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Abstract
As a primary nutrient in agricultural soils, phosphorus plays a crucial but growth-limiting role for plants due to its complex 
interactions with various soil elements. This often results in excessive phosphorus fertilizer application, posing concerns for 
the environment. Agri-research has therefore shifted focus to increase fertilizer-use efficiency and minimize environmental 
impact by leveraging plant growth-promoting rhizobacteria. This study aimed to evaluate the in-field incremental effect of 
inorganic phosphate concentration (up to 50 kg/ha/P) on the ability of two rhizobacterial isolates, Lysinibacillus sphaeri-
cus (T19), Paenibacillus alvei (T29), from the previous Breedt et al. (Ann Appl Biol 171:229–236, 2017) study on maize 
in enhancing the yield of commercially grown Duzi® cultivar wheat. Results obtained from three seasons of field trials 
revealed a significant relationship between soil phosphate concentration and the isolates’ effectiveness in improving wheat 
yield. Rhizospheric samples collected at flowering during the third season, specifically to assess phosphatase enzyme activity 
at the different soil phosphate levels, demonstrated a significant decrease in soil phosphatase activity when the phosphorus 
rate reached 75% for both isolates. Furthermore, in vitro assessments of inorganic phosphate solubilization by both isolates 
at five increments of tricalcium phosphate-amended Pikovskaya media found that only isolate T19 was capable of solubiliz-
ing tricalcium at concentrations exceeding 3 mg/ml. The current study demonstrates the substantial influence of inorganic 
phosphate on the performance of individual rhizobacterial isolates, highlighting that this is an essential consideration when 
optimizing these isolates to increase wheat yield in commercial cultivation.

Introduction

The remarkable surge in population growth since 1927 
can be attributed to our improved understanding of plant 
nutrition and utilization of mineral fertilizers, resulting in 
increased agricultural yields per hectare [2]. In light of 
this, the pressing challenge is to enhance the efficiency of 

agricultural inputs, while concurrently reducing the adverse 
environmental impacts of current agricultural practices on 
non-renewable natural resources [3–6].

Phosphate (P), the second most important primary nutri-
ent essential for various metabolic processes, paradoxically 
acts as the most limiting nutrient in agriculture [7]. Plants 
can only absorb free P ions in a monobasic or dibasic form 
 (HPO4

−2 &  H2PO4
−) but due to the ability of P to absorb, 

precipitate, and convert to an insoluble form, it ultimately 
leads to the over application of inorganic phosphate (Pi) fer-
tilizers. This phenomenon explains the substantial P reserves 
commonly found in agricultural soils [8–11].

With finite P reserves and abundant insoluble P in agri-
cultural soils, Adesemoye and Kloepper [12] suggested a 
potential solution: the integration of biofertilizers with 
chemical fertilizers to increase fertilizer-use efficiency. 
There are three pivotal mechanisms employed by plant 
growth-promoting rhizobacteria (PGPR) for P solubiliza-
tion. PGPR can lower soil pH by excreting organic and 
inorganic acids [13]. Moreover, the release of organic and 
inorganic acids is associated with the chelation of cations 
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that actively compete with P to prevent complexing within 
the soil [14]. Lastly, a more soluble form of inorganic P (Pi) 
can be released from organic sources by the PGPR-excreted 
phosphatase enzymes [15]. Under conditions of P scarcity, 
the phosphate-specific transport system (PsTS) regulates 
phosphate solubilization and transport, inducing two distinct 
phosphatase enzymes, namely, phosphodiesterase (PDE) 
and phosphomonoesterases (PME). PDE converts complex 
organic P to form phosphomonoesters, which are then con-
verted by PME to orthophosphate that is easily absorbable 
[16, 17].

Literature suggests that PGPR can enhance fertilizer-use 
efficiency in various agricultural crops [18–22]. As observed 
in previous studies of Lysinibacillus sphaericus, and Paeni-
bacillus alvei in cucumber, tomato, mung bean, and maize 
crops, both L. sphaericus and P. alvei were positive for 
phosphate solubilization activity [1, 23, 24]. Given the finite 
reserve of P in soils and its ability to rapidly transform into 
insoluble forms in the soil, the objective of this study was 
threefold. We first aimed to evaluate the in-field effect of 
incremental levels of P on selected PGPR’s ability to pro-
mote wheat yield. Secondly, we sought to quantify phos-
phatase activity in the rhizosphere at the wheat flowering 
stage. Lastly, we assessed the isolates’ capacity to solubilize 
incremental levels of insoluble tricalcium phosphate (TCP) 
in vitro. Altogether, these experiments can provide insight 
into the potential of these PGPR isolates to make phospho-
rus more available to plants, which can impact plant growth 
and yield.

Materials and Methods

Field Trial Layout

All field trials were planted at the Towoomba Academic 
Development Centre (ADC) located on the southern part 
of the Springbok flats, approximately 4 km southeast of 
Bela-Bela in the Limpopo Province (28° 21′ E, 24° 25′ S; 
1 184 m above sea level). The trials were planted during 
autumn (April–May) to ensure the onset of vernalisation 
during winter (June–August) so that sample collection could 
proceed in June–July annually. According to the 50-year 
average, the long-term daily average minimum and maxi-
mum temperatures at Towoomba ADC vary between 3.0 
and 20.8 °C for July and 29.7 °C and 16.5 °C for Decem-
ber, respectively, with an average annual rainfall of 672 mm 
(Towoomba ADC weather station data). Light frost occurs 
sporadically during June and July with air temperatures 
below freezing point for 8 days of the year. The experimental 
plot consisted of a 2 × 2 m block, with an additional 1.5 m 
buffer zone around each replicate and was manually planted 
in the predominantly Huttons ecotope. Each experiment was 

composed of individual PGPR isolates, either Lysinibacillus 
sphaericus (T19) or Paenibacillus alvei (T29), along with 
an untreated control, applied at five phosphate increments 
(0%, 25%, 50%, 75% & 100%), and replicated in triplicate 
in a factorial arrangement completely randomized design 
(CRD). Fertilizer containing limestone ammonium nitrate 
(280 g/kg) and superphosphate (10.5%) (Omnia©, Bryan-
ston, South Africa) were applied at planting. Nitrogen levels 
were maintained at 180 kg/N/ha for all treatments and phos-
phorus was added as per incremental layout up to 50 kg/P/
ha (100%), for irrigated wheat [25]. Each treatment was pre-
pared by homogenously mixing Duzi® wheat cultivar seed 
(Klein Karoo Seed Marketing, Oudtshoorn, South Africa), 
one of the dominant cultivars in the region (Agricultural 
Research Council with 250 g/ha of T19 or T29 inoculated 
perlite powder (Seeds for Africa©, Big Bay, South Africa). 
The seeding rate was at a recommended rate of 120 kg/ha 
and an inter-row spacing of 15cm just before planting. Trials 
were irrigated bi-weekly to field capacity until physiological 
maturity after the grain-filling stage. Each subsequent trial 
was conducted in an untreated field adjacent to the previ-
ous season’s trial. Grain yield was collected by destructive 
harvesting of the entire 2 × 2 m plot.

PGPR Isolate Maintenance and Treatment 
Preparation

Isolates of T19 and T29 were retrieved from the Univer-
sity of Pretoria’s PGPR culture collection archive and were 
maintained using Microbank™ beads (Pro-Lab Diagnostics, 
Ontario, Canada). Isolates were stored at − 70°C and cul-
tured as needed onto Nutrient Agar® (Biolab, Wadeville, 
South Africa).

The PGPR treatments used in the field trials were pre-
pared as a powder formulation. Isolates were cultured in 
sterile Nutrient Broth® (Biolab, Wadeville, South Africa) 
for 48 h at 25°C in a shaking incubator. Next, 200 g of 
sterile Perlite® powder was sealed in autoclavable plastic 
pouches and inoculated with 21 ml of the 48 h-old nutrient 
broth culture, followed by incubation for 14 days at ambient 
temperature.

Phosphate Solubilization

Mineral Phosphate Solubilization

In vitro phosphate solubilization (PS) was evaluated fol-
lowing the procedures described by Nautiyal [26] using 
Pikovskaya-amended medium. The agar medium was pre-
pared by amending Bacteriological Agar® (Biolab, Wadev-
ille, South Africa) with 10 g/l glucose, 5 g/l  NH4Cl, 1 g/l 
 MgSO4.7H2O with  Ca3(PO4)2 (Merck, Johannesburg, South 
Africa) at five different concentrations from 0 to 5 mg/ml. 
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Each isolate was stab-inoculated into Pikovskaya-amended 
media for each increment, and a flame-sterilized inoculation 
needle was used as a control. Each incremental treatment 
was replicated five times, and the plates were incubated for 
10 days at room temperature. A positive reaction for PS was 
indicated by the development of a clear halo around the bac-
terial colony, and the diameter of the halo was measured for 
the assessment of activity.

Field Soil Phosphatase Activity Assay

Soil phosphatase activity was assessed during the third sea-
son of the trial at the flowering stage. From each replicate, 
three rhizospheric soil samples were collected by randomly 
selecting ten plants per sample and removing the bulk soil 
from the roots with a sterile spatula. The rhizospheric soil 
samples were then aseptically removed from the plant root 
and stored at − 80 °C until use. Modified universal buffer 
(MUB) was prepared according to Skujins et al. [27] and 
phosphatase activity was assessed according to Tabatabai 
and Bremners [28]. Briefly, a standard curve was constructed 
for the release of p-nitrophenol from phosphatase activity, 
using a range of 0–30 µg/ml at 6 µg/ml increments and 
color intensity measured at  OD405. Phosphatase activity was 
assessed by adding one gram of rhizosphere soil from each 
sample to 4 ml of MUB, 1 ml of p-nitrophenyl phosphate 
solution (PNP, Merck, Johannesburg, South Africa), and 
0.25 ml of Toluene (Merck, Johannesburg, South Africa) 
before incubating for one hour at 37 °C. The phosphatase 
activity incubation step was subsequently terminated by 
the addition of 1 ml of 0.5 M  CaCl2 (Merck, Johannesburg, 
South Africa) and 4 ml of 0.5 M NaOH (Merck, Johannes-
burg, South Africa). The samples were then filtered using 
Whatman No.1 paper (Merck, Johannesburg, South Africa) 
and the color intensity at  OD405 was expressed as µg p-nitro-
phenol  g−1 soil  h−1 and compared to the previously con-
structed standard curve.

Statistical Analysis

Wheat yield and soil phosphatase activity data were sub-
jected to combined analysis of variance (df = 8) to parti-
tion variation accounted for by treatment, phosphorus 
level, and treatment–phosphorus interaction effect using 
PROC MIXED procedures of SAS (9.4 Statistical Analy-
sis System, North Carolina, U.S.A) at P = 0.05. The means 
were separated using the Tukey test, if significances were 
observed. Correlation analysis between phosphate and yield 
and treatment and yield was done using PROC CORR pro-
cedures in SAS and the means separated using Spearman’s 
rank correlation if significances were observed. Phosphate 
solubilization activity was analyzed using GLM procedures 

of SAS at a P = 0.05 (df = 12), and the means were separated 
using the Dunnett test where significances were observed.

Results

Field Trial

In the first season, the results show that isolate T19 sig-
nificantly (P < 0.01) reduced wheat yield by 395.00 kg/ha 
at 0% P as well as by 146.70 kg/ha and 236.70 kg/ha for P 
levels 25% and 50%, respectively, when compared to the 
control yields at the equivalent phosphate levels (Table 1). 
Treatment T29 also significantly reduced yield by 582.5 kg/
ha at the 25% P level and by 91.70 kg/ha at the 0% P level, 
relative to the respective control yields. Isolate T19 signifi-
cantly increased wheat yield by 324.36 kg/ha and 909.60 kg/
ha at 75% P, and 100% P. A similar increase was noted for 
isolate T29 at 50% P, 75% P, and 100% P with yields of 4.1 
kg/ha, 170.33 kg/ha, and 367.10 kg/ha higher than that of 
the respective control yields.

During the second season, only isolate T19 demonstrated 
an increase in wheat yield at all phosphate levels, with 
improvements of 479.63 kg/ha, 169.42 kg/ha, 390.75 kg/
ha, 464.81 kg/ha, and 407.41 kg/ha for the 0% P, 25% P, 
50% P, 75% P, and 100% P levels, respectively, when com-
pared to the controls. Treatment with isolate T29 resulted 
in reduced yields at all phosphate levels when compared to 
the respective controls, with a significant (P = 0.05) reduc-
tion of 860.21 kg/ha and 924.07 kg/ha at 25% P and 100% 
P, while reducing yield by 544.45 kg/ha, 644.44 kg/ha and 
512.97 kg/ha at 0% P, 50% P and 75% P when compared to 
control yields.

Season three showed that isolate T19 significantly 
increased wheat yield at 0% P, 50% P, and 75% P by 
333.33 kg/ha, 1 877.78 kg/ha, and 500.00 kg/ha. How-
ever, the same isolate significantly reduced yield at 25% P 
and 100% P, by 916.66 kg/ha and 2 050.00 kg/ha, when 
compared to the respective control yields. Isolate T29 sig-
nificantly increased yield at all phosphate levels except 0% 
P and 100% P, with increases of 1 672.23 kg/ha (25% P), 
2 330.55 kg/ha (50% P), and 3 505.56 kg/ha (75% P). At 
0% P, T29 significantly reduced yield by 877.78 kg/ha but 
increased yield by 344.44 kg/ha at 100% P, when compared 
to the control yield of 4 205.56 kg/ha.

The results (Table 1) showed a significant (P ≤ 0.05) 
effect on yield due to the interaction between phosphate 
and treatment. The individual variable effect on yield 
results indicated that the treatment effect was only signifi-
cant (P < 0.01) in the third season, while the phosphate 
effect was significant (P < 0.01) for all seasons. The corre-
lation results (Table 2) support this significant interaction 
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results obtained except for the phosphate effect on yield 
during the third season.

Phosphate Solubilization

Isolate T19 (Table 3) was the only isolate able to solu-
bilize tricalcium phosphate (TCP)-amended Pikovskaya 
media based on halo size within the concentration range 
of 3–5 mg/ml. When phosphatase activity at the wheat 
flowering stage (Table  4) was considered, significant 
(P < 0.001) hydrolysis of p-nitrophenol was noted solely 
for isolate T19 at 25% P, when compared to the control. 
A significant (P < 0.001) reduction in phosphatase con-
centration was also observed for isolate T29 at all P levels 
exceeding 25% P, while isolate T19 exhibited this reduc-
tion only at 75% P.

Discussion

In existing literature, limited multi-seasonal field trial 
studies focus on the influence of individual PGPR iso-
lates on wheat yield. The wheat yield results represented 
in this study (Table 1) highlight the significant impact of 
soil phosphate levels on the ability of individual PGPR 
isolates to influence wheat yield throughout all seasons 
of evaluation.

Field Season Variability in Wheat Yield

The first season showed that application of both iso-
lates resulted in a decline in wheat yield when P levels 
fell below 50%, however, a significant increase in wheat 

Table 1  Effect of seed treatment 
with selected PGPR strains 
from the University of Pretoria’s 
PGPR culture collection 
on wheat yield at various 
phosphate concentrations 
over three successive growing 
seasons

*Wheat yield determined at a moisture content of 12%
a–g Treatment means within the same column and phosphate level followed by the same letter do not differ 
significantly (P = 0.05) according to the Tukey test

Treatment % P Yield (kg/ha)*

Season 1 Season 2 Season 3

Control 0 4 205.00 ± 150.33abcd 2 855.56 ± 535.46abc 4 205.56 ± 195.32bc

T19 3 810.00 ± 224.13ab 3 679.63 ± 309.04bcde 4 538.89 ± 112.57cd

T29 4 113.30 ± 61.66abc 2 311.11 ± 328.59a 3 327.78 ± 89.25ab

Control 25 4 352.50 ± 42.13a 3 194.47 ± 373.24abc 4 383.33 ± 380.33cd

T19 4 205.80 ± 13.48abc 3 363.89 ± 210.30abcd 3 466.67 ± 224.24ab

T29 3 770.00 ± 301.47a 2 334.26 ± 174.99ab 6 055.56 ± 295.08efg

Control 50 4 389.20 ± 302.00bcd 3 001.85 ± 930.10abcd 3 311.11 ± 285.81ab

T19 4 152.50 ± 182.77abc 3 392.60 ± 202.08abcd 5 188.89 ± 211.57de

T29 4 393.30 ± 192.16bcd 2 357.41 ± 154.42ab 5 641.66 ± 368.06ef

Control 75 4 175.67 ± 113.31abc 3 533.34 ± 510.09bcd 3 172.22 ± 85.90a

T19 4 500.03 ± 64.91 cd 3 998.15 ± 208.36cde 3 672.22 ± 303.48abc

T29 4 346.00 ± 60.72abcd 3 020.37 ± 283.23abc 6 677.78 ± 607.42f

Control 100 3 944.20 ± 109.38abc 4 368.52 ± 238.54de 6 138.89 ± 556.45fg

T19 4 583.80 ± 274.06d 4 775.93 ± 207.62f 4 088.89 ± 104.83abc

T29 4 311.30 ± 284.06abcd 3 444.45 ± 147.22abcd 6 483.33 ± 391.67fg

Phosphate
(df = 4)

P < 0.001 P < 0.001 P < 0.001

Treatment
(df = 2)

P < 0.057 P = 0.888 P < 0.001

Phosphate*treatment (df = 8) P < 0.001 P < 0.05 P < 0.001

Table 2  Spearman’s correlation 
of wheat yield of treatment (T19 
and T29) and incremental levels 
of inorganic phosphate over 
three production seasons

*Values in bold indicate significance at P = 0.05, separating the means using Spearman’s rank co-efficient

Yield Season 1 Yield Season 2 Yield Season 3

r—value P—value r—value P—value R—value P—value

Phosphate 0.42 0.004 0.57  < 0.001 0.27 0.074
Treatment 0.07 0.626 -0.38 0.011 0.44 0.003
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yield was observed when P levels reached or exceeded 
50% P. This resonates with previous research findings on 
tomato, chilli, and wheat regarding optimal fertilizer-use 
efficiency using PGPR that suggested a 75% fertilizer level 
precedes PGPR performance stability deterioration [22, 
29, 30], albeit using a PGPR consortium. During the sec-
ond season, T19 exhibited its capacity to enhance wheat 
yield, while isolate T29 consistently reduced wheat yield 
across all levels of P. During the final season, both iso-
lates increased wheat yield above 25% P, except for isolate 
T19 which demonstrated a significant decrease at 25% P 
and 100% P. This phenomenon emphasizes the context-
dependent nature of PGPR performance, which can vary 
even among individual isolates.

Two independent multi-seasonal studies conducted by 
Khalid et al. [31] and Oksel et al. [32] found similar wheat 
yield variability as in the present study. Both studies noted 
that their respective PGPR treatments increased wheat yield 
in one season but led to declines during another. However, 
these studies remained silent on the underlying reasons 
for these observations, accentuating the intricate nature 
of plant–microbe interactions that continue to challenge 

our comprehension [33]. Several factors could potentially 
contribute to the observed yield variation. Firstly, PGPR-
cultivar incompatibility cannot be ruled out, as it has been 
observed in a soybean study that specific PGPR reduced 
growth parameters in certain cultivars but not in others 
[34]. A second, and perhaps more probable reason, is the 
response of the PGPR to seasonal fluctuations determined 
by abiotic factors or interaction and competition within the 
local microbiome which can act deleteriously [35]. The host 
plant’s response to these external factors could result in the 
over-production of compounds that limit plant growth, e.g., 
phytohormones, and phytotoxins. A third reason may lie in 
the importance of phosphate in PGPRs T19 and T29 meta-
bolic processes, which, under limiting conditions, can initi-
ate PGPR phosphate scavenging mechanisms that produce 
secondary metabolites which in turn could cause an imbal-
ance in a plants physiological system [36].

Influence of Phytohormones on PGPR Performance

Plant hormones, which influence almost all physiological 
plant systems, can be perturbed by microbially excreted 
phytohormones. While elevated levels of auxin and cyto-
kinin have been associated with pathogenic microorganisms 
[37], Lobo et al. [33] found that elevated concentrations of 

Table 3  In vitro solubilization of incremental tricalcium phosphate 
concentrations by selected rhizobacteria on Pikovskaya media

a,b  Treatment means within the same column followed by the same 
letter do not differ significantly (P = 0.050) according to the Dunnett 
test

Isolate Tricalcium 
phosphate (mg/
ml)

Solubilization Halo diameter 
(cm)

T19 0 – 0.00a

1 – 0.00a

2 – 0.00a

3 + 1.20b

4 + 1.40b

5 + 1.40b

T29 0 – 0.00a

1 – 0.00a

2 – 0.00a

3 – 0.00a

4 – 0.00a

5 – 0.00a

Control 0 – 0.00a

1 – 0.00a

2 – 0.00a

3 – 0.00a

4 – 0.00a

5 – 0.00a

P—value 
(df = 12)

P < 0.001

Ms-value 0.526

Table 4  Effect of selected rhizobacteria on soil phosphatase activity 
at different phosphate levels at wheat flowering

*Fertilizer percentage from the recommended 7t/ha for the Duzi culti-
var at 180 kg/N/ha and 50 kg/P/ha
a −fTreatment means within the same column and phosphate level 
followed by the same letter do not differ significantly (P = 0.050) 
according to the Tukey test

Treatment Phosphate* Nitrophenol (µg/g/hr)

Control P0 11.38abc

T19 14.43cde

T29 12.84bcd

Control P25% 12.43abcd

T19 16.68ef

T29 12.55abcd

Control P50% 14.82cde

T19 12.48abcd

T29 9.08a

Control P75% 19.31f

T19 13.00bcde

T29 10.16ab

Control P100% 19.25f

T19 20.05f

T29 12.86de

Phosphate (df = 4) P < 0.001
Treatment (df = 2) P < 0.001
Phosphate*treatment (df = 8) P < 0.001
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PGPR-produced auxin did not negatively influence auxin-
sensitive growth parameters in tomato plants. Ethylene, 
on the other hand, which typically promotes root growth 
but stunts apical meristem growth, might contribute to the 
observed yield variations [38]. Salicylic acid, another well-
known phytohormone, promotes plant immunity but can also 
suppress plant growth at elevated concentrations by reduc-
ing metabolic energy available for plant growth through 
interference with the plant metabolic system, by affecting 
the balance in salicylic acid-related phytohormone systems 
or by affecting antioxidant gene transcription that regulates 
reactive oxygen species [39]. Whole-genome sequenc-
ing of Lysinibacillus sphaericus (T19; accession number 
SAMN19982556) and Paenibacillus alvei (T29; accession 
number SAMN19982557) revealed the presence of genes 
associated with the production of salicylic acid (SA), indole-
3-acetic acid (IAA), and cytokinin but not genes related to 
abscisic acid, ethylene, brassinosteroid, jasmonic acid, or 
strigolactone-producing pathways. As such, we postulate 
that the seasonal fluctuation in the yield results from T19 
and T29 can only be attributed to the isolates interacting 
with the host plant and the local microbiome, promoting the 
imbalance of plant physiological systems with a detrimental 
effect on wheat yield [33].

Phosphate Solubilization Mechanisms

When phosphate solubilization of Pi was evaluated in vitro 
using Pikovskaya media amended with tricalcium phosphate 
(Table 3), isolate T19 displayed the unique ability to solubi-
lize TCP at concentrations exceeding 3 mg/ml. Notably, the 
presence of plant growth-promoting genes associated with 
Pi solubilization via organic acid production was verified 
(data not shown) [40] in both isolates, which contradicts 
the earlier findings by Breedt et al. [23]. However, Egelk-
rout et al. [41] and Patterson et al. [42] suggested that the 
non-transcription/translation of genes could be attributed to 
various factors if not triggered. Zeng et al. [43] supported 
this by illustrating that P can trigger phosphate solubilization 
gene activity, consistent with the present study, indicating 
that the increase in TCP levels induced PS mechanisms in 
isolate T19 but not in isolate T29.

Soil Phosphatase Activity and Phosphonate 
Transport System Regulon (Pho)

When field phosphatase activity at flowering is considered 
(Table 4), soil phosphate, treatment, and the interaction 
between the two have a significant (P < 0.01) effect on 
the soil phosphatase concentration. The lower levels of 
soil phosphatase were noted at higher percentages of Pi 
and vice versa, when compared to the respective controls, 
except for isolate T19 at 100% Pi. The lowest level of 

phosphatase for both isolates was noted at 50% Pi, but a 
significant difference in phosphatase emerged at 75% Pi 
between the isolates and the control treatment. The inverse 
relationship between soil microbe phosphatase levels and 
mineral P fertilizer level suggests the inhibition of the 
phosphonate transport system regulon (Pho). The Pho 
regulon only activates P solubilization mechanisms, such 
as enzyme and organic acid excretion, during Pi starvation 
[16, 44, 45]. The lower levels of phosphatase indicate suf-
ficient soil Pi for microorganism utilization, reinforcing 
our finding and that of various other field trials indicating 
an optimum percentage of P is essential to promote plant 
growth and yield.

Conclusion

The positive effects of PGPR on plant health have been well 
documented in literature; however, the inherent complex-
ity of PGPR interactions with the environment, native flora, 
and crop-specific conditions contributes to inconsistent out-
comes [46, 47]. To address these challenges, contemporary 
research efforts increasingly focus on the use of specific 
combinations of PGPR [23, 48–50] with a wide spectrum 
of modes of action, that is sufficiently robust to counter envi-
ronmental factors, [49, 51]. For instance, recent studies by 
Calvo et al. [52] have highlighted the efficacy of tailored 
PGPR blends in enhancing nutrient uptake and stress toler-
ance in various crop species. Contextualizing our findings 
alongside the impact of soil phosphate (Pi) levels on the 
individual isolates sourced from the Breedt et al. [23] con-
sortium, it becomes evident that soil Pi concentration plays 
a pivotal role in shaping the ability of these individual iso-
lates to influence wheat yield. Studies by Wang et al. [22], 
Adesemoye et al., [29], and Batool and Altaf [30] have simi-
larly emphasized the importance of soil nutrient dynamics 
in modulating PGPR efficacy. This reinforces the need to 
consider soil Pi levels as a critical factor in the design and 
execution of future PGPR optimization trials within wheat 
cultivation. Our results show that these isolates can effec-
tively reduce Pi application rates increasing fertilizer-use 
efficiency when compared to current commercial farming 
practices. However, it is essential to acknowledge the limita-
tions of our study. Future research should prioritize evaluat-
ing phosphate solubilization at the final stages of vegetative 
growth and unraveling the mechanisms between PGPR, the 
host plant, and the microbiome to address the inconsistency 
in performance as observed in the current study. By delv-
ing deeper into these complexities, we can shed light on 
the underlying mechanisms that drive the observed seasonal 
variations, ultimately facilitating more precise and effective 
PGPR applications in agriculture.
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