Skip to main content
Log in

Description and Genomic Characteristics of Diaphorobacter limosus sp. nov., Isolated from a Sewage-Treatment Plant

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

A Gram-stain-negative, rod-shaped, non-motile, catalase-positive, denitrifying bacterium, designated strain Y-1T, was isolated from an aeration tank of a sewage treatment plant in China and characterized using polyphasic taxonomic approaches. Strain Y-1T could grow at 10–37 °C (optimum 25 °C), at pH 5.0–10.0 (optimum 7.0) and in the presence of 0–3.0% (w/v) NaCl (optimum 0.5%). The phylogenetic tree based on the 16S rRNA gene sequences revealed that strain Y-1T was a member of genus Diaphorobacter, and showed the highest sequence similarities with Diaphorobacter oryzae RF3T (97.50%), Diaphorobacter nitroreducens NA10BT (97.38%) and Diaphorobacter aerolatus 8604S-37T (96.56%). In terms of carbon source utilization and enzyme activities, strain Y-1T was significantly different from its similar strains. The major respiratory quinone was Q-8, and the main polar lipid was phosphatidylethanolamine. Comparative genomic analysis of strain Y-1T and other Diaphorobacter species was conducted to explore the mechanisms underlying the differences among these strains. Strain Y-1T encoded 3957 genes, consisting of 3813 protein-coding genes and 144 RNA coding genes, and encoded 652 enzymes with 31 unique enzymes compared with other related species. The DNA G + C content was 69.95 mol%. Strain Y-1T exhibited 41.71% DNA–DNA relatedness and 95% ANIb with the most related type strains.

On the basis of the evidence presented from polyphasic analysis, strain Y-1T was suggested as a novel species within the genus Diaphorobacter, for which the name Diaphorobacter limosus sp. nov. is proposed, with the type strain Y-1T (= KCTC 92852T = CCTCC AB 2023032T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khan ST, Hiraishi A (2002) Diaphorobacter nitroreducens gen. nov., sp. nov., a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge. J Gen Appl Microbiol 48:299–308

  2. Kim SJ, Moon JY, Ahn JH et al (2014) Diaphorobacter aerolatus sp. nov., isolated from air, and emended description of the genus Diaphorobacter. Int J Syst Evol Microbiol 64:513–517. https://doi.org/10.1099/ijs.0.051060-0

    Article  CAS  PubMed  Google Scholar 

  3. Pham VH, Park SJ, Roh Y et al (2009) Diaphorobacter oryzae sp. nov., isolated from a thiosulfate-oxidizing enrichment culture. Int J Syst Evol Microbiol 59:218–221. https://doi.org/10.1099/ijs.0.001669-0

    Article  CAS  PubMed  Google Scholar 

  4. Liu Y, Zhu HH (2019) Diaphorobacter polyhydroxybutyrativorans Qiu et al. 2015 is a later heterotypic synonym of Diaphorobacter nitroreducens Khan and Hiraishi 2003. Int J Syst Evol Microbiol 69:2954–2957. https://doi.org/10.1099/ijsem.0.003582

    Article  CAS  PubMed  Google Scholar 

  5. Ruan Z, Cao W, Zhu J et al (2022) Comparative genomic analysis of Pseudoxanthomonas sp. X-1, a bromoxynil octanoate-degrading bacterium, and its related type strains. Curr Microbiol 79:65. https://doi.org/10.1007/s00284-021-02735-y

  6. Chung J hui, Lee JY, Choi GH, et al (2022) Horticoccus luteus gen. nov., sp. nov., a novel member of the phylum Verrucomicrobia isolated from a Dichlorodiphenyltrichloroethane (DDT)-contaminated orchard soil. Curr Microbiol 79:340. https://doi.org/10.1007/s00284-022-03036-8

  7. Tindall BJ, Sikorski J, Smibert RA, Krieg NR (2014) Phenotypic characterization and the principles of comparative systematics. Methods Gen Mol Microbiol 330–393. https://doi.org/10.1128/9781555817497.ch15

  8. Tindall BJ (1990) A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130. https://doi.org/10.1016/S0723-2020(11)80158-X

    Article  CAS  Google Scholar 

  9. Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66:199–202. https://doi.org/10.1016/0378-1097(90)90282-U

    Article  CAS  Google Scholar 

  10. Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218

    Article  CAS  Google Scholar 

  12. Heo J, Cho HY, Heo I et al (2019) Pulveribacter suum gen. nov., sp. nov., isolated from a pig farm dust collector. Int J Syst Evol Microbiol 69:1864–1869. https://doi.org/10.1099/ijsem.0.003082

    Article  CAS  PubMed  Google Scholar 

  13. Du H, Jiao N, Hu Y, Zeng Y (2006) Diversity and distribution of pigmented heterotrophic bacteria in marine environments. FEMS Microbiol Ecol 57:92–105. https://doi.org/10.1111/j.1574-6941.2006.00090.x

    Article  CAS  PubMed  Google Scholar 

  14. Kim OS, Cho YJ, Lee K et al (2012) Introducing EzTaxon-e: A prokaryotic 16s rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. https://doi.org/10.1099/ijs.0.038075-0

    Article  CAS  PubMed  Google Scholar 

  15. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  16. Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376. https://doi.org/10.1007/BF01734359

    Article  CAS  PubMed  Google Scholar 

  17. Rzhetsky A, Nei M (1993) Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol 10(5):1073–1095. https://doi.org/10.1093/oxfordjournals.molbev.a040056

    Article  CAS  PubMed  Google Scholar 

  18. Tamura K, Stecher G, Kumar S (2021) MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38(7):3022–3027. https://doi.org/10.1093/molbev/msab120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics (Oxford, England) 30(14):2068–2069. https://doi.org/10.1093/bioinformatics/btu153

    Article  CAS  PubMed  Google Scholar 

  20. Yoon SH, HaLim SJ et al (2017) A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol 110:1281–1286. https://doi.org/10.1007/s10482-017-0844-4

    Article  CAS  Google Scholar 

  21. Auch AF, von Jan M et al (2010) Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci 2(1):117–134. https://doi.org/10.4056/sigs.531120

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gu Z, Gu L, Eils R, Schlesner M, Brors B (2014) circlize Implements and enhances circular visualization in R. Bioinformatics (Oxford, England) 30(19):2811–2812. https://doi.org/10.1093/bioinformatics/btu393

    Article  CAS  PubMed  Google Scholar 

  23. Ebenhoh O, Handorf T, Heinrich R (2004) Structural analysis of expanding metabolic networks. Genome Inform 15(1):35–45. https://doi.org/10.11234/GI1990.15.35

  24. Tal O, Bartuv R, Vetcos M et al (2021) NetCom: a network-based tool for predicting metabolic activities of microbial communities based on interpretation of metagenomics data. Microorganisms 9(9):1838. https://doi.org/10.3390/microorganisms9091838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Team RC (2010) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. Computing 14:12–21

  26. Stackebrandt E, Frederiksen W, Garrity GM et al (2002) Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047. https://doi.org/10.1099/ijs.0.02360-0.02360

  27. Richter M et al (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 106(45):19126–19131. https://doi.org/10.1073/pnas.0906412106

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Key Realm Research and Development Program of Guangdong Province (2023B0202020001, 2020B0202080001), National Natural Science Foundation of China (42307006, 42177208), Natural Science Foundation of Guangdong Province, China (2022A1515011929), the Guangdong Laboratory for Lingnan Modern Agriculture Project (NT2021010, Heyuan Branch DT20220002), Science and Technology Project of Heyuan (Heke 2021001), Guangdong Provincial Science and Technology Plan Project (2021B1212040008), and Guangdong Special Support Program (2021TQ060163).

Author information

Authors and Affiliations

Authors

Contributions

KY wrote the manuscript. JT isolated the strain Y-1T. KY, JT, and GJ performed the experiments. ZN, QL, QC, ZR, and RQ revised the manuscript. ZR and RQ supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhepu Ruan or Rongliang Qiu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 815 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, K., Tan, J., Jiang, G. et al. Description and Genomic Characteristics of Diaphorobacter limosus sp. nov., Isolated from a Sewage-Treatment Plant. Curr Microbiol 81, 155 (2024). https://doi.org/10.1007/s00284-024-03659-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00284-024-03659-z

Navigation