d = 3

where Dhi are the principal minors of Dh. Thus we have

1

t
|ξ(t; x) − 1 − t div(h(x))| ≤ 3‖Dh‖2C(Ω̄,Rd2 )

t + ‖Dh‖3C(Ω̄,Rd2 )
t2.

Thus the first assertion is proven. Let us turn to the differentiability of t �→ A(t). Since
M ∈ C2(Ū ,Rd2) and Ū is compact it follows that t �→ M(x + th(x)) is differentiable
from [0,∞) to C(Ū ,Rd2) at t = 0+. The derivative can be conveniently computed
by its action on any v ∈ R

d

∂t M(t)v|t=0 =
d∑

k=1

∂t Mk(t)t |t=0vk =
d∑

k=1

DMkhvk =
(

d∑
k=1

DMkvk

)
h.

Now let x ∈ Ω̄ be arbitrary and let t be so small such that t‖Dh∗‖C(Ω̄,Rd2 )
< 1. Then

there holds
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1

t
‖B(t; x) − Id + t Dh(x)∗‖ = 1

t

∥∥∥∥∥
∞∑
k=0

(−t)k(Dh(x)∗)k − Id + t Dh(x)∗
∥∥∥∥∥

≤
∞∑
k=2

tk−1‖Dh∗‖kC(Ω̄,Rd2 )

A similar proof shows

lim
t↓0

1

t
‖B∗(t) − Id + t Dh‖C(Ω̄,Rd2 )

= 0.

Utilizing the product rule on A(t) = ξ(t)B∗(t)M(t)B(t) leads us to (16). ��
The formulas for ξ and A also provide the following result.

Lemma 5 The mappings t �→ A(t) from [0, τ ] to C1(Ω̄,Rd2) and t �→ ξ(t) from
[0, τ ] to C1(Ω̄) are continuous in 0.

Let Y = YM × Y f = W 2,s(Ω,Rd2) × W 1,s(Ω) ⊂ C1,δ(Ω̄,Rd2) × C0,δ(Ω̄) with

s > d and δ = 1 − d/s. Then Y is compactly embedded in C0,δ(Ω̄,Rd2) × L p(Ω)

for any 0 < δ < 1 and p > d. Due to the last lemma there exists a τ such that
A(t) ≥ α/2 and ξ(t) ≥ 1/2 for all t ∈ [0, τ ]. Furthermore there exists a ρ > 0 such
that ‖(A(t), ξ(t))‖Y ≤ ρ for all t ∈ [0, τ ] holds. Then we define the set

BY = {(M, f ) ∈ Y : ‖(M, f )‖Y ≤ ρ, M ≥ α/2, f ≥ 1/2}
and get

{(A(t), ξ(t)) : t ∈ [0, τ ]} ⊂ BY .

Thus we have:

Proposition 3 The perturbed state equation has a unique solution T t ∈ C2(Ω̄)∩V ↪→
W 1,4

0 (Ω ∪ ΓN ).

Proof This follows directly from Theorem 1. ��
The perturbed cost functional can be written as

J (Ωt , Γt ) = j(t, T t ) = 1

2

∫
ΓO

(T t − z)2dx (18)

subject to e(t, T t , v) = 0 for all v ∈ V . Next we characterize the shape derivative

d J (Ω, Γ )h = lim
t↓0

J (Ωt , Γt ) − J (Ω, Γ )

t

at Ω in direction h. For this purpose we define the Lagrange functional

L(t, T t , p) = j(t, T t ) + e(t, T t , p)
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for some p ∈ V and t ∈ [0, τ ]. We shall follow Laurain and Sturm (2016) to show
that

d J (Ω, Γ )h = d

dt
L(t, T t , ϕt )|t=0, (19)

where T t solves (15) and ϕt solves the averaged adjoint equation

∫ 1

0
dT L(t, sT t + (1 − s)T 0, ϕt )δT ds = 0 ∀δT ∈ W 1,4

0 (Ω ∪ ΓN ). (20)

At first we characterize the right hand side of (19). First we observe that

dT L(t, T t , ϕt )δT =
∫

ΓO

(T t − z)δT ds

+
∫

Ω

εA(t)∇δT · ∇ϕt + 2A(t)∇T t · ∇δTϕt dx .

Since T t and T 0 appear linearly in (20), the averaged adjoint equation amounts to

∫
ΓO

([T t ] − z)δT ds +
∫

Ω

εA(t)∇δT · ∇ϕt + 2A(t)∇[T t ] · ∇δTϕt dx = 0

∀δT ∈ W 1,4
0 (Ω ∪ ΓN ), (21)

where [T t ] = 1/2(T t + T 0) ∈ C2(Ω̄).

Proposition 4 The averaged adjoint equation has a unique solution ϕt ∈ W 1,r
0 (Ω ∪

ΓN ) with r ∈ (d,∞).

Proof We need to prove that v �→ ∫
ΓO

([T t ] − z)τNv ds is an element of W 1,r ′
(Ω)∗.

We know that τN is continuous fromW 1,r ′
(Ω) to Lq(ΓO)with q = (dr ′−r ′)/(d−r ′).

Thus we need to show that [T t ]|ΓO − z ∈ Lq ′
(ΓO) with q ′ = r ′(d − 1)/d(r ′ − 1) =

r(d − 1)/d. This is true since T ∈ C2(Ω̄) and z ∈ L∞(ΓO). ��
In order to justify (19) we need the following technical lemma.

Lemma 6 Further let T t and ϕt be the solutions of (15) and of (20) for t ∈ (0, τ ].
Then we have

T t → T 0 in W 1,6
0 (Ω ∪ ΓN ) for t ↓ 0,

ϕt → ϕ0 in V for t ↓ 0.

Proof The first result follows from Lemmas 3 and 5. Let ϕt be the solution of the
averaged adjoint state equation (21) for A(t), [T t ] = 1/2(T t + T 0) and z. We define
δϕ = ϕt − ϕ0 which solves
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∫
Ω

εA(t)∇v · ∇δϕ + A(t)∇(T t + T 0)∇vδϕ dx

=
∫

Ω

ε(M − A(t))∇v · ∇ϕ0 + (2(M − A(t))∇T 0 − A(t)∇δT ) · ∇vϕ0 dx

+ 1

2

∫
ΓO

δT v ds

for all v ∈ V . Nextwe show that v �→ ∫
Ω

(M−A(t))∇T 0∇vϕ0 dx is an element ofV ∗.
This follows from the fact that ϕ0 ∈ W 1,r

0 (Ω ∪ΓN ) ↪→ C(Ω̄) and∇T 0 ∈ C1(Ω̄,Rd).
Moreover the functional v �→ ∫

Ω
A(t)∇δT∇vϕ0 dx is also a functional in V ∗, since

δT ∈ W 1,6
0 (Ω ∪ ΓN ). According to the proof of Theorem 2 there holds

‖δϕ‖V ≤ C
(
ε‖A(t) − M‖C(Ω̄,Rd2 )

‖ϕ0‖W 1,r
0 (Ω∪ΓN )

+‖ϕ0‖W 1,r
0 (Ω∪ΓN )

‖A(t) − M‖C(Ω̄,Rd2 )
‖T 0‖C2(Ω̄)

+‖A(t)‖C(Ω̄,Rd2 )
‖ϕ0‖W 1,r

0 (Ω∪ΓN )
‖δT ‖W 1,6

0 (Ω∪ΓN )
+ ‖δT ‖W 1,6

0 (Ω∪ΓN )

)
,

with C > 0 independent of t . Moreover due to Theorem 2 there exists a constant
c1 > 0 depending only on BY such that ‖ϕ0‖W 1,r

0 (Ω∪ΓN )
< c1 holds. Furthermore

there holds ‖T 0‖C2(Ω̄) ≤ CT and ‖A(t)‖L∞(Ω) ≤ c2ρM with c2 independent of t .
This finishes the proof using Lemma 5. ��

We introduce the outer product v ⊗ w = vw∗ for v,w ∈ R
d and the inner product

G : N = trace(GN∗) for G, N ∈ R
d×d . Now we have all necessary ingredients to

prove the main result of this subsection.

Theorem 3 The shape derivative d J (Ω, Γ ) of J defined in (18) satisfies

DJ(Ω, Γ )h = d

dt
L(t, T t , ϕt )|t=0 =

∫
Ω

S1 : Dh + S0 · h dx (22)

for any h ∈ C3c (U ,Rd), where Si , i = 0, 1 have the form

S1 = IdRd (εM∇T · ∇ϕ + (|∇T |2M − 1)ϕ) − ε(∇T ⊗ M∇ϕ + ∇ϕ ⊗ M∇T )

− 2∇T ⊗ M∇Tϕ, (23)

S0 = εM∗∇T∇ϕ + M∗∇T∇Tϕ. (24)

Proof We apply Theorem 2.1 from Laurain and Sturm (2016). Thus we need to prove
that

lim
t↓0

1

t
(L(t, T 0, ϕt ) − L(0, T 0, ϕt )) = ∂t L(0, T 0, ϕ0).
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The functional J only depends on t through T t . Thus we have

∣∣∣∣1t (L(t, T 0, ϕt ) − L(0, T 0, ϕt )) − ∂t L(0, T 0, ϕ0)

∣∣∣∣
=

∣∣∣∣1t (e(t, T 0, ϕt ) − e(0, T 0, ϕt )) − ∂t e(0, T
0, ϕ0)

∣∣∣∣
= 1

t

∣∣∣∣
∫

Ω

ε(A(t) − M − t A′(0))∇T 0 · ∇ϕt + t A′(0)∇T 0 · ∇(ϕt − ϕ0)

+ (A(t) − M − t A′(0))∇T 0 · ∇T 0ϕt + t A′(0)∇T 0 · ∇T 0(ϕt − ϕ0)

− (ξ(t) − 1 − tξ ′(0))ϕt − tξ ′(0)(ϕt − ϕ0) dx
∣∣∣

Thus we can estimate in the following way:

∣∣∣∣1t (L(t, T 0, ϕt ) − L(0, T 0, ϕt )) − ∂t L(0, T 0, ϕ0)

∣∣∣∣
≤ ε

t
‖A(t) − M − t A′(0)‖C(Ω̄,Rd2 )

‖T 0‖V ‖ϕt‖V
+ ε‖A′(0)‖C(Ω̄,Rd2 )

‖T 0‖V ‖ϕt − ϕ0‖V
+ c

(
1

t
‖A(t) − M − t A′(0)‖C(Ω̄,Rd2 )

‖∇T 0‖2C(Ω̄,Rd )
‖ϕt‖V

+‖A′(0)‖C(Ω̄,Rd2 )
‖∇T 0‖2C(Ω̄,Rd )

‖ϕt − ϕ0‖V
)

+ c̃

(
1

t
‖ξ(t) − 1 − tξ ′(0)‖C(Ω̄)‖ϕt‖V + ‖ξ ′(0)‖C(Ω̄)‖ϕt − ϕ0‖V

)
.

Then Lemmas 6 and 4 imply the assertion. In order to calculate

d

dt
L(t, T t , ϕt )|t=0

we recall Lemma 4 and in particular (16). We obtain

d

dt
L(t, T t , ϕt )|t=0 =

∫
Ω

εA′(0)∇T 0 · ∇ϕ0 + (A′(0)∇T 0 · ∇T 0 − div(h))ϕ0 dx

with

A′(0)v = div(h)Mv − DhMv + Mvh − MDh∗v, for v ∈ R
d .

Next we give a more usable formula for the shape derivative. For convenience we
suppress the superscript for T 0 and ϕ0 in the following. In particular we have
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εA′(0)∇T · ∇ϕ = (εM∇T · ∇ϕ) IdRd : Dh

− (ε∇ϕ ⊗ M∇T ): Dh + (εM∗∇T∇ϕ) · h
− (ε∇T ⊗ M∇ϕ): Dh,

A′(0)∇T · ∇Tϕ = ϕ|T |2M IdRd : Dh − (∇T ⊗ M∇Tϕ): Dh + (M∗∇T∇Tϕ) · h
− (∇T ⊗ M∇Tϕ): Dh,

div(h)ϕ = ϕ IdRd : Dh.

��

3 Practical implementation

In this section we describe the practical implementation of an algorithm utilizing the
shape derivative DJ for the reconstruction of the locations of the activation sites. We
assume that these sites have the form ωi = Bri (xi ) with radii ri and midpoints xi ,
i = 1, . . . , N . For these activation sites we reconstruct the midpoints xi .

3.1 The state and adjoint state equations

Since the state equation is of nonlinear elliptic type which in practically relevant
situations is posed on domains with challenging geometry, we propose to solve it
using linear finite elements and a Newton method. For convenience we recall the state
equation as

e(T , v) =
∫

Ω

εM∇T · ∇v + (|∇T |2M − 1)v dx −
∫

ΓN

g2v ds = 0

∀v ∈ W 1,4
0 (Ω ∪ ΓN ). (25)

In order to set up aNewtonmethodwe need to calculate the derivative of e, in particular
we have

dT e(T , ϕ)v =
∫

Ω

εM∇v · ∇ϕ + 2M∇T · ∇vϕ dx . (26)

The Newton equation is well posed, see Proposition 2. For a given solution T of the
state equation, the adjoint state equation in the variable ϕ ∈ V has the form

dT e(T , ϕ)v =
∫

Ω

εM∇v · ∇ϕ + 2M∇T · ∇vϕ dx

+
∫

ΓN

(T − z)v dx = 0, ∀v ∈ V . (27)

This is a linear elliptic equation of convection-diffusion type, which we again solve
by linear finite elements.
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3.2 Domain perturbation

While the overall source localization algorithm requires only a displacement of the
current source locations, we still calculate a vector field for the perturbation over the
whole domain Ω̄ . This vector field h is chosen as the solution of the vector valued
elliptic equation

∫
U
Dh : Dv + h · v dx = −

∫
Ω

S1 : Dv + S0 · v dx, ∀v ∈ H1
0 (U ,Rd), (28)

where Si , i = 0, 1 are defined in (24) resp. (23). We remark that h is defined on U
and not only on Ω . The last equation is solved using linear finite elements. We also
note that

DJ(Ω, Γ )h = −
∫
U
Dh : Dh + h · h dx ≤ 0,

and thus h is a decent direction for J . Since we are only interested in the shift of the
midpoints xi of the balls ωi , we average h over ωi , i = i, . . . , N , in order to get a
shift of the midpoints.

3.3 Finite element solver implementation

The domain Ω is discretized using tetrahedral elements and linear Ansatz functions
{ψi }. As such, there are three linear systems to be solved at least once in each iteration
of the source localization loop:

1. The linear equation in the Newton iteration KN T = f
N
, with

Ki, j
N =

∫
Ω

εM∇ψi · ∇ψ j + 2 (M∇T · ∇ψi ) ψ j dx

f i
N

= −
∫

Ω

εM∇T · ∇ψi + (M∇T · ∇T − 1) ψi dx .

2. The adjoint state equation KA ϕ = f
A
, with

Ki, j
A =

∫
Ω

εM∇ψ j · ∇ψi + 2 (M∇T · ∇ψ j ) ψi dx

f i
A

=
∫

ΓN

(T − z) ψi dx .

3. The domain perturbation equation KS h = f
S
, with

Ki, j
S = I3×3

∫
Ω

δxψi δxψ j + δyψi δyψ j + δzψi δzψ j + ψi ψ j dx
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f i,1
S

=
∫

Ω

S1,11 δxψi + S1,21 δyψi + S1,31 δzψi + S10ψi dx

f i,2
S

=
∫

Ω

S2,11 δxψi + S2,21 δyψi + S2,31 δzψi + S20ψi dx

f i,3
S

=
∫

Ω

S3,11 δxψi + S3,21 δyψi + S3,31 δzψi + S30ψi dx,

where S0 and S1 are defined according to respectively (24) and (23).

The linear systems are assembled and manipulated using the PETSc (Balay et al.
2017) framework. All three linear system are solved using the Boomer (Henson and
Yang 2002). Algebraic Multigrid preconditioner in combination with the GMRES
solver provided by PETSc. The linear solver in the Newton method is configured
with a relative residual error tolerance of 10−4, while all other solvers use an absolute
residual error tolerance of 10−8. The detailed solver settings are listed in the appendix.

3.4 Source localization

The goal of the source localization algorithm is to identify the midpoints xi , i =
1, . . . , N of the sources {ωi } that minimize our functional J . Our shape calculus
based on shape derivatives does not allow for splitting or the creation of activation
sites. For this purpose one has to resort to topological derivatives.

Wepropose the approach depicted inAlgorithm1.Required inputs are some starting
locations {x0i }, a user-specified, mesh dependent step-length � (usually 1-3mesh edge-
lengths), a step-length scaling parameter θ and a backtracking scale α. The symbol
‖ ·‖ denotes the Euclidean norm. The algorithm starts by initializing T 0 and J 0. Then,
while the tolerance condition on J k is not met, in each iteration of the while-loop it
computes solutions to (27) and (28), updates the source midpoint positions and finally
computes a new state solution to (25). If necessary backtracking is employed, and the
next iteration begins.

For complex geometries, the step-length � needs to be chosen small enough in
order to prevent the sources from being moved out of Ω . Note, that � only realizes an
upper bound on ‖λi hki ‖, but this quantity is not bounded from below. Choosing θ > 1
improves convergence speed, as the λi are scaled up to counteract the reduction of hk .
In the case of overshooting, oscillations are reduced by backtracking.

According to the problem statement, the sources {ωi } are not part of the com-
putational domain Ω . In each iteration k, all points of Ω̄ are moved based on the
perturbation field hk , in particular the current source surface Γ k = ∪N

i=1ω
k
i is moved.

In practice it is easier to solve also the state and adjoint equations on U = Ω ∪ ω̄

with ω = ∪N
i=1ω

k
i and apply the Dirichlet boundary values on whole ω̄. Then we

only translate the logical representation of ω and thus the discretization of U is not
perturbed. This prevents the need for re-meshing and implicitly enables themerging of
any ωi without requiring special algorithmic treatment. Once ‖λi hki ‖ is smaller than
the average FE mesh edge-length, local refinement would become necessary. This
however, is not within the scope of this work.
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Algorithm 1 The source localization algorithm.

Choose initial mid-points x0i , i = 1, . . . , N
Choose � > 0
Choose θ ∈ [1, 1.1]
Choose α ∈ (0, 1)
k = 0
λi = 1, i = 1, . . . , N
Solve the state equation (25) for T 0

J0 ← ‖T 0|ΓO − z‖L2(ΓO )

while Jk > tol do
Solve the adjoint state equation (27) for ϕk .
Solve (28) for hk .
hki = 1/|ωi |

∫
ωi

hk (x) dx, i = 1, . . . , N
λi ← λi θ, i = 1, . . . , N
if ‖λi hki ‖ > � then

λi ← �/‖hki ‖
end if
xk+1
i = xki + λi h

k
i , i = 1, . . . , N

k ← k + 1
Solve the state equation (25) for T k

Jk ← ‖T k |ΓO − z‖L2(ΓO )

while Jk > Jk−1 do � Backtracking if Jk was not reduced
xki ← xki + α(xk−1

i − xki ), i = 1, . . . , N

Solve the state equation (25) for T k

Jk ← ‖T k |ΓO − z‖L2(ΓO )

end while
end while

3.5 Model parameters

The tensor parameter M contains the squared cardiac conduction velocity. In the depth
of the human LVwall, conduction velocity is orthotropic due to numerous factors, with
themost important ones being the geometry ofmyocytes and the non-uniform distribu-
tion of conduction-mediating proteins and sodium channels. The fastest propagation
velocity vf is observed along the prevailing long axis orientation of myocytes, often
referred to as “fiber orientation” f . Excitation spreadwithin a sheet and along direction
s, which is orthogonal to f , occurs at a lower conduction velocity vs, and even slower
in a sheet normal direction n = f × s, at a velocity vn. Both orthotropic velocities as
well as the principal axes { f , s, n} vary in space. In general, vf > vs > vn holds where
the ratios are assumed as vf : vs: vn ≈ 4: 2: 1 based on experimental studies (Caldwell
et al. 2009). As such, M is defined as

M := v2f f ⊗ f + v2s s ⊗ s + v2n n ⊗ n. (29)

The 2D benchmark in Sect. 4.2 will feature constant fiber-and sheet-directions
f = (1, 0)∗ and s = (0, 1)∗ with varying (v f , vs), while the 3D human LVbenchmark
in Sect. 4.3 will have constant velocities v f = 0.6m/s, vs = 0.4m/s, vn = 0.2m/s
and heterogeneous vectors { f , s, n}, computed by a rule-based method (Bayer et al.
2012). Further, in the human LV benchmark M(x) is an element-wise function. This
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makes the computation of S0 impractical. While it would be possible to change the
representation of M , this has not been pursued, since the terms involving S0 have only
a small impact on the shape derivative, see the comparisons in Sect. 4.2.

The parameter ε is calibrated by comparing themacroscopic velocity of propagating
wavefronts generated by the viscous Eikonal model with physiological measurements
such as the observed temporal delay between endocardial activation and epicardial
breakthrough. Depending on a given trajectory relative to the used fiber field, macro-
scopic velocities fall into the range of local conduction velocities encoded inM , which
themselves are based on experimental measurements (Caldwell et al. 2009).

4 Evaluation benchmarks

Two numerical benchmarks, a 2D wedge benchmark and a 3D LV benchmark, will be
used to evaluate the proposed algorithm’s ability to identify activation sources based
on input boundary data.

4.1 Evaluation criteria

In both benchmarks we measure both the convergence of the current source locations
{xki } to the exact source locations {xi }, and the reduction of the functional J defined
in (1). Thus the following evaluation criteria are used:

– the distances to reference locations dki := ‖xi − xki ‖
– the relative reduction J k/J 0 with J k := 1

2

∫
ΓO

(T k − z)2dx .

4.2 2D benchmark

In this benchmark, the computational domain U is given by the unit-square (0, 1) ×
(0, 1). We consider two activation sites ωi = B0.1(xi ) whose midpoints are given
by x1 = (0.5, 0.3)∗ and x2 = (0.25, 0.7)∗. Thus we have Ω = U\⋃2

i=1 ωi . The
observed data are given on the boundary ΓN of U . The domain U is discretized by
66,049 vertices and 131,072 triangles, which yields a discretization size of≈ 4 ·10−3.
Moreover we set g = 0, f = 1, ε = 0.1 and

M =
(
sin(πx) + 1.1 0

0 sin(π y) + 1.1

)
.

In this example we consider the noise free case. Thus the observed data z is generated
by solving the state equation for T and restricting T to ΓN . In Fig. 1 we observe that
the distances between the exact midpoints xi and xki reach values below 10−3, more
precisely d1 = 1.7 · 10−4 and d2 = 2.6 · 10−4, after 100 iterations. These distances
correspond approximately to the mesh size. On the right of this figure we can note
that J k/J 0 attains a value of about 10−7. Figure 2 shows the trajectories of the points
xki as the iteration proceeds. We can see that the midpoints xki do not move in straight
lines. We expect that this is caused by interaction between the two activation sites,
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Fig. 1 The evaluation criteria for the 2D benchmark. Left: distance to reference location dki := ‖xki −
xi‖, i = 1, 2 over the iteration k. Right: relative functional reduction Jk/J0 over the iteration k

Fig. 2 Left: trajectory of the points xk1 and xk2 during optimization. Right: magnitude of Si j over iterations
k

and the influence of M . Nevertheless the exact midpoints xi are reached with high
precision. In Fig. 3 the perturbation field hk and the adjoint state ϕk are displayed for
k = 0, 10, 20. The dominant directions of the perturbation field point from regions
of Ω where ϕk is negative to regions of Ω where ϕk attains high positive values.
Moreover we see that the trajectories of the points xki (Fig. 2) correlate to the main
directions of the perturbation field hk .

In order to study the influence of the different parts of DJk we introduce the
quantities:

S11 = ε

∣∣∣∣
∫

Ω

(IdRd M∇T k · ∇ϕk) : Dhk dx

∣∣∣∣ ,

S12 =
∣∣∣∣
∫

Ω

(|∇T k |2M − 1)ϕkIdRd ) : Dhk dx

∣∣∣∣ ,
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Fig. 3 Perturbation field hk (arrows) and adjoint state variable ϕk (background color; blue-negative and
red-positive) for k = 0, 10, 20. The vectors are scaled for better visibility. The color of the vectors correlates
with their length. (blue-short and red-long) (color figure online)

S13 = ε

∣∣∣∣
∫

Ω

(∇T k ⊗ M∇ϕk + ∇ϕk ⊗ M∇T k) : Dhk dx

∣∣∣∣ ,

S14 =
∣∣∣∣
∫

Ω

(2∇T k ⊗ M∇T kϕk) : Dhk dx

∣∣∣∣ ,

S01 = ε

∣∣∣∣
∫

Ω

(M∗
∇T k∇ϕk) · hk dx

∣∣∣∣ and

S02 =
∣∣∣∣
∫

Ω

(M∗
∇T k∇T kϕk) · hk dx

∣∣∣∣ .

We clearly see in Fig. 2 that S13 and S14 are the dominating summands in |DJkhk |.
Thus it is justified to omit the terms S01 and S02 in the following benchmark. We
also carried out tests with different choices for the conductivity tensor M and found
nearly identical behavior provided that M is given by (29) with orthonormal vectors
f and s. If the choice for M violates the orthonormality condition for f and s, then
the numerical results may depend on the directions determined by the spatial relation
between the exact activation sites and the initial guess, and the directions given by f
and s.

4.3 3D LV benchmark

The 3D LV benchmark serves to gauge the potential of the proposed method in an
envisioned clinical application which is geared towards localizing earliest activation
sites from epicardial activation maps. In line with early experimental mapping studies
(Durrer et al. 1970) on exvivo humanheartswe assume that there are three discrete sites
of earliest activation located at the endocardial surface of the LV. In anatomical terms,
these sites are located higher towards the base of the LV on the anterior paraseptal wall,
a central area at the septal endocardium, and a posterior paraseptal area. Therefore
the conduction system activating the LV is referred to as “trifascicular” with the
three fascicles being referred to as anterior fascicle xaf , posterior fascicle xpf and
septal fascicle xsf . Each of these fascicles can be considered as a patch of tissue
composed of a tight network of Purkinje fibers which are electrically coupled to the
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Fig. 4 a The LV geometry forming Ω , b the surface ΓO , c the fiber directions f

LV myocardium through so-called Purkinje-Ventricular junctions (PVJs). Owing to
the fast conduction properties of the Purkinje fibers in these patches a large number of
PVJs are located which activate one after the other with very short delays. Thus, these
patches appear to activate simultaneously and are considered a fascicle and not a large
set of individual PVJs. Further, due the short delays and the close spatial vicinity, it is
still highly challenging today, even with invasive mapping devices recording signals
with electrodes located in the immediate vicinity of PVJs, to identify individual PVJs.
As such we do not expect that the identification of individual PVJs using data recorded
at the epicardial surface is feasible.

While the presence of three fascicles is widely accepted and there general location is
assumed to be known, the inter-individual variability and their exact location, size and
relative timing is significant. Based on these considerations we assume the activation
map (either measured or precomputed) on the epicardial surface as given input data for
the localization of the three LV fascicles which we deem a plausible and sufficiently
accurate general representation of the actual activation sources.Moreover, we simplify
by assuming size and timing of individual fascicles as given and focus only on the
identification of their location.

The discretizedmodel of a humanLV forming the computational domainΩ consists
of 47,938 vertices and 245,611 tetrahedra, with an average discretization size of ≈
1.5mm. The observable surface ΓO is formed by the epicardial surface of the LV. We
refer to Fig. 4. The source surface is Γ = ∪3

i=1∂ωi with ωi := Br=3mm(xi ), i =
1, 2, 3. Further, based on numerical tests with varying activation sequences we chose
ε = 80ms to obtain appropriate macroscopic conduction velocities which fall into the
range of local conduction velocities encoded in M (see Sect. 3.5).

Motivated by real-world applications, we want z ∈ L2(ΓO) to correspond to some
error-prone data defined on a lower spatial resolution than the computational resolution
of ΓO . To accommodate for this, the data z are generated as follows:
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Fig. 5 The evaluation criteria for the cases (RI), (II) and (PI) of the LV benchmark. Left:
∑3

i=1 d
k
i over the

iteration k. Right: Relative functional reduction Jk/J0 over the iteration k

1. A reference activation time T r , using the source locations

x1 = (60.3, 27.6,−20.9)∗, x2 = (42.7,−12.8,−2.6)∗

and x3 = (26.9, 19.6,−39.1)∗

is computed.
2. T r is sub-sampled at a set of 106 uniformly spaced sample points {si }106i=1 ∈ ΓO

yielding ti := T r (si ).
3. A zero-average uniform noise is added: ti ← ti + ξi 1/|Ω|

∫
Ω
T r (x)dx, i =

1, . . . , 106 with ξi ∈ [−ξ/2, ξ/2].
4. The data z is interpolated from the perturbed samples {ti } using distance-weighted

interpolation.

We compare the following cases for different data selections:

(RI) Using the reference data as input: z := T r |ΓO .
(II) Using only interpolated input: z is generated as described above with ξ = 0.
(PI) Using perturbed and interpolated input: z is generated as described above
with ξ = 0.3.

Starting at the initial locations

x01 = (71.1, 11.3,−18.4)∗, x02 = (44.7,−23,−25.2)∗

and x03 = (42.3, 9.1,−46.8)∗,

the source localization Algorithm 1 is applied. In order to find the best achievable
results, the algorithm is configured to only stop if J cannot be further reduced. All
three cases executed in approximately 250 seconds on 10 cores of a workstation PC
with two Intel Xeon E5645 (2.40GHz) CPUs.

Figure 5 shows the two evaluation criteria—the summed distances to reference
location and the relative reduction of J—over the iteration count. For (RI), the algo-
rithm terminates after 29 iterations with a relative error minimum of 3 · 10−4. The
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A

B

Fig. 6 a The trajectories traveled by xki for the (RI) and (PI) cases. The (RI) trajectory is colored in green,
while the one of the (PI) case is colored in red. The mesh vertices inside ball ωi , used for the reference
solution Tr , are displayed in red, while those inside the initial search ball ω0

i are displayed in blue. b The

adjoint solution ϕk for the (RI) case, for the iterations k = 0, 10, 20, 28, respectively from left to right
(color figure online)

highest final distance to reference location is d1 = 1mm, which is well below the
average FE edge-length of 1.5mm. The discrete representation of the reconstructed
activation sites closely match the desired reference sites.

In the (II) case, the algorithm stops after 29 iterations. The minimal relative error
is 5.4 · 10−3. The highest final distance is d1 = 4.3mm, which is significantly larger
than in the (RI) case. This indicates that the low-resolution sampling of T r |ΓO lowers
the quality of our reconstruction. Also, the interpolation induces noise which impairs
the reconstruction quality.

For (PI), the algorithm terminates after 30 iterations with relative error 1.6 · 10−2.
The di are similar to the (II) case, although slightly higher, with the highest final
distance d1 = 4.4mm. This further hints that the low-resolution sampling has a much
greater effect on the source locations than the error due to noise.

For all three cases, the final displacements xki − xk−1
i are smaller than 0.2mm,

and therefore only a fraction of the mesh edge-length of 1.5mm. As such, some
mesh manipulation (e.g. mesh refinement, mesh deformation) would be necessary
in order to apply the source displacement on the state and adjoint state problems.
Since the mesh is not adjusted in the presented paper, this leads to a stagnation of the
algorithm.
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Fig. 7 The source trajectories in the (RI) case for three different choices of M . Green: v f = 0.6, vs =
0.4, vn = 0.2. Blue: v f = 0.5, vs = 0.5, vn = 0.5. Red: v f = 0.8, vs = 0.4, vn = 0.2 The mesh vertices
inside ball ωi , used for the reference solution Tr , are displayed in red, while those inside the initial search
ball ω0

i are displayed in blue (color figure online)

Figure 6 visualizes the source localization process by displaying the trajectories of
xki and the adjoint solution ϕk during the source localization process. By comparing
figure parts A and B, we observe that the motion induced by the field h is oriented
from negative to positive regions of ϕk , similar to the 2D benchmark in Sect. 4.2.
Further, we see the diminishing absolute values of ϕk over the iteration count. The
final locations in Fig. 6a show, that even the worst localization (PI) still offers a good
approximation of the general source location, well inside the uncertainty bounds of
clinical parameters. Moreover, we carried out numerical tests with varying anisotropy
ratios, see Fig. 7. In the LV benchmark, the convergence trajectory of one source varied
significantly between the three choices ofM . Numerical tests with significantly higher
anisotropy ratios indicate, that a higher FE mesh resolution is required, particularly in
the case of large displacements orthogonal to f .

5 Discussion

This study presented analysis and implementation of an algorithm for identifying sites
of earliest activation in the LV from epicardial activation maps. The algorithm is posed
as an optimization problem, where initial activation sites are chosen first to be then
iteratively perturbed in order to minimize the mismatch between computed activa-
tion times and the activation maps given at the epicardial surface. We demonstrated
well-posedness of all sub-problems, namely the viscous Eikonal equation, the tangent
and adjoint equations and the perturbed state equation and characterized the shape
derivative.

The theoretical results were verified by solving two benchmark problems, a 2D
unit-square benchmark and a 3D human LV benchmark. For unperturbed input data,
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the localization method was able to accurately reconstruct the sites of initial activa-
tion. The largest deviations observed were 2.6 · 10−4 and 1mm, respectively, for the
2D and 3D benchmark. This was significantly smaller than the respective spatial dis-
cretization sizes of 4 · 10−3 and 1.5mm used in 2D and 3D benchmark, respectively.
To probe the robustness of the method, the 3D benchmark was repeated using input
data of reduced quality, that is, epicardial activation were spatially under-sampled and
noise was added. These benchmark results showed, that the identification of earliest
activation sites was still feasible, yielding a sufficiently accurate approximation of the
general locations, comparable or better than the accuracy achieved with clinically used
invasive endocardial mapping systems (Gepstein et al. 1997).

Several topics suggest themselves as possible extensions of the present work. The
shape gradient is already set up to allow for amore realistic representation of the activa-
tions sites than those considered in the numerical realizations of these first benchmarks.
Also, it can be of interest to incorporate different activation times by introducing inho-
mogeneous Dirichlet boundary conditions with unknown forcing terms. To allow for
additional accuracy of the reconstruction of the evolution of the activation regions
local grid refinement can be considered in future algorithmic efforts. Further it can be
an interesting task to carry out the asymptotic analysis for ε → 0.

5.1 Limitations

While the benchmarks in this study demonstrate that the identification of sites of
earliest endocardial activation from epicardial activation maps is, in principle, fea-
sible with the proposed method, with regard to practical applications a number of
restrictions apply. Out method makes various tacit assumptions which may not always
hold in practice. Fiber arrangements are assumed to be known, following largely the
patterns observed experimentally in the healthy LV (Streeter et al. 1969). With cur-
rent technology fiber arrangements cannot be measured in vivo with sufficient spatial
resolution,but suitable technologies under development (Scott et al. 2018) promise
to lift this restriction in the future. Further, conduction velocities along the principal
tensor axes were also assumed homogeneously throughout the LV, as velocities can-
not be determined accurately in vivo, the chosen values were based on experimental
observations (Caldwell et al. 2009). These values and their ratios may deviate from
the experimentally estimation of vf : vs: vn = 3: 2: 1, and they may not be constant
throughout the myocardium. Identifying the velocity tensor fields is therefore an addi-
tional complexity which is a related research topic (Marchesseau et al. 2013a) that
has not been addressed in this study. A further limitation is the assumption that three
sites of earliest endocardial activation exist. While this is physiologically motivated
based on the notion that three main fascicles initiate activation in the healthy human
LV endocardium (Durrer et al. 1970), this may not always be the case, particularly not
under pathological conditions such as a left bundle branch block where the electrical
activation of the LV may follow a markedly different pattern.
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Appendix

PETSc solver options

The following solver configuration parameters were passed at run-time to PETSc:

-ksp_type fgmres
-ksp_pc_side right
-ksp_gmres_restart 100
-ksp_gmres_modifiedgramschmidt
-pc_type hypre
-pc_hypre_type boomeramg
-pc_hypre_boomeramg_max_iter 1
-pc_hypre_boomeramg_coarsen_type HMIS
-pc_hypre_boomeramg_tol 0.0
-pc_hypre_boomeramg_max_levels 100
-pc_hypre_boomeramg_relax_type_all l1scaled-SOR/Jacobi
-pc_hypre_boomeramg_grid_sweeps_all 1
-pc_hypre_boomeramg_interp_type ext+i
-pc_hypre_boomeramg_cycle_type V
-pc_hypre_boomeramg_strong_threshold 0
-pc_hypre_boomeramg_nodal_relaxation 0
-pc_hypre_boomeramg_nodal_coarsen 0
-pc_hypre_boomeramg_print_statistics 0
-pc_hypre_boomeramg_agg_nl 0
-pc_hypre_boomeramg_P_max 12

Units

The results of the LV benchmark use the following units:

Variable Unit

T , ϕ ms
h mm
M mm2/ms2

ε ms
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