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Abstract The basic reproduction number (R0) can be considerably higher in an SIR
model with heterogeneous mixing compared to that from a corresponding model with
homogeneous mixing. For example, in the case of measles, mumps and rubella in San
Diego, CA, Glasser et al. (Lancet Infect Dis 16(5):599–605, 2016. https://doi.org/10.
1016/S1473-3099(16)00004-9), reported an increase of 70% inR0 when heterogene-
ity was accounted for. Meta-population models with simple heterogeneous mixing
functions, e.g., proportionate mixing, have been employed to identify optimal vacci-
nation strategies using an approach based on the gradient of the effective reproduction
number (Rv),which consists of partial derivatives ofRv with respect to the proportions
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immune pi in sub-groups i (Feng et al. in J Theor Biol 386:177–187, 2015. https://
doi.org/10.1016/j.jtbi.2015.09.006; Math Biosci 287:93–104, 2017. https://doi.org/
10.1016/j.mbs.2016.09.013). These papers consider cases in which an optimal vacci-
nation strategy exists. However, in general, the optimal solution identified using the
gradient may not be feasible for some parameter values (i.e., vaccination coverages
outside the unit interval). In this paper, we derive the analytic conditions under which
the optimal solution is feasible. Explicit expressions for the optimal solutions in the
case of n = 2 sub-populations are obtained, and the bounds for optimal solutions are
derived for n > 2 sub-populations. This is done for general mixing functions and
examples of proportionate and preferential mixing are presented. Of special signif-
icance is the result that for general mixing schemes, both R0 and Rv are bounded
below and above by their corresponding expressions when mixing is proportionate
and isolated, respectively.

Keywords Meta-population model · Convexity of reproduction number ·
Optimization problem · Vaccination strategy · Epidemiology

Mathematics Subject Classification 37N25 · 49J15 · 34H05 · 92D30

1 Introduction

Mechanistic models of pathogen transmission are key public health tools for iden-
tifying optimal interventions that can mitigate outbreaks or perhaps even eliminate
infectious diseases. However, the utility and credibility of such models hinge on incor-
porating realistic mixing between sub-populations (i.e., means by which infectious
members of one sub-population infect susceptible members of others), which typi-
cally is not uniformly random due to preference among age groups, genders, or spatial
locations. In fact, models that do not sufficiently account for differences among rel-
evant sub-populations can generate biased or misleading results in situations where
evaluations of intervention strategy require incorporation of such heterogeneity and
realistic mixing. For example, in the case of measles, mumps and rubella in San Diego,
CA, Glasser et al. (2016), reported an increase of 70% inR0 when heterogeneity was
accounted for.

Recently, progress has beenmade (Glasser et al. 2012; Feng et al. 2017) in extending
realistic mixing functions based on earlier work (Nold 1980; Jacquez et al. 1988). The
effective reproduction numbers Rv derived from these meta-population models with
non-homogeneous mixing functions are used to identify optimal vaccination strate-
gies by using methods based on the gradients of Rv (partial derivatives with respect
to control parameters) (Feng et al. 2015, 2017). These are constrained optimization
problemswith the objectives of either minimizingRv given limited number of vaccine
doses, or minimizing vaccine doses needed to reduce Rv to a given level. However,
the examples considered in these studies focus only on cases where an optimal solu-
tion exists and is feasible in the sense that the vaccine coverages lie between 0 and 1.
Conditions have not yet been identified to determine parameter regions within which
optimal mathematical solutions are indeed feasible. This is the objective of the cur-
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rent paper. Similar optimization problems using Rv in the context of age-dependent
vaccination strategies have been considered in Castillo-Chavez and Feng (1998) and
Hadeler and Müller (1996a, b).

When heterogeneous mixing is considered in epidemiological models, preferred
mixing is among the commonly used mixing structures (Nold 1980; Jacquez et al.
1988; Glasser et al. 2012), of which proportionate mixing is a special case. In this
paper, results and proofs are presented for both preferred and more general mixing.
Conditions are determined under which optimal solutions for vaccination strategies
exist, some of which are given in explicit expressions depending onmodel parameters.
The proofs for the existence and uniqueness of the optimal vaccination strategy when
there are n = 2 sub-populations involve some fundamental properties that we establish
for the reproduction number Rv as a function of vaccination coverage p = (p1, p2);
namely, homogeneity and convexity. For the case of n > 2 sub-populations, the proofs
of results are based on a convexity result of Friedland (1980/81) for the spectral radius
over a class of positive matrices.

For n = 2, explicit analytical expressions are derived for the optimal allocation of
vaccine P∗ = (p∗

1, p
∗
2) as well as the minimized reproduction number,Rv . A formula

for the critical vaccine doses η∗ to achieve Rv ≤ 1 is also derived for n = 2. For
the case of n > 2, lower and upper bounds for the minimum of Rv as well as the
minimum vaccine doses are derived.

The organization of this paper is as follows. The main problem is described
in Sect. 2, which consists of two constrained optimization problems of Lagrange
type. Sect. 3 presents the main results of the optimization problem for n = 2 sub-
populations. Results for n > 2 sub-populations are provided in Sect. 4. In Sect. 5, we
discuss the results. Some detailed proofs are included in the “Appendix”.

2 Description of the problem

The models considered by Glasser et al. (2016) and Feng et al. (2015, 2017) are of
the SIR or SEIR type, i.e., the population is apportioned into disjoint states including
susceptible (S), exposed (E), infectious (I ), and removed or immune (R), and the
models consist of systems of ordinary differential equations (ODEs). These models
include one or more types of population heterogeneity (e.g., age, spatial location,
activity level, vaccination coverage, preferential mixing, population density, etc.), so
they are meta-population models with each sub-population model being an SIR or
SEIR type linked by a mixing function. We use the simplest of these models as an
example, but similar results apply to other models. The model considered in this paper
is described by the ODE system

dSi
dt

= (1 − pi )θNi − (λi + θ)Si

d Ii
dt

= λi Si − (γ + θ)Ii

d Ri

dt
= piθNi + γ Ii − θRi
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Ni = Si + Ii + Ri

λi = βai

n∑

j=1

ci j I j/N j , i = 1, 2, . . . , n, (2.1)

where pi are proportions immunized at entry into sub-population i, γ is the per capita
recovery rate, θ is the per capita rate for entering and leaving sub-population i so
that the population size Ni remains constant. The function λi is the force of infection,
i.e., per capita hazard rate of infection of susceptible individuals in sub-population
i , in which β is the probability of infection upon contacting an infectious person, ai
is average contact rate (activity) in sub-population i, ci j is the proportion of i th sub-
population’s contacts that are with members of j th sub-population, and I j/N j is the
probability that a randomly encountered member of sub-population j is infectious.

One of the most influential factors affecting the reproduction number is the mixing
function ci j . Denote the mixing matrix by C = (ci j ). Typically, the matrix C has to
satisfy the following conditions of Busenberg and Castillo-Chavez (1991):

ci j ≥ 0, i, j = 1, . . . , n, (2.2)
n∑

j=1

ci j = 1, i = 1, . . . , n, (2.3)

ai Ni ci j = a j N j c ji , i, j = 1, . . . , n. (2.4)

A commonly used non-homogeneous mixing function that satisfies conditions (2.2)–
(2.4) is the preferred mixing function of Jacquez et al. (1988) given by:

ci j = εiδi j + (1 − εi )
(1 − ε j )a j N j∑n
k=1(1 − εk)ak Nk

, i, j = 1, . . . , n, (2.5)

where δi j is the Kronecker delta function (taking value 1 when i = j , 0 otherwise) and
εi ∈ [0, 1] is the fraction of contacts of group i that is reserved for itself (preferential
mixing), whereas the complement (1 − εi ) is distributed among all sub-populations
in proportion to the unreserved contacts, including i (proportionate mixing). Special
cases arise when: εi = 1 for all i whenceC is the identitymatrix (exclusively preferen-
tial mixing); εi = 0 for all i whence ci j = a j N j/

∑
k ak Nk (exclusively proportionate

mixing). We will refer to this mixing structure throughout the manuscript as Jacquez
mixing. More complex examples of mixing matrices C = (ci j ), such as two-level
preferential mixing can be found in Feng et al. (2017).

When Model (2.1) is used, the basic and effective sub-population reproduction
numbers, denoted respectively byR0i andRvi , for sub-population i (i = 1, 2, . . . , n)
are given by

R0i = ρai , Rvi = R0i (1 − pi ), i = 1, 2, . . . , n, (2.6)

where

ρ = β

γ + θ
,
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see e.g. Brauer and Castillo-Chavez (2012, Chapter 10). Following Diekmann et al.
(1990) and van den Driessche and Watmough (2002), the next generation matrix
(NGM) corresponding to this meta-population model is

Kv =

⎛

⎜⎜⎜⎝

Rv1c11 Rv1c12 · · · Rv1c1n
Rv2c21 Rv2c22 · · · Rv2c2n

...
...

...
...

Rvncn1 Rvncn2 · · · Rvncnn

⎞

⎟⎟⎟⎠ . (2.7)

Then the effective reproduction number for the meta-population is given as

Rv = r(Kv),

which is the spectral radius [and the dominant eigenvalue, by the Perron–Frobenius
Theorem (Seneta 1973)] of the nonnegative matrix Kv . Let p = (p1, p2, . . . , pn).
Naturally,Rv = Rv(p) is a function of p. The total number of vaccine doses, denoted
by η, is η = ∑n

i=1 pi Ni . For demonstration purposes, we will assume that vaccine
efficacy is 100%. In this paper, we focus on identifying the most efficient allocation of
vaccine p = (p1, p2, . . . , pn) ∈ [0, 1]n for reducing Rv with limited vaccine doses
η or using fewest doses to achieve Rv < 1 (to prevent outbreaks). More specifically,
we consider the following two constrained optimization problems:

(I) Minimize Rv = Rv(p), subject to 
(p) :=
n∑

i=1

pi Ni = η, for p ∈ [0, 1]n .

(II) Minimize η =
n∑

i=1

pi Ni , subject toRv(p) ≤ 1, for p ∈ [0, 1]n .

In this study, we consider the optimization problems only for the case of R0 =
Rv(0) ≥ 1, as there will be no outbreak if R0 < 1.

Because of the continuity of Rv(p) and the compactness of [0, 1]n , Problem (I)
has a solution for any fixed η ∈ [0, N ], where N = N1 + N2 + · · · + Nn is the total
population. If P∗ = P∗(η) andRv{min}(η) denote the optimal vaccination allocation
and the corresponding minimum reproduction number, respectively, then we have

P∗(η) = (p∗
1(η), p∗

2(η), . . . , p∗
n(η)) ∈ Ω(n)

p (η) ∩ [0, 1]n,
Rv{min}(η) = min

Ω
(n)
p (η)∩[0,1]n

Rv = Rv

∣∣
P∗(η)

, (2.8)

where

Ω(n)
p (η) :=

{
(p1, p2, . . . , pn) : 
(p) = η

}
.

An optimal solution P∗(η) to Problem (I) that lies in the interior (0, 1)n of the unit
hypercube must also satisfy the following equations:
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∇Rv

∣∣
P∗(η)

= λ∇
 = λ(N1, . . . , Nn),



∣∣
P∗(η)

=
n∑

i=1

p∗
i (η)Ni = η,

(2.9)

where the constant λ is the Lagrange multiplier.
Similarly, noting that the constraint set {Rv(p) ≤ 1} ∩ [0, 1]n is compact and

nonempty (as Rv(1, 1, . . . , 1) = 0 ≤ 1), Problem (II) always has a solution. The
minimum value of η, which we denote by η∗, signifies the smallest number of vaccine
doses that can prevent outbreaks under an optimal vaccination policy. It is useful
practically to have an explicit expression or estimate of the bounds for η∗.

To find η∗, notice thatRv(p) is amonotonically decreasing function of pi , and thus,
a decreasing function of η = ∑n

i=1 pi Ni . Therefore, recalling also the assumption
Rv(0) = R0 ≥ 1, the inequality constraintRv(p) ≤ 1 can be replaced by an equality
constraint Rv(p) = 1, and thus,

η∗ = min
{Rv(p)=1}∩[0,1]n


(p).

It follows that η∗ is the minimum of η ∈ [0, N ] such that Rv{min}(η) = 1 and can be
found by solving the equation:

Rv{min}(η∗) = Rv

∣∣
P∗(η∗) = 1. (2.10)

2.1 Notation

Below we introduce some mathematical concepts that will be used throughout the
paper. For ease of reference, we also list the quantities that appear, along with their
definitions, in Table 1.

– A set E in a vector space is called convex if for any x0, x1 ∈ E the convex
combination (1 − t)x0 + t x1 ∈ E for any t ∈ [0, 1].

– We say that a real-valued function f on a convex set E is convex if for any
x0, x1 ∈ E

f ((1 − t)x0 + t x1) ≤ (1 − t) f (x0) + t f (x1), t ∈ [0, 1].

– We say f is strictly convex if the above inequality is strict for all t ∈ (0, 1).
– Recall that if f is twice continuously differentiable, then f is convex on an open
convex set if and only if the Hessian Hess f = (∂2 f/∂xi∂x j ) is a nonnegative
semi-definite matrix for any x ∈ E . Moreover, f will be strictly convex if Hess f
is positive definite. (The converse of this statement is false.)

– All matrices considered in this paper will be over the field of real numbers.
– If C = (ci j ) is a matrix, then we write C > 0 (C ≥ 0) if ci j > 0 (ci j ≥ 0)
for any pair i, j . We also say that such C is positive (nonnegative). This should
not be confused with the notion of positive definite (nonnegative semi-definite)
matrices, which are related to the positivity (nonnegativity) of the quadratic form
x �→ xTCx associated with C .
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Table 1 Parameters and symbols with their definitions

Symbol Description

ai Per capita contact rate of members of sub-population i

γ Per capita rate of recovery

θ Per capita rate of entering and exiting a sub-population

β Probability of infection on contact

ρ = β/(γ + θ)

Ni Size of sub-population i

N = N1 + N2 + · · · + Nn . Total population

ci j Proportion of contacts of individuals in group i that are with group j

C = (ci j ). Mixing matrix

r(A) Spectral radius of the matrix A

εi Fraction of contacts of group i reserved for itself

n Number of sub-populations in the meta-population

pi Proportion of sub-population i that is vaccinated

p = (p1, p2, . . . , pn)

R0i = ρai . Basic reproduction number of sub-population i

Rvi = R0i (1 − pi ). Effective reproduction number of sub-population i

R0 Meta-population basic reproduction number

Kv(p) diag(Rv1, . . . ,Rvn)C . Next generation matrix (NGM)

Rv(p) = r(Kv(p)). Meta-population effective reproduction number

η = ∑n
i=1 pi Ni . Total number of vaccine doses

Ω
(n)
p (η) = {(p1, p2, . . . , pn) : 
(p) = η}

P∗(η) = (p∗
1(η), p∗

2(η), . . . , p∗
n(η)). Optimal allocation of vaccine

Rv{min}(η) Minimum of Rv for a given number of vaccine doses η

η∗ Minimum doses for achievingRv ≤ 1

η0 Infimum of all η ∈ (0, N ) such that P∗(η) ∈ (0, 1)n

qi = 1 − pi
q = (q1, q2, . . . , qn)

η = ∑n
i=1 qi Ni = N − η

Ω
(n)
q (η) = {(q1, q2, . . . , qn) : 
(q) = η}

Q∗(η) = (1, 1, . . . , 1) − P∗(η)

Rv(q) = Rv(1 − q1, 1 − q2, . . . , 1 − qn)

Rv{min}(η) = Rv{min}(η)

Γ, Γ Critical and ‘reflected’ critical rays (see Theorems 3.2 and 4.3)

πi = Ni /N . Fraction of population belong to sub-population i

S = ∑n
i=1(1 − pi )πi . Fraction of the population that is unvaccinated

R

0 = (∑n

i=1 πi /R0i
)−1. Harmonic mean ofR0i weighted by πi

R̂0 = ∑n
i=1R0iπi ≥ R


0 . Population weighted reproduction number

R̃0 = mini R2
0i /R̂0. Analogous to a scaled reproduction number

i, j = 1, 2, . . . , n.
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– We say that a squarematrixC = (ci j ) is essentially nonnegative1 if its off-diagonal
elements are nonnegative; i.e., ci j ≥ 0 if i �= j .

– We say that a nonnegative squarematrixC is irreducible if for any pair (i, j), i, j =
1, . . . , n, there exists a natural number m = m(i, j) such that the entry in the i th
row and j th column of Cm is positive.

3 Results for n = 2 sub-populations

In the case of n = 2, the NGM (2.7) is a 2 × 2 matrix. From this matrix we obtain
the following explicit expression for the reproduction number Rv as a function of
p = (p1, p2):

Rv(p) = 1

2

[
Rv1c11 + Rv2c22 +

√
(Rv1c11 − Rv2c22)2 + 4Rv1c12Rv2c21

]
.

One condition needed for proving the existence of an optimal solution to Problem (I)
is that the mixing matrix satisfies

C > 0, |C | = c11c22 − c12c21 > 0. (3.1)

It is easy to verify that condition (3.1) holds for Jacquez mixing as given in (2.5):

|C | =
∣∣∣∣
c11 c12
c21 c22

∣∣∣∣ = ε1ε2 + ε1(1 − ε2)
2a2N2 + ε2(1 − ε1)

2a1N1

(1 − ε1)a1N1 + (1 − ε2)a2N2
> 0,

provided that εi ∈ (0, 1), ai > 0, and Ni > 0, i = 1, 2.

3.1 Statements of the main results

Before we state the main results on the existence and uniqueness of the optimal solu-
tions to Problems (I) and (II), we give the following critical properties ofRv(p1, p2):

Theorem 3.1 (Key properties ofRv(p1, p2)) ConsiderRv = Rv(p1, p2) as a func-
tion of p1 and p2, and assume that condition (3.1) holds.

(i) Rv(1, 1) = 0 and Rv grows linearly on the rays emanating from (1, 1) into the
square [0, 1]2 (See Fig. 1 for illustration).

(ii) Rv(p1, p2) is convex on [0, 1]2 and strictly convex on the constraint setΩ(2)
p (η)∩

[0, 1]2.
The proof of Theorem 3.1 is provided in “Appendix A.1”.

1 Note that terminology differs among authors. Here, we use the terminology of Nussbaum (1986); the
negatives of such matrices are called M-matrices by Friedland (1980/81) and are said to have a Z sign
pattern by van den Driessche and Watmough (2002).
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Fig. 1 Plot of contour curves of
Rv(p1, p2) in the case of n = 2
sub-populations and depiction of
the optimal point P∗(η). Γ is

the critical ray. Ω(2)
p (η) is the

constraint line. η0 is the greatest
lower bound of 0 < η < N such
that P∗(η) ∈ (0, 1)2 only if
η0 < η < N . This figure
illustrates that P∗(η) always lies
on Γ for such η

The following theorem describes the solution to Problem (I). For ease of presenta-
tion, we introduce the following notation:

η0 := N − κ1N1 + κ2N2

max{κ1, κ2} ,

κ1 := c22
√
N1N2R02 − N2

√
c12c21R01R02,

κ2 := c11
√
N1N2R01 − N1

√
c12c21R01R02,

Γ : (p1, p2) = (1, 1) − s(κ1, κ2), s > 0

[
or Γ : 1 − p2

1 − p1
= κ2

κ1

]
.

(3.2)

The set Γ describes the ray emanating from (1, 1) in the direction of −(κ1, κ2), to
which we will refer as the critical ray (see Fig. 1).

Theorem 3.2 (Optimal solution to Problem (I) when n = 2) Consider Rv =
Rv(p1, p2) as a function of p1 and p2, and let η0 and κi be given in (3.2). Assume
that condition (3.1) holds.

(i) For any given η ∈ [0, N ], the optimal point P∗(η) exists and is unique.
(ii) The point P∗(η) lies in the interior of the unit square if and only if

κ1 > 0, κ2 > 0 (3.3)

and η ∈ (η0, N ).
(iii) For η ∈ (η0, N ), all points P∗(η) lie on the critical ray Γ , defined in (3.2) (see

Fig. 1).
(iv) For each η ∈ (η0, N ), the explicit formulae for P∗(η) and Rv{min}(η) are
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P∗(η) = (1, 1) − N − η

κ1N1 + κ2N2
(κ1, κ2) (3.4)

Rv{min}(η) = |C |R01R02

√
N1N2

N − η

κ1N1 + κ2N2
. (3.5)

A proof for Theorem 3.2 is given in “Appendix A.1”.

Remarks A few remarks are in order.

(a) If either of the conditions in (3.3) is violated, or equivalently κ1 ≤ 0 or κ2 ≤ 0,
then the ray Γ does not intersect the interior of the square (0, 1)2.

(b) The minimum point P∗(η) is the intersection of the critical ray Γ and the con-
straint set Ω(2)

p (η) for each η ∈ (η0, N ).

(c) If η ∈ (0, η0), the intersection of Γ and Ω
(2)
p (η) lies outside the square [0, 1]2.

When η = η0, the intersection lies on the boundary of the square.
(d) If η ∈ (0, η0), the minimum point P∗(η) is one of the boundary points (η/N1, 0)

or (0, η/N2) and hence

Rv{min}(η) = min{Rv(η/N1, 0),Rv(0, η/N2)}.

(e) Overall, Rv{min}(η) is a strictly decreasing convex function of η and linear on
(η0, N ) (see Fig. 2).

An explicit expression for the optimal solution η∗ to Problem (II) can be obtained
by using Eq. (2.10). We consider two cases depending on the value of

Rv{min}(η0) = |C |R01R02
√
N1N2

max{κ1, κ2} .

Theorem 3.3 (Critical number of vaccine doses) If condition (3.3) is satisfied, then
the minimum value of η∗ in Problem (II) is given below.

(i) (Interior minimum) IfRv{min}(η0) ≥ 1, then η∗ ≥ η0 and

η∗ = N − κ1N1 + κ2N2

|C |R01R02
√
N1N2

. (3.6)

(ii) (Boundary minimum) IfRv{min}(η0) ≤ 1, then 0 ≤ η∗ ≤ η0 and

η∗ = min

{
N1 − (1 − c22R02)N1

c11R01 − |C |R01R02
, N2 − (1 − c11R01)N2

c22R02 − |C |R01R02

}
.

(3.7)

The proof is given in “Appendix A”.
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Fig. 2 Depiction of the
minimized reproduction number
Rv{min}(η) as a function of η.
The illustration corresponds to
the case whenRv{min}(η0) ≥ 1

0 η0 η∗ N

1

Rv{min}(η)

R0

4 Results for n ≥ 2 sub-populations

In this section, we extend the results for n = 2 sub-populations presented in Sect. 3
to the case of n > 2. For general mixing matrices C = (ci j ), due to the complexity of
the optimization problems (I) and (II) when n > 2, we are unable to obtain explicit
expressions for the optimal solutions. Nevertheless, we can derive lower and upper
bounds for the minimum reproduction number Rv{min}(η) and the minimum vaccine
doses η∗. We first present results for general mixing (ci j ) satisfying (2.2)–(2.4). We
then illustrate that some of the key necessary properties of the mixing matrix can be
verified for the Jacquez mixing given in (2.5).

4.1 Preliminaries

Rewrite the NGM given in (2.7) as

Kv(p) =

⎛

⎜⎜⎜⎝

Rv1
Rv2

. . .

Rvn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
...

...

cn1 cn2 · · · cnn

⎞

⎟⎟⎟⎠

= diag(R01(1 − p1), . . . ,R0n(1 − pn))C

The effective reproduction number Rv for the meta-population is the spectral radius
(and the dominant eigenvalue, by Perron–Frobenius Theorem) of the nonnegative
matrix Kv(p), i.e.,Rv(p) = r(Kv(p)).

Although the focus of this study is on optimal solutions to Problems (I) and (II), the
results presented in the following theoremabout the bounds ofRv(p) andR0 = Rv(0)
are significant in more general applications.

Theorem 4.1 (Bounds for Rv(p)) Let C be a nonnegative, invertible, irreducible
matrix such that −C−1 is essentially nonnegative and the conditions (2.2)–(2.4) are
satisfied. Then
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1806 G. Poghotanyan et al.

(a) The lower and upper bounds of Rv(p) are:

n∑

i=1

ωiRvi ≤ Rv ≤ max{Rv1, . . . ,Rvn}, where ωi = ai Ni∑n
k=1 ak Nk

. (4.1)

(b) The lower and upper bounds of Rv(p) correspond to the cases of proportionate
mixing and isolated mixing, respectively.

The proof of Theorem 4.1 is given after the proof of Theorem 4.9.

Remarks Theorem 4.1 is stated using the effective reproduction number Rv(p) for
0 ≤ p ≤ 1. The results holds in particular for the basic reproduction number R0 =
Rv(0) that the the lower and upper bounds are

∑n
i=1 ωiR0i and max{R01, . . . ,R0n}.

For the ease of presentation, we introduce the ‘reflected’ variables

qi = 1 − pi , i = 1, . . . , n, q = (q1, . . . , qn) ∈ [0, 1]n .

Note that qi represents the unvaccinated portion of sub-population i = 1, . . . , n. We
also introduce the ‘reflected’ function

Rv(q) = Rv(1 − q1, . . . , 1 − qn)

= r(diag(R01q1, . . . ,R0nqn)C).
(4.2)

Note that the formula (4.2) can be used to extend Rv to [0,∞)n . The constraint
hyperplanes Ω

(n)
p (η) in Problem (I) will transform to

Ω(n)
q (η) :=

{
(q1, q2, . . . , qn) : 
(q) = η

}
,

where

η := N − η

and the optimal point P∗(η) will become

Q∗(η) := (1, . . . , 1) − P∗(η) = (1, . . . , 1) − P∗(N − η).

For the minimum value of Rv(q) on Ω
(n)
q (η) ∩ [0, 1]n we will have

Rv{min}(η) = Rv

∣∣
Q∗(η)

= Rv

∣∣
P∗(η)

= Rv{min}(η).

The following result states key properties of Rv(q), generalizing Theorem 3.1 in
the case n = 2.
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q2

q1

q3

Ω
(3)
q (η)

q1

q2

q3

(b)(a)

Fig. 3 a is a contour plot ofRv(q) = Rv((1, 1, 1) − q) in [0, 1]3. b illustrates the restriction of level sets

to Ω
(3)
q (η) ∩ [0, 1]3

Theorem 4.2 (Convexity and homogeneity of Rv(q)) The function Rv(q) is homo-
geneous of degree 1 on q ∈ [0, 1]n, i.e.,

Rv(s q) = sRv(q), for all q ∈ [0, 1]n and s > 0 such that sq ∈ [0, 1]n .

Moreover,Rv is convex if the matrix C = (ci j ) is invertible and−C−1 is essentially
nonnegative. If additionally C is irreducible, then Rv(q) is strictly convex on the
constraint set Ω(n)

q (η) ∩ [0, 1]n (see Fig. 3).
Theorem 4.2 immediately implies the following property.

Theorem 4.3 (Critical ray) Let C be a nonnegative square invertible irreducible
matrix such that −C−1 is essentially nonnegative. Let η ∈ (0, N ) be such that Rv

has an interior relative minimum point Q∗(η) on Ω
(n)
q (η)∩[0, 1]n. Then Q∗(η) is the

unique point that satisfies the Lagrange multiplier condition

Rv

∣∣
Q∗(η)

= λ(N1, N2, . . . , Nn).

If s > 0 is such that sη ∈ (0, N ), then the unique relative minimum point on
Ω

(n)
q (s η) ∩ [0, 1]n is given by

Q∗(s η) = s Q∗(η),

provided that this point still lies in the interior of the unit hypercube.2 Thus, all interior
relative minimum points lie on the critical ray Γ emanating from the origin.

2 This will automatically hold for 0 < s < 1.
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We start with the following facts about the spectral radius r(A) of a nonnegative
matrix A. The first one is rather simple, if not obvious.

Lemma 4.4 If A is a square matrix and s > 0 then

r(s A) = s r(A).

The second one is also well-known, see e.g. Hill and Longini (2003); Nussbaum
(1986).

Lemma 4.5 If A, B are nonnegative irreducible matrices such that A ≤ B, then

r(A) ≤ r(B).

The next one is more subtle and is based on a theorem of Friedland (1980/81,
Theorem 4.3); see also generalizations of this result in Nussbaum (1986, Sect. 1).

Lemma 4.6 Let C be a nonnegative invertible squarematrix such that−C−1 is essen-
tially nonnegative. Then the mapping

rC : D �→ r(DC)

is convex on the set of positive diagonal matrices D = diag(d1, . . . , dn), di > 0, i.e.,

rC ((1 − t)D1 + t D2) ≤ (1 − t)rC (D1) + trC (D2)

for any positive matrices D1 and D2 and t ∈ [0, 1]. Moreover, if additionally C is
irreducible,3 then the inequality above is strict for t ∈ (0, 1), unless D2 = sD1 for
some s > 0.

Proof of Theorem 4.2 If we denote

K v(q) = Kv((1, . . . , 1) − q) = diag(R01q1, . . . ,R0nqn)C,

then for homogeneity we just note that

K v(sq) = sK v(q)

and therefore by Lemma 4.4, we have

Rv(sq) = r(K v(sq)) = r(sK v(q)) = s r(K v(q)) = sRv(q).

The convexity of Rv follows from the fact that

Rv(q) = rC (diag(R01q1, . . . ,R0nqn)),

3 See the definition in Sect. 2.1.
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i.e.,Rv is a composition of a linear mapping

q �→ diag(R01q1, . . . ,R0nqn)

and a convex function rC , and is therefore convex, as we impose the condition that
−C−1 exists and is essentially nonnegative.

Finally, the strict convexity of Rv on Ω
(n)
q (η) ∩ [0, 1]n follows from the strict

convexity property of rC in Lemma 4.6, because no two points on Ω
(n)
q (η) lie on the

same ray emanating from the origin. ��

4.2 Upper and lower bounds of optimal solutions

In this section, we establish bounds on quantities relevant to Problems (I) and (II)
for general mixing matrices C , satisfying (2.2)–(2.4) with an additional property that
−C−1 is essentially nonnegative. As we saw in Theorem 4.2, the latter condition is
needed to guarantee the convexity of Rv . On the other hand, conditions (2.2)–(2.4)
provide important information on positive eigenvectors of the mixing matrixC , which
is instrumental in deriving our bounds.

More specifically, we prove upper and lower bounds for Q∗(η), Rv{min}(η), and
η∗ (or equivalently, P∗(η), Rv{min}(η), and η∗). An interesting feature is that these
bounds are independent of the functional form of mixing ci j .

4.2.1 Equal per capita contact rates

We start with a special case when all per capita contact rates ai are the same. We
show that the minimum of Rv(q) on Ω

(n)
q (η) ∩ [0,∞)n will occur on the diagonal

q1 = q2 = · · · = qn , under the conditions onC that guarantee the convexity ofRv(q).
In particular, this will hold for simple mixing matrices given by (2.5) for any choice
of εi ∈ (0, 1) and Ni > 0.

Theorem 4.7 (Equal per capita contact rates) Let C be a nonnegative, invertible, irre-
ducible matrix such that−C−1 is essentially nonnegative and for which the conditions
(2.2)–(2.4) are satisfied. Assume additionally that ai = a > 0, i = 1, . . . , n. Then the
minimum of Rv on the intersection of Ω(n)

q (η) ∩ [0, 1]n for η ∈ [0, N ] is achieved at
the point

q1 = q2 = · · · = qn = η

N
.

Thus, the critical ray Γ is given by

Γ : q1 = q2 = · · · = qn .

We will need the following characterization of Friedland (1980/81, Theorem 3.4)
for the spectral radius.
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Lemma 4.8 If C is a nonnegative, invertible matrix, such that −C−1 is essentially
nonnegative, then its spectral radius r(C) is given by

inf
ξ∈Pn

sup
x>0

n∑

i=1

ξi
xi

(Cx)i
= 1

r(C)
,

where

Pn = {ξ = (ξ1, . . . , ξn) : ξi ≥ 0,
n∑

i=1

ξi = 1}.

Moreover, if C is irreducible, and u = (u1, . . . , un)T > 0, v = (v1, . . . vn)
T > 0 are

right and left eigenvectors of C, i.e.,

Cu = r(C)u, CT v = r(C)v,

n∑

i=1

uivi = 1,

then for ξ = (u1v1, . . . , unvn) one has

sup
x>0

n∑

i=1

ξi
xi

(Cx)i
= 1

r(C)
.

Proof of Theorem 4.7 When ai = a, i = 1, . . . , n, we have the following essential
properties of the matrix C

n∑

j=1

ci j = 1,
n∑

i=1

Nici j = N j .

This means that u = (1, . . . , 1)T and v = (N1/N , . . . , Nn/N )T are normalized
right and left eigenvectors of C :

Cu = u, CT v = v,
∑

uivi = 1.

By Perron–Frobenius Theorem, we also have r(C) = 1. (Note that this holds for
any nonnegative matrix satisfying (2.3)). Then by Lemma 4.8 we have

1 = 1

r(C)
= sup

x>0

n∑

i=1

Ni

N

xi
(Cx)i

.

Suppose now thatq = (q1, . . . , qn) ∈ (0, 1)n is such that
∑n

i=1 qi Ni = η ∈ (0, N ).
Then β = (β1, . . . , βn) ∈ Pn , where

βi = qi Ni/η, i = 1, . . . , n.
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Note, that we also have

(K v(q)x)i = R0qi (Cx)i ,

where R0 = ρa is the common value of R0i , i = 1, . . . , n, which also is the meta-
population basic reproduction number. Then, by Lemma 4.8,

1

r(K v)(q)
≤ sup

x>0

n∑

i=1

βi
xi

(K v(q)x)i

= sup
x>0

n∑

i=1

qi Ni

η

xi
R0qi (Cx)i

= N

R0η
sup
x>0

n∑

i=1

Ni

N

xi
(Cx)i

= N

R0η
.

Note that the use of Lemma 4.8 above is justified because, as withC, K v(q) is positive,
invertible, irreducible, and

−K v(q)−1 = −C−1 diag((R0q1)
−1, . . . , (R0qn)

−1)

is essentially nonnegative. Hence,

Rv(q) ≥ R0
η

N
, on {
(q) = η} ∩ (0, 1)n .

On the other hand,

K v

(
η

N
, . . . ,

η

N

)
= R0

η

N
C

and therefore

Rv

(
η

N
, . . . ,

η

N

)
= R0

η

N
.

By continuity of Rv , this completes the proof. ��

4.2.2 Arbitrary per capita contact rates

In this section, we first establish the upper and lower bounds for Rv(q) (see Theo-
rem 4.9) and equivalentlyRv(p). The lower bound can be proved using the arguments
similar to the proof of Theorem 4.7, and the upper bound follows from the monotonic-
ity of the spectral radius as a function of nonnegative matrices. We then proceed to
obtain bounds for the relative minimaRv{min}(η) and equivalentlyRv{min}(η), as well
as a bound for the critical value η = η∗ that makes Rv{min}(η) ≤ 1.
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Let amin denote the minimum of the activities of the sub-populations, i.e.,

amin = min{a1, . . . , an}.

Note that amin > 0. The results below are for general mixingmatrices (not just Jacquez
mixing given in (2.5)).

Theorem 4.9 (Bounds for Rv(q)) Let C be a nonnegative, invertible, irreducible
matrix such that −C−1 is essentially nonnegative and the conditions (2.2)–(2.4) are
satisfied. Then the bounds of Rv(q) are:

ρ

∑n
i=1 a

2
i Niqi∑n

i=1 ai Ni
≤ Rv(q) ≤ ρ max{a1q1, . . . , anqn}, for q ∈ [0, 1]n . (4.3)

Moreover, equalities hold if q = s
( 1
a1

, . . . , 1
an

)
for s ∈ [0, amin].

Proof We start with the lower bound in (4.3). The key observation is that

n∑

j=1

ci j = 1,
n∑

i=1

ai Ni ci j = a j N j ,

which gives positive eigenvectors for C and CT . That is, if u = (1, . . . , 1)T and
v = (a1N1/A, . . . , anNn/A)T with A = ∑n

i=1 ai Ni , then

Cu = u, CT v = v, u · v =
n∑

i=1

uivi = 1.

Then, by Lemma 4.8,

1 = 1

r(C)
= sup

x>0

n∑

i=1

ai Ni

A

xi
(Cx)i

=
supx>0

∑n
i=1 ai Ni

xi
(Cx)i∑n

k=1 ak Nk
.

Then, for any q ∈ (0, 1)n , let

βi = a2i Niqi∑n
k=1 a

2
k Nkqk

and note that βi > 0 and
∑n

i=1 βi = 1; i.e., β = (β1, . . . , βn) ∈ Pn . Hence, by
Lemma 4.8,

1

Rv(q)
= 1

r(K v(q))
≤ sup

x>0

n∑

i=1

βi
xi

(K v(q)x)i
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=
supx>0

∑n
i=1 a

2
i Niqi

xi
ρaiqi (Cx)i∑n

k=1 a
2
k Nkqk

=
supx>0

∑n
i=1 ai Ni

xi
(Cx)i

ρ
∑n

k=1 a
2
k Nkqk

=
∑n

k=1 ak Nk

ρ
∑n

k=1 a
2
k Nkqk

,

or equivalently

Rv(q) ≥ ρ

∑n
i=1 a

2
i Niqi∑n

i=1 ai Ni
, for any q ∈ (0, 1)n,

and by continuity also for all q ∈ [0, 1]n . This proves the lower bound.
The upper bound of Rv(q) can be obtained by noticing that

K v(q) = diag(Rv1, . . . ,Rvn)C ≤ max{Rv1, . . . ,Rvn}C

and applying Lemma 4.5:

Rv(q) = r(K v(q))

≤ max{Rv1, . . . ,Rvn}r(C)

= max{Rv1, . . . ,Rvn} = ρ max{a1q1, . . . , anqn}, (4.4)

where we have used that r(C) = 1.
To establish the equalities in (4.3), it is easy to see that the upper and lower bounds

are the same when q = s(1/a1, . . . , 1/an) for constant s ∈ (0, amin). The restriction
on s guarantees that the point q is in (0, 1)n . Then, by continuity, equality holds also
for the endpoint values of s.

The proof is completed. ��
We now use the results above to prove Theorem 4.1.

Proof of Theorem 4.1 To prove Theorem 4.1(a), i.e., the bounds for Rv(p) in (4.1),
recall that qi = 1 − pi ,Rv(p) = Rv(q), and Rvi = ρaiqi for i = 1, 2, . . . , n.
Substitution of these relationships into (4.3) yields (4.1).

For (b), note that when themixingC = (ci j ) is proportionate, ci j = ω j . In this case,
the NGM has rank 1 and its dominant eigenvalue is the sum of the diagonal elements.
That is, Rv(p) = ∑n

i=1 ωiRvi . Note also that in this case of isolated mixing, i.e.,
εi = 1 for all i in (2.5), C = I and the NGM is diag(Rv1,Rv2, . . . ,Rvn), for which
Rv = max{Rv1,Rv1, . . . ,Rv1}.

It is clear that for the proportionate mixing and isolated mixing, the corresponding
reproduction numbers coincide with the lower and upper bounds ofRv given in (4.1).
Thus, while Theorem 4.1, as stated, is not formally applicable to the proportionate and
isolated mixing functions, the bounds ofRv in (4.1) correspond to these two extreme
cases.

This completes the proof. ��
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It is easy to verify that, when a1 = a2 = · · · = an , Theorem 4.9 contains the
conclusion of Theorem 4.7.

Theorems 4.1 and 4.9 can be used to derive the lower and upper bounds for the
minimum reproduction number Rv{min}(η). Introduce the following notation:

πi := Ni/N , 1 ≤ i ≤ n Population fraction of sub-population i;

S :=
n∑

i=1

(1 − pi )πi Population fraction unvaccinated;

R̂0 :=
n∑

i=1

R0iπi Population weighted reproduction number;

R

0 :=

( n∑

i=1

1

R0i
πi

)−1
Harmonic mean of R0iweighted by sub-population

fractionsπi ;
R̃0 := min

i
R2

0i/R̂0 Analogous to a scaled reproduction number (4.5)

The following results provide the lower and upper bounds for the minimum
Rv{min}(η) in Problem (I):

Theorem 4.10 Assume that the conditions of Theorem 4.9 hold. Let η < N (or η > 0),
and let S, R̂0,R


0 , and R̃0 be defined in (4.5).

(a) The bounds of Rv{min}(η) for q ∈ Ω
(n)
q (η) ∩ [0, 1]n are:

ρa2minη∑n
i=1 ai Ni

≤ Rv{min}(η) ≤ ρη∑n
i=1 Ni/ai

for η ≤ mini {R0i }
R


0
N . (4.6)

(b) The bounds of Rv{min}(η) for p ∈ Ω
(n)
p (η) ∩ [0, 1]n are:

R̃0 S ≤ Rv{min}(η) ≤ R

0 S. (4.7)

Proof (a) To prove the lower bound, note first that Rv{min}(η) ≤ Rv(q) for all q ∈
Ω

(n)
q (η) ∩ [0, 1]n . Note also that from the inequality in Theorem 4.9 we have

Rv(q) ≥ ρ
∑n

i=1 a
2
i Niqi∑n

i=1 ai Ni
≥ ρa2min

∑n
i=1 Niqi∑n

i=1 ai Ni
= ρa2minη∑n

i=1 ai Ni
.

This proves the lower bound in (4.6).
For the upper bound in (a), choose s > 0 so that Q = s(1/a1, . . . , 1/an) ∈

Ω
(n)
q (η); i.e., s = η/

(∑n
i=1 Ni/ai

)
. Note that Q ∈ [0, 1]n if 0 ≤ s ≤ amin or

0 ≤ η ≤ amin
∑n

i=1 Ni/ai . Then, by the case of equality in (a) of Theorem 4.9,
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Rv{min}(η) ≤ Rv(Q) = ρs = ρη∑n
i=1 Ni/ai

.

This completes the proof of (a).
To prove (b), note that Rv{min}(η) = Rv{min}(η). Note also that the left-hand side

(LHS) and right-hand side (RHS) of inequality (4.6) can be re-expressed in terms of
sub-population reproduction numbers R0i = ρai . For the LHS of (4.6),

LHS = min1≤i≤n R2
0i

R̂0
×

n∑

i=1

(1 − pi )πi = R̃0 S.

It follows that

Rv{min}(η) ≥ R̃0 S. (4.8)

For the RHS of (4.6), note that

Rv{min}(η) ≤ 1∑n
i=1 πi/R0i

×
n∑

i=1

(1 − pi )πi = R

0 S. (4.9)

From (4.8) to (4.9) we obtain (4.7). This completes the proof of (b). ��
We can now deduce the results for the upper bound of the critical number of vaccine

doses η∗ in Problem (II):

Theorem 4.11 (Critical number of vaccine doses) Let C satisfy the same conditions
as in Theorem 4.9, and let R


0 be defined in (4.5).

(a) the upper bound for the minimum vaccine dose is given by:

η∗ ≤ N − min{1/ρ, a1, . . . , an}
n∑

i=1

Ni/ai . (4.10)

(b) IfR0i > 1 for all i , then the inequality (4.10) can be re-written as

η∗
N

≤ 1 − 1

R

0
. (4.11)

Proof (a) We prove the inequality (4.10) by considering two cases.

Case 1: Assume first that 1/ρ ≤ amin . In that case, the upper bound in Theorem 4.10
is applicable for η = (1/ρ)

∑n
i=1 Ni/ai , which gives

Rv{min}(η) ≤ 1.

Thus,

η∗ ≥ 1

ρ

n∑

i=1

Ni/ai .
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Case 2: Assume now that 1/ρ ≥ amin. Then the upper bound in Theorem 4.10 for
η = amin

∑n
i=1 Ni/ai gives

Rv{min}(η) ≤ ρamin ≤ 1.

Thus,

η∗ ≥ amin

n∑

i=1

Ni/ai .

Combining cases 1 and 2, we obtain

η∗ ≥ min{1/ρ, a1, . . . , an}
n∑

i=1

Ni/ai ,

and recalling that η∗ = N − η∗, we complete the proof of (a).
For (b), note that the RHS of (4.10) can be re-written as

N − 1

ρ

n∑

i=1

Ni

ai
= N −

n∑

i=1

Ni

R0i
= N

(
1 −

n∑

i=1

1

R0i
πi

)
.

Thus, the inequality (4.10) can be re-written as

η∗
N

≤ 1 −
n∑

i=1

1

R0i
πi = 1 − 1

R

0
.

This completes the proof. ��
Remarks (i) Note that R


0 and R̃0 (see (4.5)) are weighted basic reproduction num-
bers, and the factor S is the fraction of the overall population that remains
susceptible. In light of this, we see that the lower and upper bounds forRv{min}(η)

in (4.7) take the familiar form of an effective reproduction number.
(ii) The lower and upper bounds in (4.7) are equal if the activities ai for sub-

populations i are all the same. Note that R0i = ρai = βai/(θ + γ ). Thus,
R0i are the same when ai are the same for all i . Then, from (4.5) we see that
R̃0 = R


0, which implies that the inequalities in (4.7) become equalities.
(iii) For the upper bound of η∗, if ai = a are all the same, we have R


0 = R0, in
which case the upper bound in (4.11) becomes 1 − 1/R0. This is similar to the
usual formula for the critical vaccination fraction pc = 1− 1/R0, for which the
number of vaccinated is ηc = pcN = N (1 − 1/R0).

4.3 Example: the case of Jacquez mixing

As an example of mixing functions that satisfy the conditions described in Lemma 4.6,
we consider the ci j for the meta-population model in Feng et al. (2015), which is the
Jacquez mixing as given in (2.5).
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Proposition 4.12 Let the matrix C = (ci j ) be given by (2.5) with εi ∈ (0, 1), i =
1, . . . , n. Then C is invertible and B = C−1 = (bi j ) is given by

bi j = δi jε
−1
i + (1 − ε−1

i )(1 − ε−1
j )a j N j

∑n
k=1(1 − ε−1

k )ak Nk
, i, j = 1, . . . , n.

In particular, −C−1 is essentially nonnegative.

Remark 4.13 It is also clear that under conditions of Proposition 4.12, C is positive
and thus irreducible.

Proof It will be sufficient to show that CB = I (the identity matrix), or

n∑

j=1

ci j b jk = δik, for all i, k = 1, . . . , n.

To simplify computations, let

μc =
n∑

l=1

(1 − εl)al Nl , μb =
n∑

l=1

(1 − ε−1
l )al Nl .

Then

n∑

j=1

ci j b jk =
n∑

j=1

[
δi jεi + (1 − εi )(1 − ε j )a j N j

μc

]

×
[
δ jkε

−1
j + (1 − ε−1

j )(1 − ε−1
k )ak Nk

μb

]

=
n∑

j=1

δi jδ jkεiε
−1
j + 1

μc

n∑

j=1

δ jk(1 − εi )(1 − ε j )ε
−1
j a j N j

+ 1

μb

n∑

j=1

δi jεi (1 − ε−1
j )(1 − ε−1

k )ak Nk

+ 1

μcμb

n∑

j=1

(1 − εi )[(1 − ε j )(1 − ε−1
j )](1 − ε−1

k )a j N jak Nk

= δik − (1 − εi )(1 − ε−1
k )ak Nk

μc
− (1 − εi )(1 − ε−1

k )ak Nk

μb

+
∑n

j=1[(1 − ε j ) + (1 − ε−1
j )]a j N j

μcμb
(1 − εi )(1 − ε−1

k )ak Nk

= δik +
(

− 1

μc
− 1

μb
+ μc + μb

μcμb

)
(1 − εi )(1 − ε−1

k )ak Nk = δik,
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where we have used above that

(1 − ε j )(1 − ε−1
j ) = (1 − ε j ) + (1 − ε−1

j ).

This completes the proof. ��

5 Discussion

Themain goal of this study was to solve Problems (I) and (II), which identify the most
efficient allocation of limited vaccines using a meta-population model for vaccine-
preventable infectious diseases. Although we demonstrated the results using Model
(2.1), the approach can be applied to other meta-population models for vaccine-
preventable diseases. Model (2.1) incorporates various heterogeneities such as in
activity, contacts between sub-populations (mixing), vaccination coverage, and size of
each sub-population. We considered general mixing functions that satisfy conditions
(2.2)–(2.4), including the special case of Jacquez mixing in (2.5) and special cases of
this namely, proportionate mixing (εi = 0 for all i) and preferential mixing (εi = 1
for all i). However, it would be more challenging to consider a similar approach to
meta-population models that are less-tractable analytically than Model (2.1), particu-
larly when the NGM has a more complicated structure. For example, when a model
includes additional factors such as aging from one age-group to the next, multi-level
mixing (e.g., age and spatial), and heterogeneity in infectivity and susceptibility, the
effective reproduction numberRv as a function of vaccination coverage will be more
difficult to study from an analytic point of view.

The optimization problem is based on reducing the effective reproduction number
Rv (if R0 > 1) by determining the optimal combination of vaccine coverages p =
(p1, p2, . . . , pn). Because the parameters pi must be between 0 and 1, the optimal
solution P∗(η) needs to be in the unit hypercube. Even in the case of n = 2 sub-
populations, the solution of Problems (I) and (II) is not trivial. For n > 2, the most
challenging task is to show the convexity of Rv(p); Theorem 4.2. This proves a
conjecture of Hill and Longini (2003), although those authors did not consider the
structure of the mixing matrix C specified by conditions (2.2)–(2.4). Our proofs are
facilitated by using the ‘reflected’ quantities qi = 1 − pi and Rv(q1, q2, . . . , qn) =
Rv(p1, p2, . . . , pn). For ease of presentation, we first illustrated results for the simpler
case of n = 2 sub-populations, and then extended them to n > 2 sub-populations.

In the case of n = 2, explicit formulae are obtained for the optimal solutions when
mixing is proportionate or preferential. For Problem (I), the optimal solution P∗(η) for
a given number of vaccine doses η and theminimized reproduction numberRv{min}(η)

are described as functions of model parameters (Theorem 3.2). For Problem (II), an
analytical formula for the minimum vaccine doses η∗ that will reduce Rv to below 1
is provided (Theorem 3.3).

Another interesting finding is that, for any number of vaccine doses η in the con-
straint, the optimal vaccine coverage P∗(η) lies along the ‘critical’ ray Γ . In addition,
when n = 2, for the optimal solution P∗(η) to be in the unit square [0, 1]2, available
vaccine doses must satisfy η0 < η < N , where the lower bound η0 is determined
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by model parameters. For η ≤ η0, the optimal strategy will be to vaccinate only one
sub-population.

Extension of these results to the case n > 2 is complicated by the fact that no
explicit formulae are available. Nevertheless, using results for the spectral radius of
nonnegative matrices, in Sects. 4.1 and 4.2, we obtain bounds of Rv for an arbitrary
mixing C that satisfies the conditions in Theorem 4.1. An interesting finding is that
for a large class of mixing matrix C (not just Jacquez), the proportionate mixing
gives the smallestRv while the isolated mixing (no mixing between sub-populations)
gives the largest Rv given Rvi (see Theorem 4.1). It is clear that these conclusions
hold particularly for R0 = Rv(0). The facts that population heterogeneities tend to
increase R0 and that models assuming proportionate mixing generate lower values
of R0 have been suggested by other researchers (Adler 1992; Andersson and Britton
1998; Diekmann et al. 2012).

We also establish bounds on the relative minimaRv{min}(η) and the critical vaccine
dose η∗ (see Theorems 4.10 and 4.11). Interpretations of those bounds are provided in
terms of biological quantities such as weighted reproduction numbers. In particular,
we see that the lower and upper bounds are products of the weighted reproduction
number R̃0 and the harmonic mean R


0, respectively, with the fraction unvaccinated
S (see (4.7)). Thus, both bounds are in the familiar form of effective reproduction
numbers. Moreover, the bounds are equal when all sub-populations have the same
activity (ai ). A similar interpretation holds for the upper bound of η∗, in which case
the usual basic reproduction number R0 is replaced by the harmonic mean R


0 of
sub-population reproduction numbers R0i weighted by the sub-population fractions
πi (see also (4.11)).

Acknowledgements The findings and conclusions in this report are those of the author(s) and do not nec-
essarily represent the official position of the Centers for Disease Control and Prevention or other institutions
with which they are affiliated. We thank the anonymous reviewers for comments and suggestions, which
helped improve the presentation of the manuscript.

A Appendix

In this appendix, we provide detailed proofs for Theorems 3.1–3.3 in Sect. 3 and
illustrate an example of these results in the case of Jacquez mixing.

A.1 Proofs of Theorems 3.1–3.3

To prove these theorems, we first prove several propositions. Instead of working with
the function Rv(p1, p2) along the rays emanating from the point (p1, p2) = (1, 1),
it is much easier to consider the ‘reflected’ variables:

qi = 1 − pi , i = 1, 2, q = (q1, q2),

and the corresponding rays emanating from the point (q1, q2) = (0, 0) into the unit
square [0, 1]2. The ‘reflected’ function Rv is then given by
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Rv(q1, q2) = Rv(1 − q1, 1 − q2).

The quantities corresponding to those mentioned directly after Problem (I) in terms
of q and the reflected function are

η := q1N1 + q2N2 = N − η,


(q) := q1N1 + q2N2 = η,

Q∗(η) := (1, 1) − P∗(η) = (1, 1) − P∗(N − η).

In addition, at the optimal points P∗ or Q∗, we have

Rv{min}(η) = Rv

∣∣
Q∗(η)

= Rv

∣∣
P∗(η)

= Rv{min}(η),

and we know that Rv satisfies the equation

∇Rv

∣∣
Q∗(η)

= λ(N1, N2),

or, equivalently,

∇Rv

∣∣
Q∗(η)

· (N2,−N1) = 0,

provided Q∗(η) is in the interior of the unit square.

A.1.1 Reflected function Rv and its properties

The reflected function Rv is given explicitly by

Rv(q) = 1

2

[
R01c11q1 + R02c22q2

+
√

(R01c11q1 − R02c22q2)2 + 4R01R02c12c21q1q2
] (A.1)

for q ∈ [0, 1]2. Note that the formula (A.1) can be used to naturally extend Rv to
the first quadrant q ≥ 0 (i.e., q1, q2 ≥ 0). It can be checked that the function Rv is
homogeneous of degree 1, i.e.,

Rv(sq) = sRv(q), s > 0, q ≥ 0. (A.2)

Geometrically, this means that Rv grows linearly on the rays emanating from the
origin, as illustrated in Fig. 4.

We next compute the first derivatives ofRv:

∂Rv

∂qi
= 1

2

[
R0i cii + R2

0i c
2
i i qi + (2c12c21 − c11c22)R01R02q j√

(R01c11q1 − R02c22q2)2 + 4R01R02c12c21q1q2

]
(A.3)
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Fig. 4 The graph of
Rv(q1, q2). Rv grows linearly
on the rays emanating from the
origin

for i, j = 1, 2 and i �= j . Note that the function ∇Rv = (∂Rv/∂q1, ∂Rv/∂q2) is
homogeneous of degree 0:

∇Rv(sq) = ∇Rv(q), s > 0, q ≥ 0, (A.4)

i.e., ∇Rv is constant on rays emanating from the origin.
Further, we compute the second derivatives ofRv . By direct computation, we have

the following formula for the Hessian

HessRv = k

(
q22 −q1q2

−q1q2 q21

)
,

where

k = c12c21|C |R2
01R2

02

[(R01c11q1 − R02c22q2)2 + 4R01R02c12c21q1q2]3/2 .

Note that k > 0 by (3.1) and therefore HessRv is a nonnegative semi-definite matrix,
by Sylvester’s criterion. Consequently,Rv is a convex function of (q1, q2). We explic-
itly note here thatRv is not a strictly convex function, as it grows linearly on the rays
emanating from the origin. However, as we show below, it is strictly convex in certain
directions. To be more precise, let u = (u1, u2) be a unit vector, and consider the
second derivative of Rv in the direction u. We have

∂2Rv

∂u2
= k(u21q

2
2 + u22q

2
1 − 2u1u2q1q2) = k(u1q2 − u2q1)

2 ≥ 0,

whereupon

∂2Rv

∂u2
> 0 unless u ‖ (q1, q2).
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(Here, u ‖ v indicates that vectors u and v are parallel.) In particular, Rv is strictly
convex in the direction (N2,−N1).

To proceed, recall that

Ω(2)
q (η) :=

{
(q1, q2) : 
(q) = η

}
,

and consider again the constraint set

Ω(2)
q (η) ∩ [0, 1]2, for η ∈ [0, N ].

This is a line segment parallel to the vector (N2,−N1)with endpoints on the boundary
of [0, 1]2. We will denote the left and right endpoints (with respect to the direction
(N2,−N1)) by Q1(η) and Q2(η), respectively. It is easy to see that

Q1(η) ∈ ({0} × [0, 1]) ∪ ([0, 1] × {1}),
Q2(η) ∈ ([0, 1] × {0}) ∪ ({1} × [0, 1]).

Proposition A.1 The functionRv(q) is strictly convex on the intersectionsΩ
(2)
q (η)∩

[0, 1]2, for η ∈ (0, N ) if condition (3.1) holds. Consequently its minimum will occur
at an interior point Q∗(η) if and only if

∇Rv

∣∣
Q1(η)

· (N2,−N1) < 0, (A.5)

∇Rv

∣∣
Q2(η)

· (N2,−N1) > 0, (A.6)

where Q1(η) and Q2(η) are the left and right endpoints of Ω
(2)
q (η) ∩ [0, 1]2 (see

Fig. 5). Moreover, Q∗(η) is the unique point on Ω
(2)
q (η) ∩ [0, 1]2 such that

∇Rv

∣∣
Q∗(η)

· (N2,−N1) = 0. (A.7)

From the homogeneity properties (A.2) and (A.4), we also have the following
proposition.

Proposition A.2 Under the assumptions of Proposition A.1, let η ∈ (0, N ) be such
that Q∗(η) is an interior point. Then, for s > 0 such that s η ∈ (0, N ), the minimum
point of Rv on Ω

(2)
q (s η) ∩ [0, 1]2 is given by

Q∗(s η) = sQ∗(η),

provided that this point still lies in the interior of the unit square.4 In other words, all
interior minimum points lie on a ray emanating from the origin. We will denote this
ray by Γ and call it the (reflected) critical ray. Moreover, by Proposition A.1

Γ ∩ [0, 1]2 = {q : ∇Rv(q) · (N2,−N1) = 0} ∩ [0, 1]2.

4 This will automatically hold for 0 < s < 1.
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Q∗(η)

Ω
(2)
q (η)

Γ
���

Q1(η)

Q2(η)

q1

q 2

Q∗(η)

Γ
���

Q0

q1

q 2

(b)(a)

Fig. 5 Level sets of a Rv and b φ = ∇Rv · (N2,−N1). The point Q∗(η) in (b) is the relative minimum

point ofRv on Ω
(2)
q (η) ∩ [0, 1]2. Γ is the set of all such minima

Proof For Q∗(η) we have (see Fig. 5)


(Q∗(η)) = η and ∇Rv

∣∣
Q∗(η)

· (N2,−N1) = 0.

But then


(s Q∗(η)) = s η

and by (A.4)

∇Rv

∣∣
s Q∗(η)

· (N2,−N1) = ∇Rv

∣∣
Q∗(η)

· (N2,−N1) = 0,

implying that s Q∗(η) is the critical point on the constraint with constant s η and thus
that

Q∗(s η) = s Q∗(η).

The rest then follows from Proposition A.1. ��

A.1.2 Endpoint conditions

We now write the endpoint conditions (A.5)–(A.6) using the explicit formulae for
the derivatives of Rv . Because of Proposition A.2, to verify (A.5)–(A.6), it will be
sufficient to verify them for the constraint value s η with a small s > 0. Thus, without
loss of generality, we may assume that η itself is small. In that case, the intersection
points Q1(η) and Q2(η) of Ω

(2)
q (η) with ∂([0, 1]2) will lie on the left and bottom

sides of the square, i.e.,

Q1(η) ∈ {0} × (0, 1), Q2(η) ∈ (0, 1) × {0}.
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From (A.3) we have

∇Rv

∣∣
q1=0 =

(
c12c21
c22

R01,R02c22

)
,

∇Rv

∣∣
q2=0 =

(
R01c11,

c12c21
c11

R02

)

and, therefore, the conditions (A.5)–(A.6) will take the form

c12c21
c22

R01N2 − R02c22N1 < 0, R01c11N2 − c12c21
c11

R02N1 > 0

which is equivalent to (3.3).

A.1.3 The critical ray Γ

We next characterize the critical ray Γ . Namely, we identify the intersection point of
Γ with ∂([0, 1]2), which we denote by Q0.

For this, consider the function

φ(q) = ∇Rv(q) · (N2,−N1).

Because φ = 0 on Γ (see Proposition A.1), we must have

φ(Q0) = 0.

Note that conditions (A.5) and (A.6) are equivalent to

φ(0, 1) < 0, φ(1, 0) > 0.

Thus, the location of Q0 will depend on the sign of

φ(1, 1) = ∇Rv(1, 1) · (N2,−N1).

That is, Q0 = (1, q02 ) ∈ {1} × (0, 1] if φ(1, 1) ≤ 0, and Q0 = (q01 , 1) ∈ (0, 1] × {1}
if φ(1, 1) ≥ 0. We will use this fact to find Q0 and characterize Γ .

Proposition A.3 Assume that conditions (3.1) and (3.3) hold, where κ1, κ2 are as in
(3.2). Then the intersection Q0 = (q01 , q

0
2 ) of the critical ray Γ with ∂([0, 1]2) has

the property

q02
q01

= κ2

κ1
.
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Consequently, the critical ray Γ is given by

Γ : q2
q1

= κ2

κ1
.

Proof Recall that φ(q) = ∇Rv(q) · (N2,−N1) and consider the case φ(1, 1) ≤ 0
first. In that case, Q0 = (1, q02 ), where q

0
2 is found from the equation φ(1, q2) = 0.

This equation can be reduced to a quadratic equation for q2, which has two roots,
given by the formulae

q(−)
2 = λρ

c11ρ − √
c12c21λ

c22λ − √
c12c21ρ

, q(+)
2 = λρ

c11ρ + √
c12c21λ

c22λ + √
c12c21ρ

,

where

λ =
√

N1

N2
, ρ =

√
R01

R02
.

Then q02 equals either q(−)
2 or q(+)

2 (the reduction to a quadratic equation may have
introduced a false root). Plugging the formulae above into φ, it can be verified that

φ
(
1, q(−)

2

)
= 0 if and only if

c22λ
2 + c11ρ

2 ≥ 2λρ
√
c12c21.

This inequality is indeed satisfied, because of the condition (3.1):

c22λ
2 + c11ρ

2 ≥ 2λρ
√
c22c11 ≥ 2λρ

√
c12c21.

On the other hand, the verification of the equation φ
(
1, q(+)

2

)
= 0 results in the

condition c22λ2 = c11ρ2, which implies that q(+)
2 = q(−)

2 . Thus, in either case, we

can conclude that q02 = q(−)
2 .

Hence,

q02
q01

= q02 = λρ
c11ρ − √

c12c21λ

c22λ − √
c12c21ρ

,

which is the same quantity as κ2/κ1 as in the statement of the proposition. This finishes
the proof in this case.

The case φ(1, 1) ≥ 0 is considered similarly and we obtain exactly the same value
for the ratio q02/q

0
1 . ��

We next identify the value of the constraint η = η0, which corresponds to the
intersection point Q0 = (q01 , q

0
2 ) of Γ and ∂([0, 1]2).
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Proposition A.4 Let Q0 be as in Proposition A.3. Then

η0 = 
(Q0) = κ1N1 + κ2N2

max{κ1, κ2} .

Proof If κ1 ≥ κ2 then q01 = 1 and q02 = κ2/κ1 and thus

η0 = 
(Q0) = N1 + κ2

κ1
N2 = κ1N1 + κ2N2

κ1
.

On the other hand, if κ1 ≤ κ2 then q02 = 1 and q01 = κ1/κ2 and thus

η0 = 
(Q0) = κ1

κ2
N1 + N2 = κ1N1 + κ2N2

κ2
.

Combining the two cases, we obtain the stated formula. ��

A.1.4 Explicit formulae for minima

Proposition A.5 For 0 < η < η0, we have the following explicit formulae for Q
∗(η)

and the minimum of Rv{min}(η):

Q∗(η) = η

κ1N1 + κ2N2
(κ1, κ2),

Rv{min}(η) = |C |R01R02

√
N1N2

η

κ1N1 + κ2N2
.

Proof Weknow that Q∗(η) = (κ1, κ2)s, where s > 0 can be found from the constraint

(κ1s, κ2s) = η, which gives

s = η

κ1N1 + κ2N2
.

This proves the first formula. To establish the second, we first use the homogeneity of
Rv:

Rv{min}(η) = Rv

∣∣
Q∗(η)

= Rv(κ1s, κ2s) = Rv(κ1, κ2)s.

Furthermore, by direct calculations, one can show that

Rv(κ1, κ2) = |C |R01R02

√
N1N2,

which completes the proof. ��
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A.1.5 Proofs of the Theorems

Theproofs forTheorems3.1 and3.2 canbe completed by combiningPropositionsA.1–
A.5, and by writing their statements in terms of the original variables pi and the
constraint value η.

To prove Theorem 3.3, we consider several cases. When Rv{min}(η0) ≥ 1, we
simply use the formula for Rv{min}(η) in Theorem 3.2 for η0 < η < N to find η∗.
When Rv{min}(η0) ≤ 1, the minimum points P∗(η) will be on the boundary of the
square for 0 < η < η0 and we solve the equations

Rv(p1, 0) = 1, Rv(0, p2) = 1,

or more precisely in variables (q1, q2):

Rv(q1, 1) = 1, Rv(1, q2) = 1,

from which we get

q1 = (1 − c22R02)

c11R01 − |C |R01R02
,

q2 = (1 − c11R01)

c22R02 − |C |R01R02
.

The corresponding values of η∗ are

η∗ = min{N1(1 − q1), N2(1 − q2)}.

A.2 Example: the case of Jacquez preferred mixing

The conditions in (3.3), which guarantee that the critical ray Γ passes through the
interior of the unit square, hold for general mixing functions that satisfy (2.2)–(2.4).
These conditions may simplify when specific functions are considered. In this section,
we consider the Jacquez preferred mixing given in (2.5).

A.2.1 Interpretation of conditions for the interior critical ray

To verify the conditions (3.3), we consider two cases, one for homogeneous activity
(a1 = a2) and other for heterogeneous activity (a1 �= a2).

Case 1: a1 = a2. In this case, the inequality κ1 > 0 can be rewritten as

(1 − ε1)(1 − ε2)N2 < ε2(1 − ε1)N1 + [ε2(1 − ε2) + (1 − ε2)
2]N2

or

−ε1(1 − ε2)N2 < ε2(1 − ε1)N1,
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which is always satisfied. Similarly, one can verify that κ2 > 0 as well and therefore
conditions (3.3) will always hold if a1 = a2.

Case 2: a1 �= a2. In this case, the inequality κ1 > 0 can be rewritten as

(1 − ε1)(1 − ε2)a1N2 < ε2[(1 − ε1)a1N1 + (1 − ε2)a2N2] + (1 − ε2)
2a2N2

and simplifying further to

(1 − ε2)[(1 − ε1)a1 − a2]N2 < ε2(1 − ε1)a1N1.

Note that this inequality will readily hold if (1 − ε1)a1 − a2 ≤ 0 (which will
happen, e.g., if a1 ≤ a2), as the left-hand side will be nonpositive and the right-hand
side positive. If, however, (1−ε1)a1−a2 > 0, then the above inequality will transform
to

N2

N1
<

ε2

1 − ε2

(1 − ε1)a1
(1 − ε1)a1 − a2

.

By repeating this analysis with interchanged indices, we summarize the results
above in the following proposition.

Proposition A.6 Suppose the mixing matrix C is given by (2.5) with n = 2.

(i) If a1 = a2, then condition (3.3) holds for any Ni , εi ∈ (0, 1), i = 1, 2.
(ii) If 1 − ε1 ≤ a2/a1 ≤ 1/(1 − ε2), then (3.3) holds for any N1, N2.
(iii) If a2/a1 < 1 − ε1, then (3.3) becomes

N2

N1
<

ε2

1 − ε2

(1 − ε1)a1
(1 − ε1)a1 − a2

.

(iv) If 1/(1 − ε2) < a2/a1, then (3.3) becomes

1 − ε1

ε1

(1 − ε2)a2 − a1
(1 − ε2)a2

<
N2

N1
.

A.2.2 Simplified expressions at the optimal point

Some of the explicit expressions for the optimal solution provided in previous subsec-
tions hold for more general mixing functions C = (ci j ). These expressions may be
simplified when the preferred mixing given in (2.5) is used. These simplified expres-
sions are described in the following propositions. Let

αi := a j [(1 − ε j )(a j − (1 − εi )ai )N j + aiε j (1 − εi )Ni ], (A.8)

for i, j = 1, 2 and i �= j . Note that the αi differ from the κi in (3.2) by a constant
positive factor. In particular, α2/α1 = κ2/κ1.
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Proposition A.7 Consider the mixing function given in (2.5). Let condition (3.3) be
satisfied as described in Proposition A.6. Then the relative minima Q∗(η) will be
interior points if and only if

0 < η < η0 = α1N1 + α2N2

max{α1, α2} ,

and will lie on the critical ray

Γ : q2
q1

= α2

α1
.

Moreover, the following explicit formulae hold for 0 < η < η0:

Q∗(η) = (α1, α2)

α1N1 + α2N2
η,

Rv{min}(η) = ρa1a2(a2N2ε1(1 − ε2) + a1N1(1 − ε1)ε2)

α1N1 + α2N2
η.

(A.9)

We next note that, for αi defined in (A.8), we have

α2 − α1 = (a1 − a2)
[
a1N1(1 − ε1) + a2N2(1 − ε2)

]
,

and therefore,

max{α1, α2} =
{

α1, a1 ≤ a2
α2, a1 ≥ a2.

In particular, α1 = α2 if a1 = a2. This implies the following particular case of
Proposition A.7, which is especially interesting as the minimum points and values do

Q∗(η)

Γ

q1

q 2 Q∗(η)

Γ

q1

q 2

(b)(a)

Fig. 6 The critical ray Γ coincides with the main diagonal when a1 = a2 as in Proposition A.8, for
any values of εi ∈ (0, 1), Ni > 0, i = 1, 2. This figure illustrates two cases with values a ε1 = 0.1,
ε2 = 0.5, N1 = 400, N2 = 1000 and b ε1 = 0.8, ε2 = 0.2, N1 = 1200, N2 = 300
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not depend on εi (i = 1, 2) although the functionRv and its level sets do (see Fig. 6).
We also remark that this is essentially a version of Theorem 4.7 for n = 2, but its
proof is more elementary.

Proposition A.8 Let C be the Jacquez mixing given in (2.5), and let

a1 = a2 =: a.

Then for all possible values of constants εi ∈ (0, 1) and Ni > 0 (i = 1, 2), the critical
ray coincides with the diagonal

Γ : q1 = q2,

and the expressions in (A.9) simplify to

Q∗(η) = η

N
, Rv{min}(η) = ρa

η

N
, 0 < η < N . (A.10)
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