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Abstract
In order to seek the optimal time-profiles of public health systems (PHS) Intervention
to favor vaccine propensity, we apply optimal control (OC) to a SIR model with
voluntary vaccination and PHS intervention. We focus on short-term horizons, and
on both continuous control strategies resulting from the forward–backward sweep
deterministic algorithm, and piecewise-constant strategies (which are closer to the PHS
way of working) investigated by the simulated annealing (SA) stochastic algorithm.
For childhood diseases, where disease costs are much larger than vaccination costs,
the OC solution sets at its maximum for most of the policy horizon, meaning that
the PHS cannot further improve perceptions about the net benefit of immunization.
Thus, the subsequent dynamics of vaccine uptake stems entirely from the declining
perceived risk of infection (due to declining prevalence) which is communicated by
direct contacts among parents, and unavoidably yields a future decline in vaccine
uptake. We find that for relatively low communication costs, the piecewise control
is close to the continuous control. For large communication costs the SA algorithm
converges towards a non-monotone OC that can have oscillations.
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1 Introduction

In the last ten years, a new research field in epidemiology has emerged: the behav-
ioral epidemiology (BE) of infectious diseases (Manfredi and d’Onofrio 2013; Funk
et al. 2010). BE focuses on the feedbacks of human behavior on the transmission and
control of infections (Manfredi and d’Onofrio 2013; Funk et al. 2010). In traditional
models (Anderson et al. 1992; Capasso 1993), individuals are modeled as passive
particles randomly interacting according to the mass-action principle (Manfredi and
d’Onofrio 2013; Wang et al. 2016). This assumption inadequately represents contem-
porary scenarios, where individuals-based on information and rumors on the spread
of diseases–modify their social behavior and their propensity to vaccinate (Manfredi
and d’Onofrio 2013; d’Onofrio et al. 2007; Wang et al. 2016). The study of the impact
of human decisions on the vaccine uptake under voluntary vaccination is a major area
of BE research (Manfredi and d’Onofrio 2013; Wang et al. 2016; Bauch 2005)

Indeed, if vaccination is no longer mandatory, then the high degrees of disease
control allowedbyvaccine-inducedherd immunity achieved in the past, jointlywith the
high standard of health of western societies (Manfredi and d’Onofrio 2013; d’Onofrio
et al. 2011), can favor the spread of information-dependent behavior (Manfredi and
d’Onofrio 2013; Buonomo et al. 2013). On the one hand, in periods of low prevalence
families might tend to overweight information and rumors on vaccine side-effects
and their propensity to vaccinate might decline. On the other hand, periods of high
infection prevalence or of outbreaks can enhance the propensity to vaccinate.

BE research has shown that this behaviormakes disease elimination unfeasible even
when temporarily coverages is near 100% in epochs of high perceived risk, and triggers
large recurrent epidemics (Bauch 2005;Manfredi and d’Onofrio 2013; d’Onofrio et al.
2007, 2011).

In Oraby et al. (2014) it is stressed that some BE models identify vaccine refusal as
the typical behavior, whereas it should be [as in d’Onofrio et al. (2007)] the atypical
one, as shown by the large vaccine coverages that can be observed worldwide.

In d’Onofrio et al. (2012) a simple explanation of vaccine acceptance as the typical
behaviorwas proposed: even if vaccination is voluntary the public health system (PHS)
can favor vaccine propensity by providing influential information on infection and
vaccines. It is the ‘persuasion success’ of PHS efforts that makes vaccine acceptance
the typical behavior. Indeed, the model suggests that infection could be eliminated for
adequate levels of effort.

A shortcoming of d’Onofrio et al. (2012) is that the communication effort by the
PHS is modeled as constant. In the practice, such effort is not constant, due to a range
of epidemiological and economical variables, including the disease burden and the
economic and human costs of immunization.

For such a model the determination of a suitable PHS effort that minimizes eco-
nomic costs under given constraints in a given time-horizon calls for the application
of Optimal Control (OC) theory, which is our aim.

Applications of OC theory (Schättler and Ledzewicz 2012) to classical mathemat-
ical epidemiology date back to the seventies (Hethcote and Waltman 1973; Morton
and Wickwire 1974; Sethi and Staats 1978; Wickwire 1977). Recently, simple deter-
ministic numerical schemes have been introduced (Aniţa et al. 2011; Lenhart and
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Workman 2007) that renewed interest in application of OC to classical mathematical
epidemiology (Asano et al. 2008; Buonomo 2011; Betta et al. 2016; Blayneh et al.
2010; Bolzoni et al. 2014; Demasse et al. 2016; Hansen and Day 2011; Jung et al.
2009, 2002; Laguzet and Turinici 2015a; Lee and Castillo-Chavez 2015; Onyango
and Müller 2014; Rachah and Torres 2016; Rowthorn and Walther 2017) and to BE
(Kassa and Ouhinou 2015; Laguzet and Turinici 2015b; Doutor et al. 2016).

Among the above mentioned deterministic algorithms, we may cite the Forward–
Backward sweep (FBS) algorithm (Hackbusch 1978) and the gradient methods (Aniţa
et al. 2011). These algorithms are approximation methods built on the necessary con-
ditions obtained by themaximum principle that the control and the state variables need
to satisfy (Pontryagin et al. 1962). In particular, the FBS, which will be used here,
provides a numerical approximation to the differential-algebraic system consisting of
the state and co-state differential equations and the optimality condition (derived from
maximization of the Hamiltonian) which in many problems may be expressed by an
algebraic equation.

There is an interesting issue related to the use of optimal solutions in applied
problems, which is very important for the study of the PHS effort to favor vaccine
uptake. Indeed, inOC theory the control function (generally denoted by u(t)) is usually
assumed to be a generic Lebesgue integrable function (LIF). Although this assumption
is adequate in many domains, it becomes unrealistic when u(t) is the outcome of a
range of human interventions, as for vaccination programmes. The complexmachinery
of PHS has slow reactions, making impossible to update the strategy on a weekly or
even monthly base. In such scenarios, control functions should instead be represented
as a well-defined subset of LIFs: piece-wise constant functions (Betta et al. 2016;
Faber et al. 2005). Moreover, the intervals where the control u(t) is constant must be
quite long, i.e. u(t) spans in a finite-dimensional space with low dimension (typically
the number of changes of strategy per year times the number of years of the chosen
time horizon). This is at variance both with theoretical OC solutions, which are infinite
dimensional, and with their numerical approximations, which have large dimensions.
Indeed, the numerical approximation ofOC requires short timesteps, which are smaller
than few days, sometime few hours. This results on the whole time-horizon in a
dimension that is finite but is very large.

In this circumstance the original OC problem is transformed into a new problem:
finding the globalminimumof a real function of a finite number of parameters by using
heuristic optimization algorithms, which can be deterministic or stochastic (Banga and
Seider 1996; Schoen 1991). Among the latter class, one of the most widely adopted is
the Simulated annealing (SA) (Kirkpatrick et al. 1983; Faber et al. 2005; Henderson
et al. 2003; Martínez-Alfaro 2010; Salamon et al. 2002).

Based on these considerations, in this workwe employ the OC theory and SA-based
heuristic optimization to assess how epidemiological and economic factors affect the
communication effort of the PHS. Namely, this is done by seeking a time-variable
control in the model introduced in d’Onofrio et al. (2012) such that the costs for the
PHS during a given time period are minimized. In particular, our OC problem seeks
to minimize total costs due to both the disease burden, vaccination costs (including
costs from adverse events) and communication costs.
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As in Bauch (2005), we consider vaccines targeted at childhood infectious diseases
such as measles, mumps and pertussis. In particular, we will focus on short term
horizons and investigate the ability of the PHS to effectively increase vaccine uptake
in a short time span, departing from an initial situation where vaccine uptake was
unsatisfactorily low. This situation was well represented by the case of measles in
Italy before the large efforts to expand vaccination carried out in the last decade
(d’Onofrio et al. 2012).

This approach will also allow us to show, with a specific example, how two dif-
ferent numerical approaches (the FSB deterministic algorithm and the SA stochastic
algorithm) to OC can usefully be employed.

The paper is organized as follows. In Sect. 2 the model introduced in d’Onofrio
et al. (2012) is reviewed. In Sect. 3 the OC problem is formulated and parametrized. In
Sect. 4 we determine OC candidate functions by using the FBS algorithm. In Sect. 5
we validate the nature of global minimum of the candidate OC by employing the SA
stochastic algorithm. Concluding remarks follow in Sect. 6.

2 The basic model and PHS intervention

In this section we shortly review models and main results of d’Onofrio et al. (2011,
2012), Wang et al. (2016), Buonomo et al. (2018). In d’Onofrio et al. (2011) the fol-
lowing information-dependent SIR model without disease-related fatalities and with
non mandatory vaccination at birth was considered:

Ṡ = μ(1 − p) − μS − βSI
İ = βSI − (μ + ν)I
ṗ = kp(1 − p) (θ1 I − p) ,

(1)

where the state variables S, I , p represent the fraction of susceptible individuals in the
population (S), the fraction of infectious individuals (I ), and the proportion of parents
of newborns who is favorable to vaccination (p), taken as a proxy of vaccine uptake af
time t. The dynamics of the vaccinated fraction, denoted as V , is linearly depending
on p(t) and it reads as follows: V̇ = μp − μV . Finally, the dynamics of the removed
fraction (represented by the state variable R) trivially follows: R = 1 − S − I − V .
Since the dynamics of the pair (V , R) elementarily derives from the dynamics of the
triple (S, I , p), in the following we will only focus on the latter three state variables,
as in d’Onofrio et al. (2011, 2012). The parameters are positive constants: μ is the
death rate, assumed to be identical to the birth rate; ν is the recovery rate; β is the
contact rate.

Note that the dynamics of p is governed by an imitation model (Hofbauer and
Sigmund 1998). This extends the equation for adoption by imitation (Mahajan and
Peterson 1985) by including agents’ payoffs. The net payoff gain of immunization
(�Q) which is perceived from person-to-person contacts has the following general
information-dependent form introduced in d’Onofrio et al. (2011): �Q = θ I −
ηp, where θ I , (θ > 0) defines the perceived risk associated to the disease (taken
as prevalence-dependent), while ηp (η > 0) defines the perceived risk of suffering
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vaccine adverse events (VAE). This risk is taken to be a linear function of actual
vaccine uptake p. The third equation in 1 then follows by setting θ1 = θ/η, which
represents a normalizedmeasure of the relative risk of infection compared to the risk of
VAE. In this context, k is the (normalized) index of imitation or internal influence. We
stress that the imitation game approach in d’Onofrio et al. (2011), which was based on
the classical economy-oriented interpretation of evolutionary game theory, has been
given a semi-mechanistic interpretation in Wang et al. (2016) as the result of a mutual
contagion of ideas between the group of parents that are favorable to vaccinate their
children (whose fraction at time t is given by p(t)) and the group that is not favorable
to vaccination (whose fraction at time t is given by: a(t) = 1 − p(t)).

Model (1) admits a ‘behavior–induced’ endemic equilibrium

E = (Se, Ie(θ), pe) ≡
(

1

R0
,

1 − Se
1 + ν

μ
+ θ

, θ Ie(θ)

)
, (2)

where R0 = β/(μ + ν) is the basic reproduction number of SIR model.
Although the equilibrium E is independent of k, its stability does. Namely, for

sufficiently large values of θ one may find intervals [k1(θ), k2(θ)] where the infection
prevalence shows sustained oscillations, whereas outside of these intervals E is locally
asymptotically stable.

Model (1) was extended in d’Onofrio et al. (2012) to include the effects of the
communication actions by the PHS aimed at increasing vaccine uptake, by assuming
that the effort of the PHS per time unit is proportional to the fraction of parents
unfavorable to vaccination. The resulting equation for p is:

ṗ = k(1 − p) (θ1 I − p) p + G(t)(1 − p). (3)

In view of themechanistic interpretation given inWang et al. (2016), the termG(t)(1−
p) is nothing else than the influx of parents that switched their vaccine propensity
thanks to the action of the PHS. It is useful to normalize the function G:

γ (t) = G(t)

kθ1
,

yieding:
ṗ = kθ1(1 − p)

[
(I − α p) p + γ (t)

]
, (4)

where α = 1/θ1 is a measure of the (relative) perceived risk of VAE (i.e., of the
propensity to vaccine refusal). The model then reads

Ṡ = μ(1 − p) − μS − βSI
İ = βSI − (μ + ν)I
ṗ = kθ1(1 − p)

[
(I − α p) p + γ (t)

]
.

(5)

Note that in d’Onofrio et al. (2012) only the case of constant γ (t) was actually con-
sidered: γ (t) = x . In particular, if x ≥ α p2c , where pc = 1 − 1/R0 is the critical
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immunization threshold (Anderson et al. 1992), then it can be seen that (d’Onofrio
et al. 2012)

p(t) → min(1, (x/α)0.5), I (t) → 0. (6)

In other words, there exists a threshold equal to α p2c for x such that if this threshold is
exceeded, i.e. if x ≥ α p2c , then p(t) tends to an equilibrium value pe greater than the
elimination threshold pc, while the prevalence I (t) tends to zero, so that the infection
is eliminated.

On the contrary, if x < α p2c , then there is an endemic equilibrium (Se, Ie, pe) such
that (d’Onofrio et al. 2012):

Se = 1/R0,

Ie(pe) = μ

μ + ν
(pc − pe) , (7)

and pe is given by the unique positive solution of the following equation:

pe (Ie(pe) − α pe) + x = 0. (8)

That is,

pe(x) =
μpc
μ+ν

+
√

μ2 p2c
(μ+ν)2

+ 4x
(
α + μ

μ+ν

)
2

(
α + μ

μ+ν

) . (9)

3 The OC problem and parametrization

3.1 The OC problem

We now consider the case in which the PHS attempts to optimally tune its temporal
effort in providing information about the infection and vaccines, as represented by
the function γ (t). The aim is to minimize the total cost due to the disease and to the
intervention during the time interval [0, T ], where T is the finite time horizon. We
assume that the public effort is a Lebesgue measurable function such that:

0 ≤ γ (t) ≤ γmax , for t ∈ [0, T ]. (10)

The upper bound for γ reflects the idea that there are practical limitations on the
maximum rate at which information may be spread by the PHS. The cost functional
to be minimized includes the following components:

(i) Enactment cost of the strategy. We take:

Jγ = Cγ

∫ T

0
γ 2(t)dt, (11)

where Cγ is a positive constant weight.
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The quadratic cost of the control is the simplest and most widely used nonlinear
representation of intervention costs in epidemiology (see e.g. Blayneh et al. 2010;
Chamchod et al. 2014; Choi and Jung 2014; Lee et al. 2011, 2012; Lee and Castillo-
Chavez 2015; Neilan et al. 2010; Prosper et al. 2011; Rachah and Torres 2016;
Rodrigues et al. 2014; Zhao et al. 2016). This assumption underlies the idea that
costs might increase non-linearly at high intervention levels. Usually the quadratic
cost is adopted as black box assumption, but in our case it can be somehow justified.
Indeed, the per time unit of the PHS effort (denoted by jγ (t) and whose integral is
Jγ ) can be written as follows:

jγ (t) = Nμγ (t)a(t)A(γ (t), a(t)) (12)

where N denotes the total population, a(t) = 1 − p(t) denotes, as mentioned in
Sect. 2, the fraction of population adopting the ‘no-vaccine’ strategy, Nμγ (t)a(t) is
the number of parents changing strategy per time unit, and A(γ, a) is the per-capita
cost for the PHS to realize strategy switching. This function is such that:

1. ∂γ A(γ, a) > 0, since γ is a measure of the specific speed of strategy-change
induced by the actions of the PHS. Thus the larger is this speed, the larger are the
costs;

2. ∂a A(γ, a) < 0, since the smaller (resp. larger) is the proportion of anti-vaccinators
the larger (resp. smaller) is the effort needed to convince them to switch strategy.
This can be qualitatively justified based on the ’continuous’ flowing from vaccine
hesitancy to vaccine refusal (Larson et al. 2014; Sadaf et al. 2013). Qualitatively:
if a is close to 1 then it is likely that the subjects not-vaccinating their babies are
hesitant more than contrary to vaccination; if after intensive action of the NHS a is
close to 0, this suggests that these residual non-vaccinating parents are very likely
strongly opponents to vaccination;

3. lima→0+ A(γ, a) = +∞, since when the non-vaccinating parents are very few the
effort of the PHS becomes huge and the task unfeasible. This mirrors the historical
evidence on smallpox for which it was impossible to eliminate all anti-vaccination
groups despite its large mortality rate and also despite the large efforts world-wide
to favor smallpox vaccination (Williamson 2007).

Under the above assumptions, the simplest formulation of function A is:

A(γ, a) = Cγ

Nμ

γ

a
,

thus yielding the quadratic cost (12). In this way, the unitary cost tends to considerably
grow as a is very small, but not so much to have lima→0+(aA) = +∞. Indeed, in
such a case the enactment cost of the strategy may become unbounded. For example,
if A(γ, a) ∝ γ /a2, then jγ ∝ γ 2/(1− p). Therefore, the presence of such kind of jγ
in the objective functional would preclude the possibility to induce very high levels
of vaccinations, which are instead observed in the epidemiological practice.
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(ii) Direct cost of vaccination. We take:

Jv = Kv

∫ T

0
Nμp(t)dt, (13)

where Kv is the average direct cost of vaccine administration per person (including
costs of VAE occurring during immunization).

(iii) Disease related costs. Assuming an average cost Kin for each new infection,
since the number of persons that are infected per time unit is NβS(t)I (t), it follows
that:

Jin = Kin

∫ T

0
NβS(t)I (t)dt . (14)

Note that I (T ) does not directly appear in Jin , which could seem suprisingly. However,
since βS(t)I (t) = İ + (μ + ν)I , it follows that the above cost can be rewritten as
follows:

Jin = KinN

(
I (T ) − I (0) + (μ + ν)

∫ T

0
I (t)dt

)
.

By setting Cv = KvNμ, Cϕ = KinNβ, the OC problem may be formalized as
follows: find the optimal control γ ∗(t), defined in the set of admissible controls

� = {γ | γ (t) is Lebesgue measurable on [0, T ], 0 ≤ γ (t) ≤ γmax } ,

such that

J (γ ∗) = min
�

J (γ ) ,

where

J (γ ) =
∫ T

0

[
CϕS(t)I (t) + Cv p(t) + Cγ γ 2(t)

]
dt, (15)

subject to (5) and initial data

S(0) = S0 ≥ 0, I (0) = I0 > 0, p(0) = p0 ≥ 0, (16)

with S(0) + I (0) ≤ 1.
We use the Pontryagin’s maximum principle (Pontryagin et al. 1962) and minimize

the Hamiltonian given by:

H(S, I , p, γ, λ1, λ2, λ3, t) = CϕS(t)I (t) + Cv p(t) + Cγ γ 2(t) +
3∑

i=1

λi fi , (17)
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where fi , i = 1, 2, 3, represent the right-hand sides of system (5) and λi , i = 1, 2, 3,
are the adjoint variables. The adjoint equations are given by:

λ̇1 = −∂H

∂S
; λ̇2 = −∂H

∂ I
; λ̇3 = −∂H

∂ p
. (18)

Note that the third equation of (5) can be written as follows:

ṗ = kθ1
[
α p3 − α p2 − I p2 + I p + γ − pγ

]
,

implying

λ̇1 = −Cϕ I + μλ1 + β Iλ1 − β Iλ2
λ̇2 = −CϕS + βSλ1 − βSλ2 + (μ + ν)λ2 − kθ1(1 − p)pλ3
λ̇3 = −Cv + μλ1 − kθ1λ3

[
I − 2α p − 2I p + 3α p2 − γ

]
.

(19)

The transversality equations are:

λi (T ) = 0, i = 1, 2, 3. (20)

The existence of the OC solution γ ∗(t), is guaranteed because the requirements of
classical existence theorems [i.e. Theorem III 4.1 and Corollary 4.1 in Fleming and
Rishel (2012)] are satisfied. In particular, it can be easily checked that the integrand of
the objective functional is convex with respect to γ and the state system can be written
as a linear function of the control with coefficients dependent on time and the state
variables. This ensures the existence of an optimal solution (e.g. Gaff and Schaefer
2009).

We remark that a uniqueness result may be established, for sufficiently small time-
intervals, by using the approach given in Fister et al. (1998) and Joshi (2002) and
also employed in Panetta and Fister (2000, 2003), Gaff and Schaefer (2009) for OC
problems of epidemics and cancer treatment.

Denote by (S∗, I ∗, p∗) the state corresponding to the optimal control γ ∗. On the
interior of the control set �, minimizing the Hamiltonian gives:

∂H

∂γ
= 0,

at γ ∗. That is:

γ ∗(t) = kθ1 (p∗ − 1) λ3

2Cγ

,

and, taking into account the bounds on γ ∗, the characterization of the OC is:

γ ∗ =
⎧⎨
⎩
0 if kθ1 (p∗ − 1) λ3 < 0
kθ1 (p∗ − 1) λ3/2Cγ if 0 ≤ kθ1 (p∗ − 1) λ3 ≤ 2Cγ γmax

γmax if kθ1 (p∗ − 1) λ3 > 2Cγ γmax .

(21)
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Table 1 Description of parameters and initial data for the OC problem

Symbol Description Baseline value or range

N Total population size 6 × 107

μ Natural birth/death rate 5.4757 ×10−5 day−1

ν Recovery rate 1/10 day−1

R0 Basic reproduction number 10

β Contact rate R0(μ + ν)

ε Emigration/immigration flux 2.86 × 10−8 day −1

k Imitation coefficient 1/90 day −1–0.9 day −1

θ1 Relative risk of infection θ(M) 250–4000

α Relative risk of vaccination α(p) 1/θ1
Kin f Average cost per infection case 307 USD

Kv Average costs per unit immunization 21.08 USD

Cϕ Total costs of infection Kin f βN

Cv Total cost of vaccinated KvNμ

Cγ Parameter tuning intervention cost See text

γmax Maximum control (0.5 − 0.7)α p2c
S(0) Initial value for S 1/10

I (0) Initial value for I Ie(θ1)

p(0) Initial value for p pe(θ1)

which, in short form, may be written as follows:

γ ∗(t) = min
(
max

(
0, kθ1

(
p∗ − 1

)
λ3/2Cγ

)
, γmax

)
.

3.2 Parametrization

The description of the parameters and their baseline values (or range) used in the
numerical simulations are reported in Table 1. The demographic and epidemiological
parameters (i. e. μ, β, ν, R0, N ) are taken from d’Onofrio et al. (2011) and Bauch
(2005)). Following (Bauch 2005), a small immigration/emigration constant flux ε is
also included to take into the account of immigration of infected individuals, with a
positive influx +ε in the second equation of (5, compensated by a negative one, −ε,
in the first equation of (5). The model (5) reads:

Ṡ = μ(1 − p) − μS − βSI − ε

İ = βSI + ε − (μ + ν)I
ṗ = kθ1(1 − p)

[
(I − α p) p + γ (t)

]
.

(22)

The introduction of this constant term, obviously, does not modify the optimality con-
ditions found in Sect. 3.1.Our aim is to investigate the ability of the PHS to increase
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the vaccination coverage in the short-medium term [as for measles in Italy (d’Onofrio
et al. 2012)]. Moreover, medium-short horizons were adopted in the OC-based inves-
tigations of other kinds of PH interventions concerning infectious diseases (Choi and
Jung 2014; Rodrigues et al. 2014). Thus, the length of the PHS planning horizon has
been set to T = 10yr . In order to emphasize the factors underlying the difficulties
to eliminate the infection, we set γmax at levels below the threshold α p2c that would
ensure elimination in model (5) with constant γ . In particular in our simulations we
will use either γmax = 0.5α p2c or γmax = 0.7α p2c .

Remark 3.1 Note that the thresholdα p2c assumes ’small values’ (d’Onofrio et al. 2012),
i.e. γ (t) takes values in a ’small’ range. However, the impact of this control variable
is large. For example, we remind that, in the unconstrained case, if γ (t) even slightly
exceeds the ’small’ threshold α p2c then it can induce the disease elimination from the
target population.

Moreover, we assume that (i) for t ≤ 0 no action has been enacted by the PHS; (ii)
at t = 0 the system is (unless otherwise specified) at its behavior-induced endemic
equilibrium forced by private information only, i.e. equilibrium (2):

(S(0), I (0), p(0)) = E = (Se, Ie(θ1), pe(θ1)).

Finally, to remove the complications related with the long waves predicted by the state
system in its oscillatory regimes, we only select values of the behavioral parameters
k, θ1 such that equilibrium E given in (2) is locally stable. In particular, we consider
the following cases that should capture all the relevant situations:

C1 (k, θ1) = (1/10, 2000), corresponding to relatively slow imitation coefficient and
large perceived relative risk of infection;

C2 (k, θ1) = (1/90, 450), corresponding to very slow imitation and an intermediate
perceived relative risk of infection;

C3 (k, θ1) = (9/10, 4000), corresponding to relatively fast imitation and a very large
perceived relative risk of infection;

As for costs parameters, the value of Kin is set to the best estimate of the average
cost per measles case estimated for the UK following the societal perspective (Carabin
et al. 2002), given by 307 USD. The unit cost of vaccination, Kv , is computed as
follows: Kv = Kvaccine dose + Kside e f f ects , where: Kvaccine dose is the cost to deliver
a single vaccine dose, which is set to the cost of a unit MMR dose, given by 19 USD,
while Kside e f f ects is the average direct cost of an episode of adverse event following
immunization, which is set to 2.08 USD (Carabin et al. 2002).

As for Cγ , given the lack of field data, we prefer to roughly infer its order of
magnitude by the following heuristic reasoning. Let us consider the case of a constant
control γ = x(const .), where x ∈ (0, α p2c ). In this case, the total cost per unit time
at the endemic state E is given by:

J̄ (x) = KvNμpe(x) + KinNβSe Ie(pe(x)) + Cγ x
2.

To figure out the order of magnitude of Cγ , we may assume that given a suitable
value of x , the cost to enact the PHS information program is a fraction ψ ∈ (0, 1],
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having the same order of magnitude of the total costs arising from infection and
vaccination, i.e.

Cγ y
2 = ψ [KvNμpe(y) + KinNβSe Ie(pe(y))] , (23)

implying

Cγ = ψ
Nμ

y2
[Kv pe(y) + Kin(pc − pe(y))] , (24)

which provides a baseline estimate for Cγ .

4 Results: numerical solution of the OC problem by FBS algorithm

4.1 Numerical algorithm

In this section the optimality system given by (22), (16), (19), (20) and (21) is solved
numerically by the FBS algorithm described in Lenhart and Workman (2007), and
whose convergence is shown in Hackbusch (1978) (see also McAsey et al. 2012).

The process begins with an initial guess on the control variable. Then the state
equations (22) with initial data (16) are solved with a forward in time Runge-Kutta
routine. Using those new state values, the adjoint equations (19) with final data (20)
are solved backward in time with the Runge-Kutta solver. The control is updated by
putting the new values of states and adjoints into the characterization (21) and using
a convex combination of the previous and current control estimates. The process is
repeated until either convergence occurs or a maximum number of iterations has been
reached. In the latter case, the computation process is marked as ‘not converging’. We
built a MATLAB code (Lenhart and Workman 2007; MATLAB 2015) to perform the
simulations.

4.2 The structure of the OC function

As mentioned above, in our simulations we used either γmax = 0.5α p2c or γmax =
0.7α p2c , thereby ruling out the possibility of disease elimination. Further, we setψ = 1
and y = α p2c in formula (24) to assign a baseline value to communication costs. This
gives a parsimonious baselinewhere the steady—state cost for thePHScommunication
effort is identical to the steady—state cost for vaccination in the case where infection is
eliminated. Indeed, for the chosen y it is pe(y) = pc in (6)). The OC function resulting
from previous hypotheses sets at γmax for the largest part of the time horizon. This
can be see in right panels of Figs. 1, 2 and 3, which report the optimal control time
profiles. This result follows from the disproportion between the unit cost of the policy
(i.e., the sum of the unit vaccination cost and the unit communication cost) and the
disease-related unit cost, which remains substantially larger. Close to the end of the
horizon the control rapidly switches to zero.
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Fig. 2 Parameters of case C2 (k = 1/90, θ1 = 450). a γmax = 0.5α p2c ; b γmax = 0.7α p2c . The initial data
correspond to the endemic equilibrium (2) of system (1)

4.3 Role of behavioral parameters

We now focus on the interplay between key behavioral parameters (the imitation
coefficient k and the relative risk of infection θ1) and the control upper bound γmax,
in affecting the system dynamics.

Figure 1 reports the solutions of the controlled system for case C1 in Sect. 3.2
(k = 0.1, θ1 = 2000), γmax = 0.7α p2c . Initial data correspond to the minimum
value of p for system (22) with γ = 0, i. e. pmin = 0.02561. The corresponding
initial values are S(0) = 0.0999, I (0) = 2.3878 × 10−4. This case is of interest as
it represents a worst initial scenario for the public communication campaign, since
the vaccine uptake is set at its minimum level (which is generally unknown to the
public health planners). Figure 1 shows that despite the unfavorable initial conditions,
a good result in the control of the disease is achieved, with a sharp decrease of the
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Fig. 3 Parameters of case C3 (k = 9/10, θ1 = 4000). a γmax = 0.5α p2c ; b γmax = 0.7α p2c . The initial
data correspond to the endemic equilibrium (2) of system (1)

infective prevalence. The next peak in prevalence (occurring seven years after the start
of the communication campaign) is more than halved compared to the initial level of
prevalence. Moreover, a quite high average vaccine uptake is maintained for most of
the intervention horizon.

More in depth, the propensity to vaccinate in the first few months of the program
moves from negligible levels to about 95%, which is above the critical vaccination
threshold pc = 90%. The propensity starts declining 18 months after the initiation
of the programme, setting to quite sub-optimal levels in the range of 80%. Given
that γ ∗(t) ≈ γmax for most of the horizon (Fig. 1)—which means that the percep-
tions about benefits and costs of immunization communicated by the PHS remain
constant—it follows that the decline in coverage stems entirely from the changed per-
ceptions of risks communicated among parents through their spontaneous contacts.
This perception, indeed, is declining due to the declining prevalence. This favors the
relapse of the infection bringing the new wave described above. In turn, this yields—
the communication effort being still constant—a moderate relapse of p. This relapse
however just lasts the duration of the epidemic wave, because the subsequent decline
in the perceived risk of infection at the end of the wave brings a new phase of low
perceived benefit from vaccination. The decline in the propensity to vaccinate follows
the disappearance of the epidemic wave with some delay. This lag is essentially related
to the magnitude of the imitation speed. Finally, as far as the impact of the control is
concerned, we note that although the control γ (t) assumes ’small’ values its impact
is large. First, as we noticed above, because a good decrease of the disease prevalence
and a good increase of the vaccine uptake rate are predicted. Second, in the absence
of control the objective functional is 27.94 ∗ 6 ∗ 107 USD, whereas in the optimally
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controlled scenario the cost reduces to 11.03∗6∗107 USD, i.e. a reduction of 60.52%
of the costs.

Figure 2 illustrates case C2 in Sect. 3.2 (k = 1/90, θ1 = 450). The initial data
correspond to the endemic equilibrium (2) of system (1). We in particular compare
the effects of different levels of the control upper bound γmax, which is set to γmax =
0.5α p2c (Fig. 2a), and to γmax = 0.7α p2c (Fig. 2b), respectively. The optimal dynamics
is qualitatively similar to Fig. 1. In particular, the larger value of γmax (Fig. 2b))
promotes a larger vaccine uptake, inducing a lower prevalence and delaying the next
epidemics, compared to Fig. 2a. The pattern in the propensity to vaccinate is more
regular (indeed almost constant for most of the horizon) compared to Fig. 1. This is the
consequence of the very low level of the imitation speed, given the short horizon, and
the lower perceived risk from infection which, jointly considered, make it negligible
the impact of the evolution in the prevalence on vaccination payoff.

Finally, in Fig. 3 we consider case C3 in Sect. 3.2, assuming both a large imitation
speed (k = 0.9) and a very large perceived risk of infection (θ1 = 4000), while still
comparing the effects of different levels of the control upper bound γmax (Fig. 3a, b).
The higher perceived risk of infection, compared to Fig. 2, allows to achieve higher
coverage levels, with temporary peaks as high as 100%. However, these peaks are
not maintained, primarily due to the fast decline in the perceived risk of infection but
also to the increased perceived risk of vaccine adverse events (caused by the large
number of immunizations) whose occurrence is fastly communicated among parents
thanks to the large value of the imitation speed. As in the case of Fig. 2 also here
the propensity to vaccinate p achieves larger levels on average, which increases the
duration of the post-vaccination honey-moon phase (Anderson et al. 1992) by delaying
(and mitigating) the onset of the first epidemic wave (see Fig. 3b).

These scenarios are representative of the system behavior over a wide spectrum of
parameter values.

5 Results: numerical solution of the OC by Simulated annealing

5.1 Simulated annealing for piecewise-constant control problems

Public health interventions such as programs to favor vaccinations by reducing parental
hesitancy or refusal can be very complex and multi-layered (Sadaf et al. 2013). Thus,
logistic and practical constraints make a time-continuous updating of the policy dif-
ficult. Thus, controls in a given finite time interval [0, t f ] should rather be piecewise
constant, of the form:

u(t) =
jmax∑
j=0

u j I nd(t, [ jτ, ( j + 1)τ )), (25)

where the u j are suitable constants, τ is a positive discretization step, ( jmax+1)τ = t f
and I nd(t,W ) denotes the indicator function of a given set W . Note that the control
horizon [0, t f ] could be discretized by assuming a non constant discretization step.
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We used a constant step τ for the sake of the simplicity and to mimic seasonal PH
activity plans. Then, given the general n-dimensional ODE control system depending
on the control u(t):

ẋ(t) = F(x(t), u(t)), (26)

let us seek the control u that minimizes the functional

J (u(.)) = ψ(x(t f ; u(.), x0), u(t f )) +
∫ t f

0
L(x(t; u(.), x0), u(t))dt, (27)

under constraint
umin(t) ≤ u(t) ≤ umax (t), (28)

where the control action u has the form (25) and is enacted on a time interval [0, t f ].
By defining the vector a = (u0, . . . , uN ), where N = [

t f /τ
]
, system (26) can be

rewritten as the following ODE system depending on the real vector parameter a:

ẋ(t) = f (x(t); a). (29)

This implies that under a piecewise-constant intervention, the original OC prob-
lem transforms into the problem of nonlinear constrained optimization (NCO) of the
following function of the real parameter a:

J (a) = ψ1(x(t f ; a, x0), aN ) +
∫ t f

0
L1(x(t; a, x0), a)dt, (30)

under constraint a ∈ �, where (28) yields

� =
N∏
i=1

[
max
t∈Ti

umin(t), min
t∈Ti

umax(t)

]
; Ti = [iτ, (i + 1)τ ] .

This NCO problem still involves the solution of the dynamical system (29) and the
application of functional operators (the integral), which will have to be numerically
solved. Traditional numerical algorithms for NCO problems suffer the shortcoming
that they often stuck to local minima (Henderson et al. 2003; Salamon et al. 2002). To
remedy this drawback, various stochastic optimization algorithms (SOA) exploring
the relevant parametric space through a random walk have been proposed (Banga and
Seider 1996; Schoen 1991).

The SA is one of the most widely adopted SOA and the description is as follows
(see Henderson et al. 2003; Salamon et al. 2002 for further details): the randomwalk in
the SA algorithm is initialized from a value a0 ∈ � which should be sufficiently close
to the global minimum amin (what is called an educated guess). Let J (a0) denote the
corresponding value of the objective function. Then a random value a1 is drawn in the
neighborhood of a0 from a suitable ‘bell-shaped’ or ‘disk-shaped’ (i.e. uniform on an
hypersphere in a given norm) probability density function (PDF) ρ. If a1 is suitable
(i.e., inside �), then the corresponding value J (a1) is computed. Unlike deterministic
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algorithms (where a1 would be accepted if J (a1) ≤ J (a0) and rejected otherwise), in
the SA algorithm if

J (ai+1) > J (ai ),

then ai+1 can be accepted or rejected by a Boltzmann-like probabilistic rule. The
rationale for this is exactly avoiding to be stuck at a local minimum.

The probabilistic rule adopted by the SA algorithm is as follows (Henderson et al.
2003; Salamon et al. 2002):

exp

(
− J (ai+1) − J (ai )

kbTm(i)

)
< r ,

where r is a random number uniformly distributed in (0, 1), and Tm(i) is the ’temper-
ature’, i. e. an artificial tuning parameter which is gradually decreasing up to zero as
m(i) increases:

lim
i→∞ Tm(i) = 0.

In fact, this algorithm is inspired by Statistical Physics, where the reduction of
the temperature (annealing) of a system leads it to a state of global minimal energy,
here represented by the function to be minimized (Henderson et al. 2003; Salamon
et al. 2002). A number of implementations of SA are available using different rules
of decreasing Tm(i) and for adjusting the PDF ρ (Faber et al. 2005; Henderson et al.
2003; Salamon et al. 2002).

5.2 Optimal PHS communication plans by SA

In this section we apply the SA approach to compare the optimal solutions with
that provided by the FBS algorithm, and also to find solutions for those parametric
values for which FBS failed to converge. The lack of convergence occurred for large
values of the communication cost Cγ . As a further hypothesis, we assume that the
communication campaigns enacted by the PHS are updated every three months, so
that τ = 90 days in (25).

We proceed as follows: first, a candidate global optimal solution is discretized
at times t0, t1, . . . , tn to obtain a vector l (the ’educated guess’). To this aim, when
possible, the OC solution produced by the FBS algorithm is employed. Next, we set
a0 = l and the SA algorithm is run.

If the optimum u(t) found by the SA algorithm is far from γ ∗, then it is reasonable
to assume that the candidate solution is not a global minimum. In the contrary case, it
would be reasonable to assume that γ ∗(t) is the real global minimum.

Since the SA algorithm is a stochastic process, it produces different outputs (in
our case, the values of the vector parameter a and values of the functional J ) at each
run. For this reason, for each set of parameters and initial conditions, the algorithm
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Fig. 4 SA-based search for the optimal control. Left Panel: plot of the SA optimal solution vs. the plot of
the continuous OC solution. Parameters and initial values as in Fig. 1. Right panel: plot of the computed
SA optimal solution. The same parameters of the left panel were adopted, but one, Cγ , which is here five
times larger than the baseline case

is applied several times and then it is taken as the candidate optimal control the one
corresponding to the smallest evaluated value of J .

We have performed the SA-based optimizations by using the same parameter values
used in the previous section. The left panel of Fig. 4 reports both the continuous control
γ ∗(t) obtained by the FBS algorithm, and the optimal piecewise constant control u
obtained by the SA. It is interesting to note that although the ideal and approximate
control have different nature (the former is continuous, the latter is piecewise constant),
they overlap very well. As regards the values of the cost functional J , the minimum
observed with the piecewise control is JSA = 11.09 × 6 × 107, while the minimum
corresponding to the continuous control is essentially identical: JFBS = 11.03× 6×
107. This implies that the idealized solution is well validated by the piece-wise control.

In the other cases, there is a general agreement of the computed minima J although
in the cases computed by applying SA the value is slightly larger (see Table 2).

The OC solutions obtained for the piece–wise control with the SA algorithm are
similar—in our simulations—to the continuous ones obtained by using FBS algorithm.
However, some appreciable local deviations and oscillations can be observed. These
deviations might be due to the fact that the functional J close to its minima is quite
‘flat’, thus allowing to local deviations that may be quite significant.

We have also performed further simulations, which could not be performed by
using the FBS algorithm due to lack of convergence in the software we used. We have
assumed a larger cost coefficient for the control, namely a five-fold larger Cγ . These
larger values of Cγ were employed to assess how the control changed in the case
of substantially larger costs for the Public Health campaigns aimed at increasing the
propensity to vaccinate. We have obtained a radically different OC solution compared
with the simulations with the baseline Cγ (see right panels of Figs. 4, 5a, 6a). Indeed,
in all cases the obtained control was strongly non-monotone. Of course, due to the
remarkable increase of the cost associated to the control, all these OC solutions are
smaller than the corresponding solutions found in the case with the baseline Cγ .
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Table 2 Key features and results of the simulated scenarios

Scenario k θ
γmax

α p2c
IC Cγ

JSA
N

JFBS
N

α p2c

Figures 1 and 4left 0.1 2000 0.7 I Dpm 6333 11.09 11.03 4.05 × 10−4

Figures 1 and 4right 0.1 2000 0.7 I Dpm 5*6333 16.81 – 4.05 × 10−4

Figures 2a and 5A1 1/90 450 0.5 Eu0 320.63 20.12 19.46 1.8 × 10−3

Figures 2a and 5A2 1/90 450 0.5 Eu0 5*320.63 24.43 – 1.8 × 10−3

Figures 2b and 5B1 1/90 450 0.7 Eu0 320.63 14.65 14.45 1.8 × 10−3

Figures 2b and 5B2 1/90 450 0.7 Eu0 5*320.63 20.43 – 1.8 × 10−3

Figures 3a and 6A1 0.9 4000 0.5 Eu0 25330 11.83 11.67 2.02 × 10−4

Figures 3a and 6A2 0.9 4000 0.5 Eu0 5*25330 14.54 – 2.02 × 10−4

Figures 3b and 6B1 0.9 4000 0.7 Eu0 25330 9.52 9.40 2.02 × 10−4

Figures 3b and 6B2 0.9 4000 0.7 Eu0 5*25330 14.55 – 2.02 × 10−4

I Dpm indicates initial data corresponding to minimum value of p when the system is uncontrolled. Eu0
indicates that the initial data correspond to the endemic equilibrium (2) of system (1)

Finally, with regards to the obtained numerical values for J , in all cases they are larger
than the baseline corresponding cases, as reported in Table 2.

6 Concluding remarks

Under voluntary vaccination for childhood diseases, modeling of immunization cam-
paigns is quite complex since coverage is the outcome of parents’ decisions. However,
the PHS can enact actions aimed at contrasting policy-resistant behaviors by enforcing
its role as themost influential provider of information about the infection and vaccines,
and related benefits and costs. Our work is aimed at determining the optimal control
of the effort of PHS in the framework of Behavioral Epidemiology.

We found that under many circumstances the resulting OC time-profile rapidly sets
at its maximum admissible value, where it remains for the largest part of the time
horizon. This result follows from the disproportion between the unit cost of the policy
(i.e., the sumof the unit vaccination cost and the unit communication cost) and the costs
induced by the disease. Indeed, for childhood diseases the latter cost is substantially
larger than the former ones. The setting of the control effort at itsmaximum levelmeans
that the perceptions about the net benefit of immunization communicated by the PHS
cannot be increased any further. This suggests that the subsequent dynamics stems
entirely from the changed perceptions of risks (i.e., mostly the declining perceived risk
of infection due to the declining prevalence) communicated among parents through
spontaneous contacts. This leads, sooner or later, to a future decline in vaccine uptake
triggered by the success in controlling infection during the first phase of the program.
Although, in the case of baseline Cγ from mathematical point of view there is not
so much difference between the cost associated to a constant control with respect to
the cost associated to the OC solution we found, from the practical Public Health
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Fig. 5 Plots of the computed SA optimal solutions. Parameters of case C2 (k = 1/90, θ1 = 450). a
γmax = 0.5α p2c . b γmax = 0.7α p2c . (A1) and (B1) Cγ as in Fig. 2. (A2) and (b2) Cγ five times larger

viewpoint a difference exists. Indeed, using a constant control even for all the time
horizon (i.e. even when our OC solution is zero) implies that one has to maintain a
considerable amount of activities (some of which at no cost, e.g. voluntary efforts by
GPs), moreover at a cost that is greater than in absence of any work.

We feel that this results might contribute to clarify some of the difficulties met by
PHS systems in maintaining high coverages for common vaccine preventable infec-
tions.

For large PHS action-related costs, we obtained that the OC is non-monotone,
in some cases exhibiting oscillations. Unfortunately, in case of larger Cγ the FBS
algorithm did not converge, so that we could not assess, in the continuous case, the
effects of the upper limit constraints γmax . However, this is fully done with the SA
algorithm.

As far as the control modeling is concerned, we stressed the relevance of modeling
the effort by the PHS as a piecewise constant function. This called for the use of the
SA optimization algorithm.
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Fig. 6 Plots of the median of the computed 101 SA optimal solutions. Parameters of case C3 (k = 9/10,
θ1 = 4000). a γmax = 0.5α p2c . b γmax = 0.7α p2c . (A1) and (B1) Cγ as in Fig. 3. (A2) and (B2) Cγ five
times larger

Our results show that theOC solutions obtained by using the FBS and those obtained
by the SA algorithms stay overall close. By employing SA algorithm large local devia-
tions and local stochastic fluctuations are observed, which suggests that the minimum
corresponding to the OC solution for the considered problem might be quite ’flat’.
Therefore, in our problem, even alternative controls that have local remarkable devi-
ations are very close to the global minimum. In this sense, the classical OC solution
seems to be relatively robust with respect to deviations imposed by the practical imple-
mentation of the communication program.

As far as the modeling of intervention costs are concerned, we provided an example
where a quadratic cost—often adopted as a proxy of more complex nonlinear costs—
can be justified based on simple PH reasoning. On the other hand, the behavioural
epidemiology investigations on public vaccine awareness is very recent and mostly
relying on qualitative results (Consortium; IMI 2018) so that quantitative studies based
on appropriate data are yet to come.
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As regards the adopted model of disease spread, the first and strongest limitation
of our work is that we employed a simple SIR deterministic model (complemented by
an imitation equation for the vaccination propensity) without age structure. Though,
from an historical viewpoint, the simple deterministic SIR model was able to provide
important qualitative hints to Public Health authorities (Anderson et al. 1992) as well
as a robust base upon which to build more realistic models, it is nowadays well known
that this model is not able to provide adequate quantitative predictions on the spread
and control of an infectious disease in the real world. Thus the present study has to
be intended as a crude first order approximation of a real scenario. A slightly bet-
ter (although still insufficient) approximation would require the inclusion of internal
(Andersson and Britton 2012) and external (Øksendal 2003) randomness. They would
require the application ofmethodologies of stochastic optimal control for, respectively,
birth and death epidemic processes (Lefévre 1981; Getz 1975) and for stochastic dif-
ferential systems (Fleming and Rishel 2012, 1975). In turn, both deterministic and
stochastic SIR model with and without age structure suffer of a common important
limitation: they focus on the spread and control of a single isolated target population.
This is seldom the case in the real world, so that a stochastic meta-population approach
(Keeling and Rohani 2011; Ajelli et al. 2010) including age structured social (Mel-
egaro et al. 2017) contacts would ultimately be necessary to provide more realistic
suggestions to Public Health authorities.

As far as the actual model of the PHS intervention is concerned, we stress that
here we adopted a practical viewpoint where we defined as effort the control γ (t),
which more realistically should instead be considered as the ’impact of the effort’.
A function or even better a dynamical system connecting the real effort E(t) and
γ (t) should, thus, complete the dynamical system in study. Note, however, that the
exact definition and properties of the relationship between E(t) and γ (t) are both
nontrivial. Another important point is the investigation of more realistic functional
forms to sdescribe the per-capita costs for the PHS to realize strategy switching, i.e.
the functional A (γ (t), a(t)).

Summarizing, the present work is only a first and quite elementary step towards
the definition of a far more complete model of the impact of PHS efforts to spread the
awareness of the importance of vaccines and, as a consequence, to increase vaccine
uptake.
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