Skip to main content

Advertisement

Log in

On invasion boundaries and the unprotected coexistence of two strategies

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In this paper we present, in terms of invasion fitness functions, a sufficient condition for a coexistence of two strategies which are not protected from extinction when rare. In addition, we connect the result to the local characterization of singular strategies in the theory of adaptive dynamics. We conclude with some illustrative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boldin B, Geritz SAS, Kisdi E (2009) Superinfections and adaptive dynamics of pathogen virulence revisited: a critical function analysis. Evol Ecol Res 11: 153–175

    Google Scholar 

  • Christiansen FB, Loeschke V (1980) Evolution and intraspecific exploitation competition I. One-locus theory for small additve gene effects. Theor Popul Biol 18: 297–313

    Article  MATH  Google Scholar 

  • Claessen D, Dieckmann U (2002) Ontogenetic niche shift and evolutionary branching in structured populations. Evol Ecol Res 4: 189–217

    Google Scholar 

  • Dieckmann U (1997) Can adaptive dynamics invade. Trends Ecol Evol 12: 128–131

    Article  Google Scholar 

  • Doebeli M, Block HJ, Leimar O, Dieckmann U (2007) Multimodal pattern formation in phenotype distributions of sexual populations. Proc R Soc 274: 347–357

    Article  Google Scholar 

  • Ferriere R, Gatto M (1993) Chaotic population dynamics can result from natural selection. Proc Biol Sci 251: 33–38

    Article  Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University Press, Princeton

    Google Scholar 

  • Geritz SAH (2005) Resident-invader dynamics and the coexistence of similar strategies. J Math Biol 50: 67–82

    Article  MathSciNet  MATH  Google Scholar 

  • Geritz SAH, Kisdi É, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and the adaptive growth and branching of the evolutioary tree. Evol Ecol 12: 35–57

    Article  Google Scholar 

  • Geritz SAH, Gyllenberg M, Jacobs FJA, Parvinen K (2002) Invasion dynamics and attractor inheritance. J Math Biol 44: 548–560

    Article  MathSciNet  MATH  Google Scholar 

  • Gyllenberg M, Metz JAJ (2001) On fitness in structured metapopulations. J Math Biol 43: 545–560

    Article  MathSciNet  MATH  Google Scholar 

  • Hoekstra RF, Bijlsma R, Dolman AJ (1985) Polymorphism from environmental heterogeneity: models are only robust if the heterozygote is close in fitness to the favoured homozygote in each environment. Genet Res Camb 45: 299–314

    Article  Google Scholar 

  • Kisdi É, Meszéna G (1993) Density dependent life history evolution in fluctuating environments. In: Clark CW, Yoshimura J (eds) Adaptation in a Stochastic Environment. Lecture Notes in Biomathematics 98:26–62

  • Kisdi É, Meszéna G (1995) Life history with lottery competition in a stochastic environment: ESSs which do not prevail. Theor Pop Biol 47: 191–211

    Article  MATH  Google Scholar 

  • Kisdi É, Jacobs FJA, Geritz SAH (2001) Red queen evolution by cycles of evolutionary branching and extinction. Selection 1–2: 161–176

    Google Scholar 

  • Kisdi É, Priklopil T (2010) Evolutionary branching of a magic trait. J Math Biol. doi:10.1007/s00285-010-0377-1

  • Kuznetsov YA (1998) Elements of applied bifurcation theory. Springer, New York

    MATH  Google Scholar 

  • Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87: 331–333

    Article  Google Scholar 

  • Matsuda H (1985) Evolutionarily stable strategies for predator switching. J Theor Biol 115: 351–366

    Article  MathSciNet  Google Scholar 

  • Metz JAJ, Nisbet RM, Geritz SAH (1992) How should we define “fitness” for general ecological scenarios?. Trends Ecol Evol 7: 198–202

    Article  Google Scholar 

  • Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, Van Heerwaarden JS (1996) Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction. In: van Strien SJ, Verduyn Lunel SM (eds) Stochastic and spatial structures of dynamical systems. Elsevier, North-Holland, pp 183–231

    Google Scholar 

  • Motro U (1982) Optimal rates of dispersal I. Haploid populations. Theor Popul Biol 21: 394–411

    Article  MathSciNet  MATH  Google Scholar 

  • Novak S (2011) The number of equilibria in the diallelic Levene model with multiple demes. Theor Popul Biol 79: 97–101

    Article  Google Scholar 

  • Poulsen ET (1979) A model for population regulation with density- and frequency-dependent selection. J Math Biol 8: 325–343

    Article  MathSciNet  MATH  Google Scholar 

  • Prout T (1968) Sufficient conditions for multiple niche polymorphism. Am Nat 102: 493–496

    Article  Google Scholar 

  • Rueffler C, Van Dooren TJM, Metz JAJ (2004) Adaptive walks on changing landscapes: Levins? approach extended. Theor Popul Biol 65: 165–178

    Article  MATH  Google Scholar 

  • van Tienderen PH, de Jong G (1986) Sex ration under the haystack model: polymorphism may occur. J Theor Biol 122: 69–81

    Article  MathSciNet  Google Scholar 

  • Wiggins S (1990) Introduction to applied nonlinear dynamical systems and Chaos. Springer, New York

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadeas Priklopil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Priklopil, T. On invasion boundaries and the unprotected coexistence of two strategies. J. Math. Biol. 64, 1137–1156 (2012). https://doi.org/10.1007/s00285-011-0448-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-011-0448-y

Mathematics Subject Classification (2000)

Navigation